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Abstract: Audio-based event detection poses a number of different challenges that are not
encountered in other fields, such as image detection. Challenges such as ambient noise,
low Signal-to-Noise Ratio (SNR) and microphone distance are not yet fully understood. If the
multimodal approaches are to become better in a range of fields of interest, audio analysis will
have to play an integral part. Event recognition in autonomous vehicles (AVs) is such a field
at a nascent stage that can especially leverage solely on audio or can be part of the multimodal
approach. In this manuscript, an extensive analysis focused on the comparison of different magnitude
representations of the raw audio is presented. The data on which the analysis is carried out is part of
the publicly available MIVIA Audio Events dataset. Single channel Short-Time Fourier Transform
(STFT), mel-scale and Mel-Frequency Cepstral Coefficients (MFCCs) spectrogram representations
are used. Furthermore, aggregation methods of the aforementioned spectrogram representations
are examined; the feature concatenation compared to the stacking of features as separate channels.
The effect of the SNR on recognition accuracy and the generalization of the proposed methods on
datasets that were both seen and not seen during training are studied and reported.

Keywords: audio surveillance; spectrograms; CNN; SNR; multichannel

1. Introduction

Entering the era of third-generation surveillance systems [1] means that the world is transitioning
to an event-based analysis of data, from what used to be a time-based one. Pro-activity is becoming a
core feature of this era, with multimedia signals, such as video and audio streams, analyzed in real time
in order to raise alarms when something abnormal or out of the ordinary happens. Over the last years,
increasing concerns about public safety and security has led to a growing adoption of Internet protocol
cameras and rising demand for wireless and spy cameras [2,3]. These are the factors driving growth of
the video surveillance industry, the global market of which is projected to reach 74.6 billion US dollars
by 2025 from 45.5 in 2020, with a compound annual growth rate of 10.4%, as it has been shown by
studies conducted by BIS Research [4].

The deployment of autonomous vehicles (AVs) can provide advantages such as improved
accessibility to transportation services, improved travel time with traffic prediction models [5] and
decreased travel costs, as it has been studied by Bosch et al. [6]. However, there are some concerns
about the robustness and safety of AVs. A range of issues could arise as in the case where there is no
driver in the bus, for instance, using an autonomous bus in certain neighborhoods at night where no
authority could keep the passengers calm or provide first aid in the case of an abnormal event, such as

Electronics 2020, 9, 1593; doi:10.3390/electronics9101593 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-1570-0419
https://orcid.org/0000-0003-1102-5708
https://orcid.org/0000-0002-5337-161X
https://orcid.org/0000-0001-6381-8326
https://orcid.org/0000-0001-6915-6722
http://www.mdpi.com/2079-9292/9/10/1593?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9101593
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 1593 2 of 20

vandalism. To address concerns on social and personal safety and security in the vehicle, certain
measures are required. Various attempts have been made to address these concerns, within which
image-based techniques have a prominent role but are not deemed totally sufficient. There is a number
of scenarios that using or pairing image-based techniques with audio is crucial, for example, anomalous
or out of the ordinary behaviour in the interior of the vehicle. As such, audio analysis can be used
in combination with video analytic tools or by itself as a standalone solution. It can be considered a
suitable solution to situations in which only video stream analysis does not yield sufficient results [7].
Prominent examples of that are a gunshot or a scream; both would be events of interest that are
potentially abnormal and cannot be easily detected solely by video analysis tools. On the other hand,
audio analysis can significantly improve the recognition of events when combined with video analysis.
Simple everyday phenomena, such as abrupt lighting changes, reflections, glare and bad weather
conditions [8] can have an adverse effect on the analysis of a scene when solely using video analysis.
This can be mitigated by using audio analytics tools.

Audio analysis in surveillance applications poses a number of challenges that must be first met
in order to be fully used in real-life applications. Numerous scientific contributions have been made
available in the past several years, thus confirming the wide interest of the scientific community
in the field. However, it is still considered an open problem [9], at least if applications in the wild
that are characterized by unsatisfactory performance in complex scenarios are considered, such as
audio recognition in automated vehicles. It is important to note that, before the era of deep learning,
the scientific community was almost exclusively devoted to finding the best set of features and
classifiers for representing and classifying patterns, respectively. In the case of audio-based event
classification, a number of feature sets have been proposed and used, mainly defining them directly
on raw data, for example, input signal in the time domain, or over its time-frequency representation;
examples range from temporal based features, as the cepstral ones, to frequency-based features [10–14].
A detailed review of the different typologies of features proposed along the years for sound event
recognition can be found in the review by Crocco et al. [9].

Up until recently, sound analysis research has been mainly focused on speech recognition [15],
music classification [16] and speaker identification [17]. However, the applicability of the aforementioned
state-of-the-art methods on environmental audio analysis is very limited, owing mainly to the fact that,
in environmental audio, there is no underlying phoneme-like structure, which is the assumption of
most speech recognition methods. Furthermore, there are very specific characteristics in the human
voice in terms of frequency, which are absent in environmental sounds. For example, a gunshot would
have high-frequency components not present in human voice. Another very important difference from
speech recognition or speaker identification is that the sound source (human speech) is usually close to the
microphone, so as to ensure the background sound energy is lower than the foreground one, not impairing
the recognition system. This is not always true in the case of environmental audio classification [18],
where the Signal-to-Noise Ratio (SNR) can significantly affect the recognition accuracy. Audio events
to be recognized and masked onto significant amounts of background noise is a common occurrence.
This is particularly important when audio surveillance takes place in a real-world environment, especially
outdoors. In many of these cases, the SNR can be very low, depending on the power of the sound source.
The vast majority of studies on audio events have reported results on positive-only SNR sound events,
with the exception of Strisciuglio et al. [19], who included null or negative SNR values in their study.

During recent years, deep neural networks received great research interest, since they
outperformed traditional classifiers in several application domains and because of the relatively small
cost of modern graphics processing units. Specifically, in the computer vision domain, Convolutional
Neural Networks (CNNs) have been widely adopted directly over raw video and image data in several
application fields, such as object detection, object segmentation, action and activity recognition [20–22].
However, recently, deep learning methods are revealing their effectiveness also in applications of
audio analysis; although a taxonomy of the published papers is still far from realized, two main
emerging trends can be distinguished. The first consists of methods that analyze directly the
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raw audio data in the time domain by exploiting Deep Belief Networks or Restricted Boltzmann
Machines [23–25]. These approaches are related to the use of temporal-based features, which are not
generally handcrafted but extracted with the help of deep networks. The second trend consists of
methods that use precomputed representations obtained by CNNs, starting from raw data. A good
example is offered by the various time-frequency representations of the input signal, such as the
Short-Time Fourier Transform (STFT) spectrogram or the Mel-Frequency Cepstral Coefficients (MFCCs)
spectrogram [26,27]. AENet [28], SoReNet [29] and AReN [30] are recent contributions to this field
and outstanding examples of a CNN fed by spectrogram images achieving very promising results
for the problem of sound event recognition. Hence, it can be easily concluded that the representation
automatically extracted by means of deep networks is definitively better in finding a high level
representation of the data and is confirmed by various studies [31,32].

Starting from the above considerations and given the fact that there already exists an abundance
of deep neural network architectures able to extract high representations in a diverse set of problems,
this paper does not focus on the network architecture but on two crucial parts of audio-based
event detection: (i) the comparison between different spectrogram representations, namely the STFT,
the mel spectrogram and the MFCC spectrogram, as well as the combination of all three representations
and (ii) the effect of SNR to audio recognition and the potential of the generalization of a model in
different SNR settings and datasets collected under different environments.

The paper is organised as follows: in Section 2, the proposed method is discussed; the dataset
used for the experiments along with the achieved results and the comparison with state-of-the-art
methodologies are reported in Section 3. Finally, the conclusions drawn from the present study are
shown in Section 4.

2. Proposed Method

For the training and testing processes, Python libraries such as TensorFlow [33], NumPy [34],
pandas [35], matplotlib [36] and SciPy [37] were first initialized and imported. The LibROSA [38]
library was used to extract the features from the audio dataset, while Pillow [39] and OpenCV [40]
were used in the image manipulation stage. The different procedures in the present study are presented
in this section.

2.1. Spectrograms

Three different-magnitude representation types, extracted from the raw audio using the LibROSA
library, were studied. The first (and most common in the literature) is STFT. It is obtained by computing
the Fourier transform for successive frames in a signal (discrete-time STFT):

X(m, ω) =
+∞

∑
n=−∞

x(n)w(n − m)e−jωn (1)

The function to be transformed (x(n)) is multiplied by a window function (w(n)), which is
nonzero for only a short period of time. The Fourier transform (X(m, ω)) of the resulting signal is taken
as the window is slid along the time axis, resulting in a two-dimensional representation of the signal.
In Equation (1), m is discrete and frequency ω is continuous, but in most typical applications (including
in this study), the STFT is performed using Fast Fourier Transform (FFT), so both variables are discrete
and quantized. Finally, the linear-scaled STFT spectrogram is the normalized, squared magnitude
(power spectrum) of the STFT coefficients produced via the aforementioned process. The mel
spectrogram on the other hand is the same representation, with the only difference that the frequency
axis is scaled to the mel scale (an approximation to the nonlinear scaling of the frequencies as it is in the
case of human perception) using overlapping triangular filters. The MFCC is the third type of raw audio
representation. The process is the same as in the mel representation, but instead of using triangular
filters on the power spectrum after applying STFT, a Discrete Cosine Transform (DCT) is applied,
retaining a number of the resulting coefficients while the rest are discarded. The parameters used
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throughout all the experiments were a sampling rate of 16 kHz, an FFT size of 512, 256 samples between
successive frames (hop length), 128 mel bins (features) for the mel representation and 60 MFCCs
(features) for the MFCC representation.

2.2. Single-Channel Representation

For the single-channel representation of the audio signal (monophonic audio recordings), the STFT,
mel-spectrograms and MFCCs were selected as two-dimensional magnitude representations. The STFT
representation resulted in a 188 × 257 matrix (188 STFT time frames and 257 discrete frequencies up to
the Nyquist frequency), the mel-spectrogram resulted in a 188 × 128 matrix (128 mel frequency bins)
and the MFCC spectrogram resulted in a 188 × 60 matrix (60 MFCC bands). A grayscale representation
of each of the most commonly used features in the audio-based event detection literature was used as
an input to the neural network. The conversion from RGB to grayscale was carried out by using the
Rec. 601 method [41]:

Grayscale601 = 0.299 × Red + 0.587 × Green + 0.114 × Blue (2)

Although the raw waveform was not used as an input to the network, the STFT and
mel-spectrogram can be considered a feature extraction process towards an end-to-end audio-based
event detection framework [42].

2.3. Multichannel Representation

In the case of the multichannel representation of the raw audio, the three representations
(STFT, mel and MFCC) were combined following two separate methods:

(i) The first was by concatenating the 3 channel (RGB) representations of each spectrogram feature
together. That would mean simply adding the (188 × 257 × 3) STFT, the (188 × 128 × 3) mel and the
(188 × 60 × 3) MFCC spectrogram frequency features, resulting in a multichannel (188 × 445 × 3) sum
of features to be used as input for the model with regard to the concatenated method (Figure 1, top).

(ii) The second method was to stack the different spectrograms in their grayscale form together,
as different channels. In order for that to happen, each spectrogram was reshaped to a common
feature-time dimension length, which was chosen to be 224 × 224 (see below). To that end, an area
interpolation algorithm [40] was used (resampling using pixel area relation). It is a commonly used
method for image decimation, as it is reported to provide moiré effect-free results, while in the case of
image interpolation, it is known to yield similar results to the nearest neighbor interpolation method.
The resulting shape of each representation derived from this process was 224 × 224 × 3. Then,
the grayscale spectrogram of each representation was used as per Equation (2). Finally, with each
representation being 224 × 224 × 1, they were all stacked together, comprising a 224 × 224 × 3
representation (the TensorFlow [33] preprocessing array_to_img method was used to produce the final
image from the array) with each channel being either the STFT, mel or MFCC spectrogram instead
of the RGB channels. These would be the dimensions of the input representation for the model with
regard to the stacked method (Figure 1, bottom).
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Figure 1. The two representation methods, described in Section 2.3: the concatenation method is shown
on top, and the stacking method is on the bottom.

2.4. Transfer Learning

As mentioned in Section 1, the scope of the present work is the study of the impact of different
representations and their combinations, and the effect of the SNR in the audio event classification.
Three network architectures were initially considered, namely DenseNet-121 [43], MobileNetV2 [44]
and ResNet-50 [45]. DenseNet-121 consists of 121 layers, with a little over 8 million parameters,
MobileNetV2 consistes of 88 layers and about 3.5 million parameters, and ResNet-50 consists of
50 layers and about 25 million parameters. After an initial screening conducted on the whole
extended dataset, the DenseNet-121 architecture was selected on account of the model complexity
(number of trainable parameters) and the frame-wise recognition rate. Specifically, ResNet-50 achieved
an average recognition rate of 89.55% on the four classes of the MIVIA dataset while MobileNetV2
achieved an average recognition rate of 86.53%. The detailed results of the DenseNet-121 architecture
are shown in Section 3.

For the selected network architecture, the original fully connected layer at the top of the
network was excluded and substituted by a global average pooling layer, followed by a dropout
layer dropping half the input (so as to reduce overfitting), with a final fully connected layer as a
classifier. Those pretrained on ImageNet weights were used for weight initialization (hence the
use of the suggested 224 × 224 input when possible, i.e., in the case of stacked multichannel
magnitude representations). It should be noted that ImageNet has been already used in the literature
also for audio analysis tasks (for example, in [28]).
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3. Experimental Setup

Dataset

As opposed to image- or video-based applications, far fewer datasets for problems involving
audio analysis exist. More importantly, the number of available datasets containing real
environment sound for audio surveillance applications is significantly limited. In the present
study of sound events classification, a freely available dataset, MIVIA Audio Events Dataset [46]
was selected. Including four classes of interest, namely, Glass Breaking (GB), Gunshots (G) and
Screams (S), along with background samples, the dataset contains approximately 30 h of audio
recording. The Background Noise (BN) data originated from indoor and outdoor environments and
included silence, rain, applause, claps, bells, home appliances, rain, whistles, crowded ambience
and Gaussian noise. A detailed composition of the original dataset is presented in Table 1.
This dataset, composed by wav audio recordings, is partitioned into training (approximately 70%) and
testing (approximately 30%) sets. It was recorded using an Axis P8221 Audio Module and an Axis
T83 omnidirectional microphone for audio surveillance applications. The audio clips are represented
with pulse-code modulation sampled at 32 kHz with a resolution of 16 bits per sample. As it has
been mentioned previously, in today’s deep learning era, there is an abundance of image and video
datasets containing millions of data and thousands of classes, as opposed to audio datasets that
are not nearly as rich, big, or diverse. Although the MIVIA Audio Events Dataset consists only
of four classes (and essentially three types of events), it provides a couple of challenges inherent
to audio classification. The first is that there are different types of sounds belonging to the same
class. For example, some of the background sounds are quite similar to the event classes of interest
(e.g., people’s voices in a crowded environment can be easily confused with screams). The second
challenge is the SNR. The aforementioned dataset has been augmented so as to contain each clip at a
different SNR; namely, 5 dB, 10 dB, 15 dB, 20 dB, 25 dB and 30 dB. This was done in order to simulate
different microphone-event distances as well as the occurrence of sounds within different environments.
The data was further extended by including cases in which the energy of the sound of interest is
equal to (null SNR) or lower than (negative SNR) the energy of the background sound. This led to the
formation of two additional SNR versions, 0 dB and −5 dB, which increases the audio events of each
class to 8000 from the original 6000 (5600 for training and 2400 for testing, equally distributed between
the SNR values), as exhibited in Table 1.

Table 1. Composition of the MIVIA Audio Events Dataset: Number of events and total duration
of Background Noise (BN), Glass Breaking (GB), Gunshots (G) and Screams (S) audio samples.
Top: the original composition. Bottom: the final composition, extended with the inclusion of 0 dB and
−5 dB sound clip versions.

Original Training set Original Test set

Type Events Duration (s) Events Duration (s)

BN - 58,372 - 25,037

GB 4200 6025 1800 2562

G 4200 1884 1800 744

S 4200 5489 1800 2445

Extended Training set Extended Test set

BN - 77,828 - 33,382

GB 5600 8033 2400 3416

G 5600 2512 2400 991

S 5600 7318 2400 3261
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The reason behind the selection of this dataset is that it contains classes of interest regarding the
in-vehicle safety of passengers as well as danger originating from the environment around the vehicle.
Furthermore, the challenge posed by different SNR levels is closer to a real-world scenario, making
this dataset a suitable candidate.

3.1. Experimental Procedure

The procedure for each experiment consisted of training and testing on one specific SNR part of
the extended MIVIA Audio Events Dataset (10,795 events). The data were normalized in order to be in
the range of [0, 1] and augmented by randomly shifting up to a fourth of the image within the width
range, before being used as input in the model described in Section 2. The Adam optimizer [47] was
used, with a learning rate of 1 × 10−4. The loss function that was used was categorical cross-entropy,
since the task was multi-class classification. Due to the imbalanced nature of the dataset of interest
(Table 1) the macro average F1-Score was used as the metric to be evaluated by the model during
training and testing. The reason for the selection of the macro average F1-Score is that it assigns
equal weights to the classes; hence, it is insensitive to the class imbalance problem. The F1-Score is
computed as follows:

F1-Score =
2 × Precision × Recall

Precision + Recall
(3)

and the macro average F1-Score is the arithmetic mean of the per-class F1-Score. Finally, an early
stopping criterion was applied to the model when there was no improvement of the F1-Score for eight
consecutive epochs to avoid overfitting.

3.1.1. Single-Channel Group of Experiments

Regarding the single-channel magnitude representations, the DenseNet-121 was trained and
tested on each of the eight SNR values, ranging from −5 dB to 30 dB, with a step of 5 dB.
Moreover, the generalization of the network was studied by training the network on the noisiest
SNR setting (−5 dB) and testing it on 15 dB and 30 dB as well as by training it on 15 dB and 30 dB
separately and testing it at −5 dB. Additionally, in order to confirm that the results between each of
the three magnitude representations were not affected by a randomness factor of the neural network,
the McNemar test was used with a statistically independent threshold p < 0.05.

3.1.2. Multichannel Group of Experiments

For multichannel representations, there were ten models in total that were investigated. The eight
respective SNRs, ranging from −5 dB to 30 dB, with a step of 5 dB and two more, were both trained on
−5 dB and tested on 15 dB and 30 dB, respectively. No models were trained on 30 dB and tested on
−5 dB, or on 15 dB and −5 dB, respectively, as in the single-channel part; this was due to the already
low capability of the models, as can be seen in Table 2.
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Table 2. Event-based results using the single-channel spectrogram representation as input and the
DenseNet-121 as the classifier.

Train −5 dB/Test −5 dB Train 0 dB/Test 0 dB

Metrics/
Macro Avg per

feature

Precision
(%)

Recall
(%)

F1-Score
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Macro Average
(STFT) 81.92 78.76 79.74 89.35 88.16 88.66

Macro Average
(mel) 75.53 76.38 75.76 79.4 80.2 79.64

Macro Average
(MFCC) 71.04 75.69 72.7 82.85 82.3 82.36

Train 5 dB/Test 5 dB Train 10 dB/Test 10 dB

Macro Average
(STFT) 87.86 89.95 88.74 91.37 90.44 90.88

Macro Average
(mel) 86.68 85.51 85.92 87.9 88.73 88.22

Macro Average
(MFCC) 86.88 89.42 87.92 87.5 86.94 87.21

Train 15 dB/Test 15 dB Train 20 dB/Test 20 dB

Macro Average
(STFT) 91.25 92.6 91.89 91.97 92.75 92.34

Macro Average
(mel) 91.28 89.3 90.19 91.71 88.76 90.07

Macro Average
(MFCC) 88.73 88.25 88.38 90.65 89.96 90.22

Train 25 dB/Test 25 dB Train 30 dB/Test 30 dB

Macro Average
(STFT) 91.95 91.85 91.9 91.38 93.06 92.15

Macro Average
(mel) 92.01 90.31 91.06 91.01 91.51 91.23

Macro Average
(MFCC) 90.96 90.35 90.65 90.43 91.17 90.78

Train −5 dB/Test 15 dB Train −5 dB/Test 30 dB

Macro Average
(STFT) 72.56 65.65 62.11 73.29 65.5 63.77

Macro Average
(mel) 70.41 63.81 61.2 70.94 68.22 66.85

Macro Average
(MFCC) 83.95 88.85 85.58 84.63 88.36 86.2

Train 15 dB/Test −5 dB Train 30 dB/Test −5 dB

Macro Average
(STFT) 60.96 26.86 20.56 30.65 25.82 18.26

Macro Average
(mel) 31.13 30.58 26.32 30.6 29.45 21.62

Macro Average
(MFCC) 49.08 37.34 37.02 53.92 33.59 31.47
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3.1.3. Performance Evaluation and Metrics

Within an event-based evaluation framework, an event is considered correctly detected if at least
one of the time windows which overlap it is properly classified. Four metrics are adopted in this study:
Recognition Rate (RR), Miss Detection Rate (MDR), Error Rate (ER) and False Positive Rate (FPR).
For the single-channel experiments, precision, recall and F1-Score were selected as the evaluation
metrics. The error count can be obtained by subtracting the detection and miss counts from the number
of events presented to the model. The values are normalized by the number of events. It must be
noted at this point that, to the best of the authors’ knowledge, the detection protocol performed on
the MIVIA Audio Events Dataset is typically event-based, meaning that an event of interest (namely
GB, G and S), is considered correctly detected if it is identified for at least one of the consecutive
sequence of frames in which it appears. The frame-by-frame results are also reported, in which RR,
MDR, ER and FPR are computed by considering the total number of audio frames (total number of
magnitude representations).

3.2. Results

3.2.1. Single-Channel Spectrograms

The single-channel spectrogram results are summarized in Table 2. The main focus of the
experiment is to evaluate the ability of a 2D CNN to learn from various spectrogram representations
at various SNR settings and to check the ability of the CNN to generalize on different SNR settings
during training and testing. The STFT spectrograms provided the best results when training and
testing on the same SNR values, compared to mel-spectrograms which are focused on the mel-scale
to better represent the human auditory system. This result means that, for environmental sounds,
there should not be any amplitude boost given at certain frequencies. Instead, all frequencies in the
spectrum should be treated equally. Figure 2 depicts the T-distributed Stochastic Neighbor Embedding
(t-SNE) plot (BN: orange color, GB: purple color, G: pink color and S: green color) of the dataset
before training, on the left, and the features learnt by DenseNet-121 after training. The top plot
shows the ability of DenseNet-121 to learn and form class clusters when trained and tested using
the STFT spectrograms at 30 dB. The middle plot shows the ability of the generalization, using the
MFCC spectrograms, at −5 dB for training and 15 dB for testing, and the bottom plot depicts the poor
generalization results of the mel-spectrograms at −5 dB for training and 15 dB for testing. T-distributed
Stochastic Neighbor Embedding (t-SNE) is a nonlinear dimensionality reduction technique well-suited
for embedding high-dimensional data for visualization in a low-dimensional space of two or three
dimensions. It serves the purpose of visualization of the features learned during training, and its
process is twofold; it constructs a probability distribution over pairs of high-dimensional objects in
a way that similar objects are assigned a higher probability while dissimilar points are assigned a
lower probability. After that, t-SNE defines a similar probability distribution over the points in the
low-dimensional map and it minimizes the Kullback–Leibler divergence (KL divergence, [48]) between
the two distributions with respect to the locations of the points in the map.

In general, the network is able to accurately cluster the Glass Break, Gunshot and Scream classes,
whereas the Background Noise that contains a variety of environmental audio signals forms a wider
cluster over the t-SNE space. On the contrary, it is noticeable that the model trained on the MFCCs is
able to generalize better than the STFT spectrogram and the mel-spectrogram when they are trained
and tested on different SNR settings. This can be explained since the MFCC magnitude representation
includes all the important information of the audio signal in the lowest MFCC features (e.g., first
10 features) in terms of concentrated energies and has minimum changes in the highest ones. Therefore,
the network is able to learn all the patterns in the lowest part of the magnitude representation.
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(a) t-SNE plot of the dataset at 30 dB before the
training using STFT

(b) t-SNE plot of the dataset at 30 dB after the
training using STFT

(c) t-SNE plot of the dataset at −5 dB before the
training using MFCCs

(d) t-SNE plot of the dataset at 15 dB after the
training using MFCCs

(e) t-SNE plot of the dataset at −5 dB before the
training using mel

(f) t-SNE plot of the dataset at 15 dB after the
training using mel

Figure 2. T-distributed Stochastic Neighbor Embedding (t-SNE) plots of the Short-Time Fourier
Transform (STFT) (top), Mel-Frequency Cepstral Coefficients (MFCCs) (middle) and mel (bottom).
BN: orange color, GB: purple color, G: pink color and S: green color. The x-axis shows t-SNE dimension
1, and the y-axis shows t-SNE dimension 2.
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3.2.2. Multichannel Spectrograms

A representative sample of the variation with respect to each class and SNR in the extended
dataset is shown in Figure 3. It is evident that, as the SNR increases, the features become clearer and
easier to distinguish from the background, as was expected.

Figure 3. Multichannel spectrograms obtained with the stacked method discussed in Section 2:
the representations of the four classes of the extended dataset are shown, with the SNR value increasing
at the direction of the arrow (left side) from −5 dB to 30 dB with a step of 5 dB.

Although the focus of the present study is mainly on multichannel spectrogram representation
performance (as well as studying different single channel representations) and the study of the effect
of the SNR on the performance, a comparison of different studies conducted on the MIVIA Audio
Events dataset is shown in Table 3. The two common representations mentioned in the literature are
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spectrograms and gammatonegrams. The former is the traditional time-frequency visualization, but it
actually has some important differences from how sound is analyzed by the ear; most significantly,
the ear’s frequency sub-bands get wider for higher frequencies, whereas the spectrogram has a
constant bandwidth across all frequency channels. A Gammatone spectrogram or gammatonegram is
a time-frequency magnitude array based on an FFT-based approximation to gammatone sub-band
filters, for which the bandwidth increase with increasing central frequency. The upper part of the
table compares the results achieved by considering the classification of positive SNR sound events
only are shown. In the lower part of the Table, the results achieved by including sound events with
negative and null SNR to the above are exhibited. Furthermore, in Table 4, classification matrices
obtained on both original and extended datasets using the multichannel (stacked) approach are shown.
The average RRs for the three classes of interest (event-based) were 92.5% and 90.9% for the original
and the extended dataset, respectively. The latter compares well with the reported value of 90.7%
in [19].

Table 3. Results (frame-by-frame) of available studies in the literature along with the results of the
current work, regarding the four classes (including the background noise) of the original and the extended
MIVIA Audio Events Dataset: apart from the four metrics presented in Section 3.1, the accuracy is also
shown, for comparison reasons only.

Method
Test with SNR > 0 Representation RR

(%)
Accuracy

(%)
MDR

(%)
ER
(%)

FPR
(%)

Present Study

STFT +
Mel +
MFCC

(Stacked)

92.5 95.21 7.28 0.22 2.59

COPE [19] Gammatonegram 96 - 3.1 0.9 4.3

AReN [30] 1 Gammatonegram 94.65 - 4.97 0.38 0.78

SoundNet [19] Gammatonegram 93.33 - 9.9 1.4 1.4

bofs [11] Gammatonegram 86.7 - 9.65 1.4 3.1

bofh [11] Gammatonegram 84.8 - 12.5 2.7 2.1

SoreNet [29] 1 Spectrogram - 88.9 - - -

AENet [29] 1 Spectrogram - 81.5 - - -

AENet [30] 1 Gammatonegram 88.73 - 8.84 2.43 2.59

AENet [30] 1 Spectrogram 78.82 - 16.69 4.48 5.35

Test with SNR > 0
and SNR ≤ 0

Present Study

STFT +
Mel +
MFCC

(Stacked)

90.45 93.88 8.47 0.62 3.68

COPE [19] Gammatonegram 91.7 - 2.61 5.68 9.2

SoundNet [19] Gammatonegram 84.13 - 4 11.88 25.9

bofs [11] Gammatonegram 59.11 - 32.97 7.92 5.3

bofh [11] Gammatonegram 56.07 - 36.43 7.5 5.3
1 The authors report training on 50,000 and testing on 33,000 magnitude representations, while in the rest of
the studies (including the current) the corresponding numbers were 70,770 and 30,348 for the original and
94,360 and 40,464 for the extended dataset, respectively.
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Table 4. Classification matrices obtained from the multichannel approach for the original and extended
MIVIA audio events data set: GB, GS and S indicate the classes in the dataset (Table 1), while MDR is
the miss-detection rate. The class BN is excluded for a one-to-one comparison with [19].

Original dataset

GB G S MDR

GB 91.48% 0.35% 0% 8.17%

G 0.11% 98.46% 0.02% 1.41%

S 0.02% 0.31% 87.41% 12.26%

Extended dataset

GB G S MDR

GB 94.68% 0.44% 0.15% 4.72%

G 0.1% 95.4% 0.43% 4.07%

S 0.24% 0.5% 82.64% 16.63%

As was discussed in Section 3.1, ten models were trained in total for both single-channel
concatenated and multichannel stacked representations of the raw audio. The performance of each
model for the former and latter methods is shown in Figures 4 and 5, respectively. In both cases, it was
evident that the zero or negative SNR values were the most challenging, as can be seen in Figure 3.
For that reason, the three models trained on −5 dB (models 1, 2 and 3) performed better than the rest in
terms of generalization and consistency throughout all SNR values. Indicatively, the standard deviation
for the RR scores attained with these models was about 0.03 in both the concatenated and stacked input
methods. This value increased as the SNR value of the training set increased, reaching approximately
0.33 and 0.25 using the former and latter method, respectively. The above combined with the results in
Figures 4 and 5 suggest that the stacked input method exhibited a higher generalization capacity than
that of the concatenated features method.

Figure 4. Frame-by-frame Recognition Rate (RR) for all models using concatenated features from
STFT, mel and MFCC spectrograms (single channel) validated for each Signal-to-Noise Ratio (SNR):
each column group refers to a specific model (see Table 5).
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Table 5. A list of multichannel models in terms of the SNRs chosen for training and testing.

Model No Training SNR (dB) Testing SNR (dB)

1 −5 −15

2 −5 30

3 −5 −5

4 0 0

5 5 5

6 10 10

7 15 15

8 20 20

9 25 25

10 30 30

Figure 5. Frame-by-frame RR for all models using stacked features from STFT, mel and MFCC
spectrograms (multichannel) validated for each SNR: each column group refers to a specific model
(see Table 5).

In Figure 6, the generalization capabilities of the two multichannel methods are shown in terms
of event-based recognition (GB, G and S). As one moves along the sequence of the ten models (Table 5),
it is evident that the generalization capabilities of the stacked multichannel method are significantly
better than the corresponding concatenated multichannel method. In both cases, the model that was
trained in −5 dB and tested in 15 dB showed the best performance, with a recognition score of 91.51%
for the concatenated method and 90.23% for the stacked method, with the lowest standard deviation,
namely 0.034 and 0.019, respectively. Moving up in terms of SNR training (and model number),
it became more difficult to generalize, especially in the case of zero and below SNRs. This is due to the
fact that the lower SNR audio contains higher levels of noise (Figure 3) and thus is more challenging,
leading to more robust and generalizable classification.
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Figure 6. A comparison of the models trained with the concatenated (top) and stacked (bottom)
features method with regard to event-based RR: the sequence of the models increases from 1 to 10,
as per Table 5.

3.3. Experimental Analysis and Discussion

As was seen in Section 3, when comparing single-channel representations, the MFCC is able to
generalize better than the STFT spectrogram and the mel-spectrogram. This most probably owes to the
fact that this representation includes all the important information of the audio signal in the lowest
MFCC features (e.g., first 10 features) with regard to concentrated energies and has minimum changes
in the highest ones. Hence, it is suggested that it has its place in a feature representation combination,
and for that reason, it was indeed used in both methods of multichannel representation (Section 2.3).
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With regard to the multichannel representation, the stacked features method proved to be more
generalizable compared to the concatenated features method, especially when training was carried out
on higher SNRs and testing was carried out on lower ones. Neither the concatenated features method
nor separate single-channel spectrogram representations (STFT, mel or MFCC) performed as well.

3.3.1. Generalization on Unseen Data

One of the most challenging public audio datasets is the UrbanSound8K dataset [49]. It contains
8732 labeled sound excerpts (≤4 s) of urban sounds from 10 classes: air conditioner, car horn, children
playing, dog bark, drilling, engine idling, gunshot, jackhammer, siren and street music. It consists of
ten predefined folds (splits). There is a couple of common oversights when analyzing this dataset:
data reshuffling and testing on only one of the splits. If the data is reshuffled (i.e., combined from all
folds with a random train/test split generated), related samples will be incorrectly placed in both the
train and test sets. That would lead to inflated scores due to data leakage that do not represent the
model’s performance on unseen data. Testing on only one of the ten folds is considered insufficient,
as each fold is of varying classification difficulty. According to the dataset provider, models tend to
obtain much higher scores when trained on folds 1–9 and tested on fold 10 compared to training on,
e.g., folds 2–10 and testing on fold 1. Consequently, following the predefined folds protocol in [49]
ensures comparability with existing results in the literature.

The aforementioned dataset was selected for generalization testing of the models in the present
study due to the fact that it contains one common class with the MIVIA Audio Events dataset,
namely the gunshot (G) class. Owing to the fact that it is an imbalanced dataset, the number of excerpts
in which this class is present is 374 (out of a total of 8732, which is approximately 4% of the dataset).

The procedure that was used for input generation was the stacked multichannel magnitude
representation. Following the predefined folds protocol, each predefined fold was used for testing of
each of the ten models that was trained on the MIVIA Audio Events dataset (Table 5). The results are
presented in Figure 7.

Figure 7. Statistics for each of the models obtained in the present study for the Gunshot (G) event class
of the UrbanSound8K dataset.
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When using the models trained on or below 10 dB SNRs on the MIVIA Audio Events dataset,
the recognition rate ranged between 49% and 75% (still comparing well with models in the literature
originally trained on the UrbanSound8K dataset, e.g., 0% [50]). This is not the case when using the rest
of the models (trained on or above 15 dB SNRs), as it can be seen that the results from the present study
compare well with the state-of-the-art recognition rate (Salomon and Bello [26], 94%), varying from
91% to 97% for the class of interest. Given that the models were not trained on the UrbanSound8K
dataset and that the dataset mainly consists of higher SNR audio events, the above results would
suggest the generalization capability of the stacked multichannel representation approach.

4. Conclusions

Microphone distance, ambient noise and SNR are well-known challenges in audio analysis
and classification; they are factors that differentiate the latter from fields that have proven more
straightforward for image analysis. The present work’s aim was to tackle the aforementioned issues
and to provide a form of analysis that generalizes well even when background noise is high and/or
the signal of the event of interest is weak and the SNR drops to the negative territory. One major
field that would benefit from anomaly detection via audio event recognition without using speech
recognition is surveillance in AVs. To the best of the authors’ knowledge, a comparative analysis of
the performance and the generalization capabilities of a series of models and combinations of input
features (spectrogram types, single- and multichannel combinations, etc.) is reported for the first time
in the present study.

In terms of single channels, MFCC magnitude proved the most generalizable representation
of the three studied in the present work; hence, it was used as one of the three components in
both multichannel methods. The combination of the aforementioned three magnitude spectrogram
representations in a summed up representation was able to generalize when trained only on low SNRs.
The event-based recognition rate was comparable to other systems in the literature that were trained
on all SNR values of the MIVIA dataset. Furthermore, the proposed method generalizes well in terms
of recognizing a common class (gunshot) in an unseen during training dataset (UrbanSound8K) when
using the models trained in sounds with an SNR greater than 15 dB.

This generalizability, benefiting from the method of combining audio features can open a new
pathway of leveraging on audio to successfully monitor the inside and outside environments of an AV
and to significantly improve anomaly detection.
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