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SUMMARY

Terms involving jumps of stresses on boundaries are proposed for the finite element approximation of the
Stokes problem and the linear elasticity equations. These terms are designed to improve the transmission
conditions between subdomains at three different levels, namely, between the element domains, between
the interfaces in homogeneous domain interaction problems and at the interface between the fluid and
the solid in fluid–structure interaction problems. The benefits in each case are respectively the possibility
of using discontinuous pressure interpolations in a stabilized finite element approximation of the Stokes
problem, a stronger enforcement of the stress continuity in homogeneous domain decomposition problems
and a considerable improvement of the behavior of iterative schemes to couple the fluid and the solid in
fluid–structure integration algorithms. The motivation to introduce these terms stems from a decomposition
of the unknown into a conforming and a non-conforming part, a hybrid formulation for the latter and a
simple approximation for the unknowns involved in the hybrid problem. Copyright � 2011 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Transmission conditions in the numerical approximation of fluid and solid mechanics problems
play a key role at different levels. When the discretization involves a partition of the computational
domain, as in finite volume or finite element methods, the first level is the interaction between
the subdomains of the partition. Appropriate interaction conditions, associated with the problem
being solved, are satisfied in an approximate way, and this may have important consequences in
the stability of the numerical method. A second level of analysis of transmission conditions could
be the interaction of subdomains in a homogeneous domain decomposition method. This problem
may be addressed using a purely algebraic point of view, but it is also possible to analyze the
interaction from the standpoint of the approximate boundary conditions applied to each subdomain.
Both strategies are well known in the domain decomposition community (see [1, 2], for example).
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A third level of analysis could be the interaction between heterogeneous subdomains, in which
different problems associated with different physics are solved within each of the subdomains.
This last category could be included in the second, but the heterogeneity of the transmission condi-
tions introduces additional difficulties that deserve to be studied independently. The paradigmatic
example of this class of problems are those involving fluid and structure interactions (FSIs).

In this work, we analyze the issue of dealing with transmission conditions in fluid and solid
mechanics problems approximated using finite elements. The model problems we will consider are
the Stokes problem and the Navier equations for a linear elastic solid. Our proposal is to modify
the classical approximation of the interaction stresses computed from the finite element solution by
introducing terms that depend on the jumps of these stresses when computed from the two sides of
the interaction boundary. The way to motivate the introduction of these terms is as follows. First,
we consider a splitting of the unknown into a conforming and a discontinuous part. A three-field
hybrid formulation is used for the latter, involving the primal variable, its traces and its fluxes
on the element boundaries as unknowns. We assume that these terms are small, and therefore
we consider them as subgrid scales (or subscales) of the conforming part of the solution. In this
sense, our approach falls within the variational multiscale framework proposed in [3]. Rather than
solving for the subscales, we propose simple expressions to model them, the main idea being the
correct continuity of stresses across the interelement boundaries.

When solving for the Stokes problem in a single domain, the introduction of the element
boundary terms involving jumps of stresses has as a consequence a stabilizing effect on the
pressure. In particular, in combination with a more standard stabilized finite element method, these
new terms open the possibility to use arbitrary discontinuous pressure interpolations, avoiding the
need to satisfy the classical velocity–pressure compatibility conditions [4]. Their stabilizing effect
is similar to that already found in [5], although their expression is different and motivated in a
completely different way.

Pressure stabilization due to the new interelement boundary terms was already proposed and
analyzed in [6]. In the present work, we derive in detail the formulation for the Stokes problem
(which in the reference mentioned was directly stated from the derivation obtained for the
convection–diffusion equation), with emphasis on the treatment of Neumann boundary conditions.
This serves us to extend it to two cases, namely, the interaction between two subdomains, in each
of which the Stokes problem is solved, and the classical FSI problem. In the first case, the new
terms we propose help to enforce the continuity of stresses between subdomains. The domain
interaction is however more complex than in classical formulations. To introduce an iteration-
by-subdomain scheme, we first analyze the matrix structure of the problem and discuss how this
iterative scheme can be designed. In the FSI case, we apply the previous ideas to a time-marching
block-iterative scheme in which Dirichlet boundary conditions are prescribed to the fluid and
Neumann boundary conditions are applied to the solid. The latter correspond to the normal stress
exerted by the fluid on the solid. The introduction of the subscales on the element boundaries
for the solid enhances notably the stability of the scheme. We illustrate this enhancement with a
numerical example. In particular, the example we have chosen displays the so-called added-mass
effect, which is one of the most important issues to be considered when solving FSI problems
by means of a domain decomposition technique. This phenomenon takes place when fluid and
solid densities are similar, and consists of a failing of simple coupling strategies (this is the sense
in which the term ‘added-mass effect’ is used in this paper). Whether if the coupling is implicit
(iterating the solution at each time step to converge to the monolithic problem) or explicit (no
coupling iterations are done within the time step), the scheme becomes unstable. Several strate-
gies to deal with this problem have been recently proposed. For example, a semi-implicit scheme
for pressure-segregated methods is presented in [7], and is further developed in [8]. A different
approach for pressure-segregated schemes is proposed in [9]. In [10], a strategy based on Nitsche’s
method is proposed and a method based on Robin boundary conditions can be found in [11].
Using a more algebraic point of view, several strategies using preconditioned Krylov methods are
presented in [12–14]. Conditions under which the problem becomes unstable are studied in [15].
We present here our own approach, which is directly derived from the use of boundary subgrid
scales.
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The paper is organized as follows. In Section 2 we state the Stokes problem in strong form, in
the classical velocity–pressure variational form and in a non-standard hybrid variational form that
we use to motivate our numerical formulation. This formulation is presented in detail in Section
3. The final result is a problem posed only for a conforming approximation to the velocity and
the pressure that involves jumps of stresses at the interelement boundaries. The application of the
same ideas to a homogeneous domain interaction problem is presented in Section 4, whereas the
application to the FSI problem is the subject of Section 5. Numerical examples are presented in
Section 6 and finally conclusions close the paper in Section 7.

2. PROBLEM STATEMENT

2.1. Stokes problem in u-p form

Let us start by considering the Stokes problem written in the classical velocity–pressure approach
or displacement–pressure, in the case of an elastic solid. To fix the terminology, we will consider
that it corresponds to a fluid, leaving for Section 5 the statement of the elastic problem. Thus, the
problem we consider here consists of finding a velocity u :�−→Rd and a pressure p :�−→R

such that

−��u+∇ p= �f in �, (1)

∇ ·u= 0 in �, (2)

u= 0 on �D, (3)

−p n+�n·∇u= t on �N. (4)

In these equations, �⊂Rd (d=2,3) is a bounded domain with boundary �� and external normal
n, f is the vector of body forces and t is the (pseudo-)traction prescribed on �N, with ��=�N∪�D,
�N∩�D=∅, �D 	=∅. The physical parameters � and � are the viscosity and the density, respectively.
Note that the Neumann-type conditions do not correspond to the physically meaningful tractions,
for which the viscous term should be written using the symmetrical gradient of the velocity. This,
however, is irrelevant for our discussion.

Let now V =H1
�(�)d :={v∈H1(�)d |v=0 on �D}, Q= L2(�), and assume that f∈ (H1

�(�)d )′

(the dual space of H1
�(�)d ) and t∈H−1/2(�N)d . We will use the symbol (·, ·)� to denote the L2

product in a domain �. In general, the integral of two functions g1 and g2 over a domain � will
be denoted by 〈g1,g2〉�. This symbol will also be used for the duality pairing. The simplifications
(·, ·)�≡ (·, ·) and 〈·, ·〉�≡〈·, ·〉 will be used.

The variational problem consists of finding [u, p]∈V ×Q such that

B([u, p], [v,q])= L([v,q])+〈t,v〉�N
∀[v,q]∈V×Q,

where

B([u, p], [v,q]) := �(∇u,∇v)−(p,∇ ·v)+(q,∇ ·u),

L([v,q]) := �〈f,v〉.

2.2. Hybrid formulation of an abstract variational problem

The numerical approximation we propose can be motivated from a hybrid formulation of the
problem. To introduce it, let us assume that �̄= �̄1∪�̄2, with �=��1∩��2 (see Figure 1).

Consider an abstract variational problem consisting of finding an unknown u in a functional
space X such that

a(u,v)= l(v) ∀v∈ X, (5)
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Figure 1. Splitting of the domain.

where a(u,v) is a bilinear form on X×X and l a linear form defined on X . Let ui ,vi be the
restrictions of u,v∈ X to subdomain �i , and Xi the spaces where they belong, i=1,2. Suppose
that u∈ X has a well-defined trace on � belonging to a space T , and a flux corresponding to the
differential operator associated with (5) belonging to a space Fi when computed from subdomain
�i , i=1,2. Then, the hybrid formulation of (5) that we consider is the following: find ui ∈ Xi ,
�i ∈Fi , i=1,2, and �∈T such that

a1(u1,v1)−〈�1,v1〉� = l1(v1) ∀v1∈ X1,

a2(u2,v2)−〈�2,v2〉� = l2(v2) ∀v2∈ X2,

〈�1,u1−�〉� = 0 ∀�1∈F1,

〈�2,u2−�〉� = 0 ∀�2∈F2,

〈�,�1+�2〉� = 0 ∀�∈T,

where ai and li are the restrictions of a and l to Xi×Xi and Xi , respectively.
If the problem includes imposition of fluxes of u in a part �N of ��, which for the sake

of simplicity we may consider contained in ��1 (see Figure 1), this imposition may be also
‘hybridized’, yielding the problem

a1(u1,v1)−〈�1,v1〉�−〈�N,v1〉�N = l1(v1) ∀v1∈ X1, (6)

a2(u2,v2)−〈�2,v2〉� = l2(v2) ∀v2∈ X2, (7)

〈�1,u1−�〉�+〈�1,u1−�〉�N = 0 ∀�1∈F1, (8)

〈�2,u2−�〉� = 0 ∀�2∈F2, (9)

〈�,�1+�2〉�+〈�,�N〉�N = 〈�,q〉�N ∀�∈T, (10)

where q is the flux to be prescribed. In this case, the linear form l (and the forms l1
and l2 resulting from the splitting of the domain) does not include the prescription of the
fluxes.

Several problems admit this hybrid formulation, including first- and second-order linear partial
differential equations (the fluxes �i are zero in the first case). In the following subsection, we shall
see its application to the Stokes problem. For the diffusion equation −�u= f with u=0 on ��,
we would have that Xi is the subspace of H1(�i ) of functions vanishing on ��∩��i , T =H1/2

00 (�)

and Fi= (H1/2
00 (�i ))′ (the prime denoting dual space), with �i=��i ∩�. The solution of the hybrid

problem is �=u1|�1=u2|�2 , �1=−�2=n1 ·∇u1|�1=−n2 ·∇u2|�2 . If flux conditions need to be
prescribed, in this case they are of the form n·∇u=q , and �1 will contain �N, the part of the
boundary where these conditions are enforced.
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2.3. Hybrid formulation of the Stokes problem

The Stokes problem (1)–(2) admits also the hybrid formulation described above by defining

u = [u, p], v= [v,q], X=V×Q,

a(u,v)= B([u, p], [v,q]), l(v)= L([v,q]),

�= u1|�1=u2|�2 ∈T =H1/2
00 (�)d ,

�i = (−pni+�ni ·∇u)|�i ∈Fi = (H1/2
00 (�i )

d )′, i=1,2,

and q= t (see (4)) being the boundary condition in terms of fluxes.
To present the formulation we are interested in, let us consider a splitting of space V of the

form V = V̄⊕ Ṽ . In principle, there is no restriction in the expression of spaces V̄ and Ṽ . In the
finite element approximation, the former will be approximated by continuous finite elements (and
therefore conforming). The component of u in this space can be considered as resolvable, whereas
a closed-form expression will be given for the component in Ṽ , which will be called subgrid scale
or, simply, subscale. A similar splitting could be performed for the pressure, although it is not
necessary for our purposes.

Let Vi be also split as Vi= V̄i⊕ Ṽi , i=1,2. If any ui ∈Vi is written as ui= ūi+ ũi , with ūi ∈ V̄i
and ũi ∈ Ṽi , we assume that ū1|�1= ū2|�2 . Only the continuity for the component in Ṽi needs to
be enforced (weakly) through a variational equation.

Let us introduce the boundary operators

Ti ([v̄i ,qi ]) := (−qi ni+�i ni ·∇ v̄i )|�i , T∗i ([v̄i ,qi ]) := (qi ni+�i ni ·∇ v̄i )|�i ,

where [vi ,qi ]∈ V̄i×Qi , i=1,2. We may constrain the fluxes to be of the form ki=Ti ([ūi , pi ])+
k̃i , for appropriate k̃i ∈ F̃i , and likewise for kN. Test functions in Fi can be similarly split as
li=T∗i ([v̄i ,qi ])+ l̃i , with v̄i ∈ V̄i , qi ∈Qi , l̃i ∈ F̃i . Finally, traces on boundaries can be split as
c= ū+ c̃, both on � and on �N. On the intersecting boundary �, the restriction ū is well defined
because of the assumption ū1|�1= ū2|�2 . Note that, in fact, F̃i=Fi and T̃ =T . The tilde has been
introduced to stress that we seek the subscale of fluxes and traces in these spaces.

Having introduced these decompositions of the functional spaces, we may write the hybrid
formulation of the Stokes problem as follows: find ūi ∈ V̄i , ũi ∈ Ṽi , pi ∈Qi , c̃∈ T̃ , k̃i ∈ F̃i (i=1,2)
such that

B1([ū1+ ũ1, p1], [v̄1+ ṽ1,q1])−〈T1([ū1, p1])+ k̃1, v̄1+ ṽ1〉�
−〈T1([ū1, p1])+ k̃N, v̄1+ ṽ1〉�N= L1([v̄1+ ṽ1,q1]), (11)

B2([ū2+ ũ2, p2], [v̄2+ ṽ2,q2])−〈T2([ū2, p2])+ k̃2, v̄2+ ṽ2〉�= L2([v̄2+ ṽ2,q2]), (12)

〈T∗1([v̄1,q1])+ l̃1, c̃− ũ1〉�+〈T∗1([v̄1,q1])+ l̃1, c̃− ũ1〉�N=0, (13)

〈T∗2([v̄2,q2])+ l̃2, c̃− ũ2〉�=0, (14)

〈v̄1+ v̄2+ j̃,T1([ū1, p1])+T2([ū2, p2])+ k̃1+ k̃2〉�
+〈v̄1+ j̃,T1([ū1, p1])+ k̃N〉�N=〈v̄1+ j̃, t〉�N, (15)

which must hold for all v̄i ∈Vi , ṽi ∈ Ṽi , qi ∈Qi , j̃∈ T̃ , l̃i ∈ F̃i (i=1,2). Recall that L1 does not
contain the contribution from the Neumann-type boundary condition (4).

Adding up (11) and (12) with ṽ1= ṽ2=0 and using (15) with j̃=0 yields the original variational
equation projected onto V̄ ×Q, that is to say,

B([ū, p], [v̄,q])+B([ũ,0], [v̄,q])= L([v̄,q])+〈v̄, t〉�N, (16)

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:386–411
DOI: 10.1002/nme



FINITE ELEMENT APPROXIMATION OF TRANSMISSION CONDITIONS 391

which holds for all [v̄,q]∈ V̄ ×Q. If we define the operators

Li ([v̄i ,qi ]) :=−��v̄i+∇qi , L∗i ([v̄i ,qi ]) :=−��v̄i−∇qi ,

we may write, making use of (13) and (14) with l̃1= l̃2=0,

B([ũ,0], [v̄,q])=
2∑

i=1
Bi ([ũi ,0], [v̄i ,qi ])

=
2∑

i=1
〈ũi ,L

∗
i ([v̄i ,qi ])〉�i

+
2∑

i=1
〈c̃,T∗i ([v̄i ,qi ])〉�+〈c̃,T∗1([v̄1,q1])〉�N . (17)

Adding up (11) and (12) with v̄1= v̄2=0, q1=q2=0 yields, after integration by parts of some
terms,

2∑
i=1

Bi ([ūi+ ũi , pi ], [ṽi ,0])−
2∑

i=1
〈Ti ([ūi , pi ])+ k̃i , ṽi 〉�−〈T1([ū1, p1])+ k̃N, ṽ1〉�N

=
2∑

i=1
〈Li ([ūi , pi ]), ṽi 〉�i

+
2∑

i=1
Bi ([ũi ,0], [ṽi ,0])−

2∑
i=1
〈k̃i , ṽi 〉�−〈k̃N, ṽ1〉�N

=
2∑

i=1
L2([ṽi ,0]). (18)

As an alternative to (11)–(15), the final problem can be obtained from (16), (17), (18), (13) with
[v̄1,q1]= [0,0], (14) with [v̄2,q2]= [0,0] and (15) with v̄1= v̄2=0. It reads: find ūi ∈ V̄i , ũi ∈ Ṽi ,
pi ∈Qi , c̃∈ T̃ , k̃i ∈ F̃i (i=1,2) such that

B([ū, p], [v̄,q])+
2∑

i=1
〈ũi ,L

∗
i ([v̄i ,qi ])〉�i

+
2∑

i=1
〈c̃,T∗i ([v̄i ,qi ])〉�

+〈c̃,T∗1([v̄1,q1])〉�N= L([v̄,q])+〈v̄, t〉�N, (19)

2∑
i=1
〈Li ([ūi , pi ]), ṽi 〉�i

+
2∑

i=1
Bi ([ũi ,0], [ṽi ,0])−

2∑
i=1
〈k̃i , ṽi 〉�

−〈k̃N, ṽ1〉�N=
2∑

i=1
Li ([ṽi ,0]), (20)

2∑
i=1
〈j̃,Ti ([ūi , pi ])+ k̃i 〉�+〈j̃,T1([ū1, p1])+ k̃N〉�N=〈j̃, t〉�N, (21)

2∑
i=1
〈l̃i , c̃− ũi 〉�+〈l̃1, c̃− ũ1〉�N=0, (22)

for all v̄i ∈Vi , ṽi ∈ Ṽi , qi ∈Qi , j̃∈ T̃ , l̃i ∈ F̃i (i=1,2).
This is the hybrid formulation on which we will base the finite element approximation described

in the following. Its importance relies on the fact that it is the theoretical framework to develop
approximations in which u is split into a contribution that is continuous on � and another one that
is discontinuous. In [6], we presented a similar development for the convection–diffusion equation.
Now we have detailed this development for the Stokes problem, considering also the presence of
Neumann-type boundary conditions.
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3. FINITE ELEMENT APPROXIMATION

3.1. Scale splitting

Let Ph :={K } be a finite element partition of the domain � of size h, and Vh×Qh a finite element
space where an approximate solution [uh, ph]∈Vh×Qh is sought. We assume that Vh is made of
continuous functions, that is to say, Vh is conforming in V .

Consider the setting of the previous subsection with V̄ =Vh , and therefore V =Vh⊕ Ṽ , with
Ṽ to be defined, and u=uh+ ũ, v=vh+ ṽ. The extension of (19)–(22) to multiple subdomains
is straightforward. In particular, we will apply it considering each element as a subdomain. No
subscript will be used for the functions and operators in play to characterize the element domain
over which they are defined, this being clear simply by the domain of integration.

The discrete variational problem to be considered is to find [uh, ph]∈Vh×Qh , ũ∈ Ṽ , c̃∈ T̃ and
k̃∈ F̃ such that

B([uh, ph], [vh,qh])+∑
K
〈ũ,L∗([vh,qh])〉K

+∑
K
〈c̃,T∗([vh,qh])〉�K = L([vh,q])+〈vh, t〉�N, (23)

∑
K
〈L([uh, ph]), ṽ〉K +

∑
K

BK ([ũ,0], [ṽ,0])−∑
K
〈k̃, ṽ〉�K =

∑
K

L K ([ṽ,0]), (24)

∑
K
〈j̃,T([uh, ph])+ k̃〉�K = 〈j̃, t〉�N, (25)

∑
K
〈l̃, c̃− ũ〉�K = 0, (26)

for all vh ∈Vh , ṽ∈ Ṽ , qh ∈Qh , j̃∈ T̃ , l̃∈ F̃ , where T̃ is now the space of traces (of subscales) on
the element boundaries (satisfying c̃=0 on �D) and F̃ the space of fluxes on these boundaries.

Apart from the imposition of the condition that ph ∈Qh , problem (23)–(26) is exact. The final
approximation is obtained by choosing a way to approximate the velocity subscales ũ, their traces
on the element boundaries c̃ and their fluxes k̃. This leaves many possibilities open. In particular,
if ũ is chosen to be a piecewise polynomial, the previous equations constitute a very general
framework to develop finite element approximations with a continuous component (uh) and a
discontinuous one (ũ). Traces (c̃) and fluxes (k̃) may be approximated independently or linked to
ũ and/or uh if an irreducible formulation is to be used. Note that if the first option is used, there
might be compatibility conditions between the approximating finite element spaces to render the
final discrete problem numerically stable.

Our purpose here is not to exploit the possibilities of (23)–(26), but to propose a closed-form
expression for ũ, c̃ and k̃. Only (23) will remain unaltered, but with a certain approximation for ũ
in the interior of the element domains required to evaluate the second term on the left-hand side
(LHS) of this equation, and an approximation for c̃ on the element boundaries to evaluate the third
term. We proceed to explain how we do this in the following subsection, understanding that other
possibilities are open within the present framework.

Let us only remark that if the conforming part of the solution is zero, problem (19)–(22) could
serve as a basis to design discontinuous Galerkin approximations for the Stokes problem. It is
worth noting that other hybrid formulations can be used as starting points. In particular, in [16]
a hybrid formulation is proposed for the diffusion equation, which is extended in [17, 18] to the
convection–diffusion equation. The hybridization of the problem is completely different from our
three-field approach introduced in [6] for the same problem and applied here to the Stokes problem.
To summarize the differences, note that we split the unknown into a continuous and a discontinuous
parts, whereas only the latter is used [16–18], and we will give a closed-form expression for the
discontinuous part, whereas it is the basic unknown in [16–18]. Moreover, concerning the hybrid
formulation, our unknowns are the field in the interior of the elements and its traces and fluxes on
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Figure 2. Notation for the approximation of the subscales on the element boundaries.

the boundaries, whereas in the above references it is the unknown and the fluxes in the interior
(dual mixed formulation) and the traces on the boundaries. See also [19] for another three-field
formulation of the convection–diffusion equation.

3.2. Subscales on the element boundaries

The way we propose to approximate the subscales was already presented in [6]. For completeness,
we include it also here, with attention on the treatment of Neumann boundary conditions which
will be important in Sections 4 and 5. Let us consider for simplicity the 2D case and the situation
depicted in Figure 2, where two elements K1 and K2 share an edge E (E stands for ‘edge’ in
2D or face in 3D). Let ũi be the subscale approximated in the interior of element Ki , i=1,2. We
assume that this approximation is valid up to a distance � to the element boundary. This distance
will be taken of the form �=�0h, with 0��0� 1

2 .

3.2.1. Approximation of k̃. The values of k̃ on �K are weak approximations to the fluxes of ũ.
Given the trace c̃ of this unknown and taking into account that no pressure subscales have been
introduced, we propose the following closed-form expression for k̃:

k̃�Ki∩E≈
�

�
(c̃− ũi ), i=1,2, (27)

where now ũi has to be understood as the subscale computed in the element interiors and eval-
uated at edge E . We want to remark that this is the only approximation we really require to
compute the subscales on the element boundaries. Obviously, other finite-difference-like approx-
imations to the fluxes of the subscales could be adopted. In particular, if the viscous term
is written as the divergence of the symmetrical gradient of the velocities, an approximation
for the fluxes of the velocity subscales is not so obvious. In this case, some sort of finite-
difference approximation would be needed to approximate n·∇Sũ (see also Section 5). Finally,
it is worth to note that if ũi is assumed to be differentiable within element Ki , (27) could be
improved to

k̃�Ki∩E≈
�

�
(c̃− ũi )+��nũi , i=1,2,

which follows from a Taylor expansion of ũi at the boundary to obtain it at a distance � from it
(see Figure 2), the remainder being O(�). However, we shall not pursue further this improvement
in this paper.

3.2.2. Approximation of c̃. Equation (25) states the weak continuity of the total fluxes on the
element boundaries. The idea now is to replace this equation by an explicit prescription of this
continuity. We need to distinguish the case in which an edge is interior to the domain � and the
case in which it belongs to �N. Edges on �D will not contribute because of the zero velocity
prescription there.
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Let [[ng ]]E :=n1g|�K1∩E+n2g|�K2∩E denote the jump of a scalar function g across edge E and
[[�ng ]]E=n1 ·∇g|�K1∩E+n2 ·∇g|�K2∩E the jump of the normal derivative. For a vector field v,
we also define [[n⊗v]]E=n1⊗v|�K1∩E+n2⊗v|�K2∩E .

Consider first the case in which E0 is an interior edge. The condition to determine the expression
of the subscale velocity on the boundary is that the normal component of the stress be continuous
across interelement boundaries. This can be written as follows:

0= [[−pn+��nu]]E0

≈ [[−phn+��nuh ]]E0
+ k̃�K1∩E0

+ k̃�K2∩E0

≈ [[−phn+��nuh ]]E0
+ �

�

(
2c̃E0
− ũ1− ũ2

)
, (28)

from where the approximation we propose is

c̃E0
≈{ũ}E0−

�

2�
[[��nuh− phn]]E0

, (29)

where {ũ}E0 := 1
2 (ũ1+ ũ2) is the average of the subscales computed in the element interiors eval-

uated at edge E0. From (29) it is observed that �0 will play the role of an algorithmic parameter
for which, following our approach, we have a geometrical interpretation.

From now onwards we will use the symbol = instead of ≈, understanding that in some places
we perform approximation (27) that has led us to (29).

Let us consider now a boundary edge of the form EN=�K ∩�N for a certain element K , where
the Neumann condition (4) is prescribed. In this case, (28) has to be replaced by

t|EN = (−pn+��nu)|EN

= (−phn+��nuh)|EN+��nũ|EN

= (−phn+��nuh)|EN+
�

�
(c̃EN
− ũEN),

from where

c̃EN
= ũEN−

�

�
(−phn+��nuh− t)|EN . (30)

3.2.3. Problem for uh and ũ. From the approximation of the fluxes (27) and the expressions
obtained for the traces, (29) and (30), one can obtain a problem for uh and ũ alone from (23) and
(24). After some algebraic manipulations, the problem obtained is: find [uh, ph]∈Vh×Qh and
ũ∈ Ṽ such that

B([uh, ph], [vh,qh])+∑
K
〈ũ,L∗([vh,qh])〉K

+∑
E0

〈{ũ}, [[T∗([vh,qh])]]〉E0−
�

2�

∑
E0

〈[[T([uh, ph])]], [[T∗([vh,qh])]]〉E0

+∑
EN

〈ũ,T∗([vh,qh])〉EN−
�

�

∑
EN

〈T([uh, ph]),T∗([vh,qh])〉EN

= L([vh,qh])+〈vh, t〉�N−
�

�

∑
EN

〈t,T∗([vh,qh])〉EN, (31)

∑
K

BK ([ũ,0], [ṽ,0])+∑
K
〈L([uh, ph]), ṽ〉K
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+∑
E0

〈[[T([uh, ph])]],{ṽ}〉E0+
�

2�

∑
E0

〈[[n⊗ũ]], [[n⊗ ṽ]]〉E0

+∑
EN

〈T([uh, ph]), ṽ〉EN=
∑
K

L K ([ṽ,0])+∑
EN

〈t, ṽ〉EN, (32)

for all [vh,qh]∈Vh×Qh , ṽ∈ Ṽ .
Problem (31)–(32) is very general and could be used as such after choosing an approximation

for Ṽ . However, we will further simplify the problem by approximating directly ũ.

3.3. Subscales in the element interiors

To approximate ũ, we in fact approximate (24) by integrating by parts,∑
K

BK ([ũ,0], [ṽ,0])=−�
∑
K
〈�ũ, ṽ〉K +�

∑
K
〈n ·∇ũ, ṽ〉�K ,

assuming that �n·∇ũ cancels with the fluxes k̃ and using the crucial approximation

〈−��ũ, ṽ〉K ≈	−1〈ũ, ṽ〉K , 	−1=C1
�

h2
, (33)

where C1 is an algorithmic constant. We will not justify this last step, which is the keystone of
stabilized finite element methods. It can be motivated, for example, using an approximate Fourier
analysis [20].

Summarizing, the subscales in the element interiors can be expressed in terms of [uh, ph] from
the equation ∑

K
〈L([uh, ph]), ṽ〉K +	−1 ∑

K
〈ũ, ṽ〉K =�

∑
K
〈f, ṽ〉K , (34)

which can be described by saying that ũ is the projection of the residual �f−L([uh, ph]) within
each element multiplied by 	 onto the space of subscales Ṽ . The most usual option is to take this
projection as the identity (assuming this is feasible), although we favor the choice of taking it as
the projection L2-orthogonal to the finite element space Vh . This leads to the so-called orthogonal
subscale stabilization (OSS) method [20, 21]. However, the final method is independent of the
choice of the space of subscales.

3.4. Stabilized finite element problem

With all the approximations introduced, the problem to be solved consists of (31) and (34).
However, the approximations used to arrive to (34) have as a consequence the loss of symmetry
of the problem (which is in fact observed using −qh as test function). This symmetry can be
recovered neglecting the third and fifth terms in (31). Note that this maintains the consistency of
the method, in the sense that if the approximate solution [uh, ph] is replaced by the exact solution
[u, p], the discrete variational problem holds exactly.

In [6] it is shown that (31) and (34) are stable (when there are no Neumann boundary conditions).
Here, however, we will restrict ourselves to the variation of the method just explained, which
consists of finding [uh, ph]∈Vh×Qh and ũ∈ Ṽ such that

B([uh, ph], [vh,qh])+∑
K
〈ũ,L∗([vh,qh])〉K

− �

2�

∑
E0

〈[[T([uh, ph])]], [[T∗([vh,qh])]]〉E0−
�

�

∑
EN

〈T([uh, ph]),T∗([vh,qh])〉EN

= L([vh,qh])+〈vh, t〉�N−
�

�

∑
EN

〈t,T∗([vh,qh])〉EN, (35)

∑
K
〈L([uh, ph]), ṽ〉K +	−1 ∑

K
〈ũ, ṽ〉K =�

∑
K
〈f, ṽ〉K , (36)

for all [vh,qh]∈Vh×Qh , ṽ∈ Ṽ .
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We may write the solution of (36) as

ũ= P̃(�f−L([uh, ph])),

where P̃ denotes the L2 projection onto the space of subscales, which will be left undefined (except
in the numerical examples, of course). The problem can now be written in a compact form, only
involving the finite element component of the unknown [uh, ph], as follows: find [uh, ph]∈Vh×Qh
such that

Bstab([uh, ph], [vh,qh])= Lstab([vh,qh]) ∀[vh,qh]∈Vh×Qh,

where

Bstab([uh, ph], [vh,qh])= B([uh, ph], [vh,qh])−∑
K

	〈P̃(L([uh, ph])),L∗([vh,qh])〉K

− �

2�

∑
E0

〈[[T([uh, ph])]], [[T∗([vh,qh])]]〉E0

−�

�

∑
EN

〈T([uh, ph]),T∗([vh,qh])〉EN, (37)

Lstab([vh,qh])= L([vh,qh])+〈vh, t〉�N−
∑
K

	〈P̃(�f),L∗([vh,qh])〉K

−�

�

∑
EN

〈t,T∗([vh,qh])〉EN . (38)

The stability analysis of this scheme in an adequate norm can be performed using the same
strategy as in [6]. The terms included to deal properly with Neumann boundary conditions do not
offer any additional difficulty and, moreover, the terms that have been neglected even simplify
this analysis. Once stability is established, and taking into account that the method is consistent
in the sense explained earlier, convergence follows easily. It is not our purpose here to detail this
numerical analysis.

4. INTERACTION BETWEEN SUBDOMAINS

4.1. Motivation

The stabilized finite element formulation presented in the previous section has been designed to
allow arbitrary velocity–pressure interpolations, in particular discontinuous pressures. However,
the concepts used to obtain it can be applied to other situations. In particular, we consider in this
section the application to the interaction between two subdomains, in both of which the Stokes
problem is solved.

The motivation to use the stabilization strategy in interaction problems arises from the fact that
if the subdomains are discretized independently, the pressure degrees of freedom at the interface
will be doubled and, therefore, pressure will be discontinuous at this interface. If a method that
is stable for continuous pressures is applied (either coming from a stabilized formulation or from
the use of inf–sup stable velocity–pressure pairs), there is no guarantee that this stability will be
preserved at the interface. The use of the approach described in the previous section, known to be
stable for arbitrary pressure interpolations, may thus be beneficial.

4.2. Continuous problem

The final discrete problem to be proposed can be derived directly using the ideas presented in the
previous section and extended to the case in which the physical properties, and in particular the
viscosity �, are discontinuous. However, additional insight into the method is gained if a more
‘physical’ approach is used when two subdomains interact.
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Let us consider again the situation of Figure 1, now for simplicity with �N=∅. For our purposes,
instead of using a three-field hybrid formulation, using the primal unknown, its traces and its fluxes
as variables, it is enough to consider the more common approach of using only the fluxes on � as
unknowns, and enforcing continuity weakly. The boundary value problem to be solved consists of
finding [u1, p1], [u2, p2] and k such that

−�1�u1+∇ p1 = �f in �1,

∇ ·u1 = 0 in �1,

u1 = 0 on �D,1=��1∩��,

u1 = u2 on �,

k=−p1n1+�1n1 ·∇u1 on �,

−�2�u2+∇ p2 = �f in �2,

∇ ·u2 = 0 in �2,

u2 = 0 on �D,2=��2∩��,

−p2n2+�2n2 ·∇u2 =−k on �.

These equations have been written in the order they can be solved in an iteration-by-subdomain
strategy. The first four equations can be solved for [u1, p1] if u2 is assumed to be known on �,
the flux on this surface can be then computed and used to solve the problem on �2 with Neumann
conditions on �.

The variational form of the continuous problem consists of finding [u1, p1], [u2, p2] and k such
that

B1([u1, p1], [v1,q1])−〈k,v1〉� = L1([v1,q1]) ∀[v1,q1],

B2([u2, p2], [v2,q2])+〈k,v2〉� = L2([v2,q2]) ∀[v2,q2],

〈l,u1−u2〉� = 0 ∀l,
where the bilinear and linear forms involved are the same as in the previous section. The spaces
of unknowns and test functions are also the same as those introduced previously.

When applying the Galerkin method to discretize this problem, there are at least two issues that
have to be taken into account:

• The space for k has to be properly chosen in order to obtain a numerically stable problem. There
are compatibility conditions between the interpolation of this unknown and the interpolation
of u and p that have to be met to satisfy the inf–sup conditions associated with the problem.
• It is preferable to compute kh weakly rather than from k=−p1n1+�1n1 ·∇u1.

However, it is not our purpose to use the classical Galerkin method, but to extend the formulation
of Section 3.

4.3. Finite element approximation

Let B1,stab, L1,stab, B2,stab and L2,stab be the stabilized bilinear and linear forms corresponding
to each subdomain without considering the boundary conditions on �, which act as Neumann
conditions on each subdomain. These forms are given by (37) and (38).

If ti is the traction on � to be applied to �i , the discrete variational equation on each subdomain
reads:

Bi,stab([uh, ph], [vh,qh])− �

�i

∑
E�

〈Ti ([uh, ph]),T∗i ([vh,qh])〉E�

= Li,stab([vh,qh])+〈ti ,vh〉�−
�

�i

∑
E�

〈ti ,T∗i ([vh,qh])〉E�, (39)

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:386–411
DOI: 10.1002/nme



398 R. CODINA AND J. BAIGES

which holds for all test functions [vh,qh] with support on �i , i=1,2. The edges E� are now those
contained in �.

Let us obtain the traction ti that results from the formulation developed in the previous section.
Note that t1=−k2 and t2=−k1. Recall that we have neglected the subscales in the element interiors
(and evaluated on the boundary) when computing the fluxes k̃.

If the continuity of fluxes (28) is now imposed, we find

c̃|E�=−
�

�1+�2
[[T([uh, ph])]]E�

.

Using the basic decomposition assumed for the total fluxes and (27) we obtain, on each edge E�,

ki=Ti ([uh, ph])+ k̃i=Ti ([uh, ph])+ �i

�
c̃.

Combining the last two expressions yields, on each edge E�,

ki=Ti ([uh, ph])− �i

�1+�2
[[T([uh, ph])]]. (40)

This expression for the traction associated with the formulation we propose has two interesting
features:

• It automatically satisfies k1+k2=0.
• Instead of the traction Ti ([uh, ph]) associated with the standard Galerkin method, ki is a

weighted average of T1([uh, ph]) and T2([uh, ph]), the weighting coefficients depending on
the viscosity on each subdomain. If i=1, for example, we see that

k1= �2

�1+�2
T1([uh, ph])+ �1

�1+�2
(−T2([uh, ph])),

where −T2([uh, ph]) can be understood as the traction associated with [uh, ph] in �2 but
computed with the normal n1.

It is worth to remark that (40) can be used to compute the fluxes in domain interaction problems
as an alternative to the classical fluxes of the Galerkin method and also to the weak computation
of these fluxes. It can be used not only in the case of meshes that match on �, but also in domain
decomposition methods with overlapping [22] or when fluxes are needed on meshes that do not
match the boundaries [23]. Likewise, they can be modified to accommodate particular conditions
that a certain application requires, such as conservation of angular momentum (using, for example,
the methodology proposed in [24]).

The formulation we propose can finally be obtained adding up (39) for i=1 and i=2. Writing
explicitly the expressions of T([uh, ph]) and T∗([vh,qh]), it consists of finding [uh, ph], defined
on the whole computational domain �, such that

B1,stab([uh, ph], [vh,qh])+B2,stab([uh, ph], [vh,qh])

−∑
E�

�

�1+�2
〈[[��nuh− phn]], [[��nvh+qh ]]〉E�

= L1,stab([vh,qh])+L2,stab([vh,qh]), (41)

for all test functions [vh,qh]. It is observed that the term involving integrals over � penalizes the
jump of the (pseudo-) tractions along this interface. We will observe this effect in the numerical
examples.
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h,1
h,2

h

1 2

Figure 3. Splitting of the unknown.

4.4. Matrix structure

In order to write the matrix structure of problem (41), consider the splitting of the finite element
velocity

uh=uh,1+uh,�+uh,2,

where uh,i refers to the component associated with the degrees of freedom internal to �i , and
vanishing on �, whereas uh,� refers precisely to the degrees of freedom associated with the
interacting boundary. This splitting in the 1-D case and using linear elements is represented in
Figure 3. For the pressure, ph,i denotes simply its restriction to �i .

Having introduced this splitting, the matrix structure of the problem will be:

⎡
⎢⎢⎣

A1,1 A1,�+A′1,� A′′1,2

A�,1+A′�,1 A�,�+A′�,� A�,2+A′�,2

A′′2,1 A2,�+A′2,� A2,2

⎤
⎥⎥⎦

⎡
⎢⎣

U1

U�

U2

⎤
⎥⎦=

⎡
⎢⎣

F1

F�

F2

⎤
⎥⎦ . (42)

In this equation, Ui are arrays of degrees of freedom associated with uh,i and ph,i , and U� the
degrees of freedom associated with uh,�. The terms from where the different submatrices and
components of the right-hand side (RHS) appear are obvious.

There are two remarks to be made referred to the algebraic problem (42):

• Submatrices with a prime and a double prime are due to the new interaction term in (41),
which would not appear using a classical Gakerkin method for the domain interaction problem
(even if stabilized finite element formulations are used within each subdomain).
• A′′1,2 and A′′2,1 appear because of the jump of the derivatives of the velocities. For example,

there are test functions in �1 that vanish on � but whose derivative does not vanish (in
the case of Lagrangian interpolations, those are the test functions associated with the nodes
adjacent to �). Thus, the jump of these derivatives is not zero and has to be multiplied against
the jump of the velocity derivatives, which involves degrees of freedom of uh interior to �2
(again, in the case of Lagrangian interpolations, those are the velocity degrees of freedom
associated with the nodes adjacent to � in the interior of �2).

4.5. Iteration-by-subdomain strategy

The most popular way to deal with a problem involving the interaction of two subdomains is using
an iteration-by-subdomain strategy, that is to say, an iterative algorithm in which the unknowns
are computed in one of the subdomains assuming the data from the other known, and proceeding
iteratively until convergence.

To set possible iteration-by-subdomain schemes, it is convenient to consider first the matrix
version of the problem. The simplest way to solve (42) is to solve for U1 first and for U� and
U2 in a coupled way. Denoting with a superscript the iteration counter, a solve of this iterative
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algorithm would be:

A1,1U (i)
1 =F1−(A1,�+A′1,�)U (i−1)

� −A′′1,2U (i−1)
2 , (43)

[
A�,�+A′�,� A�,2+A′�,2

A2,�+A′2,� A2,2

][
U (i)

�

U (i)
2

]
=

⎡
⎣F�−(A�,1+A′�,1)U (i)

1

F2−A′′U (i)
1

⎤
⎦ . (44)

This scheme would in fact be of Gauss–Seidel type, since the value of U1 just computed in the
first step of the iteration is used in the second. A Jacobi-type scheme would be obtained replacing
U (i)

1 by U (i−1)
1 in the second step.

Apart from the straightforward scheme (43)–(44), there are extensions and/or modifications that
are convenient to use in the applications:

• Under-relaxation. Numerical experiments show that it is crucial to use under-relaxation. A
simple scheme of the form

U (i)
k ←
U (i)

k +(1−
)U (i−1)
k (45)

turns out to be very efficient. The values of the relaxation parameter 
 that we use are indicated
in the numerical examples.
• Other iterative schemes, like GMRES. In principle, this type of schemes can be applied directly

to (42) with an adequate choice of the preconditioner P . The key issue is to design this precon-
ditioner in a modular way, that is to say, in such a manner that it requires only information
of the domain whose unknowns are being computed. Our choice for the preconditioner P is:

P=
⎡
⎣ A1,1 A1,�+A′1,� 0

A�,1+A′�,1 A�,�+A′�,� 0
0 0 A22

⎤
⎦ ,

which leads to the following preconditioned system:

AP−1 PU=F. (46)

The only system of equations to be solved in the GMRES iteration is the one associated with
P−1, in which we can separate terms associated with the problem in domain 1 from terms
associated with the problem in domain 2 (see also [12, 13]).

The iterative scheme is better described using the algebraic form of the problem, but it is also
enlightening to write the discrete variational version. The problem corresponding to (43)–(44)
applied to (41) is:

B1,stab([u(i)
h,1, p(i)

h,1], [vh,1,qh,1])

= L1,stab([vh,1,qh,1]−B1,stab([u(i−1)
h,� ,0], [vh,1,qh,1]))

+∑
E�

�

�1+�2
〈�1�n1 (u(i)

h,1+u(i−1)
h,� )− p(i)

h,1n1,�1�n1vh,1+qh,1n1〉E�
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+∑
E�

�

�1+�2
〈�2�n2 (u(i−1)

h,� +u(i−1)
h,2 )− p(i−1)

h,2 n2,�1�n1vh,1+qh,1n1〉E�,

B2,stab([u(i)
h,�+u(i)

h,2, p(i)
h,2], [vh,�+vh,2,qh,2])

= L2,stab([vh,�+vh,2,qh,2])−B2,stab([u(i)
h,1, p(i)

h,1], [vh,�+vh,2,qh,2])

+∑
E�

�

�1+�2
〈�1�n1 (u(i)

h,1+u(i)
h,�)− p(i)

h,1n1,�1�n1vh,�〉E�

+∑
E�

�

�1+�2
〈�2�n2 (u(i)

h,�+u(i)
h,2)− p(i)

h,2n2,�1�n1vh,�〉E�

+∑
E�

�

�1+�2
〈�1�n1 (u(i)

h,1+u(i)
h,�)− p(i)

h,1n1,�2�n2 (vh,�+vh,2)+qh,2n2〉E�

+∑
E�

�

�1+�2
〈�2�n2 (u(i)

h,�+u(i)
h,2)− p(i)

h,2n2,�2�n2 (vh,�+vh,2)+qh,2n2〉E� .

5. FLUID–STRUCTURE INTERACTION

In the previous section we have considered the interaction between two subdomains in both of
which the Stokes problem is solved. In this sense, the situation can be considered as a homogeneous
interaction. The problem to be solved in each subdomain is (39) and, since these equations are
dimensionally homogeneous, they can be added up for i=1,2 to obtain (41). In this section,
however, we are interested in the interaction between a fluid and a solid, and thus the problem
can be termed as heterogeneous. In this case, it is better to work directly with (39). The purpose
of what follows is to apply the ideas introduced previously to FSI problems and to design an
iteration-by-subdomain strategy for this particular problem.

5.1. Continuous problem

The nature of the problem to be considered is intrinsically transient (although it is obviously
possible that a steady-state is reached). Let [0,T ] be the time interval of analysis. In all what
follows, we will use subscript F to refer to the fluid and subscript S to refer to the solid (and not
subscripts 1 and 2, as in the previous section). In particular, �F and �S will be the subdomains
occupied by the fluid and the solid, respectively, and �=��̄F∩��̄S their common boundary.

If d : [0,T ]×�S−→Rd is the displacement field in the solid, the problem to be solved consists
of finding d,u and p such that

�S�2
t t d−∇ ·rS = �Sf in �S,

d= 0 on �DS,

nS ·rS = tS on �NS,

�F�t u−��u+∇ p = �Ff in �F,

∇ ·u= 0 in �F,

u= 0 on �DN,

−pnF+�nF ·∇u= tF on �NF,

nS ·rS+(−pnF+�nF ·∇u)= 0 on �,

�t d−u= 0 on �,
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together with initial conditions for u, d and �t d in the domain where they are defined. A linear
elastic behavior will be assumed for the solid, so that the stress tensor there is given by

rS=rS(d)=C :∇Sd,

where C is the constitutive tensor and ∇Sd the symmetrical gradient of d. For simplicity, the
non-linear convective term has been neglected in the modeling of the fluid.

Also to simplify the exposition, we assume that the solid is not incompressible, so that the
problem can be approximated without the need to introduce the volumetric stress as a new variable
(the extension to this situation would be straightforward and, in fact, we use it in the numerical
examples). Therefore, the standard Galerkin method can be used to approximate the governing
equations for the solid.

The variational counterpart of the FSI problem consists of finding d,u, p and the interaction
stress k such that

�S(�2
t t d,e)�S+BS(d,e)−〈k,e〉� = LS(e)+〈tS,e〉�NS

∀e∈W,

�F(�t u,v)�F+BF([u, p], [v,q])+〈k,v〉� = LF([v,q])+〈tF,v〉�NF
∀[v,q]∈V ×Q,

〈l,�t d−u〉� = 0 ∀l∈F,

where

W = {e∈H1(�S)d |e=0 on �DS},
BS(d,e)= (C :∇Sd,∇Se)�S,

LS(e)= �S〈f,e〉�S
,

and for each time t ∈ (0,T ) the unknowns satisfy d∈W , [u, p]∈V ×Q, k∈F (with the adequate
regularity in time), with the appropriate initial conditions at t=0.

5.2. Finite element approximation and interaction stresses

Once finite element spaces Wh⊂W , Vh×Qh⊂V×Q are chosen, the crucial issue is to extend
the formulation of the previous section to the present FSI problem to obtain the interaction
stresses resulting from the introduction of subscales on the element boundaries contained in �. Let
TS(e)=nS ·rS(e). The velocity subscales c̃F and the displacement subscales c̃S can be obtained
from condition (28), which now can be written as follows:

0=TF([u, p])+TS(d)

≈TF([uh, ph])+TF([ũ,0])+TS(dh)+TS(d̃), (47)

where d̃ are the displacement subscales. Neglecting the subscales in the element interiors as
before, TF([ũ,0]) can be approximated by (�/�)c̃F. The problem is how to approximate TS(d̃).
Approximating derivatives using finite differences will yield an expression of the form TS(d̃)≈
(1/�)Gc̃S for a certain matrix G depending on the physical parameters contained in the constitutive
tensor C. For our reasoning it is enough to approximate TS(d̃)≈ (G∗/�)c̃S, G∗ being a scalar
coefficient. Altogether, (47) yields, on each edge of �,

G∗c̃S+�c̃F=−�[TF([uh, ph])+TS(dh)]. (48)

The compatibility between the velocity in the fluid and the displacement in the solid implies also
the compatibility in the corresponding subscales, that is to say, c̃F=�t c̃S.

In FSI problems of interest, we may assume that the fluid and solid physical properties are such
that

G∗|c̃S|��|�t c̃S|,
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which using (48) implies that

c̃S≈−
�

G∗
[TF([uh, ph])+TS(dh)], c̃F≈0,

and, consequently,

kS =TS(dh)+ G∗

�
c̃S≈−TF([uh, ph]), (49)

kF =TF([uh, ph])+ k̃F≈TF([uh, ph]). (50)

These approximations have an interesting consequence. Let tSF=−kF=−TF([uh, ph]) be the
stress exerted on the solid because of the interaction with the fluid, and tFS=−kS=TF([uh, ph])
the stress exerted on the fluid because of the interaction with the solid. Suppose an iterative
strategy is used to solve the fluid–solid coupling (within each time step, for example). If the
solid is computed with a Neumann-type condition on �, tSF=−TF([uh, ph]) has to be used as
traction, which corresponds to the common approach: stresses computed in the fluid using the
finite element solution are transmitted to the solid. In the fluid, a Dirichlet boundary condition
on � can be used once the displacements in the solid have been computed. However, it is not
possible to use a Neumann condition on � when solving in the fluid domain, since the traction
to be used is tFS=TF([uh, ph]), which depends only on the velocities. Thus, the fluid would not
‘feel’ the action exerted by the solid. This agrees with the well-known fact that in FSI problems if
a Dirichlet–Neumann coupling is used, Neumann boundary conditions have to be applied always
to the solid surface, not to the fluid.

A similar situation is encountered in homogeneous interaction problems if one of the subdomains
is much ‘stiffer’ than the other. From (40) it is observed that if, for example, �1��2 then
k1=−k2≈−T2([uh, ph]).

5.3. Fully discrete problem and iterative coupling

Suppose to simplify that time is discretized using a backward-difference formula, that we denote
by Dt to approximate �t and Dtt to approximate �2

t t . Let �t be the time step size of a uniform
partition of [0,T ]. Consider that the unknowns are computed at time levels 0,1,2, ...,n−1 and we
want to compute them at time tn=n�t . The fully discrete version of the problem corresponding
to (39) is: find dn

h ∈Wh , un
h ∈Vh and pn

h ∈Qh such that

�S(Dttdn
h,eh)�S+BS(dn

h,eh)− �

G∗
∑
E�

〈TS(dn
h),TS(eh)〉E�

= LS(eh)+〈tSF,eh〉�−
�

G∗
∑
E�

〈tSF,TS(eh)〉E�, (51)

�F(Dt un
h,vh)�F+BF,stab([un

h, pn
h ], [vh,qh])− �

�

∑
E�

〈TF([un
h, pn

h ]),T∗F([vh,qh])〉E�

= LF,stab([vh,qh])+〈tFS,vh〉�−
�

�

∑
E�

〈tFS,T∗F([vh,qh])〉E�, (52)

which hold for all eh ∈Wh , [vh,qh]∈Vh×Qh . This is the monolithic fluid–structure system that
we propose.

Of particular interest is the design of a simple iterative coupling between the solid and the fluid
using approximations (49)–(50). Let us denote by f n,i an approximation to an unknown f at time
step n and iteration i , with the initialization f n,0= f n−1. Suppose that the solid is solved first,
with [un,i−1

h , pn,i−1
h ] known. Then, tSF=−TF([un,i−1

h , pn,i−1
h ]) can be used in (51) to compute

dn,i
h . When solving for the fluid, the traction to be used must be tFS=TF([un,i−1

h , pn,i−1
h ]), since
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only in this case one can guarantee that tSF+ tFS=0 at each iteration. Using this, and noting that
vh |�=0 if Dirichlet conditions are used to solve in the fluid domain, the algorithm reads

�S(Dttd
n,i
h ,eh)�S+BS(dn,i

h ,eh)− �

G∗
∑
E�

〈TS(dn,i
h ),TS(eh)〉E�

= LS(eh)−〈TF([un,i−1
h , pn,i−1

h ]),eh〉�+
�

G∗
∑
E�

〈TF([un,i−1
h , pn,i−1

h ]),TS(eh)〉E�,

�F(Dt u
n,i
h ,vh)�F+BF,stab([un,i

h , pn,i
h ], [vh,qh])− �

�

∑
E�

〈TF([un,i
h , pn,i

h ]),T∗F([vh,qh])〉E�

= LF,stab([vh,qh])− �

�

∑
E�

〈TF([un,i−1
h , pn,i−1

h ]),T∗F([vh,qh])〉E�, (53)

with the essential condition un,i
h |�=Dt d

n,i
h |� for the second equation. It is observed that:

• The second term on the RHS of the first equation enforces the continuity of tractions between
the solid and the fluid when tested by the displacement test function.
• The third term on the LHS and the third term on the RHS of the first equation enforce further

this continuity, now by testing the tractions with TS(eh). However, these terms are multiplied
by �/G∗, which is very small when realistic physical properties are used. Thus, their effect
is in practice negligible.
• The crucial term is the second one on the RHS of the second equation. If it were evalu-

ated at iteration i , it would cancel with the third term on the LHS, which would in fact
lead to the simplest fluid–structure iterative algorithm. However, evaluating it at i−1 allows
us to guarantee that tSF+ tFS=0 at each iteration, as it has been said, and also acts as a
penalization of the jump of fluid tractions between iterations, given by TF([un,i

h , pn,i
h ])−

TF([un,i−1
h , pn,i−1

h ]). The bottom line of our formulation applied to FSI iterative algorithms
can be summarized by these terms, which can a posteriori be understood as a modification
of the simplest iterative scheme (more sophisticated algorithms could also be used). Numer-
ical experiments show that the improvement in convergence observed well deserves their
derivation.

6. NUMERICAL EXAMPLES

In this section, we present some numerical examples corresponding to the formulation presented in
Sections 4 and 5. The ability of the method to use arbitrary discontinuous pressure interpolations
for the pressure was already demonstrated in [6].

In all cases we will use the simplest choice P̃= I in (38), where I is the identity (at least
when applied to the residual of the finite element solution). This corresponds to the most popular
stabilized finite element method for the Stokes problem. All the examples have been run using
continuous P1 elements (linear triangles in 2D) for all variables. The algorithmic constant C1
in (33) has been set to C1=4. When approximating the elasticity equations, G∗=E , Young’s
modulus, has been chosen in (51).

6.1. Two examples of domain interaction

In this subsection, we present the numerical results for two examples that illustrate the ideas
presented in Section 4, one of a solid–solid interaction and another of a fluid–fluid interaction.

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:386–411
DOI: 10.1002/nme



FINITE ELEMENT APPROXIMATION OF TRANSMISSION CONDITIONS 405

Figure 4. Incompressible elastic bodies. Problem setting.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5. Incompressible elastic bodies. Finite element mesh.

The first example we consider consists of two incompressible elastic bodies, which we will
model by means of the Stokes equations, now � being the shear modulus. The problem setting
and subdomains can be seen in Figure 4. Both bodies are incompressible (Poisson ratio �=0.5),
but the body on the top is 10 times stiffer (Young’s modulus E=3) than the one below (Young’s
modulus E=0.3). The unstructured triangular mesh consisting of 1990 triangles used to solve the
problem can be seen in Figure 5.

The displacement and pressure fields obtained are shown in Figure 6. We also depict the normal
tractions on the solid body interface, which coincide with the component �22 of the stress tensor,
in Figure 7. In can be observed that using subscales reduces the jump in tractions between both
solid bodies, but the solution is stable and very similar whether subscales on the boundaries are
used or not.

In the second example, we will consider the stationary cavity flow example for the Stokes
problem. The fluid domain is given by �= [0,1]×[0,1]. All the boundaries are set to null velocity
except for the one corresponding to y=1, in which we impose a horizontal velocity ux=1 and a
vertical velocity uy=0. The fluid viscosity is set to �=1. A finite element mesh of 7200 structured
triangles (h=0.16) has been used.
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Figure 6. Incompressible elastic bodies. Displacement and pressure fields.
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Figure 7. Incompressible elastic bodies. Normal tractions along the interface for the upper (circles) and
the lower (stars) solid bodies. Left: without subscales. Right: with subscales, �0=0.5.

We now divide the fluid domain into two: the first subdomain corresponds to x<0.1, whereas
the second subdomain corresponds to x>0.1. We solve this numerical example by means of a
domain decomposition method and the GMRES strategy described in Section 4.5.

The velocity and pressure fields for the Stokes cavity problem are depicted in Figure 8. Since the
fluid density and viscosity are the same in both subdomains, there should be no pressure jump in
the boundary separating them. However, a pressure jump appears in the numerical solution which
is due to the fact that extra pressure degrees of freedom have been added to the nodes belonging
to the boundary. This pressure jump can be seen in Figure 9. We can see that using subscales on
the element boundaries helps reduce the pressure jump, and as a consequence the pressure field
gets closer to the one we would obtain if a monolithic approach was used, in which the pressure
field would be continuous.
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Figure 8. Velocity and pressure fields for the Stokes cavity problem.
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Figure 9. Pressure jump at x=0.1. Squares: solution with subscales.

6.2. Added-mass effect

In this section, we present some numerical results that illustrate the behavior of the subscales on
the element boundaries as strategy to alleviate the added-mass effect. In order to do so, we will
use the example proposed in [10], in which we will couple the 2D Stokes equations with the linear
elasticity equations.

The fluid domain is given by �F= [0,5]×[0,0.5] and the solid domain by �S= [0,5]×[0.5,0.6].
Initially, both the fluid and the structure are at rest. The boundary conditions are as follows. In the
structure domain, we impose null displacement at x=0 and x=5, while zero traction is applied
on y=0.6. For the fluid, we impose slip boundary conditions at y=0.0, and an over-pressure of
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Figure 10. Finite element mesh.

104 during 5×10−3 time units. For the coupling between fluid and structure, we also impose slip
boundary conditions, that is:

• Velocity continuity is imposed only in the direction normal to the fluid–structure interface.
• We impose traction continuity in the direction normal to the interface, but we do not consider

tangent tractions.

The spatial discretization is carried out by means of a finite element mesh, its size being h=0.1
(see Figure 10), and the time step is set to �t=10−4. The backward Euler scheme is used for the
integration of the transient Stokes equations in the fluid, and the explicit second-order Newmark
method is chosen for the time integration of the linear elasticity equations in the solid.

The main purpose of this numerical example is to compare the behavior of the numerical scheme
with or without considering the contribution of the subscales on the element boundaries, and in
particular regarding the added-mass effect.

We will first consider no subscales on the element boundaries and a Dirichlet–Neumann coupling
strategy: we apply Dirichlet boundary conditions to the fluid domain and Neumann boundary
conditions to the solid one. The iterative scheme we use is (53), considering the possibility to iterate
within each time step to converge to the solution of the monolithic problem or without iterations.
In this last case, corresponding to the so-called staggered schemes (or also ‘loose coupling’), there
is an error of the order of the time step size with respect to the solution of the monolithic problem.
In (53), we will also consider the possibility of removing the terms coming from the subscales on
the boundaries.

Initially, we consider a fluid density �F=1.1 and a viscosity �=0.035. For the solid, we take
a density �S=1.2, Young’s modulus E=3×108 and the Poisson ratio �=0.0. If we consider an
explicit coupling (we do not iterate until convergence at each time step), the numerical scheme
explodes, and we obtain an unstable numerical solution. We now consider a coupling strategy that
involves convergence at each time step, in particular we impose that the relative error between the
solution obtained at iteration i and iteration i+1 is less than 10−3. Owing to the added-mass effect,
this simple Dirichlet–Neumann scheme does not converge, and we need to use some additional tool
in order to achieve the solution of the monolithic problem. Among the various existing methods,
we can use a relaxation scheme. We have found it effective to take a relaxation parameter 
=0.3
in (45). Figure 11 shows the vertical displacement at a solid point placed at the center of the solid
domain. Figure 12 shows the velocity and pressure fluid fields at t=75×10−4. The mean number
of iterations at each time step was 26 for this numerical scheme.

Let us now consider the use of the subscales on the element boundaries, for which we will take
�0=0.5×10−3. If we try to use an explicit coupling scheme, the method fails again due to the
added-mass effect, and we obtain an unstable solution. However, if we iterate at each time step and
converge to the monolithic solution, we obtain the solution depicted in Figure 13, which is exactly
equal to the one obtained without using subscales on the element boundaries, since the additional
terms due to the use of these subscales vanish when convergence is achieved. However, we did not
need to use relaxation in this case, and the mean number of iterations was substantially reduced
to 5, with the subsequent reduction in the CPU time required to perform the computations.
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Figure 11. Results for the iterative scheme, no subscales, relaxation parameter 
=0.3.
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Figure 12. Velocity and pressure fluid fields at t=75×10−4.

Let us now consider a less demanding situation, in which the solid density is �S=20. In this
case, the �S/�F ratio is around 20 too. This means that the added-mass effect is not as severe as
it was in the previous example, and that there might be no need to use an iterative scheme. We
now test the explicit scheme with and without subscales on the element boundaries. In the first
case, we take �0=1×10−3. Figure 14 shows the results obtained with both schemes. We can see
that the scheme becomes unstable after a few time steps if no subscales are used, but it remains
stable, even for the explicit scheme, if the strategy we propose is used.

7. CONCLUSIONS

In this paper, we have motivated the introduction of element boundary terms in the finite element
approximation the Stokes and the linear elasticity problems. The starting point has been the splitting
of the unknowns of the problem into a conforming part and a discontinuous one, introducing a
hybrid formulation only for the latter (Section 2). Although this approach could serve different
purposes, in Section 3 we propose a finite element approximation in which the discontinuous
component of the solution, its traces and fluxes are approximated by expressions that involve only
the conforming part of the solution. The resulting formulation is a stabilized finite element method
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Figure 13. Results for the iterative scheme with subscales, no relaxation.
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Figure 14. Comparison between results with and without using subscales in the case of a ratio �S/�F
around 20 and an explicit scheme.

for the Stokes problem that allows arbitrary interpolations of velocities and pressure. Particular
emphasis has been given here on the treatment of Neumann-type boundary conditions.

The same ideas have been applied to the homogeneous interaction between two subdomains
(Section 4). In this case, the benefit of the boundary terms is a stronger enforcement of the
continuity of fluxes between subdomains. The matrix structure of the resulting system has been
described and iterative schemes to be used in an iteration-by-subdomain environment have been
proposed.

The FSI problem has then been treated (Section 5). The extension of the previous ideas to this
case has led to a modification of what can be considered a classical solid–fluid iterative coupling.
The boundary terms introduced, which cancel when convergence is achieved, would hardly be
motivated from a purely algebraic point of view.

All our predictions have been stated based on physical reasoning, without numerical analysis
(although we have done this analysis in what concerns the stability and convergence of the method
when applied to a single domain, showing that indeed arbitrary velocity–pressure interpolations can
be used, see [6]). Numerical experiments have confirmed the theoretical predictions. In particular,
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a better enforcement of the continuity of fluxes is found in homogeneous domain interaction
problems and, what is probably the most salient result of this work, convergence of solid–fluid
iterative coupling algorithms is greatly improved by the terms we suggest to introduce.
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