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SUMMARY

To evaluate the computational performance of high-order elements, a comparison based on operation count
is proposed instead of runtime comparisons. More specifically, linear versus high-order approximations are
analyzed for implicit solver under a standard set of hypotheses for the mesh and the solution. Continuous as
well as discontinuous Galerkin methods are considered in two-dimensional and three-dimensional domains
for simplices and parallelotopes. Moreover, both element-wise and global operations arising from different
Galerkin approaches are studied. The operation count estimates show, that for implicit solvers, high-order
methods are more efficient than linear ones.
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1. INTRODUCTION

In recent years, there has been an interest and no minor discussions on the benefits and utility of
high-order methods compared to low order-ones. In fact, the interest is concentrated in comparing
the efficiency of linear versus high-order elements, see for instance [1-10]. Low versus high-order
elements are compared taking into account the errors and the work estimates in [4]. This comparison
based on asymptotic estimates clearly favors linear elements because it studies continuous Galerkin
with no static condensation CG(NSC) and the number of p-order elements for a given accuracy is
overestimated by a factor of [(p + 1)!]%/(P+1)_ This last issue is addressed in [11]. In [5] continuous
Galerkin (CG) —with static condensation, thus with a small Schur complement system element-by-
element— and hybridizable discontinuous Galerkin (HDG) [12—16] are compared. This comparison
is based on runtime evaluations and estimates for the number of degrees of freedom (DOF) and the
minimal upper bandwidth for two-dimensional (2D) structured meshes, which are indicators of the

*Correspondence to: A. Huerta, Laboratori de Calcul Numeric (LaCaN), E.T.S. Ingenieros de Caminos, Universitat
Politecnica de Catalunya, Jordi Girona 1, E-08034 Barcelona, Spain.

Contract/grant sponsor: European Commission & Ministerio de Educaciéon y Ciencia & Generalitat de Catalunya
AGAUR; contract/grant number: ATCoMe Initial Training Network, Seventh Framework Program (FP7) & DPI2011-
27778-C02-02 & 2009SGR875



2 A. HUERTA ET AL.

computer cost. Moreover, the approximation for the number of DOF (ndof) of CG as the product of
the number of edges by the interpolation order, clearly overestimates ndof because all the interior
mesh vertices are counted twice for quadrilaterals and three times for triangles. This penalizes more
heavily linear approximations for CG. Optimal values for / and p for the spectral element method
and operation count for evaluating bi-linear forms on 2D meshes are proposed in [1-3]. Similarly,
in the context of cost estimation for different approaches for computing bi-linear forms, operation
counts for CG on 2D meshes has been given in [17].

Here, in order to compare high versus low-order approximations, in a manner which is
implementation and hardware independent, operation count is proposed. Obviously, as noted in [18,
Sc 1.2] “Operation counts alone may no longer be as important as they once were in gauging
the efficiency of an algorithm... An algorithm that lends itself to parallelism may have a higher
operational count but might nevertheless run faster on a parallel machine than an algorithm with
a lesser operational count that cannot take advantage of parallelism.” Moreover, the final runtime
is also very much dependent on the memory access, which can be very different between linear
and high-order approximations. Thus, complexity is not directly related to cost. Nevertheless, if
any, these two issues (viz. parallelism and memory access) are prone to favor high-order elements
because of the density induced by high-order approximations and the new hardware in the market.
In any case, to avoid controversial arguments related to hardware or implementation here operation
counts are considered and only some minor remarks are made when parallelization is obvious.

Moreover, to further justify the operation count, it is important to note that for a given algorithm
the number of memory operations and floating point operations is determined by the dimensions of
the input and output data. Thus, the ratio of required memory operations over the number of floating
point operations, Ry, is determined by the algorithm and the dimensions of the input and output
data.

Note that, on one hand, computing bound algorithms, i.e. Ry,r < 1, should be evaluated in terms
of floating point operations (FLOPS). The operation counts proposed here are thus pertinent for
these algorithms. Whereas, on the other hand, memory bound algorithms, i.e. Ryy¢ > 1, should be
measured in terms of memory operations per second (MOPS). Nevertheless, for a fixed computing
platform there is a peak performance for memory operations (peak MOPS) and floating point
operations (peak FLOPS). Therefore, the ratio of peak MOPS over peak FLOPS, Ry, is a
constant determined by the hardware. This constant, which is Ryyr < 1, is decreasing because
today’s hardware is more efficient with floating point operations than with memory operations.
In summary, it is important to point out that once the performance of a memory bound algorithm is
measured in FLOPS one can convert it easily to MOPS, since for a given input data and algorithm
MOPS = min(Rm/f, RM/F) FLOPS.

The comparison is performed for an implicit solver (iterative and direct) typically associated
to a second order differential operator and standard hypotheses of smoothness and structured
uniform meshes. To have a fair comparison both local (element-by-element) and global operations
are considered. This enables considering all major cost contributors: solving the global system,
generating the element matrices, removing the inner degrees of freedom (DOF), viz. static
condensation, and, of course, their recovery. Besides, the mesh type encompasses simplices and
parallelotopes in two-dimensions (2D) and three-dimensions (3D). And finally, it is also important to
note that different Galerkin approaches are considered: CG —with static condensation—, compact
discontinuous Galerkin (CDG) as proposed in [19] because it presents the smallest stencils, and
HDG. Note that the operation count also takes into account element-by-element operations required
in CG and HDG. Results for CG(NSC) are also presented for completeness. However, this method
is not recommended to implement high-order methods because its unnecessary overhead induced
by the interior nodes. Comparisons are plotted up to degree ten because performance and behavior
are already clear.
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Figure 1. Splitting parallelotopes (quadrilaterals and hexahedra) in simplices (triangles and tetrahedra).

2. COMPUTATIONAL COSTS

Cost estimates are not trivial, they depend on a large number of factors. Here however, only three
factors are retained, namely:

1. the Galerkin method employed: CG, CG(NSC), CDG, and HDG;
2. the mesh type: simplices or parallelotopes in 2D and 3D; and,
3. the degree p of the polynomial approximation.

Basic indicators (number of DOF, number of non-zeros per row, and number of non-zero entries
in the matrix) are determined as functions of the three previous factors. Given these indicators,
cost estimates of element-wise and global operations are presented in this section. These estimates
evaluate all the number of floating point operations (FLOPS) including every constant in contrast
with standard asymptotic estimates which neglect them. This is crucial because there is no need to
be in the asymptotic range and it allows comparing costs for small values of the different parameters,
for instance p.

2.1. Hypotheses and auxiliary quantities

A key issue in comparing high versus low-order elements is the estimate of the number of elements
for a given tolerance, which obviously depends on the interpolation order p. Here, expressions
for the number of elements are determined for quadrilateral, triangular, hexahedral and tetrahedral
meshes.

Standard hypotheses for this kind of analysis are employed. The mesh is assumed structured,
uniform, of dimension, d, two or three, and large (having a number of boundary faces negligible
compared with the number of interior ones, i.e. boundary influence is negligible). Given a structured
quadrilateral (hexahedral) mesh, the corresponding triangular (tetrahedral) mesh is obtained by
dividing each quadrilateral (hexahedron) in two triangles (six tetrahedra), see Figure 1. In what
follows, the number of elements and faces is denoted by n. and ny, respectively. In addition,
the number of DOF per element and face are identified respectively by ndof. and ndofy. Note
that, ndof. and ndof; do not take into account if the degrees of freedom are shared (continuous
Galerkin) or not (discontinuous Galerkin) between different mesh entities. That is, herein ndof,
and ndo £ ; refer to the number of nodes that appear independently on each element and each face of
the mesh, respectively. Moreover, bear in mind that throughout this paper only scalar solutions are
considered and, consequently, the ndo f coincides with the number of nodes. Finally, the solution is
supposed smooth (i.e. bounded solution with bounded derivatives) and such that the approximation
error is controlled by the interpolation one. Note however, that such an assumption can be relaxed
strengthening the case for high-order approximations, see Remark 1.

To study a cartesian d-dimensional domain, [—£/2, ¢/2]? C R?, a 1D problem is first considered.
The bound of the interpolation error, R,(x), for an element of order p is prescribed to a given
precision €, namely

Ry(x) < Ap (hp>p+1:6,

(p+1)I\2
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where the hypothesis of bounded solution with bounded derivatives is used, i.e. | fPTV(¢)| < 4, <
A. Since the inverse of the mesh size field is the element density, the number of elements for a
quadrilateral/hexahedral mesh is obtained integrating the element density for each dimension of
length ¢ and then consider the d-dimensional Cartesian domain :

N = £Fhy4(e) = 9270 AY ) [e(p 4 1)1~V Y, (1)

For the particular case of function f(x1,...,z4) = sin(2rx1 /) - - - sin(27wx4/\) as used in [1-4],
the bound for each dimension is simply A, = (27r/A)?™! and (1) becomes:

Nep = ke [e(p + 1)!] _d/(p+l), 2)
where k = ¢/X is the number of wave-lengths along a domain dimension. Given the number of
parallelotopes, and assuming the same precision for parallelotopes and simplices, the number of
simplices is calculated multiplying by 2 and 6 in 2D and 3D, respectively, see Figure 1. Moreover,
the number of faces of the mesh can be expressed in terms of the number of elements. Namely,

_Jdney for paralletopes, 3)

e (d+ 1)ne,/2  for simplices.

Information on the number of elements and/or faces for different approximations p is important
and shows, for instance from (2) that the ratio of number of elements,

Mot Nep = 9—d/2,—(d/2)(p—1)/(p+1) ((p i 1)!)d/(p+1) > 1, (4)

is a strict monotonically increasing function in p, which grows faster as the number of dimensions,
d, increases and as the error tolerance, ¢, decreases. Nevertheless, the most characteristic cost
indicators for the global linear system arising from a specific Galerkin method are ndof and
the number of non-zero entries (nnz). An average number of non-zero entries per row can be
computed as nnzpr := nnz/ndof. This average is quite precise for structured/compact schemes
as discontinuous Galerkin, both CDG and HDG, but it is only and estimate for CG because of the
different connectivity of vertices and edge/face nodes. Appendix A determines the values of ndof,
nnz and, consequently, nnzpr for meshes of simplices and parallelotopes for CG, CG(NSC),
HDG and CDG. The results are summarized in Tables I and II. It is important to point out that
the theoretical values obtained with the systematic derivation detailed in Appendix A have been
verified. Large structured meshes in 2D and 3D for simplices and parallelotopes were generated.
Then, the ndof and nnz for the different methods were explicitly counted on that mesh for several
interpolation degrees. And finally, the general theoretical formulae derived in Appendix A were
validated with these numerical results.

Note that apart from the subindices e and f to characterize elements and faces, the subindex
g is introduced for the 3D meshes to characterize edges. A more systematic notation (in terms
of the dimension of the entities) is employed in Appendix A, but for clarity in the main text
edges/faces/elements (g/ f/e) are used in the discussions and formulae.

In any case, ndof, nnz and nnzpr are just indicators of the computational cost. To obtain
an accurate estimation of the cost, it is required to compute the number of floating operations.
Accordingly, operation counts for the different stages involved in every Galerkin method are derived
in the following sections.

Remark 1

The assumption that the approximation error is controlled by the interpolation error is not always
satisfied. For example, for oscillatory solutions, such as the one chosen here and typical of the
Helmholtz equation, the pre-asymptotic range is controlled by the so-called pollution error and not
the interpolation one. Nevertheless, even in this case high order elements are more competitive
than low order ones as shown numerically in [9, 10] and also in [20] where a hybrid discontinuous
enrichment method [21] is compared with an ultra-weak variational formulation [22] and a partition
of unity method [23], the three of them enriched with plane waves.
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Table 1. Expressions for ndof for different methods.

ndof
8 CG Nep(3ndofy, —5)/2
e HDG 3ne,pndofy /2
& CG(NSC) nep(2ndofe, —3ndofy, +1)/2
= CDG Ne,p ndofe p
. CG Ne,p (2ndo frp— 3)
2 HDG 2ne,pndofyy
& CG(NSC) nep(ndofe,, —2ndofy,, + 1)
CDG Ne,pndofep
CG Nep(12ndofy, — 29ndof, , +23) /6
£ HDG 2nepndofyy,
B CG(NSC) nep(bndofe, — 12ndofy, + Tndofy, —1)/6
CDG Ne,pndofe p
. CG Ne,p (3ndoff,p —9ndofy,y + 7)
2 HDG 3Ne,pndofy,
£ CGINSC) nep(ndofeyp — 3ndofy, + 3ndofy,, — 1)
CDG Ne,p ndofe p
Table II. Expressions for nnz for different methods.
p
nnz
8 CG Nep(15ndot? , — 36ndofy, + 19)/2
%D HDG 15ne,p ndo£?,/2
£  CG(NSC)  me,p(2ndof? , — 3ndof} , +1)/2
CDG Ne,p ndofep(ndofep + 3ndofy,)
4 CG Nep(l4ndof?, — 32ndofy,, + 17)
§ HDG 14n. p ndof? ,
O CG(NSC) nep(ndofs, —2ndof? , +1)
CDG Ne,p ndofep(ndofep +4ndofy,)
_cG Ne,p(84ndof? , — 288ndofy , ndofy p+
é +223ndof} , + 192ndofy,, — 288ndofy,, + 95) /6
HDG 14n. p ndo£? ,
CG(NSC)  nep(6ndof;, —12ndof} , + Tndof; , — 1)/6
CDG Ne,p ndofe p(ndofep + 4ndofy )
. CG 3ne,p(11ndof%p — 48ndoff,ndofyp+
= +49ndo£2 , + 32ndofy, — 64ndofy, + 21)
T HDG 33nc,pndof},
CG(NSC)  nep (ndofip — 3ndof?,p + 3ndof§7p — 1)
CDG Ne,p ndofe,p(ndofeyp +6ndoff,p)

2.2. Cost of element-wise operations

To perform a proper cost comparison it is important to evaluate operations performed at element
level. For instance, the cost of generating the matrices and, if the method requires it, the cost of
removing the interior DOF.

On the one hand, the cost of generating the elemental matrices is determined by the number
of elements times the cost of generating one of them. Note that each one of the matrix entries
corresponds to an integral that is performed by means of a numerical quadrature. Therefore, the
computational cost of computing one elemental matrix is determined by the number of matrix entries
(number of test functions times number of trial functions) and the number of quadrature points. The
number of quadrature points must be in accordance with the integrand. Note that a general integrand
for an elemental matrix entry is composed by four terms:
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the test function, degree p, or its derivative, degree p — 1,

. the trial function, degree p, or its derivative, degree p — 1,

3. the Jacobian of the isoparametric mapping for curved, degree d(p — 1), or straight-sided,
degree 0, elements, and

4. an optional accompanying function, approximated with a polynomial of degree p, typical in

nonlinear problems such as the flux of a conservation law.

N =—

Thus, it is required that the numerical quadrature integrates exactly polynomials of degree equal
to the sum of the degrees of the four terms. Thus, the cost of generating the elemental matrix
is determined by the computation technique that depends on the element type: curved, straight-
sided, simplex or parallelotope. In the following two sections, the computational cost for elemental
matrices with and without a flux function is derived according to the computation technique and the
number of quadrature points.

On the other hand, the cost of removing the interior DOF corresponds to first parameterize the
inner DOF in terms of those on the element boundaries and then, recover the inner DOF from the
computed values of the DOF on the element boundaries.

2.2.1. Elemental matrices: without flux function. In this case, representative of linear problems,
mass matrices are typically among the most expensive to generate, in particular, those associated
to curved elements. Three terms are in the integrand: the test function, maximum degree p, the
trial function, maximum degree p, and the non-constant Jacobian, degree d(p — 1). Exact evaluation
of mass matrices for curved element requires, consequently, to integrate exactly polynomials of
degree (d + 2)p — d. Thus, the number of quadrature points should be ndof. ; (number of DOF
per element of order ¢), where

= [(d+2)p2 d 1“7 5)
where [-] denotes the ceiling function (smallest integer not less than it). This guarantees exact
integration of polynomials up to degree (d+ 2)p — d. Therefore, given the ndof., trial and
ndof.,, test functions, the cost of creating an element matrix can be estimated in ndof; ;ndof. 4
operations. Consequently, the cost of creating all the element matrices is

E,=ncy ndofapndofeyq. (6)

It is important to note that this cost can be reduced for straight-sided elements. In that case, the
Jacobian is constant and therefore, the mass matrix can be pre-computed once. Consequently, the
cost of creating all the element matrices is not (6) but

Ep] = Ne,p ndofip. @)

Another alternative for quadrilateral and hexahedral elements to reduce the cost described by (6)
for curved elements is the sum factorization technique. This approach exploits the tensor product
structure of the basis, see [1-3]. In fact, the reduction induced by the sum factorization is almost
as efficient as the one corresponding to straight-sided elements. That is, considering again ndof. 4
quadrature points, recall (5), but this time organized with a tensor product structure, (¢ + 1)¢, the
cost with sum factorization is

d—1
By =nep Y (4 DX (g + 1) ®)
=0

Note that this latter cost varies as n. ,O(ndof? (¢ + 1)).

2.2.2. Elemental matrices: with flux function. This, which is representative of nonlinear situations,
evaluates the cost of generating matrices whose entries are composed by four terms: the one
associated to test functions, maximum degree p, the trial term, maximum degree p, the non-constant
Jacobian, degree d(p — 1), and the accompanying flux function assumed to be described by a
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polynomial of degree p. Thus, polynomials of degree (d + 3)p — d must be exactly integrated. The
number of quadrature points must be ndof, 4 (number of DOF per element of order ¢), where

i= [(d+3)p27d71“'

This guarantees exact integration of polynomials up to degree (d 4+ 3)p — d. Consequently, the cost
of creating all the element matrices is

EE = Neyp ndofgﬁpndofeyq. 9

It is important to note that this cost can be reduced for straight-sided elements. In that case, the
Jacobian is constant and therefore, it requires degree 0. That is, the total degree of the integrand is
3p. Then, the cost of creating all the element matrices is not (9) but

Egvﬂ =Neyp ndofipndofeﬁj, (10)

where ¢7 := (3p — 1)/2 to ensure integrating exactly polynomials of degree 3p.

For elemental matrices with an accompanying function the sum factorization technique can also
be applied. Considering again ndof, 4 quadrature points, but this time organized with a tensor
product structure, (G + 1)d, the cost with sum factorization is

d—1
Bt =nep Y (0 4+ 1)+ 1) (11)
=0

Note that this latter cost varies as n. ,O(ndo fip((j +1)).

2.2.3. Removing and recovering inner DOF. The ratio between interior and boundary nodes
increases as the order increases. If possible, high-order methods parameterize the DOF in the interior
of the elements in terms of the DOF on the faces. This results in a reduced global system that only
depends on the DOF on the faces of the elements. This technique corresponds to the well-known
static condensation in CG and the solution of the local problem in HDG. For an element, the cost of
this parameterization is dominated by the cost of inverting a dense elemental matrix of dimension
ndof,,. Using a Gauss-Jordan method to compute the inverse of a dense matrix takes ndo f:;p
multiplications/divisions and ndo f‘z’,p — 2ndof g,p + ndof, , additions/subtractions, see [18, Sc
3.7]. Note that in this case matrix inversion is justified because of the system dimension, condition
and, more important, the fact that the inverse operator is going to be applied to several matrices and
vectors. In addition, the application of many inverse operators (one per element) can be casted to
a generalized tensor contraction that can obtain a significant efficiency in multi-core CPU and in
vector processors (GPU), see [24,25]. It is important to point out that the computation of an LU
factorization is three times less expensive than the inversion of a matrix. However, its application
to several matrices and vectors does not feature the same level of parallelism of the explicit inverse.
That is, applying an inverse operator through an LU factorization requires a forward and a backward
substitution, both with a sequential nature, and therefore, does not allow a fine grain level of
parallelism. Nevertheless, all the conclusions of this work do not change if an LU factorization
is used, since both implementations require a similar computational cost. Thus, the cost of the static
condensation for all elements is

L,= ne’p(2ndof§’p - 2ndof§’p + ndofep). (12)

Note also that, in general, the approximation inside the element is also determined and,
consequently, once the solution is known at the element boundary a recovery process is done to
evaluate the inner DOF. The parametrization computed previously is used and the cost is dominated
by the multiplication of dense matrices with vectors of face DOF. These dense matrices are of
order (d + 1)ndofy, ndof? , for simplices and 2d ndof, ndof? , for parallelotopes. Thus, the
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recovery cost is

(13)

R = JMer ndo f‘;’,p (2(d + 1)ndofy, — 1) for simplices,
? Ne,p NAO fz,p (4d ndofy, — 1) for parallelotopes.

2.3. Solving the global problem

The cost of generating the matrices and solving the local (elemental) problems is important. But it
is crucial to estimate the operation count for the global solve. The global system of linear equations
can be solved by a direct or iterative method. Note that the expected computational cost of a real
implementation should be between the theoretical cost of a direct and the one of an optimal iterative
solver. Given the number of DOF and the number of non-zero entries in the matrix the cost per
iteration of an iterative method can be estimated because it is dominated by the sparse matrix-vector
product, and by applying the pre-conditioning operator. A typical pre-conditioner is the incomplete
LU factorization with zero fill-in (ILUO); this method is chosen because its cost per iteration can
be estimated. Note that the total number of iterations is not estimated since it is problem and mesh
dependent. Nevertheless, the ratio of the total cost of the implicit solver could be estimated under
the assumption that the ILU preconditioner leads to a constant number of iterations regardless of
p, which is reasonable for convection dominated problems. In Appendix B these estimates are
determined, namely

G;ter = SpMV + SpFS + SpBS = 4nnz + ndof. (14)

Estimating the cost of a direct method is largely dependent on the structure of the sparse matrix,
which is in general difficult to determine. However, it is important to note that HDG induces
for any mesh a sparse matrix with uniform pattern (North, South, East and West for 2D and the
corresponding in 3D) of dense square blocks (of dimension the ndof , in each face). The HDG
linear system has this structure because global DOF are only on the faces, DOF of two different
faces are connected only if they belong to the same element, and each mesh face contains several
nodes. Consequently, each face is connected to a constant number of faces per element for uniform
meshes of simplices or parallelotopes, and when two faces are connected all nodes in these faces are
interconnected (dense block matrices). This structure in the connections between faces is equivalent
to the connections between nodes of a structured linear CG mesh. Specifically, the equivalent
structured CG mesh is obtained by substituting each mesh face by a node, and each connection
between faces by an edge. This equivalence between a HDG and a structured CG mesh allows
estimating the cost of solving the HDG linear system. That is, the HDG linear system is equivalent to
solve a structured CG linear system, where the scalar entries for the nodes have been substituted by
dense matrices of size ndof, X ndofy ,. This equivalent linear system can be solved in two steps
by means of a sparse direct solver. First, the faces have to be reordered (instead of the mesh nodes).
Second, the dense blocks (instead of scalar entries) are added, subtracted, multiplied and inverted to
perform the operations induced by the direct solver. Note that the most expensive operation is the
inversion of the dense blocks.

In [26,27] the number of FLOPS required to solve a linear system arising from a structured CG
mesh is determined assuming that nested dissection is used to renumber nodes. The resulting cost
is ndof(@*t1/2 where ndof is the number of DOF of the scalar equation. Taking into account
this cost and the equivalence between a HDG and a structured CG linear system, it is possible to
estimate the cost of solving the HDG system. To this end, it is required to assume that the mesh
faces (instead of nodes for the CG mesh case) are renumbered using nested dissection; then use the
relation between the number of faces and number of elements given in (3) to estimate the cost in
terms of the number of elements (instead of the number of nodes for the CG mesh case); and finally
recall the cost of inverting a dense matrix, see (12) and [18, Sc 3.7], of size ndof;, x ndofy,
(instead of one floating point operation for the CG mesh case). In this case, the number of FLOPS
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required to solve with a direct solver the HDG linear system is:

_ d(d+1)/2 ngﬁlw@ndof%p - 2ndoffc$p +ndofy ) for paralletopes,
: ((d+1)/2) (d+1)/2n£fl;1)/2(2ndof§’c’p —2ndof}, + ndofy,) for simplices.

3. COST COMPARISON: LINEAR VERSUS HIGH-ORDER

Once the number of FLOPS is determined for each approximation order p as a function of the
number of elements, n. p, and number of DOF per edge/face/element, ndof, ,/ndofy ,/ndof. ,
a comparison is possible. Note that these comparisons also depend on the number of spatial
dimensions, d, the error tolerance, ¢, the element type, simplices/parellotopes, and, obviously on
the method employed.

3.1. Element-wise operations

A common characteristic for all element-wise operations is the linear dependency on the number
of elements n., and a polynomial dependency on the number of DOF per edge/face/element,
ndofy ,/ndofy,/ndof, , depending on the operation. Thus, the ratio of the number of FLOPS
between order 1 and order p is always the product of the element ratio, see (4), and a ratio of the
polynomial dependence on the ndof. The first term, as noted previously is a strict monotonically
increasing function in p whereas the second is, in general, decreasing in p. The combination of these
two terms indicates when the number of FLOPS is larger or smaller for linear elements compared
to high-order elements.

Thus, the benefit of having less elements in high-order methods is undermined by the cost of the
element-wise operation. This is alleviated when high accuracy is required, since many elements are
needed in the linear mesh to achieve such accuracy. It is important to note that this element-wise
work can easily be parallelized, in which case its effect to the total cost to solve the problem is
significantly reduced.

Note also that element-wise FLOPS grow linearly with the number of elements, and non-linearly
with the number of DOF. Thus, simplices are more efficient for these operations because they have
fewer DOF.

3.1.1. Elemental matrices: without flux function. Figures 2 and 3 depict the ratios of E;/E, and
Ei] / Eb] in the absence of a flux function, for the cases of curved and straight-sided elements,
respectively, obtained from (6) and (7). Figure 4 shows the ratio E3f/ E;f induced by (8), which
corresponds to parallelotopes implemented with sum factorization. These figures indicate that when
tensorial basis or straight-sided elements are employed first-order is not always the best choice for
accuracies of two or more significant digits. Note that for curved elements (or straight-sided ones
but implemented without exploiting its advantages) the results are just the opposite, namely, up to
engineering accuracy it is difficult to improve on linear elements.

3.1.2. Elemental matrices: with flux function. In this case, which is representative of nonlinear
problems, Figures 5 and 6 depict the ratios of Ef/E) and EN /EJ" in the presence of a flux
function, for the cases of curved and straight-sided elements, respectively, obtained from (9) and
(10). Figure 7 shows the ratio Eif’ﬂ/ E;,f’ﬂ induced by (11), which corresponds to parallelotopes
implemented with sum factorization. It is clear from these figures that the introduction of a flux
function decreases the performance of high-order elements. Nevertheless, when tensorial basis or
straight-sided 3D elements are used, first-order is not always the best choice for accuracies of two
or more significant digits. On the contrary, for curved elements and straight-sided 2D elements up
to engineering accuracy it is difficult to improve on linear elements.

3.1.3. Removing and recovering inner DOF. CG and HDG allow a parametrization of the interior
nodes in terms of the ones on the faces (static condensation), which reduces considerably the number
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Figure 2. FLOPS ratio (linear/order p) for creating element matrices of curved elements (no tensorial basis
exploitation for the parallelotopes) without flux function.
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Figure 3. FLOPS ratio (linear/order p) for creating element matrices of straight-sided elements without flux
function.

of DOF. Its cost, in terms of FLOPS, is indicated by (12). Moreover, these methods also require the
recovery of those inner DOF once the global problem is solved, see (13). The corresponding ratios
Li/L, and R;/R, are depicted in Figures 8 and 9. This static condensation, which implies a
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Figure 4. FLOPS ratio (linear/order p) for creating element matrices with sum factorization without flux
function.
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Figure 5. FLOPS ratio (linear/order p) for creating element matrices of curved elements (no tensorial basis
exploitation for the parallelotopes) with a flux function.

reduction in DOF, introduces an overhead for elements of order p > 1, which, in general, is not
compensated by the reduction in number of elements (except for accuracies higher than engineering
ones). Thus, if methods exploiting static condensation are to be more competitive in higher orders
they must compensate the overhead element-wise operations (easily parallelizable) of removing and
recovering the inner DOF in the global solve.

3.2. Global problem operations

If an iterative solver is used with an ILUO pre-conditioner, equation (14) indicates the number of
FLOPS required in each iteration. This operation count depends on ndof and nnz, which are
different for each method and mesh type, see Tables I and II. Thus a comparison for all these
methods and meshes is possible. Figures 10 and 11 show the ratio of FLOPS for the four methods
compared (CG, HDG, CG(NSC) and CDG) and two mesh typologies (quadrilaterals and hexahedra)
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Figure 6. FLOPS ratio (linear/order p) for creating element matrices of straight-sided elements with a flux
function.
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Figure 7. FLOPS ratio (linear/order p) for creating element matrices with sum factorization with a flux
function.

because, as noted earlier, parallelotopes are the worst case scenario for high-order elements, see [28].

Note that CG and HDG have a better performance with high-order methods compared with
CG(NSC) and CDG. This is obvious, because the number of inner nodes increases drastically with
p and static condensation implies that ndof and nnz grow with the number of DOF on the faces,
ndofy ,, instead of the complete element, ndof, ,, as shown in Tables I and II.

There is, however, in this comparison a major conclusion: for engineering accuracy high-order
methods are more efficient in a wide range of p. Recall that CG(NSC) is only put here for
comparison purposes.
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Figure 8. FLOPS ratio (linear/order p) for removing inner DOF.

Quadrilaterals Hexahedra

Tetrahedra

Figure 9. FLOPS ratio (linear/order p) for recovering inner DOF.

For a sparse direct solver the operation counts are only available for HDG, see (15). Thus the
ratio between linear and order p becomes, for simplices and parallelotopes:

G

G, = (ne’l/neyp)(dﬂ)m(2ndof§’c’1 - 2ndof3c,1 + ndoffyl)/(Qndof:},p - 2ndoffc’p + ndofy,).
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Figure 10. FLOPS ratio (linear/order p) per iteration in a global solve a quadrilateral mesh.
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Figure 11. FLOPS ratio (linear/order p) per iteration in a global solve a hexahedral mesh.

Figure 12 is clear (and even more conclusive in 3D) high-order methods have fewer FLOPS
in the global solve with HDG for engineering accuracy. The power (d + 1)/2 < 1 for the strict
monotonically increasing ratio of elements (in p) dominates the ratio of the inverse of a dense
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Figure 12. FLOPS ratio (linear/order p) for the global solve in HDG with a sparse direct solver after nested
dissection renumbering.

matrix with DOF only in the faces. Recall that as p increases, the number of interior nodes increases
faster than the number of boundary nodes in each element.

3.3. Total cost comparison

The total cost comparison requires accounting for element and global operations. A naive sum for
HDG with a direct solve, see (15), under the “worst” case scenario, that is, no parallelization of
element-wise operations, curved elements with no tensorial basis, in the presence of a flux function,
see (9), and removing and recovering the inner DOF, equations (12) and (13), will induce the
following FLOPS ratio

T Ei+Li+Ri+G1  neig(l,d)

T, Ey,+L,+R,+Gp nepgp,d)’

where ¢(p, d) is

g(p,d) :ndofgﬁpndof&[(dﬁ)p_d_u/g + 2ndof“z’,p + adndofg,p + ndofe ,+
Bdng‘zl)m@ndof?}’p - 2ndof?!p +ndofyy),

and a4 and 34 are two parameters dependent on the mesh type, namely

{2(d +1)ndofys, — 3 5 {((d +1)/2)@+1/2 " for simplices,
— =

4dndofys, —3 dld+1/2 for parallelotopes.

Figures 13 and 14 depict these comparisons for two cases: one and a hundred wavelengths per
domain, k = 1 and k = 100, see (2). Note that as expected, as k grows, the global FLOPS, G, are
dominant and high-order elements are more competitive. Nevertheless, even for the extreme case of
k = 1 these results clearly indicate that high-order methods are more competitive, for engineering
accuracies, than linear elements. This is even more evident in 3D problems. Note that any simple
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Figure 13. Total FLOPS ratio (linear/order p) for HDG with a sparse direct solver and worse case scenario
for a problem with 1 wavelength per domain, k£ = 1.
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Figure 14. Total FLOPS ratio (linear/order p) for HDG with a sparse direct solver and worse case scenario
for a problem with 100 wavelengths per domain, £ = 100.

parallelization of element-wise operations will improve the performance of high-order methods.
Moreover, any improvement in creating element matrices using tensorial basis or exploiting constant
Jacobians, will also improve the performance of high-order elements. These results also extend for
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Table III. Relative increase of ndof expressed in % for HDG compared to CG due to multi-valued nodes.

D 1 2 3 4 5 6 7 8 9 10
Quadrilaterals 300 100 60 43 33 27 23 20 18 16
Hexahedra 1100 286 153 103 77 62 51 44 38 34

iterative methods as soon as the number of iterations is typical of engineering problems and the
global solve cost compensates the element-wise operations.

4. DISCONTINUOUS VERSUS CONTINUOUS GALERKIN METHODS

At this point where the number of DOF, ndof, as well as the number of non-zeros in the matrix,
nnz, have been evaluated for different mesh typologies, it is worth comparing continuous and
discontinuous methods. See [5] for another comparison.

Obviously the mesh hypotheses presented in Section 2.1 are retained. Moreover, in contrast with
the previous comparison between low and high-order methods where the number of elements in the
domain was changing with the order p. Now the comparison is performed for the same characteristic
size h (i.e. with a constant number of elements) because the different methods have a priori error
estimates of the same order.

The methods to be compared are CG, CG(NSC), CDG, and HDG. Additionally, results are also
shown for the post-processed solution of HDG (pHDG). Recall, see [13, 14], that HDG presents,
for elliptic operators, a super-convergent property that produces a solution with an extra order of
approximation after an inexpensive element-by-element post-process. Thus, an HDG solution with
order p — 1 can be post-processed into an order p approximation.

This comparison can be done directly in terms of, for instance, ndof. See Table III for a
comparison between HDG and CG, where the relative increase in ndof expressed in percentage is
evaluated. This is typical of discontinuous Galerkin methods since the corresponding finite element
spaces are multi-valued at element boundaries: a CDG (HDG) point inside an entity on the boundary
of an element corresponds to as many nodes as elements (faces) surround the container entity, see
Figure 22 (Figure 23). Specifically, CDG penalizes the inner nodes on the faces since they are
double-valued (duplicated). On the contrary, HDG penalizes the nodes on the vertices since they are
multi-valued (as many values as faces surround the vertex). Note that the overhead of multi-valued
nodes in CDG (HDG) is more severe for higher dimensions, due to the fact that more elements
(faces) are adjacent to each mesh entity, see Table V. As expected, the percentage of multi-valued
nodes in the discontinuous Galerkin methods decreases as p increases, due to the decrease in the
ratio between external and internal nodes in the elements as p increases. This makes DG methods
less competitive for low p.

Nevertheless, here instead of comparing directly ndof and/or nnz, the comparison is centered in
the the number of FLOPS required in each iteration of a global solve. The cost per iteration of a pre-
conditioned (ILUO) iterative solver is given in equation (14). It is a linear combination of the ndof
and nnz of the global matrix. Recall that the exact values of ndof and nnz for each method and
mesh type are given in Tables I and II, respectively. Figure 15 shows these comparisons normalized
by the CG results. First of all, it is important to note that CG always requires fewer FLOPS than any
other method. Second, note the differences in the asymptotic behavior as p increases of the methods
requiring interior nodes, CG(NSC) and CDG, and those not using them, CG, HDG and pHDG.
Moreover, “static condensation” is more effective as p increases. Finally, although DG methods
are always above their continuous counterpart the post-processed HDG solution, pHDG, has the
smallest overhead over CG, because it obtains with a p — 1 approximation (and computational
effort) similar results (same order of the a priori error estimate) as all the others with order p,
including CG. This super-convergence, however, does not reduce the number of FLOPS below CG
for the mesh hypotheses used here (uniform structured with a negligible boundary influence).
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Figure 15. FLOPS ratio, normalized with respect to CG, per iteration.

5. CONCLUDING REMARKS

The comparison between linear and high-order elements presented here in terms of operation
counts indicates that, under the hypotheses of the study (i.e. smooth solutions, interpolation error
controlling the approximation one and large structured meshes) there is an optimal approximation
order, which minimizes the computational cost. This optimal order is linear only for the particular
case of element-by-element operations with a cubic dependence in the number of DOF per element
(i.e. curved elements and with no tensorial basis exploitation for parallelotopes). Note that this can
be the case for a large number of explicit solvers. In every other case studied the optimal p > 1.
Nevertheless, estimating exactly the optimal value is by no means an easy task. For element-wise
operations which have up to quadratic dependence on the number of DOF per element, high-order
elements are more efficient for a wide range of orders and at least engineering accuracy (one or two
significant digits). This better performance of high-order methods in creating the required element
matrices is more evident in 3D and for simplices.

At global level, high-order elements are consistently more efficient than linear ones when
confronted with the cost for solving with an iterative solver the global system arising from second
order differential operators in continuous Galerkin (CG) —with static condensation yielding an
element-wise and small Schur complement system—, compact discontinuous Galerkin (CDG), and
hybridizable discontinuous Galerkin (HDG). Moreover, if a direct solver for HDG is employed,
again high-order elements are more efficient. If both local and global operations are taken into
account, high-order methods still prove to be more efficient even in the worse case scenario of no
parallelization of element-wise operations.

The comparison has been also extended to discontinuous versus continuous approaches for a
given accuracy (i.e. mesh discretization) where it is also shown that the only method with a
cost comparable to CG is HDG, provided its super-convergent property is utilized. Of course
this comparison is only made in terms of operation count and not brings to the discussion other
advantages each Galerkin method may present in terms of the application, stability, error estimation
and adaptivity.
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Table IV. Notation related with the different types of mesh entities.

Entity Dim #inmesh #nodes # interior nodes Connections

vertex 0 no ndof ndof{" o
edge 1 nq ndof; ndo fi”t 1
polygon 2 N ndofy ndo fé”t Ca
cell 3 ns ndofs ndo fg”t c3

A. INDICATORS OF THE COST OF SOLVING THE GLOBAL LINEAR SYSTEM

In this section, the expressions of three indicators of the cost of solving the global linear system are
obtained: the number of global degrees of freedom (ndof), the number of non-zero entries in the
global matrix (nnz), and the average number of non-zero entries per row (nnzpr). Specifically,
these cost indicators are obtained for different: Galerkin methods (CG, CG(NSC), HDG, and
CDG), element types (simplices and parallelotopes), number of spatial dimensions (d = 2, 3), and
interpolation degrees (p). To this end, it is assumed that the domain is discretized with a structured
mesh composed by equally sized elements and that the number of boundary entities is negligible
compared with the total number of elements. The final values are expressed in terms of the number
of mesh elements (ng4) and the number of degrees of freedom on an i-dimensional mesh entity
(ndof;), see Section A.4. Herein, the i-dimensional mesh entities are referred as: vertices (0D),
edges (1D), polygons (2D), and cells (3D).

A.l. Outline of the counting technique and notation

The goal is to obtain the expressions of ndof, nnz, and nnzpr in terms of ny and ndo£;. To this
end, a set of intermediate values that can be expressed in terms of n4 and ndof; are computed first,
Sections A.2 and A.3. Then, these intermediate values are used to obtain the expressions of ndof,
nnz, Section A.4. Finally, nnzpr is obtained as nnz /ndof.

The first set of intermediate values, Section A.2, corresponds to the structure of the mesh entities:

a; j: The average number of j-dimensional entities that are adjacent to an ¢-dimensional entity, see
Section A.2.1. For a structured mesh with a negligible number of boundary elements, these
numbers are just constants.

n;: The number of ¢-dimensional entities on the mesh. These numbers can be expressed in terms of
the number of elements (n4), see Section A.2.2.

ndof™: the number of nodes that are on the interior of an i-dimensional entity. These numbers can
be expressed in terms of ndof;, see Section A.2.3. Figure 16 shows the difference between
ndof; and ndo £ values: the former is the total number of elements for the i-dimensional
entity, while the later is the number of interior nodes in the i-dimensional entity.

The second set of intermediate values, Section A.3, corresponds to the structure of the connections
between the mesh nodes for different Galerkin methods:

¢;: The number of nodes that are connected to a global node that is on the interior of an i-
dimensional entity for a continuous Galerkin method. These numbers can be expressed in
terms of a; ; and ndo£2"*. Hence, they can also be expressed in terms of ndo£;, see Section
A3.1.

c: The number of nodes that are connected to a global node for a discontinuous Galerkin method.
These numbers are expressed directly in terms of a; ; and ndof;, see Section A.3.2.

A summary of the notation related with the different types of i-dimensional entities is presented
in Table I'V.
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ndof, ndof 4"
ndof; o—o—o0—0—0

ndofllnt — 00—

Figure 16. Difference between ndof; and ndof‘™ values on a triangular mesh of interpolation degree
p = 4 for: (left) edges (: = 1) and (right) polygons (i = 2).

Table V. Average number of adjacent entities for different mesh types.

Mesh  Triangular Quadrilateral Tetrahedral Hexahedral
A 0 1 2 0 1 2 0 1 2 3 0 1 2 3
0 1 6 6 1 4 4 1 14 36 24 1 6 12 8
1 2 1 2 2 1 2 2 1 36/7 36/7 2 1 4 4
2 3 3 1 4 4 1 3 3 1 2 4 4 1 2
3 4 6 4 1 § 12 6 1

A.2. Quantities related with the mesh entities

A.2.1. Average number of adjacent mesh entities. In order to compute the required cost indicators,
the average number of j-dimensional entities that contain or are contained into an i-dimensional
entity (adjacent) has to be computed. To this end, a structured and uniform mesh with a negligible
number of boundary entities is considered both for parallelotopes and simplices. Specifically, the
parallelotope mesh is obtained as a periodical 2D (3D) Cartesian grid composed by quadrilateral
(hexahedral) elements. The simplicial mesh, is obtained by splitting each quadrilateral (hexahedron)
of the 2D (3D) Cartesian grid into 2 triangular (6 tetrahedral) elements, see Figure 1.

To compute the average number of adjacent entities, the symmetry of the initial Cartesian grid
can be exploited. That is, any inner quadrilateral (hexahedron) of the 2D (3D) grid is surrounded
by 8 (26) elements. Therefore, all the possible topological configurations of inner mesh entities are
represented in the central tile of an initial 2D (3D) Cartesian grid composed by 3 x 3 (3 x 3 x 3)
elements. Figure 17 shows the mesh entities on the central tile of a triangular and a quadrilateral
mesh. By symmetry, all the inner vertices are equivalent to the bottom-left central vertex; all the
inner edges are equivalent to either the diagonal, the left, or the bottom edge; and all the inner
polygons are equivalent to one of the central polygons. Similarly, in the 3D case all the mesh inner
entities are equivalent to an entity that is either inside or on the left, the bottom, or the frontal side
of the central tile.

Exploiting the symmetry of the initial Cartesian grid, the average number of j-dimensional
entities adjacent to an i-dimensional entity is obtained by: creating a 2D (3D) grid composed by
3 x 3 (3 x 3 x 3) elements; splitting all the initial elements into either simplices or parallelotopes;
counting the number of adjacent j-dimensional entities around all the representative topological
configurations of i-entities inside the central tile; and finally, summing the number of adjacent j-
dimensional entities and dividing it by the number of representative i-entities contained in the central
tiling. The results obtained with this procedure for a structured triangular, quadrilateral, tetrahedral
and hexahedral mesh are presented in Table V. In this table, a number on the i-th row and the j-th
column determines the average number of j-dimensional entities that are adjacent to an i-entity.
For instance, in a structured tetrahedral mesh there are on average 36,/7 polygons (second column)
adjacent to an edge (first row); and in a structured hexahedral mesh there are 4 edges (first column)
adjacent to a polygon (second row). It is important to point out that these results agree with the
average number of adjacent entities presented in [29], except for the tetrahedral case. Nevertheless,
the differences on the averages are not significant since in [29]: ap2 = 35 (= 36), ag,3 = 23 (~ 24),
a12 = 5 (% 36/7), and aiz = 5 (% 36/7)



EFFICIENCY OF HIGH-ORDER ELEMENTS FOR CG AND DG 21

Figure 17. Representative entities on the central tile of a structured triangular and quadrilateral mesh.

Table VI. Number of mesh entities expressed in terms of the number of elements n,.

Meshtype  no(ng) ni(ng) n2(na)

triangular ng/2 3na/2 -

quadrilateral nd 2ngq -
tetrahedral ng/6  Tna/6 2ngq
hexahedral nq 3ngq 3nq

A.2.2. Number of mesh entities. The number of different types of mesh entities can be expressed
in terms of the number of mesh elements. That is, each element (d-dimensional entity) contains ag;
different ¢-dimensional entities. In addition, each i-dimensional entity is shared on average by a; 4
elements. Therefore, the total number of ¢-dimensional entities is

ad,i
Qi,d

ni(nqg) = ng.
To illustrate this general expression, the computation of the number of vertices and edges expressed
in terms of the number of elements of a triangular mesh is presented:

Number of vertices. Each element (triangle) contains as o = 3 vertices, and each vertex is shared
on average by ag 2 = 6 elements (triangles). Therefore, the total number of vertices is

o az.0 - 3 - 1
no(’ng) = 70, Ng = 677/2 = 577,2.
0,2

Number of edges. Each element (triangle) contains a2 ; = 3 edges, and each edge is shared on
average by a; 2 = 2 elements (triangles). Therefore, the total number of edges is

According to the values in Table V and the proposed procedure, Table VI presents the number of
mesh entities expressed in terms of the number of elements for triangular, quadrilateral, tetrahedral,
and hexahedral structured meshes.

A.2.3. Number of nodes per mesh entity. The number of nodes and the number of interior nodes on
a i-dimensional mesh entity depends on: the dimension of the mesh entity (¢), the type of elements
(simplices and parallelotopes), and the interpolation degree (p). Table VII presents, in terms of these
parameters, the total number of nodes (ndof;) and the number of internal nodes (ndof é"t). Note
that ndof; is obtained as: the dimension of the space of polynomials of degree p in ¢ variables on a
simplex; and the dimension of the Cartesian product of i different spaces of polynomials of degree
p in one variable on a hexahedron. Then, the number of internal nodes on a i-dimensional entity
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Table VII. The total number of nodes and the number of internal nodes on an i-dimensional entity for
simplices and parallelotopes.

simplices parallelotopes
Dim ndof, ndofi™t ndof; ndofi™
0 1 1 1 1
1 p+1 p—1 p+1 p—1
2 (p+1(p+2)/2 (p-1p-2)/2 (p+1)” (p—1)°
3 (+DE+2)(P+3)/6 (p-1pP—-2)(p-3)/6 (p+1)° (p—-1)

Table VIII. Number of internal nodes in terms of the total number of nodes on an i-dimensional entity.

simplices parallelotopes
ndofém 1 1
ndofim ndof; — 2 ndof; — 2
ndof¥® ndofs — 3ndof; + 3 ndofs — 4ndof; + 4

ndofé"t ndofz — 4ndofs + 6ndof; —4 ndofz — 6ndofs + 12ndof; — 8

(ndo f;:’”t) can be computed from ndo£;. Specifically, ndof f"t is computed as the total number of
nodes on a ¢-dimensional entity for the interpolation degree p — 2.

The number of internal nodes can also be computed as the total number of nodes minus the
number of nodes on the entity boundary. The number of nodes on the boundary, is the summation
of the internal degrees of freedom for all the entities on the boundary. Therefore, ndo£:"* can be
obtained by means of the recursion

ndofy" =1,
i—1

ndof!™ := ndof; — Z ai’jndof}”t, fori=1,....d.
=0

This recursion is used in Table VIII to express ndofi** in terms of ndof; for triangular,
quadrilateral, tetrahedral, and hexahedral meshes.

A.3. Connections between the mesh nodes for different Galerkin methods

In this section, the structure of the connections between the mesh nodes for different Galerkin
methods (CG(NSC),CG,CDG,HDG) and element types (simplices and parallelotopes) is described.
Since each degree of freedom is associated with a mesh node, the connections of the mesh nodes
allow the estimation of the number of non-zero entries of the global linear system. That is, two
degrees of freedom are connected if they both appear with a non-zero coefficient in at least one
equation of the linear system. It is important to point out that each mesh node is associated with
one mesh point. However, a mesh point can be associated with one (continuous Galerkin) or
more (discontinous Galerkin) mesh nodes. Thus, to describe the connections of the nodes it is
required to differentiate between the continuous (CG(NSC),CG) and the discontinous (CDG,HDG)
Galerkin methods. Finally, several high-order methods (CG,HDG) remove the internal degrees
of freedom of the elements from the global linear system. Specifically, the internal degrees of
freedom are expressed in terms of the degrees of freedom on the faces by means of an element-
by-element procedure (condensation). Therefore, the number of connections of the internal nodes
of the polygons (cells) is zero in 2D (3D) for the condensed methods.

A.3.1. Continuous Galerkin methods. The structure of the connections of a continuous Galerkin
discretization is straightforward to characterize. That is, a node is connected with all the nodes of the
adjacent elements. However, the computation of the number of nodes connected to a node presents
two issues. First, the nodes on the boundary of the elements are shared. Therefore, one has to pay
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Figure 18. Node connections for the CG(NSC) method on a triangular mesh of interpolation degree p = 4:
(left) vertex node; (center) interior edge nodes; and (right) interior face nodes.

special attention to count only one time the connection between two nodes. Second, the number
of adjacent elements for a node depends on the type of the mesh entities. To overcome these two
issues, the structure of the connections is described between the interior nodes of the different types
of mesh entities: vertices, edges, polygons, and cells. Specifically, the number of nodes connected
to an interior node of a i-dimensional entity (c;) is obtained as

d
ci = Zci’j ndof{™ fori=0,...,d, (16)
=0

where c; ; is the total number of j-dimensional entities that are connected to a node on a i-
dimensional entity. The following examples illustrate this notation: ¢, is the total number of nodes
connected to an interior node of a polygon; c; 5 is the number of polygons connected to an internal
edge node; and ¢y 3 is the number of cells connected to a vertex node.

Non-condensed continuous Galerkin (CG(NSC)). Since it is not a condensed method, the
structure of the connections is described for all the types of mesh nodes. The results and the
computation of the number of connected nodes are presented separately for 2D and 3D meshes.

Triangular and quadrilateral (2D). The number of connections between the different types of
interior nodes (rows) with the different types of mesh entities (columns) are presented in
Table IX. To illustrate the computation of this table, the derivation of the connections of a
vertex node of triangular mesh with the surrounding entities is detailed. In addition, Figures 18
(triangles) and 19 (quadrilaterals) are included to show the three possible types of connections
for a 2D mesh of interpolation degree p = 4.

A vertex node on a triangular mesh is connected with the interior nodes on the vertices, edges,
and polygons of the adjacent elements. First, a vertex node is connected to co,0 = ag,0 + ao,1
vertices, since it shares an element with: itself (ag o); and the opposite vertex of each adjacent
edge (ap,1). Second, a vertex node is connected to cg 1 = ao,1 + ao,2 edges, since it shares an
element with: the adjacent edges (ao,1); and the opposite edge of each adjacent triangle (ag 2).
Finally, it is connected to ¢y 2 = a2 adjacent triangles. These results correspond to second
row of Table IX. A similar derivation is used to obtain the connections of a vertex node on a
quadrilateral mesh.

The connections for the interior nodes of an edge and a polygon on a 2D mesh (triangular and
quadrilateral) are obtained with the same approach. The corresponding values for triangles
appear in the third and fourth rows, and for quadrilaterals in the seventh and eight rows of
Table IX, respectively.

Tetrahedral and hexahedral mesh (3D). The number of connections between the different types
of interior nodes (rows) with the different types of mesh entities (columns) are presented
in Table X for tetrahedra and hexahedra. Since the 3D case is more complex to illustrate
than the 2D case, the computation of the connections of a vertex and an edge node are both
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Table IX. Connections between nodes and entities for the CG(NSC) method on a triangular and a
quadrilateral mesh.

§ C! 0 1 2

5

g 0 ao,0 +ao1 =7 ao,1 +ao2 =12 ap2==6

= 1 a0+ aie = a11+2a12=5 ai2=2
2 a0 = 3 a1 = 3 a2 = 1

., Ct 0 1 2

3

= 0 aoo+tao1+a2=9 ao1+2a2=12 ap2=4

© 1 a10+2a12 =6 a1 +3a12=7 ai2=2
2 az,0 = 4 a1 = 4 az,2 = 1

Figure 19. Connections between nodes and entities for the CG(NSC) method on a quadrilateral mesh of
interpolation degree p = 4: (left) vertex node; (center) interior edge nodes; and (right) interior face nodes.

Table X. Connections between nodes and entities for the CG(NSC) method for a tetrahedral and hexahedral

mesh.
c’ 0 1 2 3
£0 ao,0 +ao1 =15 ao,1 + aog,2 = 50 ao2 +aos3 =060 ap3=24
=1 ai,o + ai2 250/7 ai +2a1,2+a1,3 = 115/7 a1,2+2a173 = 108/7 ai,3 236/7
2 a2,0+az3 =5 a21+3az23 =9 az2 +3az23 =7 az3 =2
3 as,o = 4 as;1 = 6 asz,2 = 4 as,3 = 1
cH 0 1 2 3
é 0 ao,0 + ao,1 +ao2+ao3 =27 a1+ 2a0,2 + 3ao,3 = 54 ao,2 + 3a0,3 = 36 ao,3 =8
& 1 a1,0+2a1,2 +2a1,3 =18  a11+3a1,2 +5a1,3 =33 a2 +4a1,3 =20 a3 =4
2 az,0 + 40,2,3 =12 az1 + 80,2,3 =20 az2 + 5a2,3 =11 a3 = 2
3 as,o = 8 asz,;1 = 12 asz,2 = 6 as,3 = 1

detailed. First, a vertex node is connected to cgo = ag,0 + ap,1 vertices, since it shares an
element with: itself (ag,0); and the opposite vertex of each adjacent edge (ap,1). A vertex node
is connected to ¢y = ap,1 + a2 edges, since it shares an element with: each adjacent edge
(ao,1); and the opposite edge of each adjacent polygon (ap 2). A vertex node is connected to
co,2 = ap,2 + ag,3 polygons, since it shares an element with: each adjacent face (ag2); and
the opposite polygon of each adjacent tetrahedra (ag, 3). Finally, a vertex node is connected to
co,3 = aop,3 adjacent tetrahedra.

Second, an edge node is connected to ¢ 0 = a1,0 + a1,2 vertices, since it shares an element
with: the end vertices of its edge (a;,0); and the opposite vertex of each adjacent polygon
(a1,2). An edge node is connected to c17 = ai,1 + 2a;1,2 + a3 edges, since it shares an
element with: its edge (a1,1); two additional edges for each adjacent polygon (2a, 2); and
the opposite edge of each adjacent tetrahedra (a; 3). An edge node is connected to ¢ o =
a1,2 + 2a, 3 polygons, since it shares an element with: each adjacent polygon (a1 2); and two
additional polygons for each adjacent tetrahedron (2a; 3). Finally, an edge node is connected
to c,3 = aop,3 adjacent tetrahedra.



EFFICIENCY OF HIGH-ORDER ELEMENTS FOR CG AND DG 25

Figure 20. Connections between nodes and entities for the CG method on a triangular mesh of interpolation
degree p = 4: (left) vertex node; and (right) interior edge nodes.

Figure 21. Connections between nodes and entities for the CG method on a quadrilateral mesh of
interpolation degree p = 4: (left) vertex node; and (right) interior edge nodes.

Table XI. Node connections for the CG method on a triangular and a quadrilateral mesh.

5 C 0 1 2

on

g 0 ao,0 +ao1 =7 a0 +ap2=12 0

E 1 a0+aiz=4 a11+2a12=5 0
2 0 0 0

o 0 1 2

3

3 0 aoo+ao1+a2=9 ao1+2a2=12 0

o4 1 a1,0+2a12 =26 a1 +3a12=7 0
2 0 0 O

The connections for interior nodes on the polygons and the elements are computed with a
similar derivation. The same approach is used to obtain the connections of a hexahedral mesh.
The obtained connections for a tetrahedral and hexahedral mesh are presented in Table X.

Continuous Galerkin method (CG). The structure of the connections of the degrees of freedom
for the CG method is obtained from the connections of the CG(NSC) method. Specifically, all
the connections are obtained from the CG(NSC) table, except the values on the row and column
associated with the polygons (cells) in 2D (3D). These values are zero, since the static condensation
removes the inner degrees of freedom on the elements from the global system.

Triangular and quadrilateral mesh. The structure of the connections for the interior nodes for
a triangular and a quadrilateral mesh is illustrated in Figures 20 and 21, respectively.
Furthermore, the corresponding number of connected entities is presented in Table XI.

Tetrahedral and hexahedral mesh. The number of connected entities for a tetrahedral and
hexahedral mesh are presented in Table XII.

Given the connections for different mesh types on Tables IX, X for CG(NSC), and XI, XII for CG,
the total connections for a node on a i-dimensional entity can be computed by using equation (16).
The resulting expressions for the values of ¢; in terms of the ndo £, on the entities are given in Table
XIII. The values ¢; for i = 0, .., d are used for computing the number of non-zero entries (nnz) of
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Table XII. Connections between nodes and entities for the CG method for a tetrahedral and hexahedral mesh.

CcT 0 1 2 3
g 0 ao,0 +ao,1 =15 ao,1 + ao,2 = 50 ao2 +ap3 =60 0
=1 a0+ a2 =50/7 ai1+2a12+a1,3 =115/7 a2+ 2a1,3=108/7 0
2 a0+ a3 =>5 az,1 + 3az23 =9 az2+3a23=7 0
3 0 0 0 O
cH 0 1 2 3
§ 0  aoo0+ a0+ a2+ aos =27 ao,1 + 2a0,2 + 3ap,3 = 54 ao,2 +3a03 =36 0
£ 1 a1,0+ 2a1,2 + 2a1,3 =18 a1,1 + 3a1,2 + 5a1,3 = 33 a2 +4a13=20 0
2 az,0 + 4CL2,3 =12 az;1 + 8@2,3 =20 az,2 + 504273 =11 0
3 0 0 0 O

Table XIII. Expressions for the number of connected nodes to an interior node of a i-dimensional entity in
terms of ndof; for the continuous Galerkin methods.

c¢;  Expression

co 6bndofs —6ndof; +1
c1  2ndofa —ndofy
(&) ndofa

Triangles

co 4ndofs —4ndof; +1

'§ c¢1 2ndofs — ndof;y
5 ca2 ndofa
co 24ndofz — 36ndofs + 14ndof; — 1
2 a 36ndofs/7 — 36ndofa/7 + ndof:
= ¢ 2ndofs — ndofs
c3 ndofs
» ¢€o 8ndofs—12ndofs + 6ndof; —1
£ ¢ 4ndofs —4ndofs 4+ ndof:
£ c2 2ndofs —ndofs

c3 ndofs

the global matrix for CG(NSC), while only the values for i = 0, .., d — 1 are used for computing the
nnz for CG (the interior nodes are statically condensed).

A.3.2. Discontinuous Galerkin methods. For the two discontinuous Galerkin methods (CDG,HDG)
considered here, all the internal global nodes have the same connection structure. Specifically, CDG
(HDG) is compact in the sense that it only connects the nodes of the elements (faces) with the
shared faces (all the faces) of the neighboring elements. Note that the global nodes of HDG are on
the faces, since the degrees of freedom are condensed through a local procedure.

Compact Discontinuous Galerkin (CDG). For CDG, a node is connected to all the nodes
on the same element (ndof,) and the nodes on the adjacent faces of the adjacent elements
(aq,a—1ndofg_1). Therefore, the total number of connected nodes is:

¢=aqqg-—1ndofg_; +ndofy, 17

where a4 41 is the number of adjacent edges (polygons) for the 2D (3D) element, and ndof 4 the
total number of nodes on an edge (face) of the 2D (3D) mesh. This expression of the total number
of connections is valid for both simplices and parallelotopes.

The structure of the connections of the global nodes for a 2D mesh (triangles and quadrilaterals)
is illustrated in Figure 22. Note that a global node is connected to the nodes on the same polygon
(element) and on the neighbouring edges (faces). The 3D case is similar, a global node is connected
to the nodes on the same cell (element) and on the neighbouring polygons (faces).
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\VaV
\V/

Figure 22. Connections between nodes and entities for the CDG method on a mesh of interpolation degree
p = 4 composed by: (left) triangles; and (right) quadrilaterals.

Figure 23. Node connections for the HDG method on a mesh of interpolation degree p = 4 composed by:
(left) triangles; and (right) quadrilaterals.

o—o0—o—0—0

Hybridizable Discontinuous Galerkin (HDG). For HDG all the global nodes are on the mesh
faces. Moreover, all face nodes are connected to the nodes of all faces of the adjacent elements. That
is, a global node of a 2D (3D) mesh that is on an edge (polygon) is connected to all the nodes of
the edges (polygons) of the adjacent polygons (cells). Hence, the general expression for the total
number of connected nodes is

¢ = (ag—1,d0d,d—1 — 1) ndofy_1, (18)

where for a 2D (3D) mesh, a4—1,4 is the number of polygons (cells) sharing an edge (polygon),
aq,q—1 is the number of edges (polygons) adjacent to a polygon (cell), and ndofy_; is the
total number of nodes on an edge (polygon). This expression is valid for both simplices and
parallelotopes.

The structure of the connections for a 2D mesh (triangles and quadrilaterals) is illustrated in
Figure 23. Note that a global node on an internal edge is connected to the nodes on the edges of the
adjacent polygons.

A.4. Number of degrees of freedom and non-zero entries of the global matrix

The expressions for the number of degrees of freedom (ndof) and non-zero entries (nnz) of the
global linear system are presented in Tables XIV and XV, respectively. These expressions are in
terms of the previously obtained number of: mesh entities, nodes per entity, and connected nodes.
Taking into account Tables VI and VIII, the values of ndof and nnz can be expressed in terms of
the number of mesh elements, and the number of nodes (non-internal) for each type of mesh entity.
The resulting expressions of ndof and nnz, for different methods and mesh types, are presented in
Tables X VI and XVII, respectively.

A.4.1. Number of degrees of freedom (ndofr)

Continuous Galerkin. To avoid to count more than one time a shared degree of freedom on the
element boundaries, the total number of degrees of freedom is obtained in terms of the internal
degrees of freedom of the mesh entities. Since each i-dimensional mesh entity (n;) contributes with
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Table XIV. Expressions of ndof for the considered Galerkin methods.

CG(NSC) CG CDG HDG

d ; d—1 i
ndof Y0 ,mindofi™ > ¢ m;ndof;"* mngndofq ng—1ndofa_1

Table XV. Expressions of nnz for the considered Galerkin methods.

CG(NSC) CG CDG HDG

d ; d—1 ;
nnz Zizocinindofznt Zizocimndofﬁm cngndofy c¢ng_1ndofg_1

Table XVI. Expressions of ndof in terms of ndo£¢™ for the considered Galerkin methods.

ndof
8 CG n2(3ndofy —5)/2
& HDG 3nz ndofy/2
£ CG(NSC) ng(2ndofy —3ndofy +1)/2
= CDG ns ndofa
. CG n(2ndof; — 3)
= HDG 2no ndofy
& CG(NSC) na(ndofs —2ndof; + 1)
CDG ngndofo
CG ns3 (12ndof2 — 29ndof; + 23)/6
«q—? HDG 2ns ndofa
& CG(NSC) ns(6ndofs — 12ndofs + 7Tndof; — 1) /6
CDG nsgndofs
, CG n3(3ndofs — 9ndofy +7)
2 HDG 3nz ndofa
& CG(NSC) n3(ndofs — 3ndofs + 3ndofy — 1)
CDG nsndofs

ndof!™ internal degrees of freedom, the total number of global degrees of freedom on all the -
dimensional mesh entities is n;ndo £:"*. Therefore, the summation of n;ndo £:"* for all the possible
global i-dimensional entities is the total number of degrees of freedom. Note that the limit for the
summation is d — 1 for a condensed method such as CG.

Discontinuous Galerkin. For the CDG method (HDG method), the mesh is composed by 74
(nq—1) elements (faces), and each one contains ndof, (ndof,_1) global nodes.

A.4.2. Number of non-zero entries (nnz)

Continuous Galerkin. There is a total of number of n; i-dimensional entities, each one containing
ndo£i" entities. Therefore, there is a total number n; - ndo " of nodes on i-dimensional entities.
Moreover, each interior node of an internal i-dimensional entity is connected to ¢; nodes. Thus,
nnz is the summation of the product of the number of internal nodes on i-dimensional entities
(n; - ndo fﬁ"t) with the number of connected nodes (¢;). The limit for the summation is d — 1 for a
condensed continuous method such as C'G.

Discontinuous Galerkin. On the one hand, all the global nodes of the considered discontinuous
Galerkin methods are connected to the same number of nodes. Specifically, for CDG (HDG) each
global node on an internal element (face) is connected with ¢ global nodes. On the other hand, for
CDG (HDG) there are ng (ng—1) elements (faces), and each one contains ndof; (ndof4_1) nodes.
Therefore, the nnz is cngndofy and cng_1ndofy—; for CDG and HDG, respectively.
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Table XVII. Expressions of nnz in terms of ndo£:"" for the considered Galerkin methods.

nnz

8 CG n2(15ndof; — 36ndof; + 19)/2
g HDG 1512 ndof3 /2
= CG(NSC)  n (2ndof3 — 3ndof} +1)/2

CDG nz ndofa(ndofa 4 3ndofy)
. CG n2(14ndofi — 32ndof; + 17)
?g HDG 14ns ndof?
O CG(NSC) na2(ndof? —2ndof? 4 1)

CDG ng ndofa(ndofa + 4ndof)

CG ns (84ndof§ — 288ndofa ndofi+
2 +223ndof] + 192ndofs — 288ndof; + 95)/6
& HDG 1413 ndof2

CG(NSC) ns3(6ndof3 — 12ndof3 + Tndofi — 1) /6

CDG ngndofz(ndofs + 4ndofs)
. CG 3n3(1lndof3 — 48ndofs ndof1+
% +49ndof? 4 32ndofy — 64ndof; + 21)
T HDG 33n3 ndofs

CG(NSC) n3(ndof3 — 3ndofj + 3ndof] — 1)

CDG nzndofs (ndofg + 6ndof2)

B. COST OF ONE ITERATION FOR AN ITERATIVE LINEAR SOLVER

Given the number of DOF and the number of non-zero entries in the matrix the cost per iteration of
an iterative method estimated because it is dominated by the sparse matrix-vector product, and by
applying the pre-conditioning operator. As noted earlier, an average number of non-zero entries per
row can be computed as nnzpr := nnz/ndof. This average is quite precise for structured schemes
as discontinuous Galerkin, both CDG and HDG, but it is only and estimate for CG because of the
different connectivity of vertices and edge/face nodes. The matrix-vector product requires nnzpr
multiplications and nnzpr — 1 additions/subtractions per rows (ndof rows). Thus, the operation
count for the sparse matrix-vector product is

SpMV = (2nnzpr — 1)ndof = 2nnz — ndof.

A typical pre-conditioner is the incomplete LU factorization with zero fill-in (ILUO); this method
is chosen because its cost per iteration can be estimated if the cost of a sparse forward and backward
substitution is determined. Since it is assumed that the matrix has nnzpr non-zero entries per
row, the operation count for both triangular matrices (upper and lower) is counted at the same time,
knowing that in total nnzpr terms are on each row. In this manner no extra hypothesis is needed for
the banded (or not) structure of the matrix. In this case both the back-substitution and the forward-
substitution have:

nnzpr ndof = nnz multiplications,
nnzpr ndof = nnz additions,

2ndof divisions.

Consequently, the total number of operations is:
SPFS + SpBS = 2nnz + 2ndof

This implies that the total cost per iteration, sum of the cost for the sparse matrix-vector product
and the cost for the forward and backward substitution, becomes

G;)ter — SpMV + SpFS _|_ SpBS = 4nnZ —+ ndof
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