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In the fields of advanced driver assistance systems (ADAS) and Internet of Vehicles (IoV), predicting the vehicle state is essential,
including the ego vehicle’s position, velocity, and acceleration. In ADAS, an early position prediction helps to avoid traffic accidents.
In IoV, the vehicle state prediction is essential for the required calculation of the expected reliable communication time between two
vehicles. Many approaches have emerged to perform this vehicle state prediction. However, such approaches consider limited
information of the ego vehicle and its surroundings, and they may not be very effective in practice because the real situation is highly
complex and complicated. Moreover, some of the approaches often lead to a delayed prediction time due to collecting and calculating
the substantial history information. By assuming that the driver is a robot driver, which eliminates distinct driving behaviors of
different persons when facing the same situation, this paper creates a decision tree as a new quick and reliable method adapted to all

road segments, and it proposes a new method to perform the vehicle state prediction based on this decision tree.

1. Introduction

Advanced driver assistance systems (ADAS) installed in ve-
hicles use sensing and computing technologies to assist drivers
in avoiding traffic accidents. Predicting the positions of
surrounding vehicles is a crucial problem, and it facilitates the
early detection of potential collisions. In Internet of Vehicles
(IoV), one of the most important foundations for the network
connectivity is the vehicle state, including its position, velocity,
and acceleration. This importance is because the vehicle state
is a deterministic characteristic for communicating among
vehicles and infrastructures. Therefore, a common require-
ment is to calculate the expected reliable communication time
quickly in various road segments when two vehicles are to
communicate with each other. The vehicle state can influence
the network topology of IoV where the location between two
vehicles determines the communication range and their ve-
locities and accelerations affect the stability of network to-
pology [1-3]. The routing protocol based on location is
particularly important due to its adaptability for frequently
changing IoV [4]. Alsaqour et al. found that the inaccurate

location obviously decreased the efficiency of the routing
protocol [5]. Thus, a neighbor wireless link break prediction
was proposed to predict the neighbor node’s location so as to
detect the ineffective node by using their velocities and ac-
celerations [6]. However, this method is just suitable for short-
time and short-distance prediction because the accelerations
of vehicles may significantly change according to changing
environments. Consequently, the vehicle state prediction is
necessary and essential for IoV.

A decision tree is an effective method for evaluating the
behaviors of vehicle drivers; some studies include a decision
tree to predict or monitor vehicle drivers [7, 8]. Ahmed
presented a method to predict the vehicle state, in which
a decision tree was used to determine whether the vehicle
changed its lane and to obtain the lane after the vehicle
changed lanes [9]. Kedowide et al. used a decision tree to
monitor the vehicle driver and log the driving activities, such
as to evaluate whether the driver was performing the blind
spot check, integrated with the behaviors of the driver [10].

The aforementioned methods are primarily used in ad-
vanced driver assistance systems (ADAS) to avoid collisions
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on the planned trajectories of vehicles and considering limited
information about the ego vehicle and its surroundings. More-
over, a delayed prediction time will arise when history data
need to be collected. Although some studies have employed
a decision tree to quickly make judgments, the decision tree
does not use much road and environment information and
does not perform predictions across all road segments.

This paper proposes a new approach based on a decision
tree that considers more information about the ego vehicle, its
surroundings, and driver behaviors in varieties of road seg-
ments and without a delayed prediction time because no
history data are collected as in some previous methods. This
approach saves time and reduces the precious prediction time.
According to information of the ego vehicle, roads, traffic
lights, other surrounding vehicles, and so forth, our approach
prejudges the driving behaviors of the ego vehicle, and then
a decision tree is adapted to all road segments. Thus, the state
of the ego vehicle, including its position, velocity, and ac-
celeration, can be predicted based on a previously created
decision tree. Such a decision tree with considerable useful
information including more road surrounding cases helps to
predict the vehicle state more accurately in some complex and
complicated environments and without a delayed prediction
time. The decision tree has advantages such as quick situation
judgment and easy extension to more complicated problems
with more determination conditions to be adapted to all road
segments.

The contributions of this paper can be summarized as
follows: (1) This paper defines three varieties of road seg-
ments: section, intersection, and transition. Based on the
definitions in System Representation, this work extracts
different behaviors in distinct road segments. These defined
behaviors are introduced in Driving Behavior Modeling. (2)
To predict the vehicle state from the behavior, we use
a decision tree in all road segments, which is illustrated in
State Prediction. The decision tree includes the predefined
road segment situations and has advantages such as fast
situation judgment and easy extension to more complicated
problems with more determination conditions to be adapted
to more road segments. We discuss the state prediction by
taking advantage of the decision tree, which allows our work
to predict the vehicle state through the decision tree.

The remainder of this paper is organized as follows.
Section 2 gives the past works in vehicle state. Section 3
presents an overview of the system. Section 4 delineates
several models of driving behaviors. Our prediction approach
is described in Section 5. The numerical results are presented
in Section 6. Finally, the conclusions of this paper are drawn
in Section 7.

2. Related Works

Researches about vehicle state can be classified as three parts,
that is, environments, maneuvers, and trajectories [11]. En-
vironments are components of conducting vehicle behaviors.
Various approaches have been done to discuss vehicle behaviors
in different driving environments. In [12], a detection-by-
tracking method was used to detect vehicles in a spatio-
temporal environment. In [13], intersection driving and
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nonintersection driving were distinguished by histograms of
scene flow vectors. In [14], a dynamic driving environment
was established for detecting the vehicle motion. Maneuvers
such as overtaking [15], turning [16], and changing lanes [17]
are investigated to analyze the vehicle motion on the path.
Opvertaking behavior is implemented generally by using some
devices to detect vehicles in front of the ego vehicle [15, 18, 19].
When overtaking conditions are satisfied in search space,
vehicles will realize an overtaking maneuver. Turning behavior
is another usual maneuver for vehicles. Detecting the yaw rate
can judge the vehicle turning behavior [20]. Adopting
a clustering of 3D points to analyze vehicle’s shape can also
handle a turning behavior [21]. In [17], changing lanes was
achieved by establishing a dynamic Bayesian network based
on practical data. Trajectories composed of a set of sequences
of positions and velocities with a time window are used to
extract vehicle behaviors in the past few years. In [22],
a Gaussian mixture model was utilized to predict long-term
trajectories of vehicles. On the highway, trajectories were
constructed using a stereo vision and clustering method [23].

Besides the study of practical vehicle state, many ap-
proaches have emerged to obtain a credible vehicle state
prediction. Hermes et al. predicted the position of a vehicle
after several seconds using the history information of the
vehicles [24]. Hermes et al. extracted a large number of
vehicle trajectories to perform data training based on tra-
jectory classification technology, in which trajectories were
classified into several behaviors, such as left-handed rotation
and right-handed rotation, and then they classified the
existing trajectories [25]. In addition to objectivities, some
researches added drivers’ subjective purposes such as left
turn, right turn, and changing lanes into the prediction
models [26, 27]. A prediction technology for a motorcade
formed by several vehicles was proposed by Pandita and
Caveney, and in their approach, how a car follows was
simulated using the smart driver model [28]. Additionally,
a technology that combined the motion model and ma-
neuver recognition was validated, in which probabilistic
finite-state machines, fuzzy logics, and driving context
recognitions were involved to predict a vehicle trajectory
[29-31]. Petrich et al. used additional information from
a digital map to enable a stochastic filter to select a repre-
sentative set of reasonable trajectories [32]. Kumar et al.
predicted the lane change intention online using a support
vector machine and Bayesian filtering [33]. Yao et al. learned
a simplified trajectory set using a collection of lane change
trajectories from real driving data [34]. By introducing es-
sential maneuver recognition, Houenou et al. predicted the
vehicle trajectory using the constant yaw rate and acceler-
ation motion model [31], which was widely and importantly
used in [35-37]. These prediction technologies need more
history information of vehicles; meanwhile, the impact of
lane and traffic light on trajectories of vehicles is ignored.
The trajectories of vehicles are restricted by lanes; however,
a digital map based on the routing protocol can offer in-
formation of lanes to improve routing efficiency of IoV.
Vehicle state prediction can also use the digital map and
traffic light to enhance the accuracy of location prediction of
vehicles [32, 38].
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3. System Overview

3.1. Motivation. Vehicle state prediction is suitable for IoV
in city scenario, integrating the digital map, traffic light, and
surrounding vehicles. It models the driver’s behavior in
different traffic environments. In this paper, according to the
driver’s behavior, a decision tree is established to describe
vehicle state in diverse conditions. Vehicle state prediction is
an important part of the connectivity model in IoV, which is
proper for predicting the positions of vehicles and dynamic
changes of links. Taking advantage of information IoV
provides, vehicle state can be predicted to further guide the
driver to adopt several operations in order to implement
a better trajectory of vehicle and save time. Nevertheless, the
primary purpose of the vehicle state prediction is not to find
an optimal route but to predict the vehicle state in next
seconds. The vehicle state contains the position, velocity, and
acceleration of vehicle. The change of vehicle state can in-
fluence the topology of IoV. For example, position can
determine whether two vehicles are accessible to commu-
nicate with each other, whereas velocity and acceleration
influence the stability of network topology. These factors
could finally affect the survival time of links among vehicles.
Hence, vehicle state prediction is mainly to calculate the
survival time of links so as to guarantee to achieve a better
communication among several vehicles and maintain
a steady structure of IoV. Meanwhile, it also offers an ef-
fective method to construct a reasonable route.

3.2. System Architecture. The vehicle state prediction pro-
posed in this paper is designed specifically to be used in
Internet of Vehicles (IoV). It is assumed that the state
prediction is hosted by the server that maintains the states of
vehicles on the Internet. This assumption is often considered
to be a reasonable assumption. Each vehicle manages its state
prediction via a virtual object. Nowadays, the virtual object
plays an important role in Internet of Things to implement
its virtualness and service [39]. For IoV, virtual objects
implement the communication among vehicles and provide
a practical application for managing vehicles. Position-based
and map-based routing protocols in the previous literature
are widely accepted routing protocols in IoV based on
position and path. Cheng et al. [40] classify notable routing
protocols into routing categories for performing routing.
Both position-based and map-based routing protocols re-
quire vehicles to send their state information to the server,
which is generally distributed, when a source vehicle needs
to communicate with other vehicles periodically. The server
destination node first queries the state information of the
destination from the server and then sends data toward the
vehicle at the position. The position of the destination will
often change during data forwarding; thus, if the position of
the destination could be predicted, it would improve the
routing performance. Moreover, by predicting vehicle states
in a forward routing path, the server has the ability to
calculate the expected reliable communication time between
two vehicles and then calculate the connectivity of the path,

which helps to select a stable path from multiple paths.
When a source queries for the position of a destination, the
server could send the predicted state and the optimal for-
ward routing to the source, which will also improve the
routing performance.

3.3. System Representation. The following describes the
vehicle information that will be used in this work:

(i) The position of a certain vehicle at a certain time can
be represented using a two-dimensional column
vector:

p(t) = (x(1), y (). (1

(ii) The velocity of a certain vehicle at a certain time can
be represented as follows:

V() = (v, (0, v, (). (2)

(iii) The acceleration of a certain vehicle at a certain time
can be expressed as follows:

a(t) =(a,(t)a,®)". (3)

(iv) The length of a certain vehicle is I. Specifically, the
length of the ego vehicle is /.

(v) The number of vehicles in front of a certain vehicle
at a certain time is n(t).

(vi) arefers to the ego vehicle, and a — k refers to the kth
vehicle that is in front of the ego vehicle. For ex-
ample, the directly previous vehicle is o — 1.

(vii) d,_; refers to the distance between the ego vehicle
and the kth vehicle in front of the ego vehicle. For
example, the distance between the ego vehicle and
the directly previous vehicle a—1is d,_;.

Hence, the vehicle state in this work is defined as a triple:
state (1) =(p (¢),v(t),a(t)), (4)

where p(¢), v(t), and a(t) are all mentioned above.

Additionally, the road information and vehicle sur-
roundings should also be extracted and represented. Before
extracting and representing the road information and ve-
hicle surroundings, this work introduces a new concept of
a transition between a section and an intersection. The road
is divided into three segments, as shown in Figure 1. All
predictions in the three segments are integrated into one
decision tree. A transition is a special part of a section with
information of the intersection that needs to be considered.
In other words, when a vehicle is at a transition, the driver
faces the intersection and is able to obtain information such
as traffic lights.
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FiGure 1: Road components.

(i) A certain intersection is defined as a two-dimensional
point:

intersec = (x, ;) (5)

where (x, y,) is its position. On an intersection, we just
consider three behaviors of each vehicle, that is, left turn,
right turn, and pass through. Therefore, the intersection is
expressed by a point.

(ii) A certain section between two consecutive in-
tersections intersec; and intersec, that are the ends
of the certain section is defined as follows:

sec = (intersec,, intersec,, 0), (6)

where the direction of the vehicle is from intersection
intersec, to intersection intersec,.

(iii) Consequently, a certain lane is

lane =(sec, n), (7)

where sec is the section to which the certain lane belongs and
n is the number of the lane. In this work, the width of every
lane is the same, and it is a known constant. When a vehicle
faces an intersection, the driver can see three directions.
Additionally, this work defines three directions: laney is the
direction of the lane in which the driver faces straight
forward, laney, is the direction of the lane that the driver
turns right into, and laney, is the direction of the lane that the
driver turns left into.

(iv) A certain transition between a certain section and
a certain intersection that is an end of the certain
section is

trans = (intersec,, intersec,, 1), (8)

where trans is very similar to sec because a transition is
a special part of a section, and when the vehicle is in the
transition, the driver is facing intersection intersec, and sees
the traffic lights in the intersection. The purpose of 0 and 1 in
sec and trans is to distinguish their mathematical definition.

Table 1 presents a summary of the aforementioned
variables, including the definitions of the position, velocity,
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TaBLE 1: Variable summary.

Variable Explanation
p() The position of a vehicle at time ¢
v(t) The velocity of a vehicle at time ¢
a(t) The acceleration of a vehicle at time ¢
The vehicle state of a vehicle, including its position,
state () . .
velocity, and acceleration
intersec An intersection, which is defined by a point
sec A section, which is defined by two intersecs
A lane, which is defined by intersec and its lane
lane
number
trans A transition, whose definition is similar to sec

acceleration, and vehicle state of a vehicle and of several
elementary road environments, such as an intersection,
a section, a lane, and a transition.

Note that in this work, the number of lanes is based on
zero, and the lane number starts from the central line of the
section to which the lane belongs.

4. Driving Behavior Modeling

In this work, the driving behaviors of a vehicle are considered
as the mean motions of the vehicle, such as some sudden
changes including accelerating, decelerating, changing lanes,
and turning at an intersection. These driving behaviors lead to
discontinuous acceleration, which causes the acceleration,
velocity, and position of the vehicle to be difficult to predict
using their history states. The early detection of sudden
changes is necessary for predicting the vehicle state. Driving
behaviors can be defined as elements in a set, and each be-
havior is an element of the set. To create the decision tree in all
road segments in this work, it is necessary to model the
driving behaviors of a vehicle. The driving behavior is divided
into three cases: section prediction, intersection prediction,
and transition prediction. At sections, vehicles accelerate or
decelerate, which is caused by the influence of the front
vehicles. Additionally, vehicles may change lanes to leave an
upcoming jam or to avoid a slow vehicle that is directly in
front. Only when adjacent lanes have spacing can lane
changes occur. A transition, with some specific characteris-
tics, is a certain area between a section and its intersection.
Vehicles at a transition are forbidden from changing lanes,
and their behaviors are mainly dependent on the traffic lights.
At intersections, vehicles may turn left or right or pass
through, depending on the out direction of the lane that the
vehicle is in and on the traffic light.

According to the aforementioned road in various situa-
tions, this paper classifies driving behaviors into three models:
section behaviors, intersection behaviors, and transition be-
haviors. Section behaviors occur in the section, which are
relatively simple without considerations of orientation
changing. Considerations of intersection behaviors include
changing direction. Transition behaviors are relatively com-
plicated. The transition situation is between section and in-
tersection, and it contains possibilities of section’s and
intersection’s behaviors; thus, it is difficult to predict the
coming driving behavior due to various possibilities.
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4.1. Section Behaviors. Section behaviors are always when
the vehicle is far away from the front intersection and the
traffic light is out of the range of the driver.

4.1.1. Jam Leaving Intent. When a driver realizes that a jam
has occurred in the front of his current lane, he will attempt
to enter adjacent lanes to avoid the jam. Lane-changing
behavior is an important intent and has already been
considered in the previous literature, such as by Ahmed [9].
In this work, « refers to the ego vehicle and a —m refers to
the mth vehicle in front of the ego vehicle; for example, the
vehicle directly in front of the ego vehicle is « — 1. Here, 1, is
the range of the driver in the ego vehicle a. The driver could
see 7, vehiclesa—1,a—2,...,a— 7, in the driver’s range r,
but the vehicle & — 7, — 1 is out of the driver’s range. Thus, 7
could be represented mathematically by

T, =maxd, ;<7 (9)
1

where d,,_; is the distance between the vehicle « and the ith
front vehicle a —i. The jam density p,, which defines an
indicator to quantify the congestion level, is as follows:

Pa = (10)

The driver will have a jam leaving intent if the driver
cannot tolerate such a jam that p, > p}, where p; is a tol-
erance threshold for the driver. In this paper, the length of
vehicle is 4.3-4.7 meters; we set one vehicle within 5 meters
as a tolerance threshold. Thus, this paper uses p} = 0.2 and
r, =400m in our later numerical experiments. Then, the
driver will change lanes if the condition for changing lanes is
satisfied. The driver always prefers to change to the right
lane, and when the condition for changing to the right lane is
not satisfied, the driver considers changing to the left lane.

4.1.2. Overtaking Intent. For this intent, this work considers
two aspects: the sizes of and the velocities between the front
vehicle and the ego vehicle.

When the front vehicle, such as a truck, is considerably
larger than the ego vehicle, the driver always tends to avoid
following it. This work simply assumes that the width of
every vehicle is the same; thus, this case is simply to compare
the lengths and is presented by

loc—l > Alengthla’ (11)

where A, > 1 is the tolerance threshold for the ratio of the
length of the directly previous vehicle to the length of the ego
vehicle.

In the other case, if the speed of the vehicle ahead is too
slow, the driver often attempts to change lanes and overtakes
the slow vehicle. Mathematically,

Va-1< /\velocityva’ ( 12)

where Aoy < 1 is the tolerance threshold. This paper uses
)Llength =15 and /\ =0.8.

velocity

4.1.3. Following Intent. In general, the driver of the ego
vehicle will follow the front vehicle. However, when the
driver follows the front vehicle, the driver will also adapt the
ego vehicle such that it will be more comfortable and safe.
For example, when the ego vehicle is too close to the front
vehicle, the driver tends to brake to avoid driving into it.
Mathematically,

et (13)

Lorake V.o—y

« a—1

Here, we select a safety braking time #,¢, as a threshold for
the ratio of the velocity of the directly previous vehicle to the
velocity of the ego vehicle. When #},,,. <5ty is satisfied, the
driver will decelerate with an acceleration value. In this
paper, tgpy = 1.5s and § = 2 is a correlation coefficient:

Vo= Vo
a:—84"‘d ol (14)

a—1

4.1.4. Free Driving Intent. Otherwise, the state of the driver
will be maintained. This case is called free driving intent. For
free driving, this work will consider that if the velocity of
a vehicle is less than the speed limit, then the driver tends to
accelerate with a constant acceleration to reach the speed
limit.

4.2. Intersection Behaviors. Intersection behaviors are to
predict the motions when the vehicle is close to or facing the
front intersection. In such cases, the driver should consider
the information of the front intersection, such as traffic
lights. Behaviors at intersections are difficult to detect
without information, including the out directions of the lane
where the ego vehicle is located and the traffic lights. Existing
studies always use history trajectories to recognize vehicle
behavior using pattern classifications, fuzzy logics, proba-
bilistic finite-state machines, or other technologies [29].
However, these technologies all require sufficiently long
trajectories, which lead to delayed time, and these tech-
nologies have considerable computational requirements,
which make them unsuitable for performing recognition of
behaviors at a server with a massive number of vehicles.
According to the out direction of the driving lane and traffic
light, it is simple and accurate to achieve early detection of
whether the vehicle is going to turn left, right, or pass
through. However, there is a case in which the motion
cannot be detected only using the out direction and traffic
lights. This situation arises because the traffic light may
occasionally allow the three directions simultaneously. In
this case, the motion cannot be determined only by the
directions of the lane and the traffic light. As shown in
Figure 2, the laneg has three out directions: S/E, S/W, and
S/IN. Here, S is marked as the directing lane toward the
south, E is marked as the left lanes of the intersection toward
the east, W is marked as the right lanes of the intersection
toward the west, and N is marked as the lanes across the
north. Hence, S/E means that the driver turns left from the
current lane to the east lanes, and S/W and S/N have similar
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FIGURE 2: Intersection.

FiGUrE 3: Behaviors at intersection.

meanings. The motion may be to turn left or right or pass
through with the trajectories PPy , PgPyy , and PPy , as
shown in Figure 3. Here, Py, Pg, Py, and Py are four po-
sitions standing for positions to the east, south, west, and
north, respectively, of the certain transition. For simplicity,
this work considers the curve trajectory of the motion from
the ego vehicle, which is similar to 1/4 part of an ellipse, as
illustrated in Figure 3, due to two accelerations changing, in
which one’s direction is the original direction and the other’s
direction is the terminal one. The details of the calculation of
the two accelerations and corresponding velocity and po-
sition will be discussed in Section 4. When a vehicle is
arriving from the south, it will have three probabilities: to
turn left (go transg in Figure 3), to turn right (go trans,, in
Figure 3), and to go straight (go transy in Figure 3). We will
discuss these three cases in the following. If

T

i N PP (15)

lallv]
the motion is to pass through. If
al - lane > € or al - laney, < —¢, (16)

the motion is to turn left. If
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a’ -lane,, >¢ or a’ -lane; < —, (17)

the motion is to turn right. lane; and lane,,; are column
vectors. The aforementioned € is a positive value close to zero,
indicating that it is sufficiently small. In this paper, ¢ = 0.01.

4.3. Transition Behavior. When a vehicle is in a transition,
the driver can see the traffic light. Different traffic lights can
lead to distinct behaviors of the vehicle. Here, we consider
that when a driver faces a red or yellow traffic light, the driver
will give the vehicle a constant acceleration a;. We also
provide a vector e to represent the traffic light information:

(1,0,0)7, if the traffic light is red
e=1 (0,1,0)7, if the traffic light is yellow  (18)

(0,0,1)7, if the traffic light is green.

Thus, the constant acceleration vector can be represented
as

5, = (ag a50)", (19)

where each dimension indicates the acceleration of the
vehicle in corresponding traffic light.

Hence, when the driver faces the traffic light, the ac-
celeration that the driver will provide is

a, =0 -e (20)

a

5. State Prediction

Now, driving behaviors are modeled, and a decision tree can
be created based on the surroundings and driving behaviors
in varieties of road segments. Our decision tree is illustrated
in Figure 4. The decision tree in Figure 4 represents the
aforementioned situations in various road segments and
their judgment conditions, and it will help provide quick and
easy determination and extension. First, it will be considered
that the ego vehicle is in a section, an intersection, or
a transition, and these cases will be discussed individually.
Note that in this work, when the ego vehicle is in the in-
tersection, it means that the ego vehicle has passed the
beginning line and will no longer consider traffic lights.

5.1. Prediction in Section. When the ego vehicle is in a section,
it is considered whether the vehicle is changing lanes. This is
because if the vehicle is changing lanes, its velocity and ac-
celeration are not in the same direction, which will lead to
a different trajectory. If the ego vehicle is not changing lanes, it
is considered whether the vehicle will change lanes based on
the aforementioned jam leaving intent and overtaking intent.
These two intents are very common in reality. If the ego
vehicle does not choose to change lanes, then there are two
intents for the driver of the ego vehicle: free driving intent and
following intent. To summarize, the prediction in a section
could have four cases, A, B, C, and D, as indicated in Figure 4.

(1) A: When a vehicle is in a section sec and it is
changing lanes, it has a velocity v, (f) and an
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Section
G Intersection

‘ Transition

Is Is not
changing changing
lane lane
Is not to
change
lane

Leaving or
overtaking intent, is
to change lane

Yellow or
red
traffic
light

Green
traffic
light

Light Light not
. . Not pass
Pass intersection . . changes to changes to
intersection
green green

Free driving intent a

° Following intent

FIGURE 4: Decision tree based on driving behaviors.

acceleration a, (t) whose directions are both per-

pendicular to sec. During the lane change, the vehicle

is supposed to have an acceleration a, to first ac-

celerate and then —a, to decelerate, where |a >0

could be calculated from the data set. Therefore,
t<t,

a, (t) = { o (21)

-a,, t>tg,

where t, is the time point between accelerating and
decelerating and ¢ is during the lane change.
Moreover, v(t) =v, could be calculated from the
data set, and the distance of changing the lane equals
the lane width, which is also a known constant
mentioned in the previous discussion. Hence, the
p(t) during the lane change and the current time
point could both be calculated. Then, the position
after t, can be determined as follows:

p(t+ty), if still changing

PA = t+t
p(t+t)+ J v(t)dt, if changing is done,
t+t'

(22)

where p,, is the position at time point ¢ + ¢, and ¢ + ¢’
is the time point when the vehicle completes the lane
change.

(2) B: This case is very similar to Case A, but the time
point ¢ is not during the lane change but rather when
starting to change lanes. Moreover, in Case A, the
acceleration could be calculated from the data set,

whereas in this case, the acceleration a, (f) cannot be
calculated from the data set. In this case, this work
assumes that the time for changing lanes is a known
constant; then, the a, (t) could be calculated
according to the distance of changing the lane, which
equals the lane width. Thus, the position after ¢,
could be predicted by the method in Case A.

(3) C: When a vehicle faces this case, the driver will
choose free driving intent, which was previously
mentioned.

(4) D: When a vehicle faces this case, the driver will
choose following intent, which was previously
mentioned.

5.2. Prediction in Intersection

(1) E: When a vehicle is in an intersection intersec, the
driver could have three options: to drive straight
forward, to turn left, and to turn right. The velocity v,
at the current time point can be calculated from the
data set, and it will be compared with laney;, lane,,
and lane; to determine which direction the vehicle
will go. Mathematically, the direction that the vehicle
will go is given by the following equation:

lane,, v(t)-laney >¢
direction = { lane;, v(¢)-lane;>¢€ (23)
laney, otherwise,



where €>0 is a positive value that is sufficiently small, as
previously mentioned. € = 0.01 in this paper. If direction =
laney, then the intersection intersec could be considered as
a section. If direction = lane,; or direction = lane, then
the vehicle has two accelerations that have the straight
forward direction and the direction same as lane,; or laney,
respectively. This work denotes the first mentioned accel-
eration as a, (t) and the second mentioned acceleration
as a;(t). This work assumes that in the intersection
intersec, a  (t) is linearly increasing from zero and a, (¢)
is linearly decreasing to zero. That is, [a, (£)| + |a; ()] is
a constant during turning. At some certain time point
ty» a, (ty) and a; (t,) could be calculated from the data set;
thus, we let

as =|a0 (t0)| +|a1 (t0)|' (24)

From the data set of the map, the distance between the
current time point and the time point when the vehicle
completes turning can be calculated. Hence, the time ¢,
remaining for turning can be obtained. Therefore,

ao(to +t) =<|ao (t0)|_|aot(4)|t)eo’ t<ts’

S

(25)

a(ty+1t) = <|al (to)| + wt>el’ t<t

S

where e, is the direction of the original direction and e, is the
direction of direction. The position after ¢, is

t
p(ty) + J Avo +a(ty+t)dt, t<t
0

p(to+1ta) = (26)

!

p(to +1t) +(ta—t )V, t>t,

where v' is the velocity when the vehicle completes turning.

5.3. Prediction in Transition
(1) F: When the driver faces a green traffic light and the
vehicle could pass in time, the case could be in
a section (when the requested time point is not
sufficient to pass) or in an intersection (when the
requested time point is sufficient to pass).

(2) G: When the driver faces a green traffic light and the
vehicle cannot pass in time, the driver will stop the
vehicle. The vehicle knows if some vehicle is in front
of it. If some vehicle is in front of it, the driver will
have following intent. If no vehicle is in front of it, the
vehicle will calculate the distance between the cur-
rent position and the final stopped position, which is
denoted as d. This work assumes that the vehicle will
be stopped by a constant acceleration. The constant
acceleration can be calculated as

|V(to)|2 (27)

a=-— e,
2d

S
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where e is the direction of the vehicle. Thus, the velocity and
position are

v(tg+ty) =v(ty) +a-t,,

[N (28)
Pt +12) = p(t) + [ ity + 1)t

(3) H: This case could be separated into two time in-
tervals: before and after the traffic light turns green.
Before the traffic light turns green, the driver would
choose following intent, while after the traffic light
turns red, the case would be Case F.

(4) I: Because the vehicle will stop as Case G, irrespective
of whether some vehicle is in front of it, the vehicle
has the same intent as Case G.

5.4. Prediction Summary. We call the above proposed
method as driver behavior decision tree (DBDT), which
obtains the relatively accurate trajectories of vehicles in
a long term according to the sudden changes such as ac-
celeration, deceleration, and turn. Moreover, to prevent the
prediction from going too far, this work includes the con-
stant yaw rate and acceleration (CYRA) [31] into our ap-
proach. CYRA is a physical kinematic-based prediction
method. It assumes that within a very short term, the force
on a vehicle remains unchanged and the vehicle would keep
a constant accelerate vector, including its accelerate di-
rection and value. Thus, the CYRA model regards the ac-
celeration and direction of vehicle as a constant to predict
the vehicle state. Its constant acceleration a, is formulated as
follows:

a, = a,, (29)

where a, is a constant value. Next, its velocity and position
are calculated as follows:

t
v, = J- a dt,
’ (30)
p; = J v, dt.
0

The linearity of its state equation achieves a transmission
of state probability distribution. The next vehicle state could
be predicted based on this kind of constant accelerate vector.
For a short term, the acceleration of vehicle can be
considered as a constant, CYRA can effectually adapt to this
situation according to its constant acceleration character-
istics. Hence, CYRA can effectively handle the vehicle state
prediction in a short term so as to obtain more accurate
results. However, it could result in a great error for pre-
dicting the vehicle state in a long term because the accel-
eration of vehicle continually changes. On the contrary,
DBDT can detect the sudden change of acceleration of
vehicle to instantly adapt to the current state so as to obtain
better results and avoid a great error, suggesting that it is
more suitable for predicting the vehicle state in a long term.
On the basis of both characteristics, this work finally adopts

the following formula to evaluate their performances.
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TpepT (t) = f(t)TDBDT’ ) +(1- f(t))TCYRA (1), (31)

where T'ppp () is the result of our approach and T'oyg, (1)
is the result of another approach. f(t) is an increasing
function, which means driving behavior recognition is more
suitable for long-term prediction and CYRA is more accurate
for short-term prediction. In this paper, f (t) = 1/4t.

5.5. Time Complexity. A time complexity comparison
between DBDT and CYRA is discussed in this subsection.
For DBDT, we set C to be the number of vehicles in the
same lane. The time complexity regarding prediction in
section, intersection, and transition is calculated as
follows:

5.5.1. Prediction in Section
(i) Motion prediction

(1) Jam Leaving Intent: scanning vehicles in front of
itself in the same lane needs the time complexity
C.; =0(o).

(2) Overtaking Intent: considering the vehicle in
front of itself requires C,,, = O(1).

(3) Following Intent: calculating the vehicle in front
of itself needs C,; = O(1).

(4) Free Driving Intent: this situation takes C,, = O (1).

(ii) Vehicle state prediction

(A) Computing the location data of the lane and
state of itself costs C;; = O(1).

(B) Computing the location data of the lane and
vehicle states in front of itself needs C,, = O (c).

(C) Computing the vehicle state in front of itself
requires Cg; = O(1).

(D) Computing the state of itself takes Cy, = O(1).

Thus, the time complexity of prediction in section is

Csec = (le + Cm2 + Cm3 + Cm4) + max (Csl’ Cs2> Cs3’ Cs4)
=0(o).
(32)

5.5.2. Prediction in Intersection
(i) Motion prediction

Predicting the vehicle motions by the traffic light data
and the location data of intersection lanes costs the time
complexity C,, = O(1).

(ii) Vehicle state prediction

(E) Computing the vehicle state of itself and in-
tersection lanes data needs C, = O(1).

Therefore, the time complexity of prediction in in-
tersection is

Cintersee = Con + C, = O(1). (33)

intersec
5.5.3. Prediction in Transition
(i) Motion prediction

When a vehicle is in a transition, its motion is predicted
by the traffic light. This operation needs C,, = O(1).

(ii) Vehicle state prediction

(F) When the driver faces the green traffic light and
the vehicle could pass in time, computing the
state of itself needs C;; = O(1).

(G) When the driver faces the green traffic light and
the vehicle could not pass in time, computing
the vehicle state and traffic light time requires
C, =0(1).

(H) When the driver faces the red traffic light and
the traffic light turns to green before it passes the
transition, computing the vehicle state and
traffic light time requires C; = O(1).

(I) When the driver faces the red traffic light and
the traffic light keeps red before it passes the
transition, computing the vehicle state and
traffic light time costs Cy, = O(1).

Thus, the time complexity of prediction in transition is

Cirans = Cip + max (Cy;, Cyp, C3, Cyy) = O(1). (34)

The number of vehicles is set to be n for prediction.
Consequently, the whole time complexity about DBDT is
C = max (Csec’ Cintersec’ Ctrans) =n* O(C) = O(n) For
CYRA, each vehicle is predicted by the data of itself. Hence,
its time complexity is O(n) [31]. According to both time
complexity, we can find that DBDT and CYRA have the
same time complexity, suggesting they possess the same
efficiency.

6. Results and Analysis

To test whether our work is valid, experiments are conducted
in a real environment, which is based on the Lankershim
Boulevard Dataset of the Next Generation Simulation
(NGSIM) program [41]. The Lankershim Boulevard Dataset
collects detailed vehicle trajectory data from Lankershim
Boulevard in the Universal City neighborhood of Los
Angeles. It provides the map of an area of Lankershim
Boulevard, including three to four lane segments and cov-
ering three signalized intersections. Moreover, the traffic
light data and the precise vehicle position, velocity, and
acceleration in the periods of 8:30am and 8:45am on June
16, 2005, are available. The Lankershim Boulevard Dataset
covers the driver behavior of lane changing on congested
segments, overtaking, and behavior at traffic lights, which
fits the experimental requirements of this work. The details
of the Lankershim Boulevard Dataset are listed in Table 2.
This work creates a model for the provided map in the



10

Mobile Information Systems

TaBLE 2: Data set parameters.

Lankershim Boulevard Dataset

Parameters

Address Lankershim Boulevard in Los Angeles
Time 8:28-8:45am and 8:45-9:00 am on June 16, 2005
Road length 490 m
Intersection number 4
Sampling time 1/10s
Lane number (same direction) 1-6
Provides traffic light data Yes
8:28-8:45am data amount 705294 records
8:28-8:45 am vehicle number 1375
8:45-9:00 am data amount 902025 records
8:45-9:00 am vehicle number 1601
18 T T T T
16 15.52 -
14 + g

12

10

Position prediction deviation (m)

0.900.93 113

ls 2s

B DBDT
I CYRA

12.12

7.23

3s
At

3 DT
[ E—

FIGURE 5: Accuracy of position prediction.

Lankershim Boulevard Dataset to extract location data of
sections, intersections, and transitions. Then, this work
extracts traffic light information, and thus, it obtains all road
information. By inputting trajectory information of vehicles,
this work will compare our approach (DBDT for short) to
CYRA [31], DT which is a variant of DBDT by setting f (¢) = 1
in (31), and SDT [7, 8] which is a self-selection threshold
decision algorithm based on decision tree in four cases:
ta=1s,ty =25,y =3s, and t, = 4s, respectively.

The results for the accuracy of position prediction are
shown in Figure 5, those for the accuracy of velocity pre-
diction are shown in Figure 6, and those for the accuracy of
acceleration prediction are shown in Figure 7. The results
show that although the state predicted by our approach is
not very accurate at the beginning, the state is more accurate
than that of CYRA as time passes. This is because our

approach provides early detection of the driving behavior,
which leads to changing the state at the very beginning of the
prediction time point. Moreover, the vehicle state includes
the ego vehicle’s position, velocity, and acceleration, for
which the importances are decreasing in many fields. For
example, to avoid traffic accidents, the vehicle position
prediction is the most essential. Considering the discon-
tinuous acceleration, the three vehicle state components,
which are the position, the velocity, and the acceleration, are
becoming more difficult. Thus, it is expected that from the
numerical results, the position prediction is the best, the
velocity prediction is not good when At =1, and the ac-
celeration prediction is not good when At = 1s or At = 2s.
As time passes, the numerical results become better. From
the results, the difference value between the previous one
second and the next one second becomes increasingly
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Velocity prediction deviation (m/s)

Acceleration prediction deviation (m%/m)
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FIGURE 6: Accuracy of velocity prediction.
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FIGURE 7: Accuracy of acceleration prediction.
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smaller. Thus, as time lasts past a certain range, the state
prediction will be more accurate than that of CYRA.

Additionally, the results of DBDT are better than those of
DT, suggesting that the key to the good performance of our
proposal is the incorporation and extension of the decision
tree and CYRA. In comparison with SDT which generally
utilizes thresholds to determine the state selection in a de-
cision tree, our proposal performs better with the aid of
accurate modeling of the driving behaviors. Moreover, in
light of the results, we believe that more research on how to
use driving behaviors of vehicle in the varieties of the all road
segments to predict or monitor vehicle drivers by decision
trees is warranted.

7. Conclusion

This paper highlights that the previous approaches for
predicting the vehicle states using the substantial history
information have a delayed prediction time. Some trajectory
prediction methods based on lane changing recognition are
proposed. Although a validation method for complicated
environments such as multilanes and intersections is not
currently available, this paper proposes a new method for the
prediction by using a decision tree in varieties of road
segments generated by the driving behaviors. This decision
tree helps to detect driving behaviors and predict the vehicle
state in all road segments, including sections with multi-
lanes, transition segments, and intersections. The driving
behavior recognition improves the accuracy of vehicle state
prediction in long-term cases. Our approach shows ad-
vantages in the provided real environments.

Social Internet of Vehicles is an important and intelligent
transport network [42]. It has more characteristics and more
complicated circumstances. Thus, to predict this kind of IoV
is more meaningful and challenging in the future work.
Furthermore, the proposed technique might lead to the
development of vehicle networking and intelligentialization
[43], as well as to provide effective methods to solve vehicle
routing problems in dynamic environments [44].
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