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- SUMMARY

A new plate triangle based on Reissner—Mindlin plate theory is proposed. The element has a standard linear
deflection field and an incompatible.linear rotation field expressed in terms of the mid-side rotations.
Locking is avoided by introducing an assumed linear shear strain field based on the tangential shear strains
at the mid-sides. The element is free of spurious modes, satisfies the patch test and behaves correctly for thick
and thin piate and shell situations. The element _degenerates in an explicit manner to a simple discrete
Kirchhoff form.

INTRODUCTION

Considerable effort has been put in recent years in the development of C, continuous plate and
shell elements valid for both thick and thin situations. A survey of recent work in this direction
can be {found in References 1-4. Despite all these eﬁ"orts there are not many eléments that satisfy
all the following ‘optimunt’ requirements:

(a) proper rank (no spurious modes for one element)

(b) no shear locking

(c) satisfaction of constant curvature patch tests

(d) low sensitivity to distortions

(e} good accuracy in displacements and stresses for thin and thick situations
(f) non-dependence of artificial numerical factors - -

(g} sumplicity of the formulation and of the programming

This paper presents a.new triangular element which satisfies most (if not all} of the above
requirements. The displacement field is described by a standard C, linear interpolation of the
deflection in terms of the three corner values and a linear interpolation of the rotations in terms of
the mid-side rotations. This introduces an incompatibility of the normal rotation along the sides
of adjacent elements which, however, does not preclude satisfaction of the patch test. Shear
Iocking is avoided by means of an assumed linear shear strain field in terms of the (comstant)
tangential shear values at the element mid-sides. This ensures fulfilment of the necessary
compatibility conditions between the deflection, rotation and shear fields to guarantee the
absence of locking in the thin Hmit.*~%377

The layout of the paper 1s the following. The basic cqua’uons of Rclssner—Mmdhn plate theory
are briefly presented first. The finite element interpolation used is described next together with
details of the derivation of the curvature and shear strain matrices. Bxamples of the good
performance of the element proposed are presented for a range of plate and shell problems. The
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degeneration of the element to a simpler discrete Kirchhoff (DK) form involving three corner
deflection values and three mid-side normal rotations is also briefly shown.

BASIC EQUATIONS OF REISSNER-MINDLIN PLATE THEORY

Figure 1 shows the geometry of a plate with the sign convention for the deflection w and the two
independent rotations &,, 8,.

Table 1 shows the basic equatiohs of Reissner—Mindlin plate theory!'? defining the curvature
and shear strain fields, the constitutive relationships and the equilibrium equation for a distrib-
uted loading g expressed by the Principle of Virtual Work (PVW).

FINITE ELEMENT INTERPOLATION

F]gure 2 shows the geometry of the triangular element proposed. The deﬂectzon ﬂeld is hnearly
-mtcrpolated in terms of- the three corner dcﬂcctmn valucs as .

W == Z L,'Wi . . ‘ ) (1)

i=1

4 ey T g " :’: I-
8, . ‘
' xu

Figure 1. Sign convention for displacement and rotations in a plate

Table 1. Basic equations of Reissner—Mindiin plate theoryl .

Displacement field
v [w, 0717, 0= [0,,60,]7
Curvature field :

: a6, a6 96, 09,
= T = - = —_ m)’
%=Ltz 235 X] [ % 5y ( + o ):I

Shear strain field
aw aw T
Y= ['ym]’y] = [:"a;_ Bxla_y_' By:l .
Const:tunve relatwnsh:ps |
m = {mx: my1 mxy] = Dbx
§= [Qx: Q}']T = Ds'y
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Principle of virtual work
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.Figure 2. Geometric description and nodal variables of the TLLL plate element

where Ly =1—¢—#, L, = and L; =7 are the shape functions of the standard linear
triangle.** : o
The rotation field is linearly interpolated in terms of the rotations at the element mid-sides as

6" c - _ T
9= Z Mef’ 'Bi = {BxiaeyEJT . (2)
i=4
where
Ny=1-2f, Ns=2{+2y—1, Ng=1-12pn . 3)

are the linear shape functions of nodes 4, 5 and 6.

Equations (2} and (3) define an incompatible rotation field with side continuity enforced at the
mid-side nodes only. The good performance of the element, in ensured. via satisfaction of the
patch test as shown in the next section.

Curvature matrix

Substituting (2) into the curvature-rotation relationship of Table I leads to

1=Bsa @
with the nodal displacement vector defined as |
2 = [Ws, W2 W3, Ouss Oyas O, Oy, B, By, 17 B
and the curvature matrix given by
— dN;/ox 0
B, = [393, By, By, By,.], By, = 0 — 8N,/dy : (6)

~ ONi/dy — BN./ox

Note that By, is constant for straight sided triangles.

Shear strain matrix . _
The assumed shear strain field is expressed in terms of the three tangential shear strains at the
elemnent mid-side points. After some algebra we can write in the natural co-ordinate system”
- YE,
C fyl [1=m =2 om . ;
= = s Ve, b =AYz {7
£ £J2o1=¢l) "

[
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where yz,, 7z,, and yz,, are the tangential shear strains along sides 1-2, 2--3 and 1-3, respectively.
The signs of the elements of matrix A in (7) correspond to the directions of side co- -ordinates £,
£,, and &, as shown in Figure 2.7-8

This shear strain interpolation coincides precisely with that used for the linear/quadratic plate
triangles in References 6 and 7. It can be easily checked that the chosen displacement and shear
fields satisly the necessary ¢onditions for avoidance of locking defined as n, + ng 2 n, and
n, = n,, where n,, n, and n, are the number of available defiection, rotation and shear straln
variables (after discounting the prescribed values). Further details on the variational justification
of these inequalities can be found in References 1, 2, 4-7.

The shear strain—displacemient relationship is obtained by imposing along each side the
condition y; — (dw/0€ — 87) = 0 to be satisfied in a weighted integral form as

o P P _ S
ol Grafor=o @

The cheice of a constant interpolation of the tangential shear strain along each side and
a Galerkin weighting (¥ = 1} leads after appropriate substitution of (1) and (2) into (8) to

72,
Y= 7%,
VE |
-1 1 0 %s y2 0 _ 0. .0 0 o
=| 0 —14/2 1//2 0 0 x35//2 yuif20 0 a=Ca._ (9
-1 0 1 0 0 0 0 xys Vs o

where x; = x; — x;, yi; = y; ~ ¥;.
Combining (9) and (B) gives finally

{”‘} =J! {”f} =J"1ACa=B.a (10)
¥y Vn

where J is the Jacobian matrix and ' ' ‘
B,=J"'AC ‘ (11

18 the substitute shear strain matrix.?"’

- Stiffness matrix and equivalent nodal force vector

Substitution of {5) and (11) in the PY'W expression of Table I leads to the standard form of the
glement stiffness matrix as \

K® = K“” + K@ (12)

where the bending and shear contributions are given by

K§,€’=H BID,B, d4 : N &)
A(d

ng)zﬁ BTD.B, d4 (14)
A{e) }




SIMPLE TRIANGULAR ELEMENT 2573

The expression of the equivalent nodal force vector for a distributed loading of intensity g is
given by .
Ly L, 0 -.
15
Following the notatlon proposed in Reference 7 the thick pIate element i)rcsented here wﬂl be
termed TLLL (for Triangle with Linear interpolation for the deflection, rotations and shear strain
fields).

Remark 1. The exact integration of K{ and K@ for straight side tnangles and homogencous
material requires one and three integration points, respectively. -~ CTE e T e

o N L
f{f’:j N'gd4 with N =[ !
AI:}

" Remark 2. Special care must be taken to handle the different number of degrees.of freedom per
node at equation soluticn and pre- and postprocessing levels. Also the a posteriori computation of
the rotation at corner-nodes from the mid-side values for postprocessing purposes requires an
adequate smoothing due to the incompatibility of the rotation field. Excellent rcsults havc been
obtained in all cases by the authors usmg a §imple nodal averagmg procedure '

EXAMPLES

The performanoe of the TLLL plate element will be tested next for a number of platc probiems

r

Example 1. Study of element rank

An eigenvalue analysxs shows that the elcment ‘stiffness matrix, when exactly integrated, has
only three zero eigenvalues for the whole range of thick and thin situations. The correctness of the
element rank with respéct to spurious mechanisms is therefore ensured. . : o

The use of a reduced single pomt guadrature for the shear stiffness matnx mtroduces an extra
Zero elgenvalue This mvahdates in principle, the use of this attractive sxmp]e quadraturc for
practical purposes Prelumnary ‘numerical expenments show that th1s ZBIO energy mode does net
propagate in a mesh, loadmg to accurate and very econormcal solutlons This encouragmg re:suit
should be further validated before any definitive conclusion can be drawn. Exact integration 15
therefore used in all examples presented next. .
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Figure 3. Convergence of normalized central deflection value for thick and thin situations in a snnply supportcd squarc
plate under uniform loading. ‘ PRI
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Example 2. Study of locking behaviour

Figure 3 shows the convergence of the central deflection value (normalized versus Kirchhoff's
solution) for a simple supported square plate {(a x )} under uniform loading. The same conver-
gence curve is obtained for a range of thicknesses from thick to very thin situations. Similar
results have been obtained for diflerent plate problems (i.e., rectangular, circular, skew, etc.) with
dlfferent boundary condmons thus venfymg the absence of locking defects as expected

Example 3. Paich tesis
The following patch tests have been analysed:

(a) Constant bending moment test (Figure 4(a): A .constant bending moment field
(M, = M, = M,, =1)is obtained in all elernents for this relatively. thin case, as expected.

(b} Cantilever plate under constant bending moment (Figure 4(b)): The elernent patch shown in
Figure 4(b) with adequate boundary conditions was analysed. The correct constant
bending moment field and central deflection value were obtained (see Figure 4(b)).

(c) Twisting of a square plate (Figure 4(c)): We consider a thin square plate supported at three
corners and subjected to a concentrated load at the fourth corper. Excellent agreement with
the exact solution was obtained for all meshes aralysed (see Figure 4(c)).

(d) Constant shear patch test (Figure 4(d)}: The geometry and boundary conditions for this
patch test are shown in Figure 4(d}. A constant moment and shear field is obtained in the
whole domain, as expected.

_Further details on the patch tests for the TLLL element can be found in Reference 8.

Example 4. Simply supported and clamped 5quare ﬁlﬁres under z'miform‘ loadir-:g-r

Table II shows the convergence of the ccntrai deﬂectxon and central bendmg moment M, for
thick (t/a = 0'1) and thin {t/a = 001) sztuatlons !'or a’square plate with hard simple - support
conditions {w = g, = 0) Namerlcal results are given for the two mesh orientations A’ and
B shown in Flgure 5, The same type of results are shown in Table IT1 for thc soft support (w =0)
case,

Table IV shows the convergence of the central deflection and central bending moment for the
clamped case. Good results for thick and thin situations are obtained.

Example 5. Simply supported and clamped circular plates under uniform loading

Table V shows the convergence of the central deflection and central bending moment for
circular plates with simply supported {soft: w = 0) and clamped edges. Good convergence to
existing analytical solutions® is obtained for thick and thin situations.

Example 6: Cantilever skew plates under umform loading

Table VI shows the convergence of the central deflections at the two free corners {Figure 5) for
different cantilever skew plates under uniform loading. Good convergence.to the numerical
solutions obtained with alternative triangular clements!® *? is obtained in all cases. Note,
however, that the element shows a slightly stiffer behaviour than the elements presented in these

references {in partigular for high skew ang}cs) This is compensated by the higher simplicity of the
element proposed here.
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Figure 4. Patch tests for the TLLL element: (a) constant bending moment test; (b) cantilever piate under constant

Qxz =-1.0in all poinis
Mx=My=Mxy=Qyz=0.0

w = (.0 at nodes 1,11
8, = 8, ~0.0in all nodes
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bending moment; {c) square piate supported at three corners under pointload and {(d) constant shear patch test




2576

E. ONATE, F. ZARATE AND F. FLORES

Tabie II. Convergence of central deflection and centrai bending
moment for thick (t/a = 0-1) and thin (¢/a = 001} situations in
a simply supported (hard: w = 8, = 0) square plate under uniform
loading. Results given for mesh orientations A and B shown in

Figure 5
tia=01 : tfa =001
MESH DOF A+ B* A Bt
Normalized central deflection
2x2 7 51414 $-2607 50235 90212
4 x4 28 4-7722 53477 45984 51294
8x8 112 44241 45252 42269 43184
16x16 448 43123 4-3302 4-1073 41271
32 %32 1792 42826 42819 4_‘0753 - 40800
Analytic solution'’ . 42728 40623
. Central bendi;i‘g moment -
22 7 13542 32689 13542 32827
4 x4 28 37573 44632 37723 44583
Ex8 112 4-5081 4-7149 4-5115 47119
16x 16 448 47261 476360 47136 47739
32x32 1792 4-7901 47661 47688 47860

Analytic solution®’ 479 479

For normalized é}:mral deflection: *wx10; Twx 10*

Table III. Convergence of central deflection. and central bending

moment for thick {t/a = 0-1) and thin (t/a = 001} situations in 7

a simply-supported (soft: w = 0) sguare plate under uniform load-
ing. Results given for mesh orientations A and B shown in Figure 5

tfa =01 t/a = 001

MESH = DOF A* B* Al B

Normalized central deflection .
Zx32 9 51557 9-3045 50237 90216

4x4 32 4-8427 54643 45592 31306

Ex8 120 4-6088 47719 42292 43212
16x16 462 4-6350 47268 41125 4-1330
32x32 1824 4‘6923 47723 . 40864 40918
Reference solutiont? 40623

. Central bending moment
C2x2 9 1-3690 32844 1-3543 3-2828

4x4 32 38279 4-5563 37731 44562

8x8 120 4-6825. 4-9312 45136 47144
16 x 16 462 50275 510677 47183 477791
32x32 1824 51725 5-1907 47787 47964
Reference solution®” 479

Fpr;nonn_é!ized”c:cnt_.ral dpﬂe;tioﬁ£ *wx10; twx 10* . .




SIMPLE TRIANGULAR ELEMENT 2577

Table IV. Convergence of central deflection and central bending

-moment for thick (t/a == 0-1) and thin (t/a = 0-01} situations in

a clamped square plate under uniform loading. Results given for
mesh orientations A and B shown in Figure 5

t/a =01 t/a =001
MESH DOF A* B* - Al Bt
. Normalized central deflection '
: S 2x2 7T 46284 77073 45106 74432
| 4 x4 24 28125 31095 26264 28566
g Ex8 104 1-8861 19508 16656 16985
: 16x16 432 16076 16424 13727 13811
] 32x32 1760 15344  1-5634 12946 12970
i Analytic solution'? 1-4950 1-2653
~ Central bending moment
2x2 7 08207 20592  0-8207 2:0831
4x4 24 19297 24246 19562 24211
Bx8 104 21796 23841~ 22097 23457
16x16 .. 432 22476 23619 22670 | 23120
32x32 1760 22728 23506 22835  2:2980
Analytic solution'? . ‘231 : 2:31

For normalized central defiection: *w x 10; twx 10%

Table V. Convergence of central deflection and central ;bepding
moment for thick and thin, situations in clamped and simply
-supported (soft} circular plates under uniform:loading.

t/R =01 " t/R = 001

ELEM. DOF  w,x10° (MJ% wex105 (M)

S Clamped circular plate .

4 12 37668 69599 36950 69606
16 54 22352 77235 21657 77431
64 220 17882 79751 17186 80146
144 - 498 17023 80243 16326 80726
225 780 16774 80391 16077 80904

'Reference solution®!” 16339 §1350 15625  §1250
Simple supported circular plate (soff)

4 17 72815 1-6400 72096  1-6402
16 62 67248 19427 66553 19449
64 236 65191 2:0279 64495 20319
. 144 522 64763 2:0437 64066  2:0487
: 225 810 64637 20484 63939 20536

Reference solution®!” * 64416  2:0625 63702 © 20625

: *For simply supported circular plate: *(M,), x 10
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Table VI. Convergence of the central deflection at the two free corners {wx _(Et:"/qa‘)) for
different skew angles in cantilever skew plates under uniform loading.

20° 40° . 60°

Mesh DOF Wy Wi Wy W2 W) W,
2x2 14 3-0093 26744 25112 13772 21821 0-4959
4x4 4] 19701 17478 1-7478 08321 1-3882 0-2940
gEx8 137 1-6032 1°1611 ° 1-3950 0-6349 1-0800 g2i11

16x 16 . 497 1-4802 10741 12610 05724 0-9521 0-1781

32x32 1889 1-4442 10517 12159 05554 09030 01672

DRM*'? 416 1-4269  :1-0436 1-1789 05456 0-8435 01553

EL11%4% 472 14237 10421 11722 05441 08314 0-1538

al?=5.0
4x4meshtypeA 4x4 mcshlypcB

g

-
nono

!
}""v—‘c"—‘
o588

16 elements mesh 4 x 4 skew cantilever

Figure 5. Description of meshes used for the analysis of square, ¢ircular and skew plates in Examples 4-6

EXTENSION TO SHELIL ANALYSIS

The TLLL plate element presented in previous sections has been successfully combined with the
simple linear plane stress triangle’ ? for linear and non-linear shell analysis. The linear shell
formulation is based in the standard facet shell approach. Two rotational degrees of freedom at
the mid-nodes are kept which makes the formulation applicable to smooth shells only. The
extension for kinked shell situations requires the introduction of a third drilling rotation at the
non-coplanar nodes in the standard manner.'? The non-linear shell formulation is based in
$imo’s shell theory.!?:12

Figure 6 shows an example of the good performance of the TLLL element for non-linear shell
analysis. The example corresponds to a pinned shallow cylindrical panel subjected to a central
load. The geometry of the panel and the material properties are shown in Figure 6(a). Increasing
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values of the applied load lead, eventually, to snap-through of the panel and reversal of its
curvature. This problem is analysed using different meshes 0D one quadrant using symmetry
conditions for two different thicknesses: R/t = 200 and R/t = 400. The load deflection paths for
these cases are shown in F igure 6(a) and 6(b). Arc-length control was necessary in the second case
due to the complexity-of the different solution paths. Numerica] results agreec well in all cases with
those reported in Reference 13,

Further evidence of the good performance of the TLLL element for shell analysis can be found
In References & and 14. ‘ ‘

DERIVATION OF A 6-DOFE DISCRETE-KIRCHHOFF TRIANGLE

A simple Discrete Kirchhoff (DK) triangle can be derived from the TLLL plate element presented
In previous sections simply by constraining the mid-side shear strains to a zero value. This

2
in E=3102.7 N/'mm
L v=03
R=2540mm

L= 254mm
1=12.7/6.35 mmr
8=1rad.

Poim Mesh:
— o 8x8 159 DOF

a ® O 12x12: 347 DOF
@ M 0O 16x16: 607 DOF

" T 7F
_ /
- ;

L5

Load Factor
1.5

0.5

0. 5 10 15 20 25, 30.
Vertical Defleetion '

thick cylinder
o)) '

Figure 6. (a, b)
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(@

Figure 6. (a) Problem definition of the snap-through of a shallow hinged cylindrical panel. (b) Load-deflection path lor
the R/t = 200 case, Displacement control using 30 step levels are used.(c) Load-deflection path [or the R/t = 400 case.
Arc-length control was necessary in this case. Twenty step levels were used

provides the following relationship between the tangential rotation along a side ij and the two
nodal deflection values corresponding to the side as

Wi — W
lij

The resulting DK triangle termed DKTLL (for Discrete Kirchhoff Triangle with Linear
deflection and Linear rotfation fields) has only 6 DOF (three corner deflections and three normal
rotations at the element mid-sides). The element stiffness matrix involves now the flexural
contribution only {equation {13)}. The explicit form of the modified curvature matrix is shown in
Table VII. Note that a single point quadrature suffices for exact evaluation of K™ over straight
side triangles with homogeneous material properties.

6y =

{16)

Remark 3. The stiffness matrix of the DKTLL element coincides with that of the well-known
Morley’s thin triangular plate element?® and also with that of the HSM6 triangle proposed by
Batoz and Dhatt (see pages 375 and 390 of Vols. II and 1II of Reference 4, respectively). However,
the derivation presented here follows a completely different and simpler procedure. Also, note
that the equivalent nodal load vector is different for each of these cases. The accuracy of the
DKTLL element is ideatical to that shown for the TLLL element for thin plate situations in
previous examples.

.
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Table VII. Curvature matnx of the DKTLL triangle

(a12 — a;3) (23 — ay,) (213 — dz3) C12 L2z — C13.0
B, = {ays — a2} (ay; — d23) (azs — @33) bz bas —bys [
{diz —di3) (dy ~ d23) (das - dy3) — 20, 2a;35 20‘-13- | ‘
af::=ic£zjﬂr - b:‘j=ié, . C:’j=?—i§= ‘.
if ' i ) _"J'
X~ v}

d;j——-—T—, Xy =X —~ x4, Y =Yi—y
i

I:‘j = (x:l; + J’izj)”z

valid for thick and thin situations. The drawback of having a different number of degrees of
freedom per node as well as that of its slightly over-stiff behaviour are compensated by the
stmplicity of the element formulation. Preliminary results obtajped show that the element is also
very adequate for shel] analysis.

Current research work aims to enhance the convergence behaviour of the element so that it
can {avourably compete with other low order triangles recently proposed for plate and shel]
analysis 35-7.9.10,16

ACKNOWLEDGEMENTS

REFERENCES

L 0. C Zienkiewicz and R, L. Taylor, The Finite Element Method, McGraw Hill, Vol. 1, 1990; Vol. 11, 1991,

2. E. Oriate, Structural Analysis by the Finite Element Method, CIMNE, Barcelona, 1993,

3.1 L. Batoz and I, Katili, *On a simple triangular Reissner—-Mindlin plate element based on incompatible modes and
discrete constraints’, Int. j. numer. methods eng., 35, 1603-1632 (1992) ’

4. I. L. Batoz and G. Dhatt, ‘Modelisation deg structures par elements findes’, Vol. 2; Poutres et Plagues, 1990; Vol. 3:
Cogues, 1992, HERMES, Paris.

5. 0. C. Zienkiewicz and D. Lefebvre, ‘A robust triangular plate bending element of Reissner~Mindlin type', Int,
I mumer. methods eng,, 26, 1169-1184, (1988),

6. O.C. Zienkiewicz, R, L. Taylor, P. Papadopoulos and E. Ofiate, ‘Plate, bending elements with discrete constraints:
Rrew triangular elements’, Comput. Struct,, 35, 505-522 (1990).




2582 E. ONATE, F. ZARATE AND F, FLORES

1

8.

g,
10.

11
12.

13.

14,

15
16

. E. Ofiate, O. C. Zienkiewicz, B..Suarez and R. L. Taylor, "A methodology for deriving shear constrained Reissner—

Mindlin plate elements’, Int. j. numer. methods eng., 33, 345-367 {1992).

F, Zarate, “Nuevos elementos &nitos para analisis de placas y laminas’ Ph. D. Thesis (in Spanish), UPC, Barcelona,

(to be submitted).

F, Van Keulen, ‘On refined triangular plate and shell efements’, Ph.D. Thesis, Technische Universiteit Delft, 1593.

F. Auricchio and R. L. Taylor, ‘3 node trizngular elements based on Reissner-Mindlin plate theory’, Report No.

UCB/SEMM-91/04, Department of Civil Engineering, University of California, Berkeley, 1951,

Z. Xu, ‘A thick—thin triangular plate element’, Int. j. numer. methods eng., 33, 963-973 (1992).

1. C. Simo and D. I). Fox, ‘On a stress resultant geometrically exact shell model. Part I. Formulation and eptimal

parametrization’, Comput. Methods Appl. Mech. Eng., 72, 267-304 (1989). ’

I. C. Simo, D. D. Fox and M. §. Rifai, ‘On a stress resultant geometrically exact shell model, Part HI Computational

aspects of the non-linear theory’, Comput. Methods Appl. Mech. Eng, 79, 21-70 (1990).

F. Flores and E. Ofiate, ‘A comparison of different finite elements based on Simo’s shell theory”, Research Report No.

33, CIMNE, Barcelona, 1993.

. L. 8. D. Morley *On the constant moment plate bending element’, J. Strain Anal,, 6, 20-24 (1971).

. 0. C. Zienkiewicz, F. Auricchio and R. L. Taylor, ‘Linked interpolation for Reissner—Mindlin plate elements’, Int.
j. numer. methods eng., to be published.

. 8. Timoshenkoe and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York, 1959,




