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Abstract—The behévic‘)ur,of the linear, guadratic and cubic elements of the

very thin plate znalysis is investigated in this paper. Selective integration
1ates. Numerical results showing the convergence and accuracy

behaviour of the elements when dealing with thin p

‘of the elements for the analysis of plates of a wide range o
three elements is discussed in detail. In particular, the linear element with a single

best value strip element for practical purposes.

INTRODUCTION

. ‘The Enite strip method, which combines one diménsional '
_ finite elements [1] with harmonic expansions, has been
~ extensively used ini the last few years to analyse a wide

range of plate and bridge deck problems ‘[2,3]. Initial

- finite strip plate elements “were developed following
- classical Kirchhoff thin plate theory /{4, 5]. These ele-

ments work well for thin situations but are unable to
reproduce shear effects when the thickress of the plate is
thick, .as is the case in prestressed slabs and many
practical concrete box girde bridge situations.

- In addition, Kirchhoff. plate elements preseat several
other well known problems due to the need of continuity

" of defections and its first derivatives between adjacent

elements {C, continuity) which in most cases leads to
nonconforming elements which do not satisfy such cri-

" “terion {1). This disadvantage can, however, be ignored in.

many cases, and most Kirchhoff plate elements can be

- used “iflegaly” with success for practical thin plate
“bending analysis.

One of the ways of overcoming the above problems is

. “using Mindlin's plate theory {6] to derive plate and plate
“ strip elements. ln Mindlin plate theory slopes and

deflections are independent variables, therefore, -con-

tinuity requirements de not invoive first derivatives of

deflections and slopes and deflections must be continy-
ous independently (Co continuity) [1]. In addition,

_.Mindlin's theory includes the effect of transverse shear

deformation and thus is applicable to thick, thin and

‘sandwich plate problems [7, 9]. Mindlin's plate ¢lements
worked well initially for thick and moderately thin situa~
- tions. However, despite its' theoretical versatility, '
- Mindlin’s elements did not behave well for thin and very
thin plate problems and overstiff unrealistic numerical

results were obtained in many cases [10]. This spurious
behaviour is nowadays fully -understood, and it can be

-easily explained i it is noticed that when the plate

becomes very thin, the shear terms of the stifiness

“matrix become very big in comparison with the bending
-. ones, and tend to dominase the solutign [1].

One of the more successfull ways of overcoming this

. problem is to relax the shear constraint integrating the

shear terms of the stiffness matrix with a quadrature

_prder iess than that needed fer its exact integration. This
procedure, commonly Xnown as “gelective integration” .

technique, has become very popular and it ‘has been

Mindlin plate sirip family for thick and
techniques are used to ensure the good

f thicknesses are given. The general performance of the
integration point seems to be the

~ extensively used in the last few years for the develop-

ment of many accurate plate and shell elements valid for -
hoth thick and very thin situations [11, 14} '

- Extensions of Mindlin's plate theory to derive a family -
of Mindlin's strip elements was the next logical step and
many solutioas for thick and moderately thin plate and
bridge problems have been reported [15-17). The “selec-

_tive integration™ concept was first introduced in the

Mindlin strip formulation by Hinten and Zienkiewicz [18]
who presented the Jower member of the family and
showed its applicability for the linear analysis of thick
and moderately thin simply supported square plates un-
_der uniform loading. . ’

“In this paper the behaviour of the selective integration
family of Mindlin strip elements for the analysis of thick
-and very thin plates is investigated. Attention 1s parti-
cularly focussed in the study of the linear, quadratic anc
cubic elements. In the last part of the paper exampies
showing the convergence and accuracy of the elements
for various thick and very thin plate bending problems
are given. Numerical results obtained for all the elements
are compared and finally the “best value™ linear Mindlin
plate strip element is suggested. ) )

In the ncxt section some theoretical background is
‘briefly presented. '

~ MINDLIN STRIP FORMULATION
For a single, quadratic or cubic Mindlin strip as those
shown in Figs. 1 (a—c), the mid-plane deflection and rota-
tions are written as the sum of a finite series of products
of interpolation functions in the x direction and harmonic
‘functions in the y direction. .
For a strip with k nodes the displacements aré

“expresséd as the sum of a series of n terms as

.Nilai‘! $)]

3
Bl

5=3
: . i1=1

in which the shape function matrix N, associated with |

_. node i for the /th harmonic term in the series is

NS, 0 D ,
Ni=| 0 NS O (2
0 0 NG

where 5, = sin '(]hy/b') and ¢ =cos {Iny/b), the mid-plane
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Fig. 1. Shape functions for linear. quadratic and cubic Mindiin strip elements.

displacement vector is

& =[w, 6x, 8y]" (3a)
the vector of nodal parameters of node i for the /th
harmonic is

al = [w 8y, 810" (3b)
N, are linear, quadratic or cubic one dimensional shape
functions (see Fig. 1) and b is the efement length in the ¥
direction.

The displacements given by eqn (1) impose a priori &
set of boundary conditions at ¥ =0 and b which are
summarised as

aw g6, _ 38,
u_a"”axd&x-ay_o )
this shows that, at either end, the strip is simply supported
and thal the cross-section is free to warp longitudinally
but cannot distort transversely.

Using Mindlin's plate theory [6] and proceeding ina
standard finite element manner [1] the generalized strain
vector, € can be expressed in terms of the displacement
parameters a;' as

(5)

€= > B/a' -
!

nk
=} =1

where
a6, 2o, (36; 39, ) aw g }f
=f -t = =] - —_——
€ [ ax’ Ay’ ay  dx/ dx & ay b

(6)

and B/ is the strain matrix for node i for the {th
harmonic term which can be written in terms of the
bending and transverse shear sirain components as

B/ =[B;,B5]" )
with
aN,
¢ -5 0
; In
B,=|0 0 Nig S (8)
1 aN;
0 -Ni ;s, ——‘EC;_f
«‘3;;’—" S -NS 0
B = In %)
N; ‘b‘ C.' 0 - Nng

Also, the linear relationship between stress resultants
and generafized strains can be written in the stardard

form [1}

o=De (10}

where

5 =M, M, M, Q. Q1 (1

and D is the elasticity matrix which can be written as [1]:

(12)

b= [EPD,, )] ]

0 Emy
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where for an isotropic plate

; 1w 0
D, » 10 (13}
20=v% 6 0 a-wp
and
o [0
Ps = 5ali 7 ) [o 1]_; a9

In above, ¢ is the plate thickness, £ the Young’s modu-
lus, » the coefficient of Boisson gnd ¢ a modification
factor to allow cross-sectional warping. (a = 6/5 for a
rectangular cross section.)

The total potential energy can be written as [1]

n=3[[ eoen-[[ #san.
= i1 I3

In eqn (I5) only the energy due to uniformly distributed
loading 1, has been considered for simplicity.

Expressing also the loading t, as the sum of harmonic
series in the [ongitudinal direction as

{15

B I I
t=>10 § 0t (16a)
=Moo ¢
with
t= {fw: Mg, fﬁe,]T
and
t' =1, g, o )" {16b)

and substituting eqns {5), (10) and {16)'in eqn (15) the
iotal potential energy can be rewritien in the form

[ B S o3 B

1 moe ) ot

)dn

(17

ff 2 (' 2 Z N™ 2™ deb.

frft mo bro 0

The strip equilibrium equations are then obtained mini-
mizing the total potential energy [l with respect to the
displacement parameters a; as

i’—‘, =1{.
ia;

(18)

Tt can be shown {1, 2] that using the ortogonality proper-
ties of the harmonic series eqn (18) yields simply

k

2| kia/ =1/ (19)

where ,
kij= g f ) (B/)" DB/ dx (20)

and i |
t = %jm;)t' dx 2n

419

and the harmonic terms thus uncouple. This implies that
for the /th harmonic term 2 strip equilibrium equation
can be formed, involving only the stiffness matrix, dis-
placement parameter vector and equivalent nodal loads
for that harmonic. For this fth harmonic the total equili-
brium equations, involving all stripes can be assembled
in the usual manner [1] giving:

-

semevecane B D
~
—
Y]

and a selution found for the displacement parameters
8;(i =1, k) This procedure is repeated for all harmonics
| 1o n, allowing the displacements to be founded from
eqn (1), and the stresses, o from eqns (10) and (5) for
any longitudinal position, y, and transverse position x.

Behaviour of Mindlin plate strip elements for thin plate

situations: Locking effect

The behaviour of Mindlin strip efements with®varying
plate thickness can be easily explained if we note that
the element stiffness matrix for the /th harmonic, eqn
(20), can be rewritten using eqn (7) and {14) as

) =2[ [ @iy By By ax+ 857 B0 B, i
(23)

If the Young's modulus and the thickness are constant
throughout the plate, eqn {23) can be rewritten as

ki = EC[k + Et kil {24

where
ki) = g f (B},)" Dy, By, dx {25a)
(25b)

kL. =-§J’(B’5!.}T DsB5 dx.

Following the arguments of previous section, a typical
assembled stiffness equation for the {th harmonic could

be written as

kKo = [Erk" + Etk,"Ja' = (26)
where Ef* k," and Et k." are respectively the beading
and shear matrix contributions to the total stiffiness

matrix k" for the /th harmonic term. ‘
If the thickness, ¢, is small, #’ becomes negligible with

respect to ¢ and eqn (26) vields approximately

k' a' = Etk," o' =1 (27)

The “exact” solution for the displacement of a thin plate
can be obtained using Kirchhoff finite strip theory [2] in

the form
(28

3l 0 gt g
Et kkrhakc,‘—fh,‘—f

where ki, ak, and fi, are the stiffness matrix, the
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displacement vector and the nodal forces vector for the
Ith harmonic term using Kirchhoff plate theory [2]. Since
fi, =1' from eqns (28) and (27) we obtain:

Erk,"a' = BPkL, al, 29)

or
k . a' = f k‘\ch akch (30}

and when r—0 since klc,‘and ak, are finite, egn (3Q)
yields finally

*

i _i ¢
k."a' -0 {31}

which impiies that the only solution possible is a' =0
(commonly krown as locking effect {10, 11,21]) unless
matrix k" is singular,

Therefore, if Mindlin strip plate elements are used for
the analysis of thin plates unrealistic overstiff resuits will
be obtained in most cases unless some precautions are

taken,

The selective integration family of Mindlin strip plate
elements

There are a variety of technigues to avoid the effect of
locking:

(1) The use of formulations based on classical thin
plate theory which, as mentioned previously, they
require (' continuity and they cannot deal with trans-
verse shear deformation [2, 3].

(2) To impose the constraint of zero shear defor-
mation at the integration points at the element level prior
to assembly [19].

(3} The use of special mixed formulations which retain
Co continuity at the cost of increasing the number of
variabies [20].

(4) The other technique for avoiding locking and the
one which is studied in this paper is the use of selective
integration of the terms in the element striffness matrix.

The basic idea of the “selective integration” technique
is to relax the constraint imposed on k" by the effect of
the shear terms' making k-" singular {or nearly singular)
by under integrating the coefficients of k," in the nume-
rical integration of the integrals which appear in the
stifiness matrix k”. The rest of the stiffness matrix, i.e.
the terms of k,” can be integrated exactly, and thus the
process is called “selective integration”, or also can be
underintegrated, which is usually termed “reduced in-
tegration".

In Fig. 2 it can be seen the number of Gaussian
integrating points necessary for the exact (full} in-

tegration of k;" and k", and that needed for selective
and reduced integration.

It can be shown {21] that the singularity, or its ab-
sence, in the finite element stiffness matrices depends on
the number of independent relations used at each in-
tegrating point. Thus, if the total number of independent
relations (integrating points X number of strain com-
ponents at each point) is less than the number of avail-
able degrees of freedom, then singularity certainly will

exist.
This simple theorem provides the number of integrat-

: 'mg points necessary: to get the complete singularity of

k.". However, ‘this will sbviously be a mesh and boun-
dary conditions dependent problem and u_i‘%us( be stu-
died for each particular case. : N

In the remaining of the paper the perfoiance of the
linear, quadratic and cubic elements of the Mindlin strip
family is investigated. First, the ability of those elements
to make k," singular for a series of examples using
different integration rules is discussed in the next sec-
tion. Second, the accuracy of the elements for the
analysis of a wide range of thick and thin plate bending
problems is checked. Finally in the last section of the
paper some conclussions about the general behaviour of
the elements are given. ;

Singularity of k"

To asses the ability of the elements in making k."
singular using different orders of integration, a series of
checlgs on the number of available degrees of freedom, d,
(total’ number of degrees of freedom less number of
constraints) and the total number of independent rela-
tions {number of elements, ¢, X number of integrating
points, n, x number of strain components in ko', s =2)
for three square plates with different boundary con-
ditions have been carried out, Results are shown in Fig.
3. Only one half of the plate has been considered assum-
ing symmetrical loading. Singularity of k. is ensured in
all cases when &> n x e X 5. This has been marked in the
Fig. 3 with a square. .

Some important conclusions can be drawn from the
numbers displayed in Fig. 3.

(1) The cubic element using n =4 (exact} and n =3
(reduced or selective) Gauss points for the numerical
integration of k>" gives for all the three cases and all the
meshes 4> n X e X 5. Therefore, the singularity of k," is
always satisfied and good results should be expected
when using this element for thin plate situations.

(2) the quadratic element with 2 Gauss points gives k,"
singular for all cases and alf meshes, However, if exact
integration is used (m =3} we can see there are cases

Integrotion Full Selective Reduced
Element K’ K K:' K;l K K
Oremerny 2 2 2 | ! 1
e 3 3 3 2 2 2
o——0—o0— 4q 4 4 3 3 3

. . . . . . . B
Fig. 2. Number of Gaussian integrating points for K,” and K," with full, selective and reduced integration for the-
linear, guadratic and cubic Mindlin strip clements.
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Fig. 3. Study of the singuiarity of X," with the number of elements and the integration rule for three square plates
with different boundary conditions.

when d=nxexs therefore in those cases overstiff
results might be expected.

(3) The linear element with only 1 Gauss point ensures
for all the three cases and for all the meshes, (with the
exception of case B with one single element) a complete
singularity of k.”. Exact integration (n =2) gives exactly
the opposite and the criterion for singularity is nrever
satisfied.

It is important to mention here that 2 similar series of
checks have been performed on the singularity of the full
matrix k" with exact, selective and reduced integration
for the same examples, giving always a non singular
matrix kK* for all cases, thus ensuring the existeness of

the numerical solution.

Zero energy modes

One of the drawbacks of using reduced or selective
integration techniques is the fact that in some cases they
can excite internal zero energy nodes in the element
which, if they are able to propagate in a mesh, they can
polute the solution and jead in some cases to unrealistic
results {14, 23].

A rigorous method of determining whether an element
has any internal zero energy modes is to evaluate the
number of zero eigenvalues associated with the stiffness
matrix.

The number of zero valved eigenvalues for a single
strip element or group of elements should be equal to
zero due to the fact that the implicit boundary conditions
of the strip formulation already unrestrain the element
against movement. Any extra zero valued eigenvalue will
be associated with an spurious zero energy mode.

In this work it has been checked that only the linear
element with reduced integration has one possible zero
energy mode. It is very important to mention here that
this mode is not propagable and it is eliminated when a
mesh of two or more linear elements ‘is considered. In

conclusion, for practical purposes no danger of polluted
solutions due to the propagation of zero energy modes
can be expected for any of the three elements studied in

this paper.

Numerical examples

<" The accuracy of the linear, quadratic and cubic

Mindlin strip elements for thick and thin plate bending
analysis will be checked in the series of examples
showed next.

Example 1. Convergence with the number of
harmonics. To get an estimate of the number of har-
monic terms needed to get complete convergence for
each solution, a simple supported square plate like that
of case A of Fig. 3, under uniform distributed loading has
been analysed with the three element for two different
thickness ratios of {#L}=0.1 and 0.01 respectively.
Results of the percentage of error of the central
deflection and bending moment Mx with respect to the
final solution for a mesh of 3 elements for the linear
quadratic and cubic elements using full, selective or
reduced integration are the same and these are shown in
Fig. 4. It can be noticed that for both thicknesses 5 non
zero harmonics are enough to get an errof of less than
0.2% in both deflection and bending moments with res-
pect to the final solution (note that the even harmonic
terms are zero due to the symmetry of the foading [1-3].

Tt can be seen in the same figure that one harmonic
term gives an error less than 1.5% in deflections and
1% in bending moments and that is accurate enough for
many practical engineering problems. However in all the
examples shown next 9 non zero harmonic terms have
been taken.

Example 2. Convergence with the number of
strips. Figures 5-7 show the convergence of the central
defiection and the central bending moments Mx and My
with the number of strips for the same simple supported
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Fig. 4. Simply supported square plate under uniformly distributed loading. Convergence study with number of non
zero harmonics for 4L =0.1.

square plate of the previous example for three different
ratios of (#/L) of 0.1, 0.01 and 0.001 respectively. Per-
centages of error with respect to the theoretical “exact”
solution [23] for the linear, quadratic and cubic elements
with exact, selective and reduced integration are shown.
Also in the same figures the number of available degrees
of freedom for each solution is shown. This gives a more
realistic idea of the cost of the numerical computations.

Thus, it can be seen that results for the linear element
with selective and reduced integration are extremely
good with only 6 degrees of freedom (less than 1% in the
central deflection and less that 6% error in the bending
moments at the centre of the plate for any of the three
thicknesses studied) whereas the quadratic and cubic
elements need 12 and 9 degrees of freedom respectively
to get the same order of accuracy (see Fig. 8). This
suprisingly accuracy of the linear element with one single
integrating point for all integrals is by no means new, and
indeed it has been already reported by Zienkiewicz ef al.
[13) and Vykutil [24], both in the context of axisym-
metric shell analysis.

Convergence rate to the theoretically exact solution is
good for the higher order cubic and parabolic elements
a5 expected.

Nevertheless, in Fig. 8 it can be seen that for practical
purposes the ratio degrees of freedom/faccuracy of the
solution is favourable to the simple and economical
linear element with one integration point which seems to
be the “best value” element for this type of problems.

On the other hand, results obtained with the linear
element with exact integration for the small thickness
cases (= 0.01 and t = 0.001) are unrealistically overstiff
as expected from the non singularity of matrix k," dis-
cussed in previous section. No other locking effects are
observed for any other case in this example again in
agreement with the theoretical predictions discussed
earlier.

Example 3. This example analyses the preliminary
conclusions drawn previously about the good or bad
performance of the three elements with exact selective
and reduced integration for thin plate situations. Figure 9
shows the value of the central deflection of a square
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Fig. 5. Simply supported square plate under uniformly distributed leading. Convergence study of centra deflection
and bending moments with number of elements and degrees of freedom for /L. ={0.1. Nine non-zero harmonic
terms taken.

plate under uniform loading with boundary conditions of
the type A, B or C of Fig. 3 for a wide range of ratios
thicknesses/width of the plate. In case C the value
showed is the deflection at the center of one of the free
sides. The general conclusions which can be drawn from
these figures are the following:

{1) The cubic element with exact, selective or reduced
integration behaves well in all the three cases for thick
(##/L =0.1) and a wide range of thin and very thin plate
situations. This agrees with the predictions made pre-
viously. .

(2) The guadratic element with selective and-reduced
integration behaves well in alt cases for a wide range of
plate thicknesses. If exact integration is used, results for
the deflections for cases A and C are good as expected

from the singularity of k" (see Fig. 3), but for case B
overstiff resuits for thin and very thin plates are obtained
as again it was predicted by the fact that matrix k," it is
clearly not singular.

{3} The linear element with selective and reduced in-
tegration behaves well in alf cases for thick, moderately
thin and very thin piates. On the other hand if exact
integration is used, overstiff unrealistic results are
obtained in all cases when the thickness of the plate is
small, This again agrees with the theory presented pre-
viously. .

It is interesting to plot the distribution of mements and-
shear forces along the center of the plate for different
thicknesses. Figure [0 shows the bending moments- Mx
along the center of a simple supported square plate under
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Fig. 6. Simply supported square plate under uniformly distributed loading. Convergence study of central deflection
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terms taken.

uniform loading for the linear, quadratic and cubic ele-
ments with exact selective and reduced integration for
three ratios of #L =0.1, 0.01 and 0.001. Results showed
al the nodes have been extrapolated directly from the
Gauss points using polynomial expansions. We can see
that the moment distribution obtained is good in all cases
except for the linear element with exact integration for
{/L)=0.01, and 0.001. The shear forces along the center
of the plate are shown in Fig. 11. We note that wrong
results are obtained with the linear element with exact
integration for all cases whereas selective and reduced
integration gives the right results. Results for the shear
force for the quadratic’ element with full integration
present oscillations which are eliminated if selective or
reduced integration is used. This poor performance of the
quadratic element is due to the spurious shear straining
modes excited by the quadratic shear terms of the stiffness

matrix. One of the ways of eliminating these modes is the
one presented by Mawenya [25] which suggests to apply a
least squares linear smoothing to the shear strain matrix.
This is in fact identical to use selective integration since to
reduce the order of integration of the shear terms implies
smoothing of the shear strain matrix [25).

This explains why results for the shear forces obtained
at the Gaussian points using selective or reduced in-
tegration are correct (see Fig, 11). More accurate stresses
at the nodes can be obtained using any of the weii-known
local or global smoothing techniques [26] which in mos!
cases also eliminate the oscillations mentiored abave,

It is worth noting that results for the shear force
obtained with the cubic element are correct in all cases.
This shows that the cubic shear terms do not give rise to
spurious shear straining modes and the element can be
considered “safe™ in this context.
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CONCLUSIONS

(1) The linear, parabolic and cubic elements of the
Mindlin plate strip family with selective or reduced in-
tegration behave well in the analysis of thick, moderately
thin and very thin plates.

(2) The performance of the cubic strip element with
exact integration is also good, however reduced in-
tegration is recommended whenever the cubic element is
used, for obvious computing economy reasons.

{3) The quadratic strip element with exact integration
presents an unrelieable behaviour for thick and thin plate
analysis. Thus, whereas deflections and bending
moments agree in most cases with theoretical values, the
shear forces at the Gauss points are oscillatory unless
some smoothing precautions are taken. This together
with, again, economy reason makes the use of the
quadratic element with exact integration not advisable
for plate bending analysis. )

{4) The behaviour of the linear srip element with exact
integration i1s bad in most cases and it should never be
used in the context of plate bending analysis.

(5) The linear strip element with one single Gaussian
integrating poin! seems to be probably the “best value™
Mindlin plate strip element of the three studied in this
paper. Its behaviour is excellent for both thick and thin
plate analysis and it has the lowest ratio degrees of
freedomfaccuracy of all. The big simplicity of the ele-
ment (an explicit form of the element stiffness matrix is
easily obtaimed and this is shown in Fig, 12) adds another
point in its favour and it makes the linear Mindlin strip
element with reduced integration probably the more
promising strip element for practical plate bending,
bridge deck and axisymmetric shell analysis [27].
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