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Abstract. We take a heterodimer multiscale reaction-diffusion model as a starting point
and modify it to account for the nonlocality of the underlying processes. The result-
ing model is a coupled system of integro-differential equations. The effect of nonlocal
interactions is quantified based on the comparisons of the newly developed model with
its local counterpart. Our primary focus is given to the estimation of conversion times
from healthy to toxic proteins. This is done based on the stability analysis of a simplified
model, as well as on the fully coupled numerical implementation. Several clinically rele-
vant patient proteopathies are highlighted. They include the primary tauopathy, as well
as the secondary tauopathy where the sustained presence of toxic tau protein requires
also to be accompanied by toxic amyloid-beta peptides. We demonstrate the dynamics
of concentrations of toxic proteins under several clinically realistic scenarios. Finally, we
carry out a detailed parametric study, providing further insight into the role of nonlinear
effects controlled via the Holling type II functional response.

1 INTRODUCTION

In neurodegenerative diseases, a particular intervention based on advanced biomedi-
cal engineering is often hindered by our lack of understanding of coupled, concomitant
proteinopathies [1]. While there is a continuing debate in the literature about the roles
of the proteostasis of amyloid-beta peptides and the microtubule-associated tau protein,
it is known that aging alters them both. The processes related to their changes are not
independent, they are coupled [2]. Our better understanding of this and other types of
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couplings is critical to disease-specific diagnosis, prevention, and treatment of neurode-
generative diseases in general and Alzheimer’s disease (AD) in particular [3, 4].

AD is the most common type of neurodegenerative disorder (ND) that increases de-
grees of dementia over time [5]. It has been reported that 5.5 million Americans in the
U.S. and 44 million worldwide deal with this disease in all ranges of ages, while 10% of
the population is suffering over 65 years of age [6]. According to the pathological report
of AD, one of the main reasons for the loss of nerves and synapses is the accumulation
of extracellular amyloid plaques peptides and intracellular neurofibrillary tangles (NFTs)
in the nervous system [7, 8]. Generally, tau protein helps to stabilize microtubules within
the axon, but when it forms NFTs, it acts as a seed for further misfolding and aggrega-
tion. The aggregation of tau proteins happens in the axon and then is transported into
extracellular space [9]. Diffusion occurs in that space through secretion and then damage
the host cell [10].

The accumulation of these proteins has been studied mathematically [11]. Multiple
modes based on differential equations have been used for describing AD. However, a
number of questions regarding this disease remain open and more refined models need to
be developed to address them. Here, we use a reaction-diffusion equation with a modified
heterodimer model in the reaction kinetics to describe the interaction between amyloid-
beta and tau protein [11, 12]. In reality, the conversion of healthy protein to toxic protein
depends not only on the density located at that spatial location but also on the densities
present at the neighbourhood spatial locations. A nonlocal interaction is introduced for
capturing such phenomena in the disease propagation. Some relevant clinical tauopathies
are discussed in the presence of nonlocal interactions.

2 MATHEMATICAL MODEL

2.1 Local model

We consider Ω ⊂ R2 is a spatial domain. For x ∈ Ω and time t ∈ R+, we denote
by u = u(x, t) and v = v(x, t), the concentrations of healthy Aβ and τP respectively.
Similarly, we denote by ũ = ũ(x, t) and ṽ = ṽ(x, t), the concentrations of toxic Aβ and
τP respectively. The evolution of concentrations of the four populations can then be given
as follows [12]:

∂u

∂t
= O · (D1Ou) + a0 − a1u−

a2u

1 + e1u
ũ, (1a)

∂ũ

∂t
= O · (D̃1Oũ)− ã1ũ+

a2u

1 + e1u
ũ, (1b)

∂v

∂t
= O · (D2Ov) + b0 − b1v −

b2v

1 + e2v
ṽ − b3ũvṽ, (1c)

∂ṽ

∂t
= O · (D̃2Oṽ)− b̃1ṽ +

b2v

1 + e2v
ṽ + b3ũvṽ, (1d)
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where the first two equations correspond to the usual heterodimer model for the healthy
and toxic variants of the protein u and the last two equations are the same for v. Here, a0

and b0 are the mean production rates of healthy proteins, a1, b1, ã1 and b̃1 are the mean
clearance rates of healthy and toxic proteins, and a2 and b2 represent the mean conversion
rates of healthy proteins to toxic proteins. The parameter b3 is the coupling between the
two proteins Aβ and τP . Here, e1 and e2 are the dimensionless parameters that describe
the conversion time of the healthy protein to the toxic protein of Aβ and τP , respectively.
The diffusion tensors D1, D̃1, D2 and D̃2 characterize the spreading of each proteins. We
assume all variables and initial conditions to be non-negative, and all the parameters to
be strictly positive.

2.2 Nonlocal model

In model (1), the conversion of toxic protein from the healthy protein at a spatial point
x depends only on the healthy proteins located at the same spatial point x. In general,
the converted toxic protein located at a spatial point x depends on the healthy proteins
located in the neighbourhood of the spatial point x. Under this assumption, we modify
the model (1), inspired by the ideas presented in [13]:

∂u

∂t
= O · (D1Ou) + a0 − a1u−

a2u

1 + e1u
Φ ∗ ũ, (2a)

∂ũ

∂t
= O · (D̃1Oũ)− ã1ũ+ a2ũΦ ∗

(
u

1 + e1u

)
, (2b)

∂v

∂t
= O · (D2Ov) + b0 − b1v − b3ũvṽ −

b2v

1 + e2v
Φ ∗ ṽ (2c)

∂ṽ

∂t
= O · (D̃2Oṽ)− b̃1ṽ + b3ũvṽ + b2ṽΦ ∗

(
v

1 + e2v

)
, (2d)

where the convolution Φ ∗ ũ is defined by (Φ ∗ ũ)(x, t) =
∫

Ω
Φ(x− y)ũ(y, t)dy with∫

Ω
Φ(x)dx = 1. Similarly, we define the other convolutions. Here, Φ is the kernel func-

tions that describe the conversion efficiencies between the spatial points x and y. In this
work, we use the following Gaussian kernel function [14]:

φ(x) =
1

σ
√
π

exp

(
− x · x

σ2

)
. (3)

2.3 Network model

Here, we describe a nonlocal network mathematical model corresponding to the non-
local continuous model (2) and accounting for the brain data. The brain connectome can
be modelled by a coarse-grain model of the continuous system. It is a weighted graph G
with V nodes and E edges defined in a domain Ω. Specifically, it can be considered as
weights of the graph G is represented by the adjacency matrix W and helps to construct
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the graph of the Laplacian. For i, j = 1, 2, 3, . . . , V , the elements of W are

Wij =
nij
l2ij
,

where nij is the mean fiber number and l2ij is the mean length squared between the nodes
i and j. We define the graph of the Laplacian L as

Lij = ρ(Dii −Wij), i, j = 1, 2, 3, . . . , V,

where ρ is the diffusion coefficient and Dii =
∑V

j=1Wij is the elements of the diagonal
weighted degree matrix.

Likewise, similar to the nonlocal continuous PDE model (2), we define the nonlocal
conversion for the network model for each of the nodes j = 1, 2, 3, . . . , V . For a fixed
node j, we first find all the nodes Vj,1 directly connected to the node j. Similarly, we
find the immediate connecting nodes Vj,2 connected with the nodes Vj,1 and so on. In
this way, we find all the sets of nodes Vj,1, Vj,2, . . . , Vj,mj

connected with the node j. Now,
we sort all the nodes Vj,1 according to minimum distances from the node j and labelled
as V s

j,1. Similarly, we sort all the set of nodes Vj,2, Vj,3, . . . , Vj,mj
according to shortest

distances from the node j through the edges and labelled as V s
j,2, V

s
j,3, . . . , V

s
j,mj

. Suppose,
nj is the total number of nodes connected with the node j including the self node j and
k1, k2, . . . , knj

are the new labelled of the sorted connected nodes starting with the self
node j i.e., k1 = j. We define a set of nj elements of weights as

M ′
j =

{
1, e−η

2(sjk2 )2 , e−η
2(sjk3 )2 , . . . , e

−η2(sjknj
)2
}
,

where sjki denotes the shortest distance from the node ki to the node j along the edges
and η = 1/σ.
We normalize M ′

j as Mj = M ′
j/|M ′

j|, where

|M ′
j| =

(
1 + e−η

2(sjk2 )2 + e−η
2(sjk3 )2 + · · ·+ e

−η2(sjknj
)2
)
.

Now, we define a row vector Cj of V number of elements with non-zero elements being
Mj(1),Mj(2), . . . ,Mj(nj) at the indices k1, k2, . . . , knj

respectively. Finally, we are ready
to define the convolution at the node j in the graph G as

Φj ∗ ũj =
V∑
n=1

Cj(n)ũn.

If the node j is not connected with the other nodes, then Φj ∗ ũj = ũj. Similarly, we
define the other convolutions.
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Taking into account all the factors (Laplacian and convolutions), we build a nonlocal
network mathematical model on the graph G. At the node j, let (uj, ũj) be the concen-
trations of healthy and toxic Aβ and (vj, ṽj) be the concentrations of healthy and toxic
τP , respectively. Then for all the nodes j = 1, 2, 3, . . . , V , the network equations corre-
sponding to the continuous model (2) is a system of first order differential equations and
it is given by

duj
dt

= −
V∑
k=1

Ljkuk + a0 − a1uj −
a2uj

1 + e1uj
Φj ∗ ũj, (4a)

dũj
dt

= −
V∑
k=1

Ljkũk − ã1ũj + a2ũjΦj ∗
(

uj
1 + e1uj

)
, (4b)

dvj
dt

= −
V∑
k=1

Ljkvk + b0 − b1vj − b3ũjvj ṽj −
b2vj

1 + e2vj
Φj ∗ ṽj, (4c)

dṽj
dt

= −
V∑
k=1

Ljkṽk − b̃1ṽj + b3ũjvj ṽj + b2ṽjΦj ∗
(

vj
1 + e2vj

)
, (4d)

with non-negative initial conditions.

2.4 Homogeneous stationary solution

Before analysing the full nonlocal model, we first study its temporal and local dynamics.
The stationary points of the temporal model are the homogeneous stationary solutions of
the local model. Here, the system has at least one stationary solution called the trivial
stationary solution and is given by

(u1, ũ1, v1, ṽ1)(x) =

(
a0

a1

, 0,
b0

b1

, 0

)
. (5)

Depending on the parameter values, the system may have non-trivial stationary solutions.
We list all of them in the below.

1. Healthy Aβ - toxic τP : The stationary solution corresponding to healthy Aβ - toxic
τP is given by

(u2, ũ2, v2, ṽ2)(x) =

(
a0

a1

, 0,
b̃1

b2 − e2b̃1

,
b0(b2 − e2b̃1)− b1b̃1

b̃1(b2 − e2b̃1)

)
. (6)

For the non-negativity of the stationary solution (6), we must have b2 > e2b̃1 and

b0/b1 ≥ b̃1/(b2 − e2b̃1).
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2. Toxic Aβ - healthy τP : The stationary solution corresponding to toxic Aβ - healthy
τP is given by

(u3, ũ3, v3, ṽ3)(x) =

(
ã1

a2 − e1ã1

,
a0(a2 − e1ã1)− a1ã1

ã1(a2 − e1ã1)
,
b0

b1

, 0

)
. (7)

For the non-negativity of the stationary solution (7), we must have a2 > e1ã1 and
a0/a1 ≥ ã1/(a2 − e1ã1).

3. Toxic Aβ - toxic τP : Suppose (u4, ũ4, v4, ṽ4)(x) is a stationary solution of the “toxic

Aβ - toxic τP” type. Here, we have u4 = u3, ũ4 = ũ3, ṽ4 = (b0 − b1v4)/b̃1 and v4

satisfy the quadratic equation

b3e2ũ4v
2
4 + (b3ũ4 − e2b̃1 + b2)v4 − b̃1 = 0. (8)

The equation (8) always has a real positive solution. For the uniqueness of v4, we

must have b3ũ4 − e2b̃1 + b2 ≥ 0. Also, for the positivity of ṽ4, we need v4 < b0/b1.

3 RESULTS AND DISCUSSION

Here, we study two fundamental disease propagation modes for the local and nonlocal
models depending on the parameter values: (i) primary tauopathy and (ii) secondary
tauopathy. For the case of primary tauopathy, the toxic τP can exist independently from
Aβ concentration, whereas the τP does not exists for the secondary tauopathy. We study
these two tauopathies for the network model corresponding to both the local and nonlocal
models in the brain connectome. Here, we have considered a high-resolution brain con-
nectome structure consisting of 1, 015 vertices and 70, 892 edges; the data source is freely
available by patients connectome data (https://braingraph.org). All the computations
are done by using C programming language and Matlab.

Table 1: Fixed parameter values

Aβ system parameters τP system parameters
a0 = 0.75 b0 = 0.5
a1 = 1.0 b1 = 1.0
a2 = 1.0 b2 = 1.0

ã1 = 0.6 b̃1 = 0.4

We apply the local and nonlocal versions of (4) to a computational case for Alzheimer’s
disease. In particular, we consider seeding sites for toxic Aβ and toxic τP proteins asso-
ciated with Alzheimer’s disease staging. Alzheimer’s disease is a multiscale phenomenon.
A uniform parameter value can be considered throughout all the regions in the brain
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or different values in different regions depending on the patient’s disease progression.
Initially, we investigate the primary and secondary tauopathies by considering simple
uniform parameter values in all the regions. We choose the uniform parameters for both
the tauopathies from Table 1.

Figure 1: (Color online) Seeding sites for Alzheimer’s disease: (left) toxic Aβ and (right) toxic τP .

The seeding sites of toxic Aβ protein associated with Alzheimer’s disease are the tem-
porobasal and frontomedial regions [11, 15, 16, 17, 18]. On the other hand, the tau staging
for the AD begins in the locus coeruleus and transentorhinal regions [11, 15, 17, 18], as
follows from [19]. Seeding sites for toxic Aβ and toxic τP are shown in the left and right
respectively in Fig. 1, and their regions are highlighted by red color.

3.1 Primary tauopathy

For the primary tauopathy, we take all the parameters mentioned in Table 1 with the
coupling parameter b3 = 1. Here, all the stationary solutions (5)-(8) exist. Initially,
we set all the nodes in the brain connectome being healthy, but all are assumed to be
susceptible. Therefore, the primary tauopathy state is the “healthy Aβ - healthy τP”
state i.e., (u1, ũ1, v1, ṽ1) = (0.75, 0, 0.5, 0). For the seeding sites of toxic Aβ, i.e., the
temporobasal and frontomedial regions, initially we deviate 1% concentration of healthy
concentration. Similarly, for the toxic τP , we perturb 1% of healthy concentration of τP
in the locus coeruleus and transentorhinal regions.

We first study the disease propagation by using the local network model. Brain-wide
spatial averages of all the four protein populations at each time instance are shown in
Fig. 2. The disease propagation is shown for four different values of e1 and e2. We
also plot the propagation of toxic tau protein in the brain connectome for e1 = e2 = 0
and e1 = e2 = 0.1 in Fig. 3. For simplicity, we choose e1 = e2. For higher values of
e1 and e2, the local network model takes a long time to propagate the disease over the
brain connectome. Therefore, the introduction of reaction time (described by the Holling
type-II functional response) increases the invasion time window for propagating AD over
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Figure 2: (Color online) Brain-wide spatial averages of the protein populations: (left) all four populations
with e1 = e2 = 0 and (right) toxic - τP with different e1(= e2).

the brain. It reduces the overall toxic level in the brain as well.

Figure 3: (Color online) Toxic τP propagation in the brain connectome at different time instances:
(left to right) t = 30, 60, 90 and 120; Upper and lower panels are corresponding to e1 = e2 = 0 and
e1 = e2 = 0.1, respectively.

3.2 Secondary tauopathy

For the secondary tauopathy, we take the parameters from Table 1 except the parameter
b2 = 0.75 and we choose the coupling parameter b3 = 3. In this case, the stationary
solution (6) does not exist. We set all the nodes healthy but susceptible, and the initial
condition is the same as for primary tauopathy [see Fig. 1]. The invaded concentrations
of the four populations for the secondary tauopathy is the “toxic Aβ - toxic τP” state.
The spreading patterns for the secondary tauopathy are similar to those of the primary
tauopathy.

In both the tauopathies, the spreading patterns for the local and nonlocal models are
the same. Their concentrations are also the same. This is due to the uniform parameter
values all over the regions in the brain connectome. With the increase in the shortest
distance between the connecting nodes, the weight-age of the nonlocal effect decreases
exponentially. We have observed that the nonlocal interactions do not affect qualitatively
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the uniform parameter values over all the regions of the brain connectome. Now, we see
the impact of nonlocal interactions on the results when the system has different parameter
values in different regions of the brain connectome.

3.3 Mixed tauopathies with non-uniform parameters

Till now, we have considered some general features of the two tauopathies with syn-
thetic and global constant parameter values. On the other hand, the positron emission
tomography (PET) imaging studies of Aβ and τP radiotracer uptake provide us with
additional insight. The distribution of PET-τP SUVR intensities in Alzheimer’s disease
is biased towards the brain’s temporal and parietal regions. These features are absent in
the previous two tauopathies. Now, we study the model local and nonlocal effects with
network system (4) along with the Alzheimer’s disease patient data. A sample data is
taken from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [11].

Table 2: General synthetic parameters values

Healthy Aβ Toxic Aβ Healthy τP Toxic τP
ρ = 1.38 ρ = 0.138 ρ = 1.38 ρ = 0.014

a0 = 1.035 ã1 = 0.828 b0 = 0.69 b̃1 = 0.552
a1 = 1.38 a2 = 1.38 b1 = 1.38 b2 = 1.035

Table 3: Modified b3 values

Brain region ID and modified b3 value
Pars Opercularis 7.452 Rostral middle frontal gyrus 6.707

Superior frontal gyrus 7.452 Caudal middle frontal gyrus 7.452
Precentral gyrus 5.589 Postcentral gyrus 3.726

Lateral orbitofrontal cortex 6.486 Medial orbitofrontal cortex 6.486
Pars triangularis 5.520e-6 Rostral anterior cingulate 6.210e-6

Posterior cingulate cortex 3.45 Inferior temporal cortex 13.11
Middle temporal gyrus 11.04 Superior temporal sulcus 8.97

Superior temporal gyrus 8.28 Superior parietal lobule 12.42
Cuneus 13.8 Pericalcarine cortex 13.8

Inferior parietal lobule 11.73 Lateral occipital sulcus 15.18
Lingual gyrus 13.8 Fusiform gyrus 7.59

Parahippocampal gyrus 11.04 Temporal pole 1.104e-5
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First, we set all regions in the connectome to a state of secondary tauopathy with the
general synthetic parameters given in Table 2 with b3 = 4.14. The coupling parameter b3

is modified in several regions [see Table 3]. This modification is symmetric, i.e., b3 has the
same value for both the left and right hemispheres in the corresponding regions. We also
modify b2 and b3 in some of the regions, and in this case, the system has a state of primary
tauopathy [see Table 4]. After combining all the modified values, the system came up
with a mixed state of tauopathy, i.e., a state of primary and secondary tauopathies exist
simultaneously in different regions of the brain connectome.

Table 4: Modified b2 and b3 values

Brain region Entorhinal cortex Pallidum Locus coeruleus Putamen Precuneus
b2 3.125 2.76 1.38 3.795 3.105
b3 1.104e-5 2.76 1.38 3.795 3.105

Figure 4: (Color online) Toxic τP propagation in the brain connectome at different time instances: (left
to right) t = 20, 30, 50 and 100; Upper panel is corresponding to the local model; Middle and lower panels
are corresponding to the nonlocal model with η = 0.5 and η = 0.25, respectively.

We solve the local and nonlocal variants network model (4) with the modified regional
parameter values. The seeding sites of toxic Aβ and τP are mentioned earlier [see Fig. 1].
Toxic τP propagation in the brain connectome for both the local and nonlocal versions
are shown in Fig. 4 at t = 20, 30, 50 and 100. The solution at t = 100 is stationary, i.e.,
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it remains the same for large values t. In this case, non-uniform concentrations of all four
populations exist. This is true because the concentrations of toxic Aβ and toxic τP are
not uniformly distributed in the real brain. We also see that the spreading patterns for
both the local and nonlocal models are different for the mixed tauopathy.

4 CONCLUSION

We have considered a modified version of coupled heterodimer multiscale model for
better understanding the dynamics of Alzheimer’s disease. The network-based model
corresponding to a PDE system is studied. For the first time, we have introduced nonlocal
interactions into the considered network model. Two types of tauopathies (primary and
secondary) are discussed separately, and their mixed tauopathy is also analysed. We have
concluded that the spreading patterns and the invasion time windows for the local and
nonlocal models for both the tauopathies are the same for the uniform parameters in all
the regions of the brain connectome. However, the spreading patterns for the local and
nonlocal models are different when mixed types of tauopathy are considered. Hence, the
introduction of nonlocal interactions makes important qualitative changes in spreading
all the four proteins over the brain.
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