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SUMARIO

Faz-se a formulacdo pelo método dos residuos pesados de um elemento finito de nds
coincidentes que permite modelar a transmissio de calor através da interface de contacto entre
dois meios distintos. A modelacdo daquela interface obriga & utilizagio de elementos finitos
de espessura extremamente reduzida, os quais sd0 por vezes, responsaveis pela ocorréncia de
instabilidades numéricas. Pretende-se com o elemento finito especial de nés coincidentes evitar
0 aparecimento de problemas de mau condicionamento numérico.

Comparam-se os resultados obtidos com este elemento com os que se obtém com o elemento
quadrético de 8 nds e com os resultados de outros autores, em problemas de conducdo de calor,
mostrando-se as vantagens da sua aplicacio.

WEIGHTED RESIDUAL FORMULATION OF A FINITE ELEMENT WITH COINCIDENT
NODES TO MODEL THE HEAT TRANSFER AT THE CONTACT
INTERFACE BETWEEN TWO DISTINCT MEDIUMS

SUMMARY

A weighted residual formulation of a finite element with coincident nodes has been done
to model the heat transfer at the contact interface between two distinct mediums. The finite
element modelling of that interface requires the use of very thin elements, which are responsible
for some numerical instabilities. With the special finite element with coincident nodes we
pretend to avoid the occurence of this numerical ill-conditioning.

The results obtained with this special finite element, in heat conduction problems, are
compared with those obtained with the height node quadric element and with the result from
other authors and the advantage of its use is shown.
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INTRODUCAO

A transferéncia de calor através da interface entre dois meios distintos em contacto
surge, na practica, em variadissimas situagoes. Nomeadamente ela aparece na separagéo
entre o metal vazado e a moldagdo, quando se pretende simular o arrefecimento de ferros
fundidogh*10:22,

Pode afirmar-se que esta interface desempenha um papel fundamental e que, em
muitos casos, controla o processo de solidificacido do metal vazado mais do que qualquer
outro parametro’.

O sucesso da simulagao do arrefecimento e solidificagdo do ferro fundido vazado
em moldacdes metdlicas estd ligado, em grande medida, & capacidade de modelar
convenientemente a transferéncia de calor na interface peca-moldacao, a qual depende,
fundamentalmente, da pressdo de contacto entre aquelas partes, da rugosidade das
superficies, da geometria, da temperatura e ainda da possivel formacdo de camada de
ar naquela interface. Fletcher'® faz uma revisio e caracterizacdo dos progressos recentes
no estudo da resisténcia térmica de contacto. Nishida et al.'®, por seu turno, investiga
o processo de formacdo de camada de ar na interface pega-moldagdo em sistemas de
fundigdo. :

A necessidade de simular aquela interface levou ao desenvolvimento de elementos
finitos especiais de nds coincidentes, evitando-se, assim, a utilizagdo dos elementos
finitos convencionais, com espessuras extremamente reduzidas, que podem levar ao
aparecimento de problemas de mau condicionamento numérico.

EQUACOES BASICAS

Transferéncia de calor na interface

Faz-se em seguida uma breve revisdo dos conceitos basicos da transferéncia de calor
na interface entre dois meios em contacto.

Considerem-se dois materiais A ¢ B, em contacto como mostra a Figura la*>'',
Admitindo-se que é unidimensional, o fluxo de calor entra pelo material A e sai do
conjunto através de B. Em virtude do contacto entre os dois materiais ndo ser perfeito,
como mostra a Figura 1b, existe uma queda da temperatura na interface, representada
em esquema na Figura lc.

A transmissdo de calor na interface pode processar-se por condugdo nas regices
onde hé contacto perfeito e por condugio e (ou) radiagdo nas regides onde os dois
meios ndo se tocam>*!12,

Matematicamente esta transferéncia de calor pode ser representada de duas
maneiras®:

e como convecgdo equivalente
e como condugdo equivalente

No primeiro caso admite-se que a interface é constituida por uma pelicula fina de
fluido, através do qual tem lugar a convecgao. O fluxo de calor g por unidade de drea
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¢ entdo dado pela equagao?—*10:12.15-19,23-28

A B
q = hin(T3 — T3) (1)
onde hint € o coeficiente de transmissdo de calor efectivo através da camada imagindria
de fluido na interface, englobando, implicitamente, os diversos modos de transmissao
de calor, nomeadamente a conducgio e/ou a radiagio e T4 e TQB sao, respectivamente,
as temperaturas dos materiais A e B na interface, como mostra a Figura 1.

Condugio, radiagio

Conducao

-
[
]
|
—~ X
1

(¢)

Figura 1. Interface térmica entre dois meios distintos em contacto

No segundo caso pode imaginar-se que a interface é constituida por um sélido
ficticio de espessura L (Figura 1b) e conductividade ki;. Assim, o fluxo de calor
através da interface é dado por

kint

q=2(Tf - TP) )

Das equagoes (1) e (2) podem tirar a seguinte relagao
Kint = hint};’ (3)

Aplicando os conceitos acabados de expor, e conhecendo hig, pode discretizar-
se a interface por elementos finitos de espessura L, muito reduzida e condutividade
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térmica dada pela equacio (3). Esta aproximacdo pode ser usada directamente em
qualquer cédigo de elementos finitos existente, ndo sendo necessario nenhum tratamento
matematico adicional. No entanto a utilizacdo de elementos finitos de espessura
reduzida, como aqueles que acabamos de sugerir, pode conduzir a instabilidades
numéricas, como teremos oportunidade de verificar.

Para evitar este inconveniente, desemvolveremos um elemento finito de nés
coincidentes, um pouco a semelhanca do elemento de junta utilizado em problemas
estruturais®®?®. A formulagdo do elemento que se ira desenvolver baseia-se, como
veremos, na equacdo (1), em que se admite que o fluxo de calor na interface é
proporcional a diferenca de temperaturas entre os dois meios.

A equagao de condugao de calor e suas condigoes de fronteira

Considerem-se dois corpos, A e B, em contacto através da interface I';, como mostra
a Figura 2. No dominio bidimensional Q = 24U p, ai representado, deve ser satisfeita
a conhecida equacao de conducao de calor, que passamos a escrever, considerando, por
simplicidade de escrita, os materiais como isotrdpicos

o ([ oT o (., 0T . or
P (k—(j—m—) + By <k0_y> Q= P gy em | 4)

em que k é a condutividade térmica, @ o calor gerado internamente por unidade de
volume e de tempo, p a massa especifica, ¢, o calor especifico, T' a temperatura e ¢ o
tempo.

Figura 2. Dominio de solucdo da equacdo de conducao de calor com as condi¢des
iniciais e de fronteira
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O campo de temperaturas que satisfaz a equagdo (4) no dominio 2, debe satisfazer
as seguintes condicoes de fronteira

T=T em I'r (50)
—k% =q em I’y (5b)
—k% = he(T — Two) em Iy, (5¢)

—ka% = Rins (T4 — T3) em I'2 (5d)
—k;—TB = hint (T — T4) em I'? (5¢)

onde os simbolos representam: T a temperatura prescrita na parte I'y da fronteira, n o
versor normal exterior a fronteira, ¢ o fluxo de calor prescrito na parte I'; da fronteira,
her o coeficiente de transmissao de calor por convecgdo e (ou) por radiacao na parte I'y,
da fronteira, T, a temperatura ambiente, I‘{l a interface pertencente ao corpo A, I‘f} a
interface pertencente ao corpo B, n4 a normal exterior ao corpo 4, ao longo da interface
FZA, np a normal exterior ao corpo B, ao longo da interface Ff , hint 0 coeficiente de
transmissdo de calor na interface € T4 ¢ T, respectivamente, as temperaturas em I'{l
eI'B.

DISCRETIZACAO DO ESPACO

Aplicando a equagdo (4) e as suas condigdes de fronteira (5) o Método dos Residuos
Pesados, obtém-se a seguinte equagio de erros®’

d oTr o oT . a1 _ (8T \ ..
/QWZ (%kgﬁL%ka_yﬂLQ—Pcpa) dﬂ+/rq W (ka—n-i-q) dl'g+
o [, oT L a _ [ o L 5
+— + hig T ; 72— + hins(TB — ;
+/F?WllkanA+h (T4 B)}dI‘ +/F§Wl[k8nB+ht(B TA)JdF-}-
+/ sz[k?—T+hcr(T—Too)]th:0 . 1=1,2,...
I on
(6)

Integrando agora por partes o integral estendido a Q em (6), de acordo com o
teorema de Green, vem
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ox 0Ox Oy Oy

e ¥

+ /1 V_Vl(jdl_‘q + /I‘A WlkﬁszA + /1"“ I/T/.lhint(TA - TB)de&+
q i i

_/ <8Wlk8T+dWlkaT> o+ / Wlkgdl"-i-/‘ Wik or —dr{+
/8 I=I'7Ur, Ul

/WleQ /Wlpcpd dQ+/ Wik 2 qu-i-

_oT _ . .
[ Wik 4 / Wihin (T — Ta)dDB+
ong 8

rp
_oT . e
" W,—drh+/ Wlhcrfdl“h—/ Wher Toodly, = 0 1=12,...
Th on Ty Ty
(7)
~ Escolhendo as fungdes peso na fronteira, simétricas das adoptadas no dominio
(W, == —W,), discretizando o espaco em elementos finitos e utilizando o método de
Galerkin (W, = NN;), obtém-se o sistema de equagoes diferenciais ordindrias
KT +CT=F (8)
onde
Ny, aN ON; , ON, u
Kim = /( g )dQe /hNNdI‘e+
Im Z + Oy ay + z__:l 1 criViLVmGl p
I I
+> /F o hineNi(Na — Np)dl¥ +>° /F o hineNi(Np — N,)dTF*
e=1""1 e=1""1
1<lim<n (9a)
E
Cim = Z/ pepNiNpdQ® 1 <Iiim<n (9b)
—q 78

E Q H
= / NQdoe - / Nygdre +3° / NihaToodls 1<i<n (9¢)
e=170¢ e=171% e=17T%

e N4 sao fungbes de forma correspondentes a nds da fronteira do tipo I“{‘, Ny fungdes
de forma correspondentes a nés da fronteira do tipo I‘f , . namero total de elementos,
H numero de elementos com fronteira do tipo I'y,, I nimero de elementos com fronteiras
do tipo F{‘ ou I‘Z-B e Q nimero de elementos com fronteira do tipo I'y.
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DISCRETIZACAO DO TEMPO

As equactes semi-discretizadas (8), resultantes da discretizacdo apenas do espaco,
representam matematicamente um sistema de equagoes diferenciais ordinarias de
primeira ordem cuja solugao passa pela sua integragio relativamente ao tempo.

\

TEMPERATURA

oAt L (1-0)At

v

Figura 3. Variacdo linear da temperatura ao longo do intervalo de tempo At

Neste trabalho adoptamos uma discretizagdo do tempo através de diferencas finitas,
tendo-nos baseado nas seguintes hipdteses:

a) O sistema de equagoes (8) é apenas satisfeito em “pontos” discretos t,1, de cada
intervalo de tempo [tn,tn+1] em que se discretizou o tempo (Figura 3).

b) Uma vez que o sistema envolve apenas derivadas de primeira ordem, considera-se
que a temperatura varia linearmente ao longo do intervalo de tempo At (Figura 3),
desde o instante ,, ao instante

tney = tn + At nel0,1,2,...,N—1] (10)

A Figura 3 mostra um “elemento” de tempo tipico, de comprimento At e
temperaturas nodais T,, € Ty 1. '
As temperaturas Tp4+4 no instante ¢, = t, + @At podem ser dadas por

Tpia=Tn+o(Tpi1 —T,), O<a<l, nel0,1,2,..,N-1 (11)

onde « é um pardmetro que define, dentro de cada intervalo de tempo, o instante em
que as equagdes (8) devem ser satisfeitas.

De acordo com a hipdtese b) a derivada de temperatura em ordem ao tempo €
constante dentro de cada intervalo de tempo e dada por

. T - T
Trve = == (12)
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Substituindo (11) e (12) na equagdo (8) definida no instante t,.,, encontramos a
seguinte férmula de recorréncia

1

(Kn+a + mcn—ka) Tn+a = Fn+a + Cn-}-aTn (13)

1
alt
onde as matrizes K, 14 € Cpiq € 0 vector Fy,, sdo calculados no instante t,.

Para problemas lineares aquela exigéncia é dispensada, pois essas matrizes e o
vector permanecem constantes ao longo do tempo. Para problemas nao-lincares, em
que as propriedades do material e as condicoes de fronteira dependem da temperatura, a
solu¢do de (8) requer a utilizagdo de um procedimento iterativo (descrito seguidamente).

Reescrevendo a férmula de recorréncia (13) de outro modo teremos

KpniaTnia = Fria, 0<a<l nel0,1,2,...,N—1] (11)
onde
Rpro = Knyo + ——C (15)
nt+a — Bnto ot n+o J
e
. 1 .
Fn+a = Fn+a + CTL+O£T7L (16)

alt

Resolvido o sistema de equagoes (14) para Tpiq, as temperaturas no final do
intervalo de tempo, ou seja, no instante ¢,4, sdo dadas por

1 1 .

sendo estas as temperaturas iniciais quando se avanca para o intervalo de tempo
seguinte.

Fazendo variar o pardmetro «, obtém-se varios esquemas de integracdo no
tempo?®?. Se « # 0, os esquemas sao designados de implicitos, correspondendo os mais
usuais a a = 1/2 (Crank-Nicolson), o = 2/3 (Galerkin) e & = 1 (Euler-Backward).

Segundo Hughes®®, o algoritmo que acabamos de apresentar nas equagdes (14) a
(17) tem os mesmos critérios de estabilidade, quer se trate de problemas lineares ou de
problemas ndo-lineares, sendo incondicionalmente estdveis quando « > 1/2.

O PROCESSO ITERATIVO EM PROBLEMAS NAO-LINEARES

Em problemas nio-lineares, em que as propriedades térmicas do material dependem
da temperatura, o sistema de equagdes (8) pode ser escrito na seguinte forma

K(T, t)T(t) + C(T,t)T(t) = F(T,1) (18)

Nao hd um método geral para resolver este sistema ndo linear de equacbes
diferenciais, no entanto existem varias técnicas numéricas essencialmente baseadas
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28,29 Na referencia®

numa integracdo linear no tempo e utilizando processos iterativos
foram implementadas e comparadas algumas dessas técnicas.

No presente trabalho implementou-se o algoritmo proposto na reféncia® e mais
tarde utilizado nas referéncias®®®. Assim, aplicando a (18) o mesmo processo de

integracao no tempo descrito na secgao precedente, obtém-se novamente

KniaTnio=Fnia, 0<a<1l  nel0,1,2,...,N—1] (19)

mas agora as matrizes K e C e o vector F, necessarios & construgdo de Kn+a e de ];‘nJra

dados pelas equagdes (15) e (16), podem variar ao longo do intervalo de tempo At em

funcao da temperatura e do tempo, pelo que devem ser calculados no instante ¢, 4.
Assim

Kpio = K(Tn+aa tn+04)7 Crio = C(Tn+a>tn+a)a Frnia= F(Tn+ou tn+a) (20)
Devido a esta ndo linearidade, a equacdo (18) nao é, em geral, satisfeita, pelo que
€ necessario implementar um processo iterativo com vista & obtengdo da convergéncia.
Neste trabalho adoptou-se um procedimento baseado no método de Newton-Raphson

modificado®', que em seguida se descreve sucintamente.
Nao sendo satisfeita a equacio (18), durante o passo i do processo iterativo existird

um sistema de forcas residuais da forma

‘Ifi

n+a — Fz - Kiz+aTiztla 7é 0 (21)

n+o

A solucao corrigida Tﬁjjrla em cada iteracdo, pode ser calculada por

ATiH—a = [Kﬁz-!-a]_lqlit—i—a (22)
e
TH, = Thia + AT, (23)

em que a matriz K} , , em (22) corresponde & matriz jacobiana do método de Newton-
Raphson original, mas em que se retiraram os termos ndo simétricos com o objectivo
de preservar a simetria®!.

O processo iterativo continua, resolvendo-se o sistema (22) para AT

nia> €m cada
novo passo do processo iterativo, até que a solucdo convirja, sendo a matriz Kﬁl 1o €M
(22) actualizada em cada iteracao. E, no entanto, possivel implementar variantes do
método de Newton-Raphson em que aquela matriz é apenas actualizada em iteracoes
predefinidas, numa tentativa de reduzir os tempos de computagao ou, eventualmente,
de melhorar a solugao obtida®®'.

Quanto ao critério de convergéncia adoptado, ele consiste em

AT
l—iﬁ%aﬂ < TOL (24)
||Tn+a”
onde TOL é a tolerincia exigida, || - || a norma euclidiana, AT?, , , a alteracio ao campo
de temperaturas na iteragdo i e Tﬁ;tfa a temperatura actual.



510 P.M.M. VILA REAL

O ELEMENTO DE INTERFACE DE NOS COINCIDENTES

A presenca dos integrais estendidos a I‘f ea I’f na expressio (9a) faz com que
a matriz K¢ correspondente a elementos adjacentes & interface, ndo seja simétrica,
deixando mesmo de ser quadrada, como teremos oportunidade de verificar.

Consideremos, para exemplificar, o dominio representado na Figura 4, discretizado
por dois elementos planos de quatro nés, existindo entre eles uma interface de
contacto I;.

Vejamos qual a contribuicdo do primeiro elemento, correspondente a interface, ou
seja, correspondente apenas ao integral estendido a I‘Z-A, ja que o integral estendido a

I’f’ é nulo para este elemento.

RV
T
® @

A B
. 35 7

Figura 4. Dominio discretizado por dois elementos. Numeracdo dos nés e dos
elementos

Dado que podemos aproximar as temperaturas na interface por

T4 = N3T3 + NyT} em '/ (25)
¢ .-
Tp = N5Ts + NeTs em I'P (26)

representando N3, Ny, N5 e Ng fungdes de forma globais, a matriz correspondente ao
integral

/F . hinsNi(Na — Np)dD{ (27)

vem

PR e Y Y PR “ e X .‘AAE ¢
/IA . NyN; NsN, —NsNs —NsN, | mdli (28)
NiNs NyN; —NiNs —NiNg

a qual introduz nfo simetria na matriz K¢ do elemento, como se pode constatar. No
entanto a matriz global do sistema resulta simétrica, como facilmente se pode verificar
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pela expressao (29), a qual resultou de somar a (28) a contribuicdo do segundo elemento
relativa & interface. :

eee .. +N3N3 +N3Ny —N3Ns —N3Ng
/ eee +.. +N4N3 +N4Ny —NyN; —NyNg

e —NsN3 —NsNy +N5N; +Ns5Ng
—NgN3 —NgNy +NgN; +NgNg

hinedle  (29)

Este facto sugere a utilizagdo de um novo elemento cuja matriz é simétrica e igual
a contribuicdo dada pelos dois elementos adjacentes & interface. Este elemento é um
elemento de nds coincidentes e, relativamente ao dominio correspondente a Figura 4,
estaria localizado como mostra a Figura 5.

Figura 5. Discretizagdo do dominio, mostrando-se o elemento de interface de nés
coincidentes

A nova discretizagdo adoptada para esse dominio possui agora trés elementos
finitos, sendo dois elementos planos de quatro nés e um elemento de interface.
Este elemento contribui apenas para a matriz K, sendo essa contribugio dada por

KB =+ | N, NpyhigdD¢ (30)
Ig

devendo o sinal positivo ser utilizado se | e m correspondem a nds pertencentes ao
mesmo lado do elemento e o sinal negativo no caso contrario.

As funcgdes de forma unidimensionais, usadas na expressio (3), estdo tabeladas na
Figura 6, onde se encontram representados o elemento linear de 4 nds e o elemento
quadratico de 6 nds, destinando-se o primeiro a ser usado em conjunto com elementos
planos de 4 nés e o segundo a ser utilizado com elementos planos de 8 ou 9 nés.

De acordo com a equagdo (30) e a numeracio dos nés adoptada na Figura 6, e
novamente exemplificando para o elemento linear de 4 néds, temos
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N1 Ny NiNy —NiN3 —Ni1Ny

Kim:/ NoN1 NaNy  —NoN3 —NaNy b
€ re | —N3sN; —N3N;  N3Nj N3Ny
—~NyNy —NyNy  NyNj Ny Ny

intdl'y (31)

Estes elementos de interface de nés coincidentes, como j4 referimos, ndo contribuem
para a matriz C, e o vector Fe, ou seja CI"* = 0 e FI** = 0.

INTFRFACE
ELEMENTO DE INTERFACE DE 4 NOS
4 3
[
N =(1+&)/2 -———)E_>
1 2
ELEMENTO DE INTERFACE DE 6 NOS
5 4
N. = éé(l-&é&,)ﬂ -— Nés dos exuemos f__.____.
[ ! ——e—e > &
2 1 2 3
Ni =1-& — Noésdomeio

Figura 6. Fungdes de forma para os elementos de interface de 4 € 6 nds
Refira-se ainda que os integrais de linha estendidos a FZA ea Ff , devem desaparecer

da equacio (9a), quando se utiliza o elemento de nds coincidentes para simular a
interface, sendo neste caso, a expressdo da matriz conductividade global dada por

aNg aN 8Nl BNm e H/ 1nt
r N N, 7
2/( ax+ayk8y>d§2 # 3 [, el z in

1<lm<n
(32)
onde Ki2¥ é dado pela equagdo (30).

EXEMPLOS NUMERICOS

Nesta sec¢io serio apresentados trés exemplos numéricos. O primeiro destina-se
a por em evidéncia os beneficios da utilizacdo dos elementos de interface, acabados de
desenvolver, em relacido ao elemento isoparamétrico de 8 nds, de espessura reduzida.
Os restantes exemplos destinam-se a testar a eficiéncia do programa computacional
implementado, comparando os resultados obtidos com os resultados de Chandra’.
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Exemplo 1: Cilindro longo composto por dois materiais

Este exemplo trata o arrefecimento de um cilindro longo constituido por dois
materiais, cujas propriedades térmicas estao tabeladas na Tabela I.

Conductividade (mat. A) k=519 [W/mK]
Capacidade calorifica (mat. A) pc;;1 = 3045768, 0 [J/m3K]
Temperatura inicial (mat. A) T4 = 600,0 [°C]
Conductividade (mat. B) ' kp = 45,0 [W/mK]
Capacidade calorifica {mat. B) pc;? = 3626640, 0 [J/m3K]
Temperatura inicial (mat. B) T8 = 20,0 [°C

Coef. de transm. na interface hint = 1000,0 [W/m? °C]
Coef. de transm. por convecgido he = 21,0 [W/m? °C]
Temperatura ambiente Too = 20,0 [°C]

Tabela 1. Propriedades térmicas para o exemplo 1

Foi utilizado o esquema de Galerkin (o = 2/3), um intervalo de tempo At =1,0s
e fez-se uma andlize bidimensional, considerando-se apenas um quarto da secgdo do
cilindro. As caracteristicas geométricas e as condigdes de fronteira, estdo representadas
na Figura 7, onde se pode ver também a discretizagdo adoptada para o dominio, tendo
sido utilizados elementos finitos isoparamétricos de 8 nés.

L
- Interface

Figura 7. Caracteristicas geométricas, condi¢es de fronteira e malha de elementos
finitos adoptada
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Quanto & interface, ela foi discretizada de duas maneiras distintas (Figura 8):

(F
a) Através de clementos finitos isoparamétricos de 8 nés (Figura 8), de espessura
reduzida, L = 0,0005 m e conductividade térmica dada pela equagao (3)

kint = hingL = 0,5 W/m °

e ainda com capacidade calorifica pc, nula.
b) Através de elementos de interface de nés coincidentes (Figura, 8).

Discretizagio da Interface |
Por dois elementos de 8 Nés Por dois elementos de nds coincidentes
€~ ¢ \*&‘ j
b a —7
a /V
f— L

Figura 8. Discretizacdo adoptada para a interface
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Figura 9. Evolugio da temperatura ao longo do tempo, para os pontos a, b e ¢
a) resultados obtidos com elementos de 8 nés na interface,
b) resultados obtidos com elementos de nés coincidentes na intcrface
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Na Figura 9a e b é possivel comparar a evolugao da temperatura ao longo do tempo,
obtida com o elemento de 8 nés e o elemento de interface de nés coincidentes. Como se
pode verificar a utilizacio destes dltimos evita o aparecimento de oscilagdes numéricas.

A Figura 10 mostra o perfil de temperaturas ao fim de 10 segundos, ao longo de uma,
direc¢ao radial, pondo em evidéncia a queda de temperaturas que ocorre na interface
de contacto entre os dois materiais.

500
as0 &
400 +
50 +
00 -
"C250 +
200 +
150 1
100
50 4
— -
0 —t ]
0 s 10 15 20 25 30 kH] 40 45 S0 55
mm

Figura 10. Perfil radial de temperaturas ao fim de 10 segundos, obtido com elementos
de nés coincidentes

Exemplo 2: Placa semi-infinita composta por dois materiais

Este exemplo foi estudado na reférencia’ e trata o arrefecimento e a solidificagdo de
uma placa infinitamente longa de uma liga metalica vazada numa moldagio cerdmica,
utilizada pela General Electric Co. As caracteristicas térmicas e geométricas da placa
estdo representadas na Figura 11 e as propriedades térmicas dos dois materiais em
funcéo da temperatura estdo descritas nas Tabelas II e III.

Em virtude de se pretender fazer uma comparacio dos nossos resultados com os
resultados apresentados na referéncia’, foi utilizado o mesmo sistema de unidades usado
naquela reférencia, ndo sendo, portanto, utilizado aqui o SIU (Sistema Internacional de
Unidades), como se fez no exemplo anterior.

As temperaturas liguidus e solidus da liga metdlica sdo, respectivamente, de 2900
e de 2556 °R. Admitiu-se que o calor se transmite para o exterior por radiacao, valendo
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Moldacao
Ceramica

. Radiagdio

Interface

Figura 11. Placa semi-infinita. Dominio de solugio e condi¢bes de fronteira

a constante de Stefan-Boltzmann, o = 3,3063 x 107! Btu/secin? °R* e a emissividade
¢ =0,9. A temperatura inicial da liga metdlica foi considerada em alguns testes igual
a 2900 °R, e noutros a 3249 °R, sendo a temperatura da moldagao, em todos os testes,
igual a 2489 °R e a temperatura ambiente T, = 540 °R.

Temperatura | pc, Modificado Conductividade &
(°R) (Btu/ in3 °R) (Btu/sec in °R)
531,0 2,971E-02 1,592E-04

2556,0 4,850E-02 4,011E-04
2764,0 1,189E-01 4,050E-04
2835,0 2,024E-01 4,089E-04
2844,0 3,822E-01 4,095E-04
2894,0 3,766E-01 4,160E-04
2900,0 4,692E-02 4,180E-04
4500,0 4,185E-02 6,484E-04

Tabla II. Propriedades térmicas da liga metélica

Temperatura PCp Conductividade &
(°R) (Btu/in® °R) (Btu/sec in °R)
720,0 1,781E-02 5,564E-05

1080,0 1,971E-02 4,962E-05
1440,0 2,086E-02 4,494E-05
1800,0 2,179E-02 4,159E-05
2160,0 2,264E-02 3,932E-05
2520,0 2,341E-02 3,745E-05
2880,0 2,416E-02 3,651E-05
3240,0 2,488E-02 3,558E-05

Tabla III. Propriedades térmicas da moldagdo cerdmica
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Para discretizacao do dominio considerou-se uma faixa de 10 elementos finitos
isoparamétricos de 8 nés de igual dimensao e na interface considerou-se um elemento de
nés coincidentes quadrético de 6 nés. Utilizou-se o esquema Crank-Nicholson (o = 1/2)
e um intervalo de tempo At = 0,1 segundos. O coeficiente de transmissao de calor na
interface hjy; foi considerado igual a 3,4 x 10~% Btu/secin? °R* em algumas situagades
e metade daquele valor noutras.

Para a modelagdo da mudanga de fase utilizou-se 0 mesmo método que na reféncia®,
ou seja, a libertacdo de calor latente que acompanha a solidificagdo é tida em conta na
definicdo da capacidade calorifica, o que é melhor realgado se representarmos em grafico
os valores da capacidade calorifica, dados na Tabela II, como mostra a Figura 12.

P c” 0.40
0.35
0.30
0.25
0.20 1
0.15 1
0.10 1
0.05 1
0.00

P

500 1000 1500 2000 2500 3000 3500 4000 4500
R

Figura 12. Representacio grafica da capacidade calorifica da liga metélica vazada,
de acordo com os valores da Tabela II

Na Tabela IV comparam-se os tempos necessirios para o ponto A no eixo da
placa solidificar, com os valores apresentados na referéncia®, para varios valores da
temperatura inicial da liga metélica e do coeficiente de transmissao na interface. Como
se pode verificar, os resultados por nés obtidos sdo muito semelhantes aos daquela
referéncia.

Pint Temperatura | Valores | Ref**
inicial obtidos
Teste | (Btu/sec in® °R) (°R) (s) (s)
A 3.4E-4 2900 99,0 | 985
B 1,7E-4 2900 118,6 | 118,5
C 3,4E-4 3249 1221 | 122,5

Tabla IV. Tempos necessarios & solidificagdo do ponto A



A Figura 13 mostra a evolugio das temperaturas ao longo do tempo, correspondente
a uma temperatura de vazamento, ou seja, uma temperatura inicial da liga
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metdlica de 2900 °R e um coeficiente de transmissdo de calor na interface hing

3,4 x 107* Btu/secin® °R. Como se pode verificar, obtiveram-se resultados muito
aos da referéncia®.
Na Figura 14 pode analisar-se o efeito de uma redu¢do para metade do coeficiente

semelhantes

de transmissao de calor na interface.
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2000 —
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Figura 13.

A Figura 15 mostra as temperaturas obtidas ao film de 30 segundos, considerando-
se um coeficiente de transmissao de calor na interface hi,, = 3,4 x 10™* Btu/sec in? °R.
Nessa Figura pode ainda verificar-se o efeito da temperatura de vazamento da liga

metdlica.

Na Figura 16 comparam-se os resultados obtidos para a evolug¢io das temperaturas,
com os resultados da referéncia®. Considerou-se uma temperatura de vazamento da liga
metélica de Ty = 3249 °R, superior, portanto, & temperatura de liguidus (2900 °R) ¢

TR SO—

Evolucdo da temperatura
para uma temperatura de va-
zamento, Ty = 2900 °R e
hing =

3,4 x 1074 Btu/secin?°R,

— valores obtidos, (o) - ref.*
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Figura 14. Evolucdo da temperatura

para uma temperatura de
vazamento Ty = 2900 °R.
— valores obtidos com Ay =
3,4 E — 4 Btu/secin? °R,
- - valores obtidos com Ay, =
1,7 E — 4 Btu/secin® °R

um coeficiente de transmissdo de calor na interface hiy, = 3,4 x 107* Btu/secin® °R.
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2854 "R 2888 "R

= 2843 'R —__ 2878°R
2630 'R 267;[\
" L T 2295°R

—___ 2259'R

a) b)
Ponto Valores obtidos Ref.* Ponto Valores obtidos Ref .
(°R) (°R) (°R) (°R)
A 2853,970 2854,0 A 2888,458 2889,0
B 2842,950 2843,0 B 2878,065 2878.,0
C 2630,295 2630,0 C 2672,924 2673,0 |
C 9259,212 2259.0 D 9294746 92295,0

Figura 15. Perfis de temperaturas obtidas ao film de 30 segundos
com hipy = 3,4 x 1074 Btu/secin? °R:
a) temperatura de vazamento da liga metdlica Ty = 2900 °R,
b) temperatura de vazamento da liga metalica Tp = 3249 °R

072 \ t
" I
2900 ;N a—

A
“R 2728 [\\ - AE&

2556 -

Figura 16. Evolucdo da temperatura para uma temperatura de vazamento
To = 3249 °R ¢ hipy = 3,4 x 1074 Btu/secin? °R:
- valores obtidos, (o) - ref.*
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Exemplo 3: Cilindro longo composto por dois materiais.
Analise axissimétrica

Este exemplo trata o arrefecimento e a solidificacdo de uma liga metélica de 1/4
in de didmetro, vazada numa moldagio cerdmica cilindrica de 3/16 in de espessura’,
como mostra a Figura 17.

As propriedades térmicas da liga vazada e da moldacdo cerdmica sdo as mesmas
do exemplo anterior. O dominio foi novamente discretizado por 10 elementos finitos
isoparamétricos de 8 nds, todos de igual dimensao e utilizou-se o elemento de interface
de 6 nds para modelar a interface.

Foi novamente utilizado o esquema Crank-Nicholson (o = 1/2) e At = 0, 1 segundos
e a transmissdo de calor para o exterior continua a ser por radiagdo, nas rmesmas
condicoes do exemplo precedente.

A temperatura de vazamento considerada foi de Ty = 3249 °R, sendo a temperatura
inicial da moldagdo a mesma do exemplo anterior, ou seja, 2489 °R.

O coeficiente de transmissdo de calor na interface considerado foi de hiyy =
3,4 x 107* Btu/secin? °R.

Metal
_Vazado

Moldagio
Ceramica

—~

7 Radiagdo

~

L

Interface

Figura 17. Cilindro longo. Dominio de solugdo e condigGes de fronteira

Este exemplo, com excep¢do da geometria axissimétrica, é semelhante ao teste C
de exemplo anterior. Comparando as Figuras 18 e 16, verifca-se que o cilindro arrefece
muito mais rapidamente que a placa (41,3 segundos contra 122,1 segundos, para o
tempo necessario & solidificagdo do ponto A).

A Figura 19 mostra as temperaturas obtidas ao film de 30 segundos e compara-as
com as obtidas na referéncia*, verificando-se uma boa concordancia dos resultados.
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Figura 18. Evolucdo da temperatura: — valores obtidos, (o) - ref.*

2757 R
. 2742 'R

2747°R
—— 2099 'R

]

Ponto | Valores obtidos | Ref.*
(°R) (°R)
2757,295 2758.,0
2741,566 2743.0
2747,245 2447.,0
2098,565 2099,0

S| Q| w| =

* Figura 19. Temperaturas obtidas ao film de 30 segundos. Exemplo 3

CONCLUSOES

Fez-se a formulacido de um elemento finito de nés coincidentes que permite modelar
a interface de contacto entre dois meios distintos, evitando, como se mostrou, o -
aparecimento de instabilidades numéricas que podem ocorrer quando se utilizam
elementos isoparamétricos de 8 nds de espessura reduzida.

Testou-se ainda, com sucesso, o programa implementado, em dois exemplos
relativos & simulagio do arrefecimento e solidificagio de uma liga metalica vazada numa.
moldagao cerdmica.
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