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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 9185

Air pollution from vehicular traffic is a major source of 
health damage in urban areas. The problems of urban traf-
fic and pollution are essentially geographic, because their 
incidence and impacts depend on the spatial distribution 
of economic activities, households, and transport links. 
This paper uses satellite images to investigate the spatial 
dynamics of vehicle traffic, air pollution, and exposure of 
vulnerable residents in the Dar es Salaam metro region 
of Tanzania. The results highlight significant impacts of 

seasonal weather (temperature, humidity, and wind-speed 
factors) on the spatial distribution and intensity of air pol-
lution from vehicle emissions. These effects on the metro 
region’s air quality vary highly by area. During seasons when 
weather factors maximize pollution, the worst exposure 
occurs in areas along the wind path of high-traffic road-
ways. The research identifies core areas where congestion 
reduction would yield the greatest exposure reduction for 
children and the elderly in poor households.

This paper is a product of the Development Research Group, Development Economics and the Urban, Disaster Risk 
Management, Resilience and Land Global Practice. It is part of a larger effort by the World Bank to provide open access to 
its research and make a contribution to development policy discussions around the world. Policy Research Working Papers 
are also posted on the Web at http://www.worldbank.org/prwp. The authors may be contacted at sdasgupta@worldbank.org.
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1.  Introduction 
 
Air pollution from urban traffic is a major source of health damage in developing countries.  In a 
global study, Dora et al. (2011) find that urban road transport often accounts for more than 50% 
of dangerous air pollutants (e.g., fine particulates, nitrogen oxides, carbon monoxide, ozone, sulfur 
dioxide).  The World Health Organization (2016) attributes about 3.3 million annual premature 
deaths to outdoor air pollution in low- and middle-income countries: 72% from heart disease and 
strokes, 14% from chronic obstructive pulmonary disease, and 14% from lung cancer.  The World 
Bank (2016) estimates welfare losses from ambient fine particulate and ozone pollution at 4.8% 
of GDP equivalent in East Asia, 3.5% in South Asia, 2.1% in the Middle East and North Africa, 
1.6% in Latin America and 1.5% in Sub-Saharan Africa. 
 
Urban traffic and pollution problems are essentially geographic, because their incidence and 
impacts depend on the spatial distributions of economic activities, households, and transport links.  
Although urban planners, researchers and policy makers are sensitive to this spatial component, 
incomplete information has hindered their attempts to identify and implement cost-effective 
strategies.  Local traffic and pollution are often poorly measured because monitoring systems are 
sparse, costly and difficult to maintain.  Since this problem is pervasive in developing countries, 
rigorous empirical analyses of alternative strategies are rare.  As a consequence, urban planners 
and policy makers have little guidance on appropriate spatial measurement techniques, spatially-
oriented methodologies for benefit-cost assessment of policy alternatives, and transferable 
empirical models from other urban areas.  In practice, they have frequently been forced to estimate 
city-wide traffic volume from observations on a few traffic arteries, and air pollution from 
aggregate fuel consumption data, coupled with air pollutant emission factors for gasoline and 
diesel vehicles that may have been generated from small samples in other places.  As a result, 
educated guesswork has often guided the placement of subway lines, road corridor improvements 
and other spatially-targeted interventions for reducing traffic and pollution. 
 
Recent developments in satellite monitoring offer a potential escape from this information trap.  
High-resolution imagery now permits frequently-updated observations of polluting aerosols and 
traffic in multiple zones within urban areas.  Appropriately mobilized and interpreted, data from 
these new sources can elevate the state of the art in urban traffic/pollution research, policy analysis 
and implementation for developing countries.   
 
Satellite coverage is global, so the new approach can enable cities in all regions to benefit from 
the rigorous analyses that have traditionally been limited to well-endowed cities in developed 
countries.  This paper is a pilot exercise for Dar es Salaam that incorporates spatially and 
temporally non-uniform distributions of vehicle traffic and air pollution into an investigation of 
impacts on vulnerable households. We highlight potential health damage in areas of Dar es Salaam 
with high poverty incidence and large numbers of vulnerable children and elderly adults.  
 
The remainder of the paper is organized as follows.  Section 2 reviews prior research on the health 
impacts of NO2 pollution, the links between traffic and air pollution, and the socioeconomic 
dimensions of air pollution impact.  In Section 3, we introduce the new data sources for our 
analysis.  Section 4 uses econometric modeling to investigate the spatial dynamics of NO2 
pollution in the metro region, with a particular focus on critical weather factors that drive the locus 
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of pollution from motor vehicle emissions.  Section 5 explores the implications for the 
distributional impact of air pollution, while Section 6 extends the analysis to identification of areas 
where reduction of traffic congestion would have the greatest distributional benefits.  Section 7 
summarizes and concludes the paper. 
 
2.  Prior Research  
 

2.1 Air Pollutants and Health 
 
This paper uses data from the European Space Agency’s Sentinel-5P platform that have been 
published since July 2018.  Sentinel-5P measures four air pollutants that are generated by vehicular 
emissions: nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO) and sulfur dioxide (SO2)  
Extensive research has analyzed their significance as sources of health damage, with particular 
attention to respiratory problems for children and cardio/pulmonary problems for the elderly. For 
this pilot exercise, we focus on NO2, which prior research has assigned the greatest impact among 
the four.  NO2 impacts have been extensively studied, both singly and in combination with other 
air pollutants (Brauer et al. 2002, 2007; Cesaroni et al. 2008; Chen et al. 2012a; Gauderman et al. 
2005;  Gehring et al. 2002, 2006; Hoeck et al. 2002; Morgenstern et al. 2007; Naess et al. 2007;  
Nafstad et al. 2004; Sunyer et al. 2006). NO2 emissions also have significance as a source of 
particulate matter less than 2.5 micrometers in diameter (Hodan and Barnard 2004), which is 
strongly associated with health problems but not measured by Sentinel-5P.   
 

2.2  Modeling Traffic and Air Pollution 
 
Empirical research on spatial relationships between traffic and air pollution falls into three broad 
categories.  In the first category, metropolitan-scale assessments of traffic and  pollution employ 
engineering models calibrated for developing-country cities with plentiful information about the 
spatial distributions of vehicle traffic, emissions, and atmospheric conditions (Jerrett et al. 2005).  
For urban researchers and planners in developing countries who use these imported models, the 
scarcity of supporting information often requires extensive spatial and temporal interpolation to 
cover gaps in local data.   
 
In the second category, local measurements of traffic and air pollution along road corridors are 
used to estimate vehicular emissions intensities, the local effects of meteorological variables, and 
the attenuation of pollution with distance from roads (Brauer et al. 2003; Gualtieri et al. 1998; 
Walker et al. 1999). These studies provide useful information for local zoning in developed 
countries.  In developing-country cities, where regulatory enforcement is often difficult, they have 
played a useful role in promoting awareness of vehicle-based air pollution as a serious health 
hazard for young children and elderly adults.  However, the limited scope of road corridor studies 
makes it difficult to extrapolate their empirical results to metropolitan scale.   
 
The third research category has grown rapidly with the development of Geographic Information 
System (GIS) technology.  It uses georeferenced data to assess relationships between the spatial 
distributions of vehicle traffic and air pollution (Briggs et al. 2010).  Until recently, the spatial 
coverage and resolution of these studies have been greater for developed-country cities with more 
plentiful spatial information on vehicle traffic and air pollution.  Recently, however, higher-
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resolution satellite monitoring has begun to close the gap for developing-country cities.  The most 
advanced example is provided by Heger et. al. (2018), whose research combines extensive air 
monitoring data for Cairo with vehicle counts obtained from ultra-high-resolution satellite imagery 
using a machine learning algorithm.  Even for this study, significant problems remain:  Spatial 
panels of vehicle counts must be pieced together from overlapping but non-identical satellite image 
frames; vehicle counts are sensitive to the technical characteristics of different satellite platforms; 
and pollution measures are limited to incomplete panels of particulate pollution at PM10 scale or 
low-resolution satellite measures of aerosol optical depth whose ability to measure particulate 
pollution remains controversial.   

 
Differences in technical and institutional resources have produced bifurcated approaches to air 
pollution modeling in developed and developing countries.  Some air quality modelers in 
developed countries have produced sophisticated atmospheric pollution transport models that link 
detailed emissions inventories from geo-located ground sources (Dommen et al. 2003) to pollution 
levels in three-dimensional atmospheric grids  (Baertsch-Ritter et al. 2003; Keller et al. 2002; 
Khalid and Samson 1996; Jane et al. 1995).  These exercises draw on scientifically-grounded 
models of atmospheric flow dynamics and photochemistry (Baertsch-Ritter et al. 2004; Russel and 
Dennis 2000; Gery et al. 1989). They also permit explicit incorporation of detailed meteorological 
data (Khalid and Samson 1996; Sillman and Samson 1995). 
 
These models require so much data that their application is not widespread, even in high-income 
metropolitan regions.  Where they are applied, they are not statistically fitted to local data because 
the available degrees of freedom (total observations minus the number of model parameters) are 
insufficient for robust nonlinear estimation. Even the most recent and sophisticated applications 
(e.g., Kim et al. 2018) are confined to verifying that predictions from imported  atmospheric 
transport models are spatially correlated with gridded observations on local pollution.   
 
Urban air quality modelers in developing countries have generally adopted more modest 
approaches tailored to limitations in data availability, technical resources and institutional 
constraints.  Some of the more sophisticated statistical exercises in this domain have been applied 
in Nepal (Giri  et al. 2008); Egypt (Elminir 2005); China (Zhang et al. 2015);  Mexico (Csavina et 
al. 2014); Turkey (Ocak and Turalioglu  2008); Vietnam (Hien et al. 2002); the Islamic Republic 
of Iran (Hosseinibalam and Azadeh 2012); and India (Punithavathy et al. 2015). These studies 
relate air pollution near ground monitoring stations to actual and estimated emissions from nearby 
sources, with meteorological controls drawn from available measures of temperature, pressure, 
precipitation, wind speed and wind direction.  However, air pollution data are typically drawn from 
a few ground monitoring stations that are located where pollution is expected to be highest.  In 
addition, technical problems often create random, lengthy gaps in observations from individual 
monitoring stations.  Appropriate spatial econometric panel estimators are difficult or impossible 
to apply under these conditions.  In addition, the concentration of ground monitors in areas where 
pollution is expected to be high creates a severely-truncated sample of citywide air pollution. 
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2.3  Socioeconomic Dimensions of Pollution Impact 
 

An extensive empirical literature has considered the interrelationships between air pollution, the 
demographic and socioeconomic characteristics of impacted neighborhoods, and health outcomes 
for their inhabitants.  Some studies feature impacts on the elderly (Morris et al. 2005; Naess et al. 
2007; Martins et al. 2004) or children (Brauer et al. 2002; Ciccone et al. 1998; Gauderman et al. 
2004, 2005, 2007; Gehring et al. 2002; McConnell et al. 2002, 2003, 2006; Morgenstern et al. 
2007; Pandey et al. 2005; Pikhart et al. 2001; van Vliet et al. 1997).  Many other studies feature 
impacts on poor households (Hejat et al. 2015; Evans and Kantrowitz 2002; Laurent et al. 2007; 
Molitor et al. 2011; Rooney et al. 2012; Fan et al. 2012; Havard et al. 2009; Fann et al. 2011; 
Dionisio et al. 2010; Forastiere et al. 2007; Næss et al. 2007). 
 
Studies that consider these groups serve one of two policy objectives, at least implicitly.  First, 
highlighting their vulnerability can help promote measures for general reduction of traffic and 
pollution.  Examples include stricter pollution controls for motor vehicles and fuel price increases 
to reduce motor fuel use.  A second approach features targeted intervention to reduce pollution in 
areas where vulnerable groups are concentrated.  In this context, many associational studies have 
linked proximity to heavily-traveled urban roads to respiratory and cardio-pulmonary problems 
associated with vehicular emissions (Ciccone et al. 1998; Gauderman et al. 2007; McConnell et 
al. 2006; van Vliet et al. 1997). Frequently-adopted measures include reserved bus lanes, new 
subway lines, and improved peripheral roads to divert traffic from congested areas.  Extensive 
research has assessed the impact of mass transit measures on traffic and pollution (Adler et al. 
2016; Anderson 2014; Basagaña et al. 2018; Gendron-Carrier et al. 2018; Goel and Gupta 2015; 
Tabatabaiee and Rahman 2011; Yang et al. 2017).  Although magnitudes vary considerably, these 
studies all find significant traffic and/or pollution impacts. 

 
2.4 Traffic Congestion and Air Pollution in Dar es Salaam 

 
Limited research has documented the rapid growth of motor vehicle traffic in Dar es Salaam, and 
its consequences for traffic congestion.  Kiunsi (2013) draws on Tanzania Revenue Authority 
records to report that a total of 1,010,732 cars registered between 2003 and 2011, with Dar es 
Salaam accounting for 60% to 70% of the total. Similarly, Elinaza (2012) reports that Dar es 
Salaam absorbed most of the 245,180 motorcycles and 7,408 motorized tricycles registered in 
2010 and 2011.   
 
One major consequence of rapid growth in motor vehicle use has been severe traffic congestion.  
A 2007 JAICA study finds major slowdowns on primary traffic arteries under peak morning and 
evening conditions (Kiunsi, 2013).  Congestion has in turn generated significant economic losses. 
Katala (2019) estimates a total loss of T Sh 655 billion per year from congestion-related delays 
and extra fuel use.  Elinaza (2010) cites a Confederation of Tanzania Industries study which finds 
that traffic congestion reduces business profits by about 20 percent.  Othman (2010) and Lupala 
(2010) identify congestion as a major source of air pollution in the city.  Recent years have 
witnessed major investments to address these problems in Dar es Salaam, particularly an extensive 
bus rapid transit (BRT) system.  Chengula and Kombe (2017) report that the BRT has provided 
significant benefits in time-saving, convenience and comfort.  Nevertheless, serious congestion 
has persisted in Dar es Salaam as the number of motor vehicles has continued to grow.  Aside from 
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occasional exercises like the previously-cited JAICA study, the city has no ongoing capacity for 
detailed monitoring of traffic flows. 
 
Previous research on vehicle-based air pollution in Dar es Salaam has been limited to small 
roadside monitoring exercises  In 2012 and 2015, Hamdun and Arakak (2015) measured NOx, 
NO2, and NO levels in Dar es Salaam for brief periods at three urban sites (Mapipa, Ubungo, and 
Posta) and two suburban sites (Kunduchi and Vijibweni).  They found NO2 concentrations at some 
sites as high as 231 ug/m3, as compared with the WHO (2005) reference standard of 40 ug/m3.  In 
a similar vein, Njee et al. (2016) report results from five spatially-varied monitoring locations in 
July and August 2006.  They find average NO2 concentrations ranging from 8 to 109 μg/m3, with 
a particularly strong role for emissions from road traffic.  Having found such high concentrations 
at some sites, both studies recommend adoption of continuous air quality monitoring and effective 
air pollution control measures for Dar es Salaam. 
 
3.  New Satellite Data 
 
Budgetary and technical constraints have prevented adoption of extensive traffic and air pollution 
monitoring systems in Dar es Salaam.  Thus, the spatial distributions, intensities and impacts of 
NO2 and other air pollutants have remained matters for speculation.  Fortunately, the advent of 
high-resolution satellite-based pollution monitoring promises will help close this information gap. 
On October 13, 2017, the European Space Agency (ESA) launched the Sentinel-5P platform, 
which provides daily high-resolution coverage of NO2, ozone (O3), carbon monoxide (CO), and 
sulfur dioxide (SO2).  The ESA has provided full open-source access to the Sentinel-5P database 
since July 2018, and the entire database is now available on Google Earth Engine (GEE) for rapid 
extraction of daily imagery for specific locations.  We have used GEE to extract daily NO2 
readings for the Dar es Salaam metro region, as well as the surrounding area (Fig. 1).  
 
Figure 1: Study coverage area for Sentinel-5P NO2 data 
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In a similar vein, the traffic information problem can now be addressed using Google Maps, which 
provides real-time traffic reports for the Dar es Salaam metro region.  Although desktop monitors 
do not show this, Google Traffic continuously produces a map large enough to cover the entire 
metro region at 100 m resolution.  However, Google provides no facility for georeferenced 
downloads. To mobilize this huge information resource, one of the authors has developed an 
algorithm that maps region-scale Google Traffic displays into a panel database of traffic measures 
for a reference grid with arbitrary cell size.  
 
Google Traffic provides a four-color measure of vehicle speed along each 100-meter road link, 
with separate speed measures for traffic flows in two directions on primary roads.  For this study, 
we match information from Google Traffic with time-compatible NO2 imagery within a grid of 
spatial cells with a resolution of .01 decimal degrees (approximately 1.1 km).  Since Google Traffic 
data are available continuously, we also construct a database of traffic measures by day and hour 
for the period March 20 - May 23, 2019.  We convert these files to geoTIFF format for grid-based 
spatial computations.  Using the Dar es Salaam region shapefile provided by OpenStreetMaps 
(OSM), we divide roads into two classes, primary (OSM classes primary and trunk) and secondary 
(all other OSM classes). Then we overlay Google Traffic’s color-coded pixels on the OSM map 
and estimate vehicle speeds by road class and color code using trip routings for a sample of real-
time Google Traffic information. Table 1 reports our results for two road classes and four color 
codes. 
 
Table 1:  Google Traffic indicators and speeds (km/hr) in Dar es Salaam 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 provides a composite summary of traffic data for the metro region.  Since the database is 
formatted at grid scale, it could also produce the same display for each grid cell.  Figure 2 displays 
regional hourly median and 1st-quartile traffic speeds on primary roads.  Several features of the 
display are particularly evident.  First, driving on primary roads is much faster on Sunday, the least 
congested day, and somewhat faster on Saturday  Second, on weekdays traffic speed declines 
steadily from its midnight peak to around 8 AM; remains roughly in the same range until mid-
afternoon; declines rapidly through 6-7 PM; and then increases rapidly until midnight. Third, the 
path of Q1 shows that the worst traffic conditions display more volatility than median conditions.  
On weekdays, Q1 speed falls twice daily from about 43 km/hr near midnight to 25-30 km/hr during 
the morning and evening peak traffic hours. 
 
 

Color 
Indicator 

OpenStreetMaps 
Road Type 

Primary Secondary 
Green 45 24 
Orange 23 16 
Red 11   7 
Purple   7   4 

Source: Google Traffic 
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Figure 2:  Dar es Salaam: Hourly median and Q1 primary road speeds (km/hr) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: Google Traffic 
 
 
Figure 2 summarizes much more evidence about Dar es Salaam traffic than was available before 
the advent of Google Traffic.  And, although the introduction of bus rapid transit service has 
undoubtedly speeded traffic on some arteries, Figure 2 shows that the metro region remains subject 
to intense, twice-daily bouts of serious congestion. 
 
4.  Annual Weather Variations and NO2 Pollution 
 
Until recently, even sophisticated analyses of metro-area air pollution in developed countries were 
limited by the geographic coverage of the available monitoring systems.  Equipment is costly to 
acquire and maintain, so monitors have been primarily located in areas thought to have particularly 
serious pollution problems.  With the advent of Sentinel-5P, it has become possible to extend 
assessments of NO2 pollution to broader regions.  While the contrast with the previous state of the 
art is striking in developed-country cities, it is much more so in developing-country cities like Dar 
es Salaam.  Sentinel-5P represents a fortuitous “leveling of the field”, because it provides the same 
coverage for all cities. 
 
In this section, we use daily measurements by Sentinel-5P over 10 months to investigate the pattern 
of NO2 pollution in the region of Dar es Salaam.  We begin with the spatial distribution of 
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vehicular air pollution sources, drawn from our Google Traffic data.  As the previously-cited 
studies have found, vehicle traffic is a major contributor to NO2 pollution in the city. 
 
Figure 3:  Dar es Salaam:  Composite traffic volume indicator by administrative division 
         Indicator scaling from lowest to highest:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source:  Google Traffic 
 
We created Figure 3 in three steps.  First, for each grid cell and observation period, we separately 
normalize primary and secondary road speeds to the range 0-100.  Then we create a weighted 
average of the two normalized speed measures, with the weights provided by Google Traffic pixel 
counts for the two road classes in each grid cell.  To create an overall traffic volume indicator, we 
divide the total Google Traffic pixel count by the weighted average of the normalized primary and 
secondary speed measures.  This indicator increases with the pixel count and decreases with 
weighted average speed (the latter effect also reflects vehicle crowding on roads in the grid cell).  
We assign grid cells to the administrative divisions displayed in Figure 3.  Then we compute the 
mean traffic volume indicator across all available periods for each administrative division and 
normalize the result to the range 0 - 100 for ease of interpretation.  The results show a roughly-
concentric spatial ordering of traffic volume, with the highest  intensities in  Upanga Mashariki, 
Kisutu, Mchafukoge, Gerezani, Kariakoo, Jangwani and Mchikichini.  NO2 emissions are 
proportional to traffic volume, so the area centered in these seven divisions is the dominant source 
of vehicular NO2 emissions in the metro area. 
 
We investigate the spatial dynamics of this NO2 pollution using maps from Sentinel-5P for the 
metro region and the surrounding area.  We compute monthly mean NO2 concentration and display 
the results in Figure 4.  We superpose the system of primary roads for spatial reference. 
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Three patterns are evident in Figure 4.  First, for the afternoon period observed by Sentinel-5P (2 
PM - 3 PM) the NO2 cloud produced by vehicles centered in the core area of Dar (Figure 3) is 
consistently displaced to neighboring areas.  Second, the displaced cloud seems to follow an annual 
cycle, from northwest of the city in August-September 2018, to due west in October 2018, then 
shifting progressively southwestward through March 2019, and finally shifting to the area north of 
the city during April - May 2019.  The third evident pattern is variation in the intensity of the 
pollution cloud. Particularly notable are the light NO2 concentrations in January, April and May 
2019. 
 
Our traffic volume data from Google Traffic are limited to the period from late March to late May, 
so we cannot test whether longer-term fluctuation in traffic volume is a significant contributing 
factor in this context.  However, we have complete daily weather data for the study period.2 Table 
2 reports results from a linear regression fitted to Sentinel-5P data for 288 daily observations from 
August 2018 to May 2019.  The dependent variable is mean daily NO2.  We have excluded rainfall 
from the estimation because prior experimentation revealed that is insignificant when included 
with the other factors. We find that temperature, wind speed and humidity all have negative 
impacts on NO2 concentration with high levels of statistical significance.  We have also included 
cloud cover, on the expectation that Sentinel-5P NO2 measurement would be reduced on cloudier 
days.  Our result for cloud cover is highly significant and consistent with this expectation. 
 
Figure 5 aggregates daily NO2 predictions from the regression model into monthly means.  The 
figure illustrates the striking seasonal effects of the weather variables: Weather-predicted NO2 
drops sharply from December 2018 to January 2019, increases through March 2019, and then 
drops even more sharply in April and May 2019.  Inspection of Figure 4 reveals the strength of 
this seasonal pattern at regional scale, with a notably smaller, weaker NO2 cloud in January 2019 
and virtual disappearance of the cloud in April and May 2019. 
 
We also consider the effect of prevailing winds on spatial NO2 dynamics.  First, we calculate the 
mean wind direction angle for each month. Then, for each grid cell, we construct monthly one-
kilometer-wide elongated rectangular strips aligned with the wind direction that extend upwind to 
cover all cells where traffic volume has been measured.  We calculate mean traffic volumes for 
the strips, as well as weighted mean distances of strip cells to the downwind cell where pollution 
is measured by Sentinel-5P.  We use distance weights that are proportional to traffic volumes. 
  

                                                 
2 We obtained daily weather data from World Weather Online (https://www.worldweatheronline.com). 



Figure 4:  Dar es Salaam region: Monthly mean NO2 concentration 

     Indicator scaling from lowest to highest:        
 
August 2018                    September 2018                                      October 2018                                                
 
 
 
 
 
 
 
 
 
 
 
November 2018                                      December 2018                                         January 2019 
 
 
 
e 
 
 
 
 
 
 
 
February 2019                                         March  2019                                                 April 2019                                            May 2019 
  

 

  

  

   

  

 



Table 2:  Regression Results: Dar es Salaam Weather Factors in Mean NO2 Concentration 
  
Temperature (C) -0.512 
 (2.77)** 

Wind Speed (km/hr) -0.254 
 (2.66)** 

Humidity (%) -0.257 
 (3.06)** 

Cloud Cover (%) -0.072 
 (3.00)** 

Constant 51.847 
 (5.75)** 
 
Observations 288 
R-squared 0.25 
 
Absolute value of t statistics in parentheses  
* significant at 5%; ** significant at 1%  
 
Figure 5:  Predicted monthly mean NO2 concentration from weather factors and cloud cover 
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For each month, we fit a regression that incorporates a dynamic model of wind impacts on NO2 
from the points of emission.  In this model, an emitted pollution particle is subject to both 
displacement by the wind and atmospheric decay with elapsed time from emission.  For a 
destination grid cell and accompanying strip aligned with the prevailing wind direction, we posit 
a non-linear relationship linking mean NO2 in the destination cell to mean traffic volume and 
weighted mean distance from vehicular emissions sources in the strip.  
 
(1) 𝑁𝑁𝑖𝑖𝑖𝑖 =  𝛼𝛼0 + (𝛼𝛼1 + 𝛼𝛼2𝑑𝑑𝑖𝑖𝑖𝑖 + 𝛼𝛼3𝑑𝑑𝑖𝑖𝑖𝑖2 + 𝛼𝛼3𝑑𝑑𝑖𝑖𝑖𝑖3 )𝑉𝑉 +  𝜀𝜀 𝑖𝑖𝑖𝑖 
 
Expected signs:  α1 >0;  α2 <0;  α3>0 
 
where 
 
Nit  =  Mean NO2 in destination cell for wind-aligned strip i, month t 
dit = Traffic-volume-weighted distance from the destination cell for strip i, month t 
Vit = Mean traffic volume indicator for strip i, month t 
  
Tables 3 and 4 tabulate our regression results for the 10 months from August 2018 to May 2019.  
They can be interpreted as tests of the hypothesis that the spatial displacement of NO2 
concentrations observed in Figure 4 is primarily due to wind direction effects.  In all cases except 
April 2019, we find very strong confirmation of the hypothesis, with high levels of statistical 
significance and the expected signs for regression parameters.  
 
We investigate the long-term stability of wind-direction effects in Figure 6, which summarizes 10 
years of annual data in box plots of wind angle by month.  The figure shows highly stable wind 
directions for almost all months and a smooth pattern of annual wind direction change. March 
(month 3) is a notable exception, and November (month 11) also exhibits more variation than the 
other months.  By implication, the pollution cloud displacements in Figure 4 represent seasonal 
wind patterns that recur each year. 
 
Figure 6:  Dar es Salaam: Monthly variation in wind direction, 2009-2018 
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Table 3:  NO2 pollution vs. source traffic volume and distance, 2018 
 
 Aug_2018 Sep_2018 Oct_2018 Nov_2018 Dec_2018 
 
α1 -0.068 -0.211 -0.196 -0.143 -0.165 
 (4.89)** (9.54)** (10.44)** (5.50)** (7.03)** 

α2 0.066 0.060 0.077 0.094 0.147 
 (19.73)** (11.79)** (18.02)** (13.73)** (24.63)** 

α3 -0.003 -0.002 -0.005 -0.006 -0.010 
 (12.45)** (5.89)** (16.45)** (11.10)** (21.22)** 

α4 .00004 .000019 .00008 .0001 0.00016 
 (8.08)** (2.65)** (14.53)** (8.74)** (16.97)** 

α0 15.396 16.440 17.654 16.029 12.651 
 (127.07)** (81.96)** (103.46)** (70.20)** (53.84)** 
 
Observations 745 780 797 822 907 
R-squared 0.75 0.54 0.33 0.34 0.58 
 
Absolute value of t statistics in parentheses      
* significant at 5%; ** significant at 1% 
 
Table 4:  NO2 pollution vs. source traffic volume and distance, 2019 
 
                                       Jan_2019        Feb_2019           Mar_2019       Apr_2019           May_2019 
 
α1 -0.050 -0.058 -0.062 0.151 -0.072 
 (2.71)** (2.99)** (2.23)* (5.95)** (3.65)** 

α2 0.082 0.133 0.210 -0.003 0.066 
 (17.24)** (26.44)** (29.37)** (0.38) (11.82)** 

α3 -0.006 -0.009 -0.014 0.000 -0.002 
 (15.76)** (23.16)** (26.66)** (0.64) (4.50)** 

α4 0.0001 0.0001 0.0002 -0.000 0.0003 
 (12.97)** (18.78)** (21.82)** (0.52) (2.17)* 

α0 10.132 7.788 10.974 11.100 6.744 
 (54.00)** (40.07)** (38.29)** (62.07)** (48.68)** 
 
Observations 906 909 907 485 464 
R-squared 0.45 0.65 0.72 0.23 0.82 
 
Absolute value of t statistics in parentheses      
* significant at 5%; ** significant at 1%  
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5.  Distributional Impact of NO2 Pollution 
 

5.1 Pollution-Vulnerable Residents of Dar es Salaam 
 
To assess the impact of vehicular NO2 pollution, we focus on two vulnerable populations:  children 
(0-5 years) and elderly adults (65+ years). We incorporate poverty in a composite vulnerability 
index for each grid cell by multiplying population in the groups [0-5,65+] by the estimated 
proportions of cell residents living in MPI-defined poverty, below $1.25/day, and below $2.00/day.  
For each variable, we use raster databases from the previously-cited WorldPop program at 1 km 
resolution. 
 
Figure 7 displays the vulnerability index for the three poverty definitions.  In each case, high-
vulnerability areas form roughly concentric rings around the city center.  Nevertheless, there are 
evident differences in the pattern across poverty definitions.  For MPI-defined poverty, the 
vulnerability index is greatest in Azimio, Mbagala and Makangarwe divisions.  For a poverty line 
of $1.25/day these divisions remain in the most critical group, but they are joined by Tandika 
division in the south and a cluster of divisions northwest of the city center that includes Kigogo, 
Mzimuni, Mburahati, Makurumla, Ndugumbi and Magomeni. For a poverty line of $2.00/day the 
southern cluster disappears but five of six divisions in the northwest cluster remain.  
 

5.2  Pollution Exposure Paths 
 
Figure 7 displays areas where potential vulnerability is high, but actual vulnerability will vary with 
exposure.  To assess this component, we produce pollution exposure paths for each month by 
tracing pollution measured by Sentinel-5P in each grid cell back along the wind vector to its traffic 
sources.  Figure 4 indicates the general direction of these effects as the wind direction changes:  
Exposure paths shift toward the northwest in August and September; toward the west in October, 
November and December; and toward the southwest in February and March.  The winds shift the 
paths toward the north in April and May, but weather-related factors lead to minimal pollution 
during that period. 
 
We estimate the effects of these trends by assigning pollution in the destination cell of each vector 
strip (from our previously-explained methodology) to the cells that the strip intersects back to its 
origin at the most distant cell where traffic is measured.  For each destination cell, we sum the 
assigned pollution values of all intersecting strips.  We multiply by our three vulnerability 
measures (for MPI, $1.25/day and $2.00/day) and normalize to the range [0-100] to obtain 
indicators that incorporate both pollution vulnerability and actual pollution exposure.   
 
Figure 8 displays the results for the three poverty criteria.  In each case, high-vulnerability areas 
surround the core area where traffic volume is highest.  However, the geography of vulnerability 
differs by poverty definition.  For MPI-defined poverty, vulnerability is greatest in five divisions 
southwest of the city center:  Tandika, Azimio, Yombo Vituka, Makangarawe and Mbagala.  This 
area is also high-vulnerability if $1.25/day is used as the poverty line, but it is joined by a group 
of divisions northwest of the city center:  Ndugumbi, Makurumla, Mzimuni, Kigogo, Mabibo and 
Mburahati.  The locus shifts again for the poverty line of $2.00/day; the most critical northwest 
cluster for $1.25/day remains but the southern cluster is reduced to two divisions. 
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6. Distribution-Related Priorities for Reducing Traffic Congestion 
 
Our results also have implications for priorities assigned to congestion-relieving measures in 
different parts of the metro area.  The intuition here is straightforward:  Each grid cell is the origin 
of NO2 pollution that is proportional to its traffic volume.  This pollution in turn affects residents 
in other cells, in proportion to their demographic vulnerability.  Distance matters as well:  Other 
things equal, the impact of emissions from a cell on another cell will decline with the distance 
between them.  To produce a summary indictor, we identify each grid cell as a pollution origin cell 
and use its traffic as the NO2 emissions indicator.  We quantify its impact on another cell by 
multiplying its emissions indicator by the pollution vulnerability of the other cell and dividing by 
the distance between them.  For each origin cell, we add the quantified impacts across all affected 
cells, normalize to the range [0-100], and display the result as a priority indicator for traffic 
congestion relief.  The top-ranking cell in this ordering is the cell whose current traffic volume has 
the most effect on vulnerable populations in other cells, taking into account their degrees of 
vulnerability and their distances from the top-ranking cell.  Similarly for all other cells in the grid.   
 
We display the results of these calculations in Figure 9.  They exhibit more geographic stability 
than the vulnerability indicators, although some variations remain.  For all three indicators, the 
most critical areas for congestion relief are six central-city divisions:  Kisutu, Jangwani, Kariakoo, 
Mchafukogi, Gerezani and Mchikichini.  In the second rank, there are also divisions to the west, 
east and north that recur for each poverty measure.  Nevertheless, some second-rank divisions 
remain unique to each poverty measure.    



Figure 7:  Dar es Salaam resident vulnerable to NO2 pollution 
                  Indicator scaling from lowest to highest:  
 
Vulnerable residents, MPI-defined poverty 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vulnerable residents: Poverty line $1.25/day 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vulnerable residents: Poverty line $2.00/day 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 



1 
 

Figure 8:  Composite vulnerability for residents of Dar es Salaam 
                  Indicator scaling from lowest to highest:   
 
Vulnerability, MPI-defined poverty 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vulnerability: Poverty line $1.25/day 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vulnerability: Poverty line $2.00/day 
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Figure 9:  Dar es Salaam traffic cells by congestion relief priority 
                  Indicator scaling from lowest to highest:   
 
For affected vulnerable residents, MPI-defined poverty 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For affected vulnerable residents: Poverty line $1.25/day 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For affected vulnerable residents: Poverty line $2.00/day 
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7. Summary and Conclusions 
 
In this paper, we have used new databases for the Dar es Salaam metro region to investigate the 
spatial dynamics of traffic congestion, regional air pollution, and impacts on vulnerable residents.  
We use Google Traffic to develop high-resolution traffic measures, which provide the first 
temporally- and spatially-comprehensive view of congestion in the metro area.  We assess the 
spatial dynamics of air pollution using high-resolution nitrogen dioxide (NO2) measures from the 
European Space Agency’s new Sentinel-5P satellite platform. Our information on the spatial 
distribution of vulnerable residents uses demographic and poverty maps assembled from numerous 
sources by the WorldPop project of the  School of Geography and Environmental Sciences, 
University of Southampton.  We combine these information sources in a spatial grid with 1-km 
cells for the metro region. 
 
Our empirical modeling highlights the impact of weather factors on the spatial distribution and 
intensity of NO2 pollution from the emissions of motor vehicles in the region.  We identify critical 
weather dimensions in two econometric analyses.  The first uses daily NO2 measures from 
Sentinel-5P and weather data from World Weather Online to measure the effects of temperature, 
rainfall, humidity and wind speed on air pollution, as well as the effect of cloudiness on 
measurement by Sentinel-5P.  We aggregate regression-based NO2 predictions by month and find 
a strong seasonal pattern of weather impacts on pollution.  In the second econometric exercise, we 
estimate a model that relates spatial displacement of NO2 pollution from its traffic source locations 
to the locations observed by Sentinel-5P.  Our analysis clearly identifies wind direction as the 
critical driving variable and, like the other weather factors, wind direction is strongly seasonal.  
Taken together, these weather variables account for a major portion of spatial pollution dynamics 
in the Dar es Salaam region.  We confirm the strong seasonality of wind direction in a 10-year 
analysis for the region. 
 
In the second part of the paper, we explore the distributional implications of our findings.  Using 
our methodology for analysis of spatial pollution displacement, we quantify NO2 pollution 
exposure for residents in the displacement path.  To index relative vulnerability, we use WorldPop 
digital maps to estimate the number of children (0-5 years) and elderly adults (65+) in poor 
households in each grid cell.  We develop separate indicators for three measures of poverty 
incidence based on the global multi-dimensional poverty index (MPI); a poverty line of $US 
1.25/day; and a poverty line of $US 2.00/day.   
 
We combine our pollution exposure and pollution vulnerability measures to produce a composite 
pollution impact measure for each grid cell.  We aggregate our measures for level-3 administrative 
divisions and map the results to assess the implications.  We find three elements of primary 
significance.  First, areas of the city have highly-varied “environmental endowments” driven by 
strongly-seasonal weather effects on the spatial distribution and intensity of NO2 pollution.  
Pollution exposure is worst for areas that are in the wind path from high-traffic areas in seasons 
when pollution is maximized by weather factors.  The second critical element is the spatial 
juxtaposition of environmental endowments and vulnerability.  Some highly-vulnerable areas have 
poor environmental endowments while others do not, with potentially-critical significance for 
pollution impact analysis.  The third element relates to the definition of poverty.  Vulnerability 
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maps of the region differ significantly for the three poverty definitions that we have employed for 
this exercise. By extension, our pollution impact maps also vary by poverty indicator. 
 
Using our integrated spatial database, we also consider the implications for targeted measures to 
reduce traffic congestion in Dar es Salaam.  For each grid cell, we calculate a composite traffic 
impact indicator from three elements:  traffic volume in the focal cell, the vulnerability of all other 
cells, and the distance of the focal cell to each of those cells.  Then we map the results for each 
poverty indicator.  We find more spatial stability here than in the distribution of pollution impacts: 
The maps for all three poverty indicators identify the same core areas where congestion reduction 
would yield the greatest estimated reductions in impact.  
 
To conclude, we should stress that our assessment for Dar es Salaam is inevitably a pilot exercise 
because, to our knowledge, these high-resolution information sources have not previously been 
combined for an integrated regional assessment of any city.  As more cases are studied, we will 
undoubtedly gain further insight into the key factors that link traffic, air pollution and distributional 
impacts in metropolitan regions.  In closing, we should note one particularly beneficial side of this 
new direction for research:  It depends only on free global information sources, so it can be 
undertaken as readily in developing-country cities like Dar es Salaam as in developed-country 
cities where such research has traditionally been conducted.  And even those cities will benefit 
from the new information sources, because their pollution and distributional impact issues can be 
revisited with data that simultaneously offer more granularity and broader spatial coverage than 
has previously been available. 
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