EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, VOL. 20, 43-60 (1991)

A METHOD TO ESTIMATE INTENSITY OCCURRENCE
PROBABILITIES IN LOW SEISMIC ACTIVITY REGIONS

J. J. EGOZCUE, A. BARBAT, J. A. CANAS AND J. MIQUEL
Universidad Politécnica de Cataluiia, ETSICCP, Jordi Girona Salgado 31, 08034 Barcelona, Spain

AND

E. BANDA
Instituto Jaime Almera, CSIC, Spain

SUMMARY

The estimation of site intensity occurrence probabilities in low seismic activity regions has been studied from different
points of view. However, no method has been definitively established because several problems arise when macroseismic
historical data are incomplete and the active zones are not well determined. The purpose of this paper is to present a
method that estimates site occurrence probabilities and at the same time measures the uncertainties inherent in these
probabilities in low activity regions. The region to be studied is divided into very broad seismic zones. An exponential
intensity probability law is adjusted for each zone and the degree of uncertainty in the assumed incompleteness of the
catalogue is evaluated for each intensity. These probabilities are used to establish what may be termed ‘prior site
occurrence models’. A Bayesian method is used to improve ‘prior models’ and to obtain the ‘posterior site occurrence
models’. Epicentre locations are used to recover spatial information lost in the prior broad zoning. This Bayesian
correction permits the use of specific attenuation for different events and may take into account, by means of conservative
criteria, epicentre location errors. Following Bayesian methods, probabilities are assumed to be random variables and
their distribution may be used to estimate the degree of uncertainty arising from (a) the statistical variance of estimators,
(b} catalogue incompleteness and (¢) mismatch of data to prior assumptions such as Poisson distribution for events and
exponential distribution for intensities. The results are maps of probability and uncertainty for each intensity. These
maps exhibit better spatial definition than those obtained by means of simple, broad zones. Some results for Catalonia
(NE of Tberian Peninsula) are shown.

1. INTRODUCTION

Probabilistic methods of evaluating seismic hazard have been developed over the last two decades and they
have been used successfully in intermediate and high seismic activity regions.'”* Usually, the seismic
parameter to be modelled is magnitude or maximum acceleration and, at times, is intensity. Although these
probabilistic methods have also been applied in low seismic activity regions, the results seem to be
inconclusive.

The difficulties stem from (a) incompleteness of historical macroseismic catalogues which span several
centuries, (b} seismic sources that are either too broad and, therefore, roughly determined or excessively
detailed with irrelevant information, (c) insufficient knowledge of attenuation laws, especially in the case of
high intensities, and (d) uncertainty in epicentre locations and intensities in both the historical and the
instrumental catalogues. This is the case in many low seismic activity regions in which hazard modelling
should take into account the uncertainty factor as well as all other available information. Moreover, since
large earthquakes have very long return periods in low activity regions very long catalogues are needed to
estimate probabilities or average return periods. Usually, long span catalogues give information only about
epicentral intensities and, consequently, a method for seismic hazard assessment in low activity regions
should use intensity as the main seismic parameter in order to obtain reliable estimates for large events.

The use of intensity as a hazard parameter has important shortcomings. The definition of intensity is
mainly based on observed damages or movements of objects, buildings or soil observed by people.
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Consequently, intensity takes into account the event itself as well as subjective effects and damages that are
building or object dependent. Therefore, intensity describes hazard as well as some kind of risk. The time
dependent character of intensity is also remarkable because buildings, structures, people’s psychology and
recording media have drastically changed over one thousand years. Uncertainties of intensity data are not
directly treated here but we point out two features that tend to moderate errors in the intensities of old
events. Intensity is, by definition, a discrete parameter; thus accuracy is reduced to one intensity degree.
Further, intensities of old events are mainly evaluated in towns or monasteries and macroseismic epicentres
are often assigned to such places. The weakness of old structures tends to increase the effects of earthquakes
but we expect that physical epicentres are not frequently located at these towns because they were scarce due
to the lack of population. So that these two circumstances counteract in evaluating old intensities.

The method suggested in this paper uses standard information given by catalogues and can add specific
data regarding attenuation of individual earthquakes or errors in epicentre location. Furthermore, the
method is capable of controlling the degree of uncertainty in the estimated probability in accordance with the
assumed deficiency of the data.

Using Bayesian techniques a method is developed to evaluate site event probability. Initially, a broad zone
approach is used to establish a local model of occurrence probabilities. This may be termed a ‘prior model’.
The problem with this approach is that its spatial definition is low and, therefore, an improvement is
required. This is achieved by means of a Bayesian correction which adds information regarding the
geographic epicentre distribution. The resulting probabilities are termed the ‘posterior site model’.

The last part of this paper discusses the results obtained when this approach was applied to Catalonia (NE
of Iberian Peninsula)

2. EVALUATING EVENT PROBABILITY

An occurrence model is developed by using a table of probabilities of annual occurrence of events for each
intensity. If the events to be considered are epicentral intensities in a zone, it is a zonal occurrence model
(ZOM). Alternatively, if the events are intensities observed at a site, it is a site occurrence model (SOM). The
task is to estimate the site occurrence model for an arbitrary point within the studied area. In addition, a
measure of uncertainty for each probability in the model will be calculated.

The method may be divided into three steps. First, the ZOM is evaluated for each previously defined
seismic zone in the region under investigation, as well as the uncertainty of each probability. Secondly, the
SOM is calculated on the basis of the effect that each zone produces at the site. This site model is similar to
those obtained by standard zoned probabilistic methods.> ¢ However, it differs in that the uncertainty of each
probability is computed from the uncertainties of the zonal model. Since the site model is corrected by a
Bayesian technique, it is termed the prior SOM. Thirdly, a Bayesian correction for the prior site model is
carried out to obtain the posterior SOM. This correction is made without taking into account the initial
broad zoning.

As is frequently assumed in Bayesian methods,” all probabilities are considered as random variables. The
distribution of probabilities, as random variables, is extremely useful when establishing parameters for the
associated uncertainty. These parameters may be either the distribution itself or other characteristics such as
mean and variance or probability intervals.

It is clear that, if the posterior site model is computed at the nodes of an appropriate grid covering the
whole area, the results can be used to obtain probability and uncertainty maps that contain the basic
information of the hazard assessment.

2.1. Zonal occurrence models

Some broad seismic zones have to be defined in the studied area. Initially, these zones are assumed to be
seismically homogeneous and statistically independent. Usually these zones have to be defined by subjective
criteria, and most of the known epicentres must be included within them. Although geological knowledge has
been used to define the zones, the above mentioned hypotheses regarding homogeneity and statistical
independence are rough approximations.



ESTIMATING INTENSITY OCCURRENCE PROBABILITIES 45

Some kind of model is needed to describe the seismic occurrence, both in time and intensity, in each zone.
These models have been extensively studied; the most popular intensity or magnitude models are the
Gutenberg and Richter exponential model and its modifications® ®~'! and those based on the extreme value
distribution.'2~!® Time occurrence has been modelled usually by Poisson or Markov processes.!®”%
However, in low hazard regions, it is not advisable to work with an excessive number of parameters, because
the number of events recorded in the catalogue for each zone is insufficient in order to obtain a reliable
parameter estimate. Although the zones are very broad, we assume that it is not possible to estimate more
than two parameters for each zone. Accordingly, doubt arises regarding the use of more complex stochastic
models. For instance, more than two parameters are needed in order to model time-clustering of events.

Nonetheless, an examination of catalogues frequently reveals that the time-clustering of events does in fact
exist. This phenomenon is seldom active for longer periods than one year, especially, in low activity regions.
This difficulty may be overcome by considering the probabilities of the event of maximum epicentral

intensity greater than or equal to i, in each zone over an annual period. This is denoted p;, i = ig, . . . , im»
where iy, i,, are the minimum and maximum intensities of interest (V to XII are used in this case); a
superscript to p; stands for the zone and is used when necessary. The set of probabilities p;, i = io, . . . , i

defines the ZOM. Note that 1 — p;, is the annual probability of the maximum intensity being less than i,.

Usually, low hazard areas in Europe have macroseismic catalogues dating from the late Middle Ages for
the highest intensities (IX, X, XI, XII). The information regarding low intensities (V, VI) is highly incomplete
up to the nineteenth century. The quality of information regarding intermediate intensities increases
throughout the seventeenth and eighteenth centuries and, thus, the different catalogue spans may be taken as
being complete for each intensity.

As a result, the evaluation of the p;’s has a different quality for each intensity i. In order to include the
evaluation variability, p; is assumed” to be a random variable, whose distribution is determined by its mean
{p;> and variance Var(p;). The variances Var (p;), or other distribution parameters such as variation
coefficients, are appropriate measures of uncertainty when estimating p;’s.

As we have previously stated, the exponential model, and its modifications, are commonly used to model
the magnitude or intensity distributions. There is experimental evidence regarding the performance of these
laws in very extensive areas, but for small areas their validity has to be tested with the local data. In low
seismic activity regions this testing is meaningless because of the lack of data.

Nevertheless, it seems preferable to use a simple, general model than to use a distribution-free model. As we
have previously stated, the use of more than two parameters per ZOM is not advisable. Accordingly, a two
parameter exponential model for the mean probabilities is assumed for each zone in the prior ZOM. There
may be a mismatch between the exponential model and the available data, but it is to be expected that the
Bayesian correction will reduce the deviation. In any case, deviations of data from the assumed model will
result in an increase of the variance of estimates, as is explained below.

The exponential model for mean probabilities is given by

{p;y = exp (a — bi), i =g e ms b (1)

where a and b are to be estimated from the data. It should be noted that the parameter a is not determined by
b because no hypothesis of truncated exponential distribution is made for {p;»’s. The ZOM will be
completely defined when values for Var (p;),i = iq, . . . , iny, are derived from completeness and uniformity of
the catalogue and deviations of data from (1).

For each zone the evaluation of a, b is performed by minimizing

2

i M.
: — i) ——
i;‘_o w;|exp (a — bi) N,

@
where M, is the number of years in which the maximum epicentral intensity was greater than or equal to i in
the zone; N, is the number of years in the catalogue for intensity i. The weight w; is assumed to be the inverse
of subjective variance of p;. The solution of the problem in equation (2) is achieved by means of a non-linear
optimization.
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It is worthwhile pointing out that, almost certainly, M, = 0 for the X, XI and XII intensities, and this is
valuable information. Consequently, it is not advisable to use the logarithmic equivalent of equation (2) to
obtain a linear regression problem to estimate a and b. In fact, in this last approach, there are two
alternatives: (a) to assume that probabilities for non-observed intensities are zero, or (b) to extrapolate the
fitted model (1) for all intensities. Alternative (a) is not advisable for Bayesian methods because these zero
probabilities can not be corrected by using data. Further, this zero approach might be unrealistic because the
maximum observed intensity might be less than the possible maximum intensity. Alternative (b) usually
overestimates the probabilities of intensities that have not been observed. This was a reason to introduce
three parameter quadratic exponential laws.® The minimization of equation (2), when it is compared with the
log-linear standard regression, has two main effects. Normally the b, estimated by using equation (2), is less
than that obtained by minimizing the logarithmic equivalent of equation (2). The other effect is that the
probabilities of the high intensities are not zero although no event of such intensities has been observed.

Figure 1 shows the sample probabilities M /N, (full line) for the Catalan Coast (Figure 4) compared with
the fitted models by using equation (2) (dotted—dashed line) and by using log-linear regression (dotted line).

The variances of the p;'s may be estimated subjectively, as has been done in determining the weights w; in
equation (2). However, an improvement of those estimates can be designed in order to take into account time
deviations of the sample catalogue from the estimated exponential model of equation (1). Once a and b have
been estimated from equation (2), we define another estimator of the variance of p;, denoted by Var {(p;), by
partitioning the observation time period for the ith intensity, N,, into k; subintervals of t; years. If M ;j is the
number of years in which an event of intensity greater than or equal to i has been observed in the subinterval
Jj, the selected estimator is

ki 2

I &M,
Var(p,-)zic—z1 —t-'i—exp(a—bi) , =i, ...,10, 3)
ii=1) b

Some conditions should be taken into account when selecting k;:

(i) Null variances are not admissible because uncertainty is always present.

(i) For fixed M;, N, = k;t;, the maximum sample variance has to be obtained when all events are
observed in the same subinterval; the minimum sample variance has to be obtained when the number
of events is the same in each subinterval. In order for these maximum and minimum values to be
obtainable from the data t; must be greater than or equal to M, and k; must be less than or equal to M.

(iii) A feasible value of k; would be k; = M,, because, for zones in low activity regions, M, is usually a small
number and ¢; would satisfy condition (ii).

log probability
-4
I
/
s

intensity

Figure 1. Sample probabilities M,/N, (full line) compared with exponential model fitted by minimizing equation (2) (dotted—dashed line)
or log-least squares (dotted line) for Catalan Coast
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The variances estimated by equation (3) reflect incompleteness and the irregularities of the catalogue
comparing the data with a stationary binomial occurrence model. Deviations of data from exponential model
(1) are also taken into account in equation (3). However, the estimator (3) is only approximate, especially
when the number of events of intensity i is small. On the other hand equation (3) is not adequate when M, is
less than two because no information is available about irregularities of the catalogue. In these cases it is
preferable to use a Bayesian estimate of the variance using a uniform prior probability distribution of p;.

2.2. Prior site occurrence models

A SOM determines the probabilities of the annual maximum site intensity being greater than or equal to i.
These probabilities are denoted by q;, i =i, . . ., i, for each site. Consequently, 1 — g;, is the annual
probability of the maximum intensity felt at the site being less than ip. We assume that the g;’s are random
variables with a distribution determined by its mean (g, and its variance Var (q;). To calculate (g, and
Var (g;) from the zonal occurrence models, a mean attenuation law has to be adopted.

In low seismic activity zones, if foreshocks and aftershocks are excluded, we expect that the zonal annual
maximum intensity is reached only once per year, especially for intermediate and high intensities. Conse-
quently, it can be assumed that the influence of a zone at a certain site can be evaluated from the zonal
models. Although the g; values obtained will be slightly lower than the true values, this effect will be
counteracted by the Bayesian correction presented below.

The locus of epicentres of intensity i whose observed intensity at the site i — k is a circular ring centred
at the site with the radii determined by the mean attenuation law. We denote such a circular ring by C,
(Figure 2). If A(.) is the area of the argument, the parameters of the site occurrence model {q:>,

Var (q;), i =iy, . . ., i, can be calculated approximately, assuming independence and homogeneity of zones,
from
S i A(C,nZ,)
D= = :
@r= 3 5 = @
S mTil A(C, N Z )P _
Var(g;) = ———%| Var (p} 5
@=3 54 (b ) )
where the Zg, s =1, ..., S are zones and N denotes intersection. A(C, " Z,) is the area in Z, in which an

(i + k)-intensity epicentre would be felt at the site with intensity i. The quotient of areas in equations (4) and
(5) is the probability of an i-event felt at the site coming from an (i + k)-epicentre in the zone Z,, based on the
assumed homogeneity of the zone.

Figure 2. A VIII intensity epicentre is observed in the zone Z, and it is felt at the site with intensity V because the epicentre is in the
circular ring C,. Other circular rings defined by the attenuation law are shown
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To obtain the exact expression, occurrences of earthquakes of intensities ig, . . . , i, are assumed to be
Poisson distributed in each zone Z, with parameter A,. In this hypothesis the probabilities g; are
RS A(Cst)}
;=1—ex log(l — pip)——=+— (6)
q p {; 2 log (U= pled) =7
fori=iy+1,...,i,. Fori=ig, it has a slightly different form because the Poisson parameter appears
explicitly:
S A(Comzs) im0 A(Ckmzs) j]}
=1 —ex — Ay + log(1 — pivr) 7
dio p {; [ AZ) R; g (1 — Pl AZ) 0

First order Taylor series expansion of exponentials and logarithms in equations (6) and (7) reduce these
formulae to equation (4). This first order approximation is very accurate when the Poisson parameter is less
than unity (one example is reported in Section 3). Therefore, the approximation is suitable for low seismic
activity regions.

2.3. ‘Posterior’ site occurrence models

It is feasible to construct maps of isoprobability curves for each intensity, based on the prior SOM located
at the nodes of a grid. These sorts of maps are strongly influenced by the selected zones. If the zones are
broad, a smooth spatial variability of the occurrence probabilities is obtained inside each zone, producing
loss of details. These results have an important shortcoming: they show less spatial information than the
epicentre location maps. This information was lost in the estimation procedure of the ZOM:s because spatial
information was reduced to two parameters per zone. Bayes’ theorem permits the recovery of the lost spatial
information by means of a procedure which does not take into account the zones. This procedure is termed
posterior correction.

If it is known that, in n; years of observation on a site, the observed maximum intensity has been greater
than or equal to i in m; years, the likelihood of these binomial data can be expressed as

[

Limlq) = (') gL = ®)

m;

The distribution of g; is assumed to be beta type.” This hypothesis is justified because:

(i) the rank of the beta distribution is [0, 1] as corresponds to a probability;
(ii) the beta distribution is very flexible and its shape is fully determined by its mean and variance;
(iff) the beta distribution is the conjugate prior for the binomial likelihood function according to the
Bayes’ theorem; consequently, the posterior distribution will also be a beta distribution.

The posterior correction of the prior SOM results from the application of Bayes’ theorem: the prior
probability density function of ¢; with parameters 7}, t; is

is Vi

Yy = Blgri—1{1 —g)ti—ri—1 B=— 9
Jiq) = Bigri-t(1 —q) ; ST — 1) )

where T°(.) is the Euler gamma function and the (') stands for prior distribution. Bayes’ theorem implies that
the posterior distribution is given by

()
“(q) = Bl'qri—1(1 — q)i =i~ 1, B! = i 10
fz (q) q ( q) i l—‘(r;/)r(t:/ _ r;/) ( )
r{ =ri+ m, t] =t;+n
where (') stands for the posterior distribution. The new mean and variance are easily calculated from the r”
and t” for each intensity. The relationship between the beta parameters and the mean and variance of the
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probability is given by

¥ it —r)
<Q>_t’ Var (Q)n—tz(t-{—l) (11)
where #, t are either the prior parameters or the posterior ones for each intensity.

The effect of posterior correction on the beta probability density is cleared up in Figures 3(a) and (b). In the
first one, the full curve represents a prior distribution of probability for which the parameters are r’ = 6 and
t" = 30-. Thus the prior mean probability would be 0-2. After an observation of 4 events in 70 years—sample
mean of 0-057-—we would obtain posterior parameters r”" = 10-and ¢ = 100- and the density represented by
the dashed curve, for which the mean probability of 0-1 and the variance have been decreased due to the
increasing of the years of observation. This shows how sample information corrects the prior estimate if they
are not in accordance. Note that, if the number of years of observation was greater, the variance of the
posterior distribution would be less by equation (11). Figure 3(b) shows another example; the full line
corresponds to a prior beta distribution with 1’ = 0-5 and ' = 5+ (mean probability 0-1), whereas the dashed
line is the posterior beta distribution given a sample of 3 events in 15 years (sample mean 0-2). Corresponding
posterior parameters are " = 3-5, t" = 20- and the posterior mean probability is 0-175.

Unfortunately, site information is seldom available, especially if the site is not a city or a town. However, if
the epicentral intensity and the attenuation law are known, the effect of an earthquake at the site can be
deduced. In fact, the attenuation law determines the circular rings C, defined in Section 2.2 (Figure 2). Once
the epicentral distance is known, we can identify what C, contains the epicentre. Thus intensity felt at the site
is estimated by subtracting the value of that k from the epicentral intensity. Although this deduced intensity is
only approximate, it does allow the introduction of some maximality criteria to avoid possible errors.
Macroseismic epicentre locations may be affected by errors of 10 or 15 km. One of the possible corrections
would be to displace the epicentre closer to the site to maximize the induced site intensity. Specific
attenuation laws may also be used for well known earthquakes, including directional attenuation when
available.

When the posterior correction is carried out over a grid of sites and the isoprobability curves are drawn,
the spatial resolution of the map increases, showing most of the epicentre spatial distribution in the zones.
This procedure allows updating of the variances of the occurrence probabilities and it is also feasible to depict
variation coeflicient maps to assess the uncertainty of the mean occurrence probability.

However, the posterior correction has to be undertaken carefully to avoid an inconsistent posterior SOM
which may result in mean probabilities that increase with their corresponding intensity. This may occur
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Figure 3. Two examples of posterior correction of beta densities. Full curves are prior densities for occurrence probabilities and dashed
curves are posterior ones given data: (a) 4 events in 70 years; (b) 3 events in 15 years
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because the observation time span of catalogues increases with intensity. This is unrealistic because it is
expected that {g;> should be greater than {(q;, ).

Another undesired effect of a posterior correction might be that the SOM presents a sudden decrease in
occurrence probability for intensities higher than those which have been observed at the site. This type of
SOM reflects the data correctly but the results obtained are not in agreement with the qualitative features of
the definition of intensity. This type of undesirable SOM may be avoided by carrying out a smoothing of the
number of local observations and adjusting them to a decreasing exponential model as follows:

m¥ = exp{co — ¢0) (12)

where the constants ¢, and ¢, are found by fitting equation (12) to the data my,, m;, + 1,...,m; . The
smoothed observations m¥ are in general fractionary but may be accepted and used as in equation (10). This
kind of smoothing usually avoids the above mentioned anomalies.

Theoretical inconsistency may be argued against the posterior correction because part of the information
used to obtain the prior SOM is also used to calculate the posterior correction. This argument is valid
because the numbers M, and N, used to construct the prior ZOM as seen in equation (2), are correlated with

W, M1, M;_ 4, . . . , used in the posterior correction (10).

However, this correlation between the zonal data M,, N, and the local data m;, m;_,, . . . . is low when the
zonal areas under consideration are considerably larger than the areas of rings C, defined by the attenuation
laws. It is true that, depending on the distribution of epicentres within the zone, m;, m;_;, . . . represent only

small parts of M;. This is another reason for considering broad zones when obtaining the ZOM.

In regions of medium to low seismic activity it may be advisable to construct the ZOM using the historical
catalogue and to use the instrumental catalogue to perform the posterior correction. In this way the data
used in the prior model and the posterior correction are independent.

3. APPLICATION OF THE METHOD TO CATALONIA (NE OF IBERIAN PENINSULA)

What follows is a brief description of the data compiled by the method presented in this paper when applied
to the NE of the Iberian Peninsula.

The seismic catalogue of the NE part of the Iberian Peninsula has two well defined parts: a short
instrument catalogue, dating from 1910 to the present, and an extensive macroseismic historical catalogue
that covers the period from the tenth century to the early twentieth century.

For the instrumental catalogue, it may be assumed that almost all events of intensity greater than or equal
to V are noted, with their date, hour, epicentre location (instrumentally determined in 40 per cent of cases),
and sometimes magnitude (20 per cent), focal depth (15 per cent) and macroseismic intensity map (20 per
cent). Although the epicentres have been located instrumentally, it may be observed that the instrumental
epicentre sometimes differs from the macroseismic epicentre by several kilometres (10, 15 or even more); these
errors are due to the low quality of the seismic network in these areas up to the 1980’s. Furthermore, most of
the focal depths are only orientative. Magnitudes are assumed to be more accurate but they are too low to
base the seismic hazard assessment on them.

The historical catalogue contains the list of dates, intensities and epicentres collected (directly or indirectly)
by some authors and institutions,*"2”7 and some intensity charts, most of them reconstructed at the
beginning of our century and re-elaborated?® in 1982. The loss of information is evident for intermediate
intensities (V, VI, VII) in the earlier centuries and it is difficult to evaluate for the eighteenth and nineteenth
centuries. In addition, this loss seems to be different for zones with different historical population.

Five broad seismic zones have been defined in the NE of the Iberian Peninsula and its surroundings, as
shown in Figure 4 together with the epicentres considered in the catalogue. These zones are named Western
Pyrenees, Eastern Pyrenees, Western Pre-Pyrenees, Catalan Coast and Iberian System. It is clear that the
Balearic Islands, and the zones of Alicante and Murcia have very little influence on Catalonia and can be
ignored without this producing any significant changes in the results.

The zones have been defined by taking into account the epicentre distribution, some geological criteria and
previous studies in the area.?°”3! Table I shows the estimated values of 4, b in formulae (1) and (2) for each
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Figure 4. Macroseismic epicentres of the NE of the Iberian Peninsula. After- and foreshocks have been removed. MSK. intensity is
indicated by the size of hexagons. The zones used to obtain the ZOMs are shown

Table 1. Zone parameters g, b from equations (1)

and (2)

Zone a b
Western Pyrenees 4-254 1-009
Western Pre-Pyrenees 3-663 1-198
Eastern Pyrenees 4-922 1264
Catalan Coast 8189 1-883
Iberic System 3190 1-018

zone. Different catalogue starting dates have been used for each zone and intensity, as shown in Table IL

The obtained ZOMs are compatible with other results for the Iberian Peninsula; for instance, recently
Garcia er al.>* have estimated the Poisson parameter and the Richter parameter b for some standard zones
using the maximum likelihood method of Kikjo and Sellevoll.?® Although the selected zones are slightly
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different, the zonal occurrence probabilities found are close to those calculated by the present method and
they are well within the calculated 90 per cent probability interval. Table III compares these results for the
Eastern Pyrenees and Catalan Coast. The estimated mean return periods for these two zones show that
the Catalan Coast has significant activity for intensity V but it decreases rapidly for higher intensities. The
Eastern Pyrenees shows more activity in higher intensities than the Catalan Coast.

It should be observed that the mean return period increases exponentially with intensity but the limits of
the 90 per cent probability interval increase linearly (Table III). This is due to the exponentially increasing
variance of the return period for intermediate intensities.

The general attenuation law was obtained from the known isointensity curves collected in the NE of Spain
and SE of France.?® Figure 5 shows the mean radius of these isointensity curves—labelled Mean atten.— and
the attenuation model for the greatest earthquake in the NE of the Iberian Peninsula with epicentre in the
surroundings of Queralps in 1428.33 The first one was used to calculate the prior SOMs. Posterior SOMs
have been calculated using different attenuation laws, deduced from isoseismal maps®® if they were available.
If no information about attenuation was available, the mean attenuation law (Figure 5) was used. A
significant example of specific attenuation law is the above mentioned one for the 1428, X intensity event of
Queralps.

Table IV shows the performance of the approximation in equation (4) when compared with the exact
formulae (6) and (7); it shows the results obtained in Barcelona (41-40N, 2-20E) and Girona (41-95N, 2-80E)
for different intensities.

Figure 6 shows the prior SOM map for intensity VI. Figures 7 to 10 show the posterior SOM maps for
intensities V, VI, VII and VIIL Figure 11 is the iso-variation coefficient map for the intensity VI. They were
calculated over a triangular grid of 512 nodes. The isoprobability curves are labelled with the decimal
logarithm of the probability and the iso-variation coefficient curves with the natural value. The logarithmic
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Figure 5. Mean attenuation law for the NE of the Iberian Peninsula. [ is the observed intensity, I, the epicentral intensity and I, — I is
the intensity difference

Table I1. Starting dates of catalogues of cach intensity for the considered zones

Intensity
Zone v Vi vl VIII Other
Western Pyrenees 1900 1850 1700 1400 1000
Western Pre-Pyrenees 1900 1850 1700 1400 1000
Eastern Pyrenees 1900 1850 1700 1400 1000
Catalan Coast 1900 1850 1700 1400 1100

Iberic System 1900 1900 1850 1800 1300
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Table III. Comparison of return periods (years) for Eastern

Pyrenees and Catalan Coast. First column as calculated by

Garcia et al. (1987). Second column gives the prior mean return

periods calculated by the present method (1/{p;>). Third col-
umn is the 90 per cent probability interval

Eastern Pyrenees

Return period Mean return 90% return

Intensity (Garcia et al) period period interval
(MSK) (years) (years) (years)

A 4-4 40 [2-7, 7-1]

Vi 11-8 143 [3-3, 5 x 10°]
VII 34-2 506 [72, 0]
VI 1149 179-0 [89, o]

IX 742-5 6332 [9:8, 0]

Catalan Coast

\ 65 34 [14, 47-6]
VI 246 22 [38, 0]
VI 1051 1468 [76, o]
VIII 7271 964-5 [113, o0 ]
IX © 6337- [157, o]

Table IV. Prior mean occurrence probabilities for Barcelona as calculated by means of the approxim-
ate formula (4) and the exact formulae (6) and (7)

Barcelona Gerona
Prior mean Prior mean Prior mean Prior mean
Intensity prob. eq. (4) prob. eq. (6) (7) prob. eq. (4) prob. eq. (6) (7)
v 08562 1072 0-8484 1072 09966 1072 09894 1072
\%! 01287 1072 01298 1072 01714 1072 01730 102
VII 02030 1073 02033 1073 0-3287 1073 03291 1073
VIII 02917 10™4 02918 1074 06702 10~4 06703 1074
IX 04207 1073 04208 1073 01395 1074 0-1395 1074

labelling was adopted because the numbers indicate either log-mean probability, when considered negative,
or log-mean return period; the interval between curves is 0-5 logarithmic units to obtain a reasonable spatial
distribution of isoprobability curves although a fractionary label does not correspond to a standard return
period {for instance, a label 25 indicates a return period of 316 years).

Different attenuation laws were used to compute the posterior correction. When no special information
was available the mean attenuation law on Figure 5 was used. The macroseismic epicentres were displaced
15 km closer to the site and the instrumental epicentres were displaced only 10 km.

The isoprobability curves in the prior SOM map for intensity VI (Figure 6) match the different zones and
reveal the above mentioned low spatial definition. Posterior results (Figures 7 to 10) show an increased
spatial definition. For instance, they show a small area, to the NE of Barcelona (approximately 41-6N, 2-4E),
that has higher probabilities than other parts of the Catalan Coast. This is in agreement with the spatial
distribution of epicentres shown in Figure 4. It is also worth pointing out that borders of zones have no
significant influence in these posterior maps. For instance, Catalan Coast has been well divided into two
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Figure 6. Prior SOM map for intensity VI. The isoprobability lines are numbered with the log return period (return period in years)

zones regarding hazard in the posterior maps; the border of Catalan Coast with Eastern Pyrenees does not

match the isoprobability curves in posterior maps.

Figure 11 shows areas with variation coefficient greater than 1. This means that mean probabilities or
mean return periods in these areas are almost meaningless. Consequently, the hazard in such areas must be

estimated by probability intervals or probability distributions.

Figure 12 shows the prior and posterior SOM for Barcelona in terms of logarithmic mean return periods
(1/<g;>) and they are compared with the sample return period for intensities felt in Barcelona, calculated from
the attenuation laws. The prior SOM return periods seem clearly overestimated when compared with the
posterior SOM return periods or the sample return periods. This is the effect of the non-homogeneous

zonation.
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Figure 7. Posterior SOM map for intensity V. The isoprobability lines are numbered with the log return period (return period in years)

Figure 13 shows the posterior SOM with the upper and lower bounds of the 90 per cent probability
interval for the return periods in Barcelona. It is worthwhile pointing out the large uncertainty that these
results exhibit. The sample return periods are also shown.

4. CONCLUSIONS AND COMMENTS

In low seismic activity regions accurate zonation is difficult because of the lack of data concerning
earthquakes. Furthermore, the estimation of zonal parameters is virtually impossible owing to the scarcity of
data in each zone. Consequently, a broad zonation approach is preferable. However, this implies the
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Figure 8. Posterior SOM map for intensity VI. The isoprobability lines are numbered with the log return period (return period in years)

assumption that these broad zones are homogeneous and, therefore, site probability maps will have very low
spatial definition, even lower spatial definition than that an epicentre chart has.

To avoid the undesired effect of the broad zone approach, a Bayesian correction of spatial information can
be performed. By assuming the site occurrence probabilities as beta distributed random variables, the spatial
information of epicentres is recovered through the binomial likelihood of the intensities felt at the site.
Furthermore, the correction can be used to incorporate individual attenuation information or to compensate
for errors of the epicentre location. The resulting corrected maps show a good spatial definition compared to
uncorrected maps.

The posterior correction estimates approximately the variance of the site occurrence probabilities. The
variance of the posterior site occurrence probabilities is estimated taking into account the statistical variance
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Figure 9. Posterior SOM map for intensity VII. The isoprobability lines are numbered with the log return period (return period in years)

of probability estimators, incompleteness of the catalogue, and the mismatch of data to prior assumptions.
Probability intervals for the estimated site occurrence probabilities or return periods can also be estimated.
These parameters measure the reliability of mean annual probability and they show how mean return periods
may be used for engineering purposes.

Incompleteness or inhomogeneity of catalogues is handled in two different ways; by estimating the
variance of zonal occurrence probabilities—equation (3}—and by limiting the span of catalogues for each
intensity and zone. Deviations of data from the prior assumption of homogeneity of the zones produce,
through posterior correction, increments in the variances of occurrence probabilities.

Formula (4) permits the prior site occurrence probabilities to be deduced from the zonal occurrence
probabilities. This formula is an approximation of the true probability, but its performance is very good
when the considered region has a low seismic activity.
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Figure 10. Posterior SOM map for intensity VIII. The isoprobability lines are numbered with the log return period (return period in
years)

The uncertainty of attenuation laws and epicentre locations is not controlled by probabilistic reasoning. It
is avoided by displacing the epicentres some distance closer to the site. These changes in the epicentre
locations tend to increase the site occurrence probabilities; thus, they are conservative assumptions.

The large uncertainty in the occurrence models demands further research in hazard prediction, because the
statistical analysis of the macroseismic data seems to be insufficient in low seismic activity regions.
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REFERENCES

. C. Lomnitz, ‘An earthquake risk map of Chile’, Proc. 4th world conf. earthquake eng. Santiago, Chile (1969).

R. K. McGuire ‘Effects of uncertainty in seismicity on estimates of seismic hazard for the east coast of United States’, Bull. seism. soc.
Am. 67, 827-848 (1977).

C. A. Cornell and H. A. Merz, ‘Seismic risk analysis of Boston’, J. struct. div. ASCE 101, 20272043 (1975).

C. P. Mortgat and H. C. Shah, ‘A Bayesian model for seismic hazard mapping’, Bull. seism. soc. Am. 69, 1237-1251 (1979).

R. K. McGuire, FORTRAN computer program for seismic risk analysis’, U.S.G.S. Open File Report 67-76, U.S.A. 1976.

C. A. Cornell, ‘Engineering seismic risk analysis’, Bull. seism. soc. Am. 58, 1583-1606 (1968).

J. R. Benjamin and C. A. Cornell, Probability, Statistics and Decision for Civil Engineers, McGraw-Hill, New York, 1970.

C. F. Richter, Elementary Seismology, Freeman, San Francisco, 1958.

H. A. Merz and C. A. Cornell, ‘Seismic risk analysis based on a quadratic magnitude-{requency law’, Bull. seism. soc. Am. 63
1999-2006 (1973).

. C. A. Cornell and H. A. Merz, ‘Seismic risk analysis of Boston’, J. struct. div. ASCE 161, 2027-2043 (1975).
J.

Lomnitz-Adler and C. Lomnitz, ‘A modified form of Gutenberg-Richter magnitude-frequency relation’, Bull. seism. soc. Am. 69
1209-1214 (1979). ’

. E. J. Gumbel, Statistics of Extremes, Columbia University Press, New York, 1958.
. L. Knopoff and Y. Kagan, ‘Analysis of the theory of extremes as applied to earthquake problems’, J. geophys. res. 82, 5647-565"

(1977).

. K. W. Campbell, ‘Bayesian analysis of extreme earthquake occurrences. Part 1. Probabilistic hazard model’, Bull. seism. soc. Am. 72

1689-1706 (1982).

. Z. 1. Gan and C. C. Tung, ‘Extreme value distribution of earthquake magnitude’, Phys. earth planet. interiors 32, 325-330 (1983)
. A. Kijko, ‘A modified form of the first Gumbel distribution: Model for the occurrence of large earthquakes. Part I, Derivation of th

distribution’, Acta geophys. Pol. 30, 333-340 (1982).
. A.Kijko, Is it necessary to construct empirical distributions of maximum earthquake magnitudes?, Bull. seism. soc. Am. 74, 339-34
(1984).

. A. Kijko, ‘Extreme value distribution of earthquake magnitude’, Phys. earth planet. interiors 37, 285-287 (1985).
. C. Lomnitz, Poisson processes in earthquake studies’, Bull. seism. soc. Am. 63, 735 (1973).
. D. Vere-Jones, ‘Stochastic models for earthquakes sequernces’, Geophys. J. r. soc., 42, 811-826 (1975).

. S. Shlien and N. Toksoz, ‘A branching Poisson-Markov model of earthquake occurrences’, Geophys. j. r. soc. 42, 49-59 (1975).

. A.S. Patwardhan, R. B. Kulkarni and D. Tocher, ‘A semi-Markov model for characterizing recurrence of great earthquakes’, Bul

seism. soc. Am. TG0, 323-347 (1980).

. A. Kijko and M. A. Sellevoll, ‘Bayesian estimation of seismic parameters for extreme historical and complete instrumental data
Seismo-Series, 7, Seism. Obs. U. Bergen, Norway (1986).

. . Galbis, Catalogo Sismico de la Zona Comprendida entre los Meridianos SE'y 20W de Greenwich y los Paralelos 45N y 25N, Tomos
y 11, Inst. Geografico, Catastral y de Estadistica, Madrid, 1932 and 1940.

_ E. Fontseré and J. Iglésies Recopilacio de Dades Sismiques de les Terres Catalanes entre 1100 i 1906, Fundacié Salvador Vive
Casajuana, Barcelona, 1971.

_ E. Surifiach and A. Roca, Catdlogo de Terremotos de Catalufia y Zonas Adyacentes, 1100-1979, Publicacion de la Catedra d
Geofisica 190, U, Complutense, Madrid, 1982.

. J. Mezcua and J. M. Martinez, Sismicidad del Area Ibero-Mogrebi, Inst. Geogr. Nacional, Publ. 203, Madrid, 1983.

. 1. Mezcua, Catdlogo General de Isosistas de la Peninsula Ibérica, Inst. Geogr. Nacional, Publ. 202, Madrid, 1982.

. E. Surifiach and A. Roca, ‘Sismicidad en la region N. E. de la Peninsula Ibérica’, Rev. Geofisica 41, 23-36 (1985).

. A. J. Martin, ‘Riesgo sismico en la Peninsula Ibérica’, Tesis Doctoral, U. Politécnica Madrid, 1983.

. A. Roca and A. Udias, ‘Sismicidad y riesgo sismico en Catalufia y Pirineos’, Rev. geofisica 35, 183-207 (1976).

. M. Garcia, M. J. Jiménez and A. Kikjo, ‘Seismic hazard parameters estimation in Spain from historical and instrumental catalogues
Paper presented to JASPEI (1UGG), Vancouver, Aug. (1987).

. E. Banda and A. Correig, ‘The Catalan earthquake of February 2, 1428, Eng. geol., 20, 87-89 (1984).



