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Abstract—In recent vears a series of elements based on Reissner—Mindlin assumptions and using discrete
{collocation type) constraints has been introduced. These elements have proved to be very effective,
however their relation to straightforward mixed approximations has not been clear. In this paper this

relationship is discussed and the

reasons for their success explained. This allows new and effective

triangular elements to be developed. The presentation shows the close relationships with the DKT
(Discrete Kirchhoff Theory) element previously available only for thin plates and allows extension of their

applications.

1. INTRODUCTION

e problem of plate bending was one of the first
‘tackled by the finite element method in the early
1960s and yet today it is still subject to much

sesearch, designed to improve the performance of

“bending elements. The subject is of much importance
m structura} engineering and satisfactory solutions of
" plate bending form a necessary prerequisite for the
analysis of shells.
. The original approaches invariably utilized the thin
plate, Kirchhoff theory used in a direct (irreducible)
" manner and immediately encountered the difficulties
" of imposing the C' continuity of shape functions
necessary for the finite element formulation. Later
‘work approached plates directly as an approximation
to three dimensional analysis [1, 2], or, which is equiv-
- zlent, by the use of the Reissner [3}-Mindlin [4], thick
. plate theory. This by-passed the difficulties caused by
" the C' requirement but introduced its own problems
- jmmediately. In particular, locking behavior was
observed as the thickness was reduced and various
" artifices had to be used to eliminate such effects. The
" most successful of these was the introduction of
~reduced or selective integration procedures [5-9].
.However, even this was not generally sufficient
and almost all elements of that type proved non-
robust, failing under diverse circumstances. Other

“.approaches have also been proposed, including the

use of incompatible modes in the description of the
transverse shear strain [10].
The thick plate theory can, of course, be used as a

basis for a mixed finite element approximation if
. shear forces and displacements are approximated

independently. Indeed, the realization of this led
Malkus and Hughes[6] to demonstrate the equiva-
lence of selective integration with a penalized version

of the mixed form. More recently a fuller analysis [11]
of the mixed formulation which is, of course, valid for
both ‘thick’ and ‘thin’ plates indicated why the failure
of “thick’ forms occurs frequently in practice. Indeed,
this analysis showed how successful elements could
be developed and the first fully robust element
based on the direct Reissner—Mindlin approach was
introduced only very recently [121. '

Since 1981, however, a very successfiil approach to
the formulation of elements based on the ‘thick’
theory was developed using smoothed shear strain
fields and concentrated, discrete, constraints[1 3-17].
The relationship of this approach to direct, mixed,
approximation was not, however, clear (at least to the
present authors) and in particular it was not evident
why such elements should be exempt from the various
convergence criteria given infll]. In this paper we
shall attempt to (a) present a comprehensive expla-
nation of various mixed and direct approximations,
and (b) show how the procedures can be applied to
development of new plate elements generally, and to
a triangle in particular.

While the proponents of the thick plate,
Mindlin—Reissner approach were overcoming the
difficulties mentioned above, those approaching the
formulation via the Kirchhoff theory successfully
avoided the C! continuity requirements, by imposing
the Kirchhoff constraints in a ‘discrete manner” {often
referred to as a Discrete Kirchhoff Theory). The
concepts were first introduced as carly as 1968 [18] by
Wempner 2t al., but the development of successful
clements by this procedure has been continuous up to
the present date. References [19-28] list some of the
salient stages of this story. It is evident that this
direction of progress, which we shall term DKT for
short, must be related to the full mixed formulation
with discrete constraints and we shall discuss this
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relationship here. This does indeed prove to be
correct and hence a more unified view of the plate
problems can now emerge.

Before proceeding witk the main toplc of the paper
we would like to point out to the reader that the fields
of applicability of thick and thin plate approxi-
mations are by no means always obvious. Very
recently Babuska and Scapolla [29] showed how, in
an apparently very thin plate (thickness/span equal to
0.01), errors of ca 5% in displacements can occur
between the true behavior and that predicted on the
basis of Kirchhoff hypotheses. For this reason the
approaches based @ priori on thick plate equations,
but which are capable of representing thin forms,
are optimal. It is with such methods that we are
concerned here.

2. THE BACKGROUND THEORY

The thick, Reissner-Mindlin, theory of plates in-
troduces two assumptions which are physically plau-
sible when the thickness is small compared to other
dimensions.

e The first assumption is that the normals to
the mid-surface of the plate before deformation
remain straight after deformation (but do not
necessarily remain normal to it).

e The second assumption is that the stresses
normal to the mid-plane direction (and mdeed
their effects) remain neghg1b!e :

{bi

G. C. ZENKEWICZ et al,

With these assumptions it is possible to deSCnbe ¢
displacements in the plate by the knowledge of
rotations and displacements of the mld-plate

We can thus write

u =z9x(x,y)
v =z8,(x, y)
w=w(x,y),

where 8., 0, and w are dependent only on the to
in-plane coordmates x,y (Fig. 1), and z 5 th
direction normal to it.

The strains in the plate, for planes parallel to "

Fig. 1. Definiticns of variables for plate equations. (a) Displacements and rotations. (b) Stress resultants.

are thus given by the following: and the
a6, o
E,=2Z "ajc- M= I
a6
€= z—a—y
7 ‘Here 1
88, o8, ratio, -
—_ + ——i
i dy  8x
and in the vertical direction
ow
Ve = [9 +— . ] The o
ow
= [6” "% ]
Simils
and 1
Here
facte
conn
Ts
the
mon
el A
S!
T _
t1
mfin







ble to (_ies Oﬁsﬁmtive relations allow all stresses and hence
Mowledas cesultants to be evaluated. For isotropic, homo-
Md'Pléie s, elasticity we have for the bending moments

fined below
ot o
M, = ¢,z dz
J-i2
ferfe
. M}_ = gy zdz
' Jei2
)Ollly on the .
, and i r )
z i M, . G2 dz 4
. .
S paralle]
and the following relations:
I v 0
. Ei? 1 0
=DL4; D= v
M=DLE: B=1a -3 1@
0 2

Here E and v are the elastic modulus and Poisson’s
satio, ¢ the plate thickness and
M= [M,, M,, M,]

87 =[6,. 8} (©)

The operator L follows from eqn (2) as

(2 o]

Ox

M

o2
S ;'[ ,,dz &)
—~rf2
and the constitutive relation is
S=ca@ +Vw], a= KGt. ()]

"Here G is the shear modulus of the material and ka
actor which depends on the plate properties (2
ommonly used value of x is 5/6). : '

Two equilibrium equations need to be added to
‘the above relations. The first relates the bending
“moments to shear forces and is stmply ]

L™ +8=0 (10}

. Tltis of course possible to eliminate 8 and fPeven if o is
nfinite using appropriate differentiation. This leads to the
biharmonic thin plate equations. PR

sultants.
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The second is a statement of lateral equilibrium -

ViS4¢g=0." (11

Various possibilities exist regarding the choice of
variables to be retained in the final equation system
when approximation is to be made. We shall here
retain w, 0, and 8 and write the system as

1L7DL§ +8 =0. (12a)
From egn (9),
és—(s +Vw)=0 (12b)
and repeating eqn (11)
VI8 +gq=0. (12¢)

The equation system forms the basis of a mixed
formulation if 8, w and S are approximated indepen-
dently. The thin plate, Kirchhoff approximation is
simply a limiting case in which & = <0 and eqn (12b)
is then the well-known constraint

6+Vw =0 (13)
This ensures that during deformation the normals
remain normal to the middle plane of the plate.

The formulation of eqn (12) is mixed as it is
possible, by use of eqn (12b), to eliminate one of the
variables, S, from the system when an irreducible
form is obtained. The latter is indeed the basis from
which most thick plate approximations start butas a
finite value of « is needed to perform the elimination
such forms are not available for the thin plate limit.F

It is generally anticipated, however, that the thin
plate behavior will be approximated to as o becomes
progressively larger and tends to infinity. However,
this is not true in most finite element approximations
unless the equivalent mixed form of egn (12} is
solvable, If it is not, singularities and/or locking will
occur. :

- The equation system (12} is frequently interpreted
as 2 minimization of total potential energy defined
as [30] : '

i =l.[ (LO)"D(LO) A
2 Q

+%J Sra“SdQ—Jﬁwqu (14a)
2 Ja

_subject to the constraints given by eqn (12b), i.e.

é S = (8 + Vw). (14b)

This constraint, if directijr gliminated at the above
level, leads to a standard penalized form which we
discussed above; if the constraint is incorporated in






a new functional by means of a Lagrangian multiplier
we shall find the well known Hellinger—Reissner
variational theorem, etc. . .

Other possibilities exist in the solution as we will
show in the next section.

3. THE FINITE ELEMENT APPROXIMATION
TO THE MIXED FORM

If we wish to retain a solution capable of covering
the full rhick and thin range (i.e. not failing
when o = o0}, it is necessary to approximate all the
variables and writet

=N, w=N,# S=N,S (15
In the above, Ny, N, and N, stand for the appropriate
shape functions in the x, y domain, and 8, w and §
are the associated (nodal) parameters.

All possible approximations can be obtained using
suitable weighting functions 28] on the equation
system-(12) and the resulting equation will always be
of the type '

A B 0 0 f,
B” H/x C Si=<43-
o 7T oo W f,

(16)

In the particular case of the approximation arising
via the variational principle the above equation will
be symmetric, but this is not always necessarily so.

In another paper([l1] we have shown that it is
necessary, if an algebraic solution of the system of
eqn (16) in the limiting case when o = oo is possible,
-to satisfy

n0+nw2n3

a7

Rg =R,

where ny, 1, and ng stand for the number of variables
-in each set of parameters @, W and §, respectively.
The above inequalities have to be satisfied also for
various element patches as a condition which is
necessary (although not always sufficient) for conver-
gence {32, 33]. e
In[11] we have examined a number of currently
used elements and found that all failed this stringent
test. Indeed only the element of [23] and an element
introduced more recently by Arnold and Falk [34]
satisfy the above count requirements and indeed

T More general interpolation may be used. For example,

we could write w =N, % + N0 so that displacements for -

transverse displacements involve parameters of the rotation.
This is the form that the thin plate solution uses where the
transverse displacement interpolation involves mnodal
parameters of displacement and rotations {(e.g. Hermite
interpolations). This type of interpolation also results from
application of constraints [31].

1 In fact, the interpolation is not for the shear resultants
- but for the quantity Sfx =7y =shear strain. Results will,
however, still be identical if « is assumed constant.
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‘boundaries these are therefore no longer free parame-.

converge in all circumstances. In Fig. 2 both
elements are shown in a single element patey tee
which displacements on the boundary are either
constrained (Test C) or relaxed to a miniy
straining only the rigid body modes (Test R).Inw
cases these tests are satisfactory passed and the r, ad:
can verify that the same occurs in larger e
assemblies.

Tmeg

4. THE DISCRETE APPROXIMATION ON
ELEMENT BOUNDARIES

The elements developed by Bathe an
Dvorkin [13, 14] and Hinton and Huang[15, 1]
into the general category we have just discussed, b
use a very special shear resultant interpolation.} .

The first efernent of this series is a bilinear quag
lateral, or its special form, the bilinear rectang]
illustrated in Fig. 3. Here S is specified by interpola
ing S, and S, components separately in the mann
shown. :

If the substitution of the above interpolatior i
made in a general formulation obtainable from th
Hellinger—Reissner variational principle (or indes
using the standard Galerkin weighting approxima
tion) we sec immediately that the fully restrains
patch test on a single element fails (as indeed does th
test on element assemblies). :

Now ny =0, ng=4 and n, =0, as shown in Fj
noting that the parameters 8§ are not restrained.
Indeed, the patch test will fail even more dramatical
if an assembly of elements is considered as shown
Fig. 4.

Difficulties can, however, be overcome by the use_
of diserete, collocation-type approximations to egn’
(12b). If the equation appropriate to a particular.
component is satisfied at a single point of the side (by
using Dirac delta weighting) we can write for such
point as A placed in the middle of side 1-2 of Fig.

1 1. dw_01+8; w—#
oC.S'y--c{S},—t9y+ - 2 + 7

(18)

with three similar equations on the other sides.
This immediately ensures that S, is explicitly dete

mined by the two end values of § and # and that their

prescription uniquely determines S, values. On

ters to be taken into account in the patch test. Now
for the single element test n; = 0 and the patch count -
is passed. - : : :
Indeed the unique specification of S‘; by the ezt
values means that at element interfaces such as shown .
in Fig. 4 only a single value of 5, (or §,) is a free
parameter. In that figure it is shown that the patch
test, though not vet completely passed, is much more
closely approximated. .
The idea can, of course, be extended to ",
clude more varjables as shown by Hinton «:md,
Huang [135, 16]. In their element, with bi-quadratic 9“
and w approximation, each of the shear components

- Fig.
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{al
larger 1
' TESTC ng=6 ng=6 n =0 {pass!
TESTR ng = 18-2 = 16 ng =6 n, = 6-1=5 (pass
ON
(b} ° v
f'POL;:lﬁon
tinear qa
€4ar. rectan "
rectangl - TESTC ng=2 ng =2 n, =0 (pass}
TESTR  ng=8-2=6 ng =2 n, = 3-1=2 (pass)

.Fig. 2. Single element patch test count. () Element of[12] (Zieukiewimeefebvre), (b) Element [34]
{2 DOF). 7 Node with S variables (2 DOF). [ Node with w variables

- (Arnold). O Node with § variables
{1 DOF). TESTC {constrained). All 8w prescribed ont boundary. TEST R (relaxed). 28 and 1w variables
- prescribed on boundary. Necessary copdition: #p -+, > 73 1 >,

8 | s

lly restraj o . :
L L (@) ' abkn X
ywn in Fi; o
o b 1 S
. i {fail)

fng =& standard Galerkin)
ng = 0 with collocation @, = 0 {pass)

ias 5y .
shom . TESTR.  ng = B-226 i ng=h n =h-1=3 {pass)

{b)

Fig. 3. The Dvorkin-Bathe element. {a) The element parameters: O & nodes (2 DOF); + §,nodes (1 DOF)
(eliminated at element level); % S, nodes (1 DOF) {eliminated at element level); £1 w nodes (1 DOF). (b
5, at node A, Note: with collocation type of constraint along 1-2 S, at A is determined

w7 — Shape fanction for [
value by 6/w at (1) and (2) and hence not a full parameter. This ensures that the test is satisfied.
er sides. Identified in colioration
Slicitly deter '
nd that the T
. x  &®  x
free parame o) @
:h test. No
x &® x
+ +
I STANDARD WEIGHTING
wh as shows TESTE my=12 ng = 16 n, =1 {Fail)
§"x) is a free TESTR ng = 18-2= 16 ng = 16 n,=91=8 (pass)
at the patch s S m T T ST T
1 11 BOUNDARY COLLOCATION .
TEST € ng =2 ng = & g =1 {Fail)
TEST R fig = 16 ne = 12 n,=8 {pass)

Fig. 4. Four efement patch count test on quadrilateral with S;, §, interpolation (Dvorkin-nBathe' element).
1 Standard weighting. II. Collocation on boundary. Note: (1) the Dvorkin—Bathe element fails this test,
end is suspect in some circumstances {not robust); (2) with collocation § boundary values &re prescribed

by displacements on same line.

Jinton and -
quadratic ¢
somponents
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3
+ + | F ¥
[o¢ x x x|
+ o+ + +
(-a} :+ :+ +x +x
X x x x|
+ + 1+ +
[ a x x|
L
Test fig = 18 Rg = 24
Test R Ng =50-2= 48 Ng = &0
T
(bj K+x - x|
t3 x E 4
L+ +
Test C ng =2 Ng = &
Test R g = 18-2 = 16 ng =12

Fig. 5. Four element (a) and single element (b) patch count test on. the HintonuHué.ng element {two
point boundary coliocation only shown). Note: this is a robust clement as all multiple element patch

tests

is interpolated by placing two nodes on the appropri-
ate sides, as shown in Fig. 5. Though additional
parameters (and collocation points) are placed in the
interior of the element, the parameters on interfaces
are uniquely defined by the ¢ and w lying on those
faces and thus are constrained fuily on the boundary.
This formulation fails the test for a single element but
passes the test for multiple assemblies and is more
robust than the Bathe-Dvorkin version. .

It should be noted that point collocation is not, of
course, the only way to ensure the desired effect. Any
weighting specified only on the element boundaries

- will suffice to achieve this. For instance, requiring
that in the previous example we have L

iy ow .
ﬁ[asy—eymajdrﬂ a9

or indeed specifying collocation points not placed at
the center of an element boundary will be satisfactory
though not necessarily equally accurate. Results
given in Sec. 7 are for a triangular element which
has shear constraints. expressed in- the form of 7
eqn (19). : ‘ '

5. ELEMENT STIFFNESS MATRICES

The discrete constraint equations approximating to
eqn (12b) can be written as ’

le (0] .
ES=Q{W}=Q90+QWW @0

providing the number of constraint relationships is
equal to that of the number of variables S. Here Q

TNote that the interpolation for w may need to be
generalized if it involves nodal parameters w and 8,

passed.

is an easily found matrix and this allows the variables
S to be eliminated from eqns (12a) and {12¢). These
in turn can be discretized by appropriate weighting.
However it is difficult = priori to determine the
weighting which will result in symmetric stiffnesg
‘matrices and for this reason it is convenient to
.Teturn to the variational form given by eqns (14a) and
(14b). _
" Now the variational function of eqn (14a) can be
written in a discrete form and eqn (20), together
with the shear approximations, may be used to
eliminate S, _ '
. We can thus insert into eqn {14a)f
=N, w=N,w (21a)
and '

B 5= ng = aNsEQeé".F Q, ¥ (216}

and. minimize appropriately with respect to the
parameters # and w.

On insertion of the above into the functional we
have immediately

=§f [LN,0F DILN,§] a0 + ] f [N:Q,f
2 . o]
+ NS-QWW]T(I[NS.QGG— + N.S‘wa] dQ
- f [N,#]7 ¢ dQ @2
14} .

and on minimization we obtain

Ky Ky, 7| (@ - f, 23
K, K, [Iwf 1t

JEid
of
tc

b .
It
e
te
ac

al
el
th
aj

fr

q:
fe

al

ta
tc

in






Plate bending elements with

D) + (N5 Q) e (s Q) @

- OBLIQUE COORDINATES

preceding sections have beenl
olé rectangles and a direct interpolation
onents. Of course it is easy
¢ shapes using jsoparamet- .
dinates and to interpolate S;

ment apped coor!
rent ﬁat imilar Way : defining
: - aw
f Y e 24
o S¢ T B ( )]

Gefining Se on element sides will now
‘bt the general algebra will be identical.t
course, be pecessary in the final computa-
“Ze - the components 10 & Cartesian sys-
we ~omit here the details which ‘are
quately scribed in [13-16, 18, 7
NEW TRIANGULAR ELEMENTS :
in the previous section
fiew variants of discretely constrained
e derived. As an example We initroduce
‘triangles which are subsequently tested by
03 to several example problems. Results
test are given in Sec. 9. R

onCepts e;iqi'ptind‘ed ‘

triangle—5ix-node element
er first 2 triangle which isi
The interpolations for the
w, and rotation fields, 0,
ally over the element:

for the mid-side parameters the in

L ,
0=S L&+ 4L, L;AB* 25) g =11
i=1 im1 .
: &= Lz(l + ‘\/3)
B o3 ' A= 258 — e
=3 L+ T ALLA, (26) Gt S
In the above the components of & ar¢ the direction

jel

glevelopment of triangular el

mponents along each edge

s S .

unetion mod(, f) is -equal to’ i—Gl
- - H J

thrnetic is wsed evaluate i[j.

ltustrated in
{ransverse displace-
re assumed to vary
Using hierarchical
terpolations

ements we introduce
which we shall efer

J+j where
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tangent
vectors

J

{e,,
B3y
G

Fig. 6. The new quadratic triapgular plate element. (@) The
parameters; §—12 DOF; &% DOF; S—6 DOF. (b) Area
o coordinates and potation.

where L, are the standard area coordinates, and Af*
and AW* are hierarchical displacement and rotation
parameters at the element mid-sided
j=mod(i, 3} + 1; k=modlj; N+ 1

The interpolation for the transverse shear resultants
i& Jess -obvious. Here six nodal values of shears
paraliel to the sides of the triangle and located at
Galss points as shown in Fig. 62 uniquely define a
linear distribution of shear resultants. chordingly,

we write first

@n

The coefficients S’ can be uniquely determined by
writing equations at the six constraint points and
finally the full interpolation expression defining the

shear resultant shape functions becomied

l‘ S if‘_n €y '—ejy]{glgji“}'gl;ﬁ} (28)
o DAL & 250+ 815 o
where S, and 5, and 5, are the tangential shear

resultants at the W0 points on the j-edge.

0. Fuller details of
dix A. A stiffness
d using eqn (23}
the results are

cosines of the sides 01 which L;=
the derivation are given in Appen
_matrix for this element is compute
and in the numerical examples section

1abeicd TRI-6.







Table 7. Sensitivity test on a clamped, uniformly
loaded plate

(x, y) coordinates w(0,0) Y error

of interior node x 103 (relative)

(3.00, 3.00) 3.35729 0.00 .
(3.25,3.25) 3.35462 0.03
(3.50, 3.50) 3.34660 0.31
(3.75,3.75) 3.33313 0.72
(4.00, 4.00) 3.31356 130
(4.25,4.25) 3.28403 218
(3.00,3.25) 3.35548 0.05
(3.00, 3.50) 3.35318 0.12
(3.00,3.75) 3.35025 0.21
(300, 4.00) 3.34640 0.32
(3.00,4.25) 3.34123 0.48
(3.00, 4.50) 3.33431 0.68
(2.75,3.25) 3.35606 0.04
(2.50, 3.50) 3.35991 0.08
(2.25,3.75) 337107 0.41
(2.00, 4.00) 3.39206 1.04
(1.75, 4.25) 3.42524 202
{1.50, 4.50) 3.47146 3.40

presented may be directly used in standard finite
clement packages. By suitable choice of constraints
" the elements generated pass the mixed patch test and,
thus, do not lock and are not singular in the thin plate
limit. The methodology presented also provides a
unification with previous developments which used
discrete Kirchhoff constraints. - -

New triangular elements are presented and shown
to give good results on a series of standard test

problems. For the limiting case of thin‘plate behavior, -

the DRM element (for discrete Reissner-Mindlin
element) is shown to be identical to the popular DKT
triangle introduced by Dhatt [25]. Unlike the DKT
element, however, the DRM element also may be
used for analysis of ‘thick’ plate problems.

Since interpolation is provided for all the variables
in the formulation the extension to transient, as
well as non-linear .applications is straightforward.
. Furthermore, we believe that the DRM -element
presented is suitable for use with adaptive mesh
refinement schemes. '
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APPENDIX A: TRANSVERSE SHEAR
RESULTANT INTERPOLATION

The interpolation described in Sec. 7 for the transverse

shear resultant is given by

s=7% LS. (A

The & are to be determined by satisfying discrete edge
constraints for the tangential shear resultant [32]. The tan-
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gential shear resultant on side & of the triangle (i.e. the side
where L, =0) is

A S, =S, (A2)
where

&) = [Brer 1) = 1005 Dy sin e, (A3)
and @, is the angle that the tangent makes with the x-axis
(see Appendix B),

Equation (A2) is used at two points on each side of the
triangle to define six independent values of tangential shear
resultant. The two points on cach edge are picked to
correspond ‘to the two-point Gauss values, which on the
interval 0 to 1 (range of each area coordinate) are given by

i) medi- )

Accordingly

(A4)

§k1 = Sy(Lys Lyns L,)= e S(La, Ly» L) (ASa)
where
Li=p., Li=rPv L,;=0

Similarly, for the second point

§k2 = 8(La> Lp» L) =S(Ln, Lﬁa Lkz)‘ek“ (ASD)

with
La=p Lz=p1 Li;=0.
1n the above the i, j, k sequence is given by .(see Fig. 6}

j=mod(z,3)+ 1, k = mod(j, 3)+ 1
Evaluation of equs (A5a) and (A5b) on each edge using

eqn (Al) gives
- (Aéa)

Su=¢e-n 5+ p5).
Similarly, for the second point
Sa=ec(pS+nm 8. (A6Y)

Adding and subtracting eqns {A6a) and (A6D) and simplify-
ing the results we obtain ‘

e S'=28u +8:5e (ATa)
and
e F=8Sut8 Sias (ATD)
where
5= %(1 +J3
g=31-+/3) (A%)

The parametess §' now may be expressed in terms of the &,
and S, using eqn (A7a) directly, permuting the subscripts
on eqn (A7) to correspond to the i value, and writing the

pair of equations
{ek'sﬁ} - {&EH +gz§ia}
ej'si L3t & Sp

Upon noting that

(A9)
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the solution is given by

K _1f e
S“; A —e

where

—eky] {glgkl +gx§ﬂ} (AlD)

-§'}1+31§p

A=e e, —e,e.

Substitution of eqn (All) into eqn (Al) gives the result
presented as eqn (31) of Sec. 7.

For the case in which the tangential shear is to be constant
on each edge we may note that setting

Si0=8u=3a (A12)

results immediately in the results given in egn (32).

APPENDIX B: CONSTRAINT EQUATIONS FOR 5.

The parameters 5, , etc. may be expressed in terms of the
noda! values of the transverse displacement, W, and the
rotations, #, using results in eqn (24) specialized for the
tangential direction. Accordingly,

1_ fow TG AR
35"‘ (‘3 +B)L ke

(Bla)

— )+ %AB“.

1o -
+3 60+ 8+ 37

Simdlarly, for the second point

= # — W — 4037 ) AR
lSk2 aw o)l == W — 437 AR
5 K hk

| T ..
+5ek [0 +6~3"'2(8 —9")]+§AB", (Bib)'_

where #, is the length of the k-side of the element,
The parameter S for the DRM element may be deduces

using eqn (24} in eqn (19). After integration alogg Each-

boundary the result is

1. 2
ﬂs,d,=j ( w+9)dr
o e\

L DU T I JUV
T +§'ek o'+ )+§A6_ 1:3))

The + ambiguity in eqns (B1) and (B2) is due to the fagt
that the direction of the tangential shear must be defined py
a unique direction on each edge of contiguous elemens:
Failure to achieve this results in an inconsistent definition of
the edge incremental rotation degree of freedom, A% Ons
way to overcome this difficulty is to define the direction for
e, in the direction of increasing (global) node numbers for
the end points of each element edge, thus establishing 4
unique value for w,. The sign in eqns (B1) and (B2) is chosen
to be positive if the direction of e, corresponds to that for
constructmg the boundary integrals, otherwise a negatwe
sign is imserted.

The construction of Q, and Qg in eqn (21b) is obtained
by a systematic use of eqn (B1) or {B2) and noting that the
shape functions for shear are given by the area coordinates,
L;, as shown in eqn (Al).

The result for 2 DKT element can be obtained by setting
eqn (B2) to zero and expressing each AG* in terms of the
nodal parameters at each vertex of the triangle. The result-
ing element has nine degrees of freedom (three at each node)
and is identical to the results given in [20, 21, 25].
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