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Abstract

Powder metallurgy (P/M) is an important technique of manufacturing metal parts
from metal in powdered form. Traditionally, P/M processes and products have
been designed and developed on the basis of practical rules and trial-and-error
experience. However, this trend is progressively changing. In recent years, the
growing efficiencies of computers, together with the recognition of numerical sim-
ulation techniques, and more specifically, the finite element method , as powerful
alternatives to these costly trial-and-error procedures, have fueled the interest of
the P/M industry in this modeling technology. Research efforts have been devoted
mainly to the analysis of the pressing stage and, as a result, considerable progress
has been made in the field of density predictions. However, the numerical simula-
tion of the ejection stage, and in particular, the study of the formation of cracks
caused by elastic expansion and/or interaction with the tool set during this phase,
has received less attention, notwithstanding its extreme relevance in the quality of
the final product.

The primary objective of this work is precisely to fill this gap by developing a
constitutive model that attempts to describe the mechanical behavior of the powder
during both pressing and ejection phases, with special emphasis on the representa-
tion of the cracking phenomenon. The constitutive relationships are derived within
the general framework of rate-independent, isotropic, finite strain elastoplasticity.
The yield function is defined in stress space by three surfaces intersecting non-
smoothly, namely, an elliptical cap and two classical Von Mises and Drucker-Prager
yield surfaces. The distinct irreversible processes occurring at the microscopic level
are macroscopically described in terms of two internal variables: an internal hard-
ening variable, associated with accumulated compressive (plastic) strains, and an
internal softening variable, linked with accumulated (plastic) shear strains. The
innovative part of our modeling approach is connected mainly with the character-
ization of the latter phenomenological aspect: strain softening. Incorporation of a
softening law permits the representation of macroscopic cracks as high gradients
of inelastic strains (strain localization). Motivated by both numerical and physical
reasons, a parabolic plastic potential function is introduced to describe the plastic
flow on the linear Drucker-Prager failure surface. A thermodynamically consistent
calibration procedure is employed to relate material parameters involved in the
softening law to fracture energy values obtained experimentally on Distaloy AE
specimens.

The discussion of the algorithmic implementation of the model is confined ex-



clusively to the time integration of the constitutive equations. Motivated by com-
putational robustness considerations, a non-conventional integration scheme that
combines advantageous features of both implicit and explicit method is employed.
The basic ideas and assumptions underlying this method are presented, and the
stress update and the closed-form expression of the algorithmic tangent moduli
stemming from this method are derived. This integration scheme involves, in turn,
the solution at each time increment of the system of equations stemming from a
classical, implicit backward-Euler difference scheme. An iterative procedure based
on the decoupling of the evolution equations for the plastic strains and the internal
variables is proposed for solving these return-mapping equations. It is proved that
this apparently novel method converges unconditionally to the solution regardless
of the value of the material properties.

To validate the proposed model, a comparison between experimental results
of diametral compression tests and finite element predictions is carried out. The
validation is completed with the study of the formation of cracks due to elastic ex-
pansion during ejection of an overdensified thin cylindrical part. Both simulations
demonstrate the ability of the model to detect evidence of macroscopic cracks, clar-
ify and provide reasons for the formation of such cracks, and evaluate qualitatively
the influence of variations in the input variables on their propagation. Besides, in
order to explore the possibilities of the numerical model as a tool for assisting in the
design and analysis of P/M uniaxial die compaction (including ejection) processes,
a detailed case study of the compaction of an axially symmetric multilevel part in
an advanced CNC press machine is performed. Special importance is given in this
study to the accurate modeling of the geometry of the tool set and the external
actions acting on it (punch platen motions). Finally, the potential areas for future
research are identified.
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Chapter 1

Introduction

1.1 Motivation

It is a widely known fact that technical progress develops faster than the corre-
sponding science. For example, the wheel was invented thousands of years ago, yet
it was not until relatively recent times that we possess the mathematical knowl-
edge to understand its intricacies and predict its behavior. Likewise, magnificent
cathedrals were designed and raised in the Middle Ages without the support of any
predictive engineering theory, but rather based on observations of performance of
earlier constructions.

The powder metallurgy industry is perharps one of the technology-based indus-
tries in which this paradox is more pronounced. Not even a single step of the P/M
processes has been susceptible to theoretical prediction in the past [100]. Trial-and-
error processes and accumulated practical experience have been traditionally the
principal source of useful information for designing the tool set and the fabrication
route. The bewildering complexity of the material behavior, that, during the press-
ing stage, evolves from a free-flowing powered state to an extremely brittle solid
form, not to mention the difficulty in accurately controlling the performance of the
compacting press - especially before the advent of advanced CNC press machines -
have helped to create the impression that the manufacturing by P/M techniques of
free-defect green parts with both the required dimensions and mechanical properties
is an art mastered only by a few experienced, skilled practitioners.

The last two decades have witnessed a gradual reduction of this lag between
practice and theory in the P/M industry. The general availability of fast com-
puters with large memories, together with the recognition of numerical simulation
methods, and more specifically, finite element-based technologies, as indispensable
design tools in other engineering fields, has stimulated the development of phe-
nomenological models that attempt to replicate the behavior of the powder during
the compaction process. Although considerable progress has been achieved, espe-
cially in the prediction of density, the existing modeling tools have not matured to
a point where numerical simulations can completely replace trial-and-error proce-
dures. There is still a long way to go before this desirable goal is reached. Aside

1
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from computational cost barriers, which, due to the ever increasing storage ca-
pacity and speed of computers, will be gradually surmounted as time progresses,
one of the main deficiencies that limit extensive take-up of simulation by industry
[13] is the inability of the existing simulation softwares to predict the formation
of cracks during the compaction process. The route to identify cracks in com-
putational simulations made with conventional finite element-based models is by
scrutinizing density distributions, so as to find “suspiciously” intense gradients
that may indicate the presence of shear cracks. However, a substantial part of
the cracks detected in green compacts is generated during the pressure release and
ejection stages. Density distributions remain practically unchanged during these
process steps and, therefore, examination of density fields can hardly reveal these
post-pressing defects.

Crack prevention is one of the major concerns of P/M manufacturers, specially
for ferrous structural parts. When, upon visual or microscopic inspection of the
green compact, a crack is detected, it often takes painstaking efforts to clarify
the root cause of the crack so that corrective measures can be taken. If the part
is conventional, the P/M designer has the benefit of an inventory of previously
manufactured, similar parts to consult for relevant information. However, if the
part is unconventionally complex, the design cannot be thoroughly guided by past
experience, and the only solution is to undertake costly -they may involve the
changeover of the entire tool set or elements thereof- and time-consuming trial-
and-error procedures. Accordingly, to come into line with the demands of the P/M
industry [13], the simulation tool should have the ability of not only predicting final
density distributions, but also anticipating with a certain degree of accuracy the
integrity (presence of cracks) of the part after ejection. This would undoubtedly
contribute to consolidate a philosophy of design more rational and not exclusively
grounded on practical rules and experience.

The above considerations, together with the ever appealing, exciting and re-
warding challenge of delving into relatively unexplored topics, constitute solid,
compelling reasons to pursue this line of research .

1.2 Objective and scope

The central goal of this work is to construct, validate and implement in a finite
element program a constitutive model that attempts to describe the mechanical be-
havior of metallic powders in cold die compaction processes, including both pressing
and ejection stages, with special emphasis on the representation of crack formation.
Constitutive equations for the powder are derived within the general framework of
rate-independent, isotropic, finite strain elastoplasticity. Although, in principle,
these equations can be applied to any powder composition, the calibration pre-
sented here is carried out on the basis of a ferrous alloy. On the other hand,
the discussion of the mathematical structure underlying the algorithmic solution is
confined exclusively to the time integration of the constitutive equations (stress up-
date and algorithmic tangent moduli). General details of the global finite element
implementation, such as the spatial discretization of the momentum equation, are
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omitted.
However, the research is not limited to the development and validation of the

constitutive model for the powder. In the last part of the work, we adopt a more
technical perspective, and explore some relevant aspects of the performance of CNC
press machines. The aim in regarding the problem from this broader perspective is,
on the one hand, to convey the relevance of accurately characterizing the tool set and
the external loads acting on it - the boundary conditions of the governing differential
equations -, since ignorance or unawareness of basic details in this respect may cause
errors far overshadowing those introduced by deficiencies in the constitutive model
or in the corresponding algorithmic solution procedure, and, on the other hand, to
evaluate the possibilities of the proposed finite element-based model as a potential
tool for assisting in the design and analysis of PM uniaxial die compaction processes
(including also the ejection phase and the formation of cracks during this process
step).

1.3 Modeling viewpoint

The first step towards the modeling of any process is to settle the target system
whose behavior is represented. This system, if complicated, may be aggregated into
several sub-systems, each one of them having its own sub-model. The accuracy in
the characterization of each sub-system depends on the scope of the model, giving
more emphasis to those phenomena we are interested in. In our case, the main
goal is to analyze the formation of cracks during the manufacturing of P/M parts.
Experimental results show that cracks can be formed at any point during the P/M
process, but are primarily formed during the pre-sintering stages [112]. The pre-
sintering stages refer to the pressure release, ejection and post-handling of the
green specimen. Those operations are often the weakest link in the manufacturing
process. Even if the compaction route has been optimal, an improper movement or
layout of the tooling may lead to a mechanical deterioration, or eventually, fracture
in the specimen. Therefore, our target system must include at least two sub-systems:
the powder (raw material) and the tooling . The global model must be capable of
describing the behavior of both sub-systems and their interaction with the optimal
(from an industrial point of view) degree of detail. Other components involved in
the process are excluded or substituted by some external actions. For instance,
punches move driven by the action of mechanical or hydraulic devices, but for
practical reasons the action of these devices is reduced to a uniform displacement
of the boundary punches or a distributed pressure over them.

1.3.1 Powder sub-system

The behavior of the powder sub-system could be explained typically by two different
approaches: the micro-mechanical and the macro-mechanical approaches. The first
approach attempts to study the physics of each individual grain. Such a framework
encompasses the local behavior between the particles, such as contact, sliding,
crushing and segregation. In the second approach, the macro-mechanical, one
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considers the powder system as a continuum medium occupying a certain region
of physic space. In this approach, we agree to ignore the discrete composition of
the powder. The continuum concept of matter allows to ascribe field quantities
associated with the internal structure such as density and stress to each and every
point of the region of space which the body occupies [65].

Continuum approach versus micro-mechanical approach

It may be tempting to use the micro-mechanical point of view for describing
the crack phenomena since fracture could be interpreted directly as a break in the
interparticle bonds between powder grains. This idea, although elegant, at this time
suffers from the limitation that the particle-level response is difficult to measure
and characterize [30]. Furthermore, the discrete nature of the powder gives rise
to difficulties in applying such models because a representative part of a realistic
problem will comprise many millions of particles. Micromechanical models, under
the assumption of powder particle sphericity, have been developed only for the early
stages of compaction. Models for the later stages of compaction, when the porosity
is closed and the material approaches full density, are less well developed within
this approach [22]. In the pre-sintering stages e.g., ejection, in which cracks are
likely to occur, the behavior resembles that of a consolidated solid, for which the
macro-mechanical or continuum approach is well-established. For this and other
practical and computational reasons, we adopt the macro-modeling, also termed
phenomenological, approach for the powder sub-system. The other sub-system in
study, the tooling, will be also analyzed from the continuum point of view.

As mentioned above, the continuum or phenomenological approach enables us
to define certain field quantities, such as density, stress and velocity, that describe
the behavior of our system Establishing mathematical relationships between these
relevant variables is the next step in the definition of the model. We have to dis-
tinguish between the fundamental equations or balance principles, based upon uni-
versal laws of physics such as the conservation of mass and the principles of energy
and momentum, that hold for any continuum body, and the so-called constitutive
equations, specific for each material. Such is the importance of these constitutive
relationships that the modeling process is often reduced to the establishment of
these equations, therefore referred to as constitutive models.

1.3.1.1 Basic aspects of the constitutive model for the powder

The bulk of this work is devoted to the development of constitutive equations for
the powder sub-system. We will make no attempt to define a constitutive law that
covers a wide range of loading situations. Such an effort would lead to unnecessarily
complex relationships containing a large number of state variables and material
parameters difficult to validate experimentally. Rather, we restrict ourselves to
the case of cold compaction, which takes place in a temperature range, generally
at ambient temperature, within which deformation mechanisms like dislocation or
diffusional creep can be neglected (purely mechanical problem) [100]. We consider
that the loose powder is confined in a cavity defined by a set of rigid punches,
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core rods and dies. It is common to assume homogeneous fill density distributions,
except for the case of multilevel parts, in which this assumption does not seem
to reflect reality, and it is convenient to define different packing densities for each
thickness level [52]. This partial homogeneity supposes a reduction of the spectrum
of cracks detectable by the proposed model. Description of cracks due to impurities
or air entrapment will fall beyond the scope of our phenomenological approach.
Furthermore, although it is known that small anisotropy develops locally at high
densities, it is assumed here that the compacted powder remains globally isotropic
during the whole process [20]. The material rate-independence hypothesis is also
applicable provided that punch velocity is not too high.

A common representative feature of the compaction behavior of different kinds
of powder is that large irrecoverable deformations take place during pressing, re-
gardless of the different types of densification mechanisms that may operate. In
particular, compaction of metal powders results mainly from plastic deformation
of the particles [95]. We shall thus adopt an elasto-plastic model, defined by a
multisurface yield function which evolves as the material deforms plastically. In an
isothermal problem, the (stress) response at any point is uniquely determined by
the deformation history, or equivalently, by the current values of the deformation
(external variable) and a finite set of internal (or hidden) variables, which are ther-
modynamic state variables that are supposed to describe aspects of the internal
structure of the powder[46]. In our case, the evolution of the internal variables
must capture at least two phenomenological aspects:

I. Increase of strength under increasing compressive loads (strain hardening).
From a micro-structure point of view, when a pressure is applied to the loose
powder confined in the die cavity the fraction of large voids or packing de-
fects is reduced by restacking events. As the particle contacts become flat-
tened by elastic and plastic deformation, the frictional forces are increased
by cold welding and interlocking of rough particle surfaces, resulting in a
higher macroscopic strength [100]. We shall follow the conventional con-
tinuum models that use density as the internal variable to account for this
hardening phenomenon.

II. Limited strength when subjected to tensile or shear stress state. Interparticle
welding or bonding are weak compared with the sintered fully dense material.
Tensile forces, lateral shear forces or a combination of these two types may
pull apart powder particles that have been locked together during compaction.
In our constitutive model, this debonding process will be reflected by the
diminishing of a cohesion-like macroscopic variable.

The description of the first phenomenological aspect (hardening behavior under
compressive stress states) has been privileged in the literature, due to its relevance
within the consolidation process [2, 37, 22, 52]. Earlier studies in this field at-
tempted typically to establish empirically pressure-density relationships for several
powders. The main ingredient in the constitutive model reflecting this aspect is
a cap yield surface (typically elliptic) which bounds the elastic behavior domain



6 1. Introduction

and expands in the stress space according to a specific hardening rule. Previous
works of Oliver, Cante, Weyler et al. [109, 16, 81] constitute the base of our model
concerning this aspect.

Modeling of the cracking phenomenon: strain localization

Less attention has been devoted to the second phenomenological feature, closely
related to the onset and formation of cracks. The use of a failure surface, that
represents the limit stress states beyond which fracture of the powder compact
may occur [21], to capture the nonsymmetry in the compressive-tensile behavior is
well established. A growth in the macroscopic cohesion ruling the failure surface
is expected when yielding occurs on the cap surface [31]. But there is still lack of
agreement of how this surface evolves in stress space when yielding occurs on it.

In some models [55, 16, 109] the failure envelope remains fixed and the me-
chanical strength during plastic straining on this surface does not change (null
softening). But one may introduce in the model a deterioration of the mechanical
properties via a strain softening law [59, 26]. It is well known that in materials
exhibiting such a behavior, concentration of strains in narrow bands, the so-called
strain localization, may arise. The strain-localization phenomenon has frequently
been envisaged as a way to model displacement discontinuities [75] and therefore,
it could be also interpreted as the presence of a macroscopic crack in the affected
band. This continuum approach of crack formation is known as the smeared crack
approach. The nucleation of each individual crack is translated into a deterioration
of the mechanical strength in the affected area, thus “smearing out” the cracks over
the localization band [11].

There are other methodologies for tackling the modeling of fracture process.
Fracture mechanics uses discrete approaches wherein jumps in the displacement
field across a discontinuity interface are introduced along with propagation and
crack growth direction criteria [66]. Bridging the gap between discrete techniques
and the smeared crack approach -in which the intense strain gradient in the lo-
calization band is translated into a weak discontinuity in the displacement field-,
the Continuum Strong Discontinuity Approach (CSDA) appears as a strategy in
which, on the basis of continuum constitutive models (stress vs. strain), the multi-
scale character of the underlying problem is taken into account by decomposing the
displacement field, in the localization band, into a continuous and a discontinuous
part [75, 76, 91].

However, the aim of modern non-linear Fracture Mechanics and the hybrid
technologies developed under its influence is to give a detailed insight of the crack
formation phenomena. A physical discontinuity (an initial crack or a flaw) is typ-
ically assumed to exist from the onset and the attention is focused in how the
presence of such defects affects the mechanical properties of the component under
characteristic loading conditions. Questions such as what is the largest sized crack
that a structure or mechanism can contain for failure to be avoided or how long
before a crack which was safe becomes unsafe have to be answered [72]. Our objec-
tive is slightly different. It is not relevant for our purpose to analyze under which
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conditions a defective component will fail during its performance in service. Our
attention is focused only on intermediate manufacturing operations (compaction
and die ejection). If any sign of cracking is detected at the end of these operations,
the product will be rejected for the following sintering stage, regardless of how the
defect was formed. Our phenomenological description, thus, must capture any evi-
dence of macroscopic cracking but without the necessity of giving an accurate and
detailed description of the growth conditions. A reasonable similarity between the
crack (diffuse) pattern predicted by the model and that observed experimentally
would suffice to consider the prediction as reliable.

Taking into consideration all these factors, the smeared crack model turns out to
be the more appealing approach due mainly to its conceptual simplicity. We have
to bear in mind that our description attempts to give a unified framework for both
the compaction and the failure phenomena, which may overlap during the pressing
stage if the consolidation route is not optimal. In the smeared crack model, both
constitutive laws (compaction and failure) have the same structure and its unified
manipulation does not imply any significant difficulty.

One of the weakest aspects of the smeared crack approach is that the width of
the localization zone is not well defined and the energy dissipation within this zone
can not be uniquely determined [58]. This problem may be circumvent to some
extent by the introduction, in the constitutive equation, of a characteristic length
depending on the spatial discretization, so as to ensure conservation of the energy
dissipated by the material upon mesh-size refinements [74].

References in the literature to the use of continuum constitutive softening laws
to capture strain localization in powder metallurgy processes are relatively scarce.
Coube and Riedel [26] consider the possibility of softening by making the cohesive
strength and cohesion slope of a Drucker-Prager yield criterion state dependent
variables. Lewis and Khoei [59] study the prediction of localization phenomenon
at the final stage of compaction by applying an isochoric (Von Mises) yield crite-
rion. However, none of these works deals with the characteristic length concept
above mentioned. Furthermore, in Coube and Riedel the evolution equations of
the variables governing the failure surface are derived without acknowledging the
thermodynamic requirement of positive dissipation, and in Lewis and Khoei the as-
sumption of a Von Mises yield criterion introduces a symmetry in the compressive-
tensile behavior which is unrealistic for the characterization of a green compact.
It is worth mentioning the experimental work carried out by Jonsén [48] which
provides fracture energy values measured in diametral compression tests. These
fracture energy values (which are strongly density dependent) will be used in our
model to calibrate the softening law.

1.3.2 Tooling sub-system

The other major feature of our global system is the tooling. In the pressure-
assisted forming operations, one usually distinguishes between axial (die) pressing
and isostatic pressing. In axial pressing, which is by far the most widely used
method and is considered as the conventional technique, the powder is compacted
in rigid dies by axially loaded punches. In isostatic pressing, pressure is applied
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from all directions against the powder that is contained in a flexible die [39]. In
this work, we will focus our attention on the former process, the axial pressing (or
axial die compaction) technique. In the axial pressing technique, the term tooling
(or tool set) refers to the set of upper and lower punches, die and core rods used for
forming the powder into the required shape. The die normally controls the outer
peripheral shape and size of the compacting part. Core rods are extensions of the
die that controls the inner peripheral shape and size of the part. Upper and lower
punches carry the full load of the compressive force required to compact the PM
part.

Rigid versus elastic characterization of the tooling

The tooling set is frequently referred as “rigid tooling”, emphasizing that tools
undergo negligible dimensional changes in comparison with the powder confined
in the cavity. This large difference between the deformability of the tools and the
powder material, aided by simplicity reasons, has motivated classically a rigid body
characterization of the tooling sub-system. The rigidity of the tools implies that
the top and bottom faces of the punches undergo the same displacement. This
assumption constitutes a source of discrepancies when fitting experimental data
for a given pressing kinematics, since punch strokes do not correspond exactly
with displacements of punch faces in contact with the powder. But it is in the
subsequent pressure release and ejection stages when the deformation of the tool
equipment becomes crucial and cannot be ignored. The die experiences some lateral
expansion during compaction, and a certain amount of potential (elastic) energy is
stored in the die. When the desired position is reached, the pressing punches are
withdrawn and the pressure applied by the mechanical or hydraulic press tends to
zero. However, due to the elastic recovery of the die, the compact is held back in the
cavity die, and friction with die walls obliges to exert an external upward force for
stripping the trapped part from the cavity. Considerable tensile and/or shear stress
states, and consequently fracture, may take place in some critical points of the part
if the stripping movement is not designed properly (tooling misalignment, uneven
tooling deflection, non-simultaneous tool ejection timing, etc.). Thus, taking into
account the deformation of the tooling is vital for capturing the onset and formation
of cracks during the pressure release and ejection processes. A purely rigid die
cannot possess deformation energy and, hence, cannot do work on the compact
after the punch removal. As a result, the radial pressure acting upon the die wall
would tend to zero as the punches are removed and the compact could be stripped
from the cavity without any effort, which is physically unrealistic.

Tool design and production is a highly specialized field in itself. Exploring
phenomena such as wear on die walls, fatigue, buckling in long thin-walled punches,
etc. goes beyond the scope of this work. We will assume that the tooling sub-system
is composed of continuum elastic bodies. The action of the mechanical or hydraulic
press will be replaced by a boundary displacement or a distributed pressure over
the punch faces in contact with clamp rings. Stationary punches will be modeled by
imposing zero displacement on the punch faces contiguous to supports. The longer
punches deform more elastically than the shorter ones when subjected to a load.
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Hence, considering the actual dimension of the punches is also crucial, since uneven
punch deflections is a common cause of cracks in the pressure releasing stage.

1.3.3 Interaction powder-tooling

Our systemic modeling setting ends up with the definition of the interaction be-
tween the components (powder and tooling) of our global system. Magnetic, electric
or thermal effects are omitted in our approach and, thus, only a purely mechanical
interaction is considered. The choice of phenomenological continuum approaches
for both the powder and the tooling places a limit in the precision to resolve the
mechanical behavior in the contact interface. The rough microscopic character of
surfaces in contact will be ignored, and they will be treated as smooth surfaces.
Contact condition in the normal direction will be imposed by enforcing the purely
non-penetration geometrical constraint, leaving aside thus any attempt of mod-
eling normal contact via a constitutive relation stemming from micromechanical
analyzes.

Relative tangential movement on the contact interface demands more insight,
since density distributions on compacts are seriously affected by the frictional forces
developed at the die wall.Of equal importance is the friction between the green
compact and the die wall during the ejection of the compact from the die, which
may generate a pull off force and high tensile stress on the compact [112].

In our approach, the underlying dissipative events occurring on the contact in-
terface are characterized macroscopically by a classical dry friction model, which
comprises a set of evolution equations derived in analogy with elasto-plastic consti-
tutive laws (splitting the tangential relative displacement into a stick-elastic part
and a slip-plastic part [110]).

1.4 Outline

The remainder of this text is organized in five chapters. Chapter 2 is entirely
devoted to the derivation of the constitutive equations that describe the powder
behavior. The introductory section 2.1 is provided to aid the reader unfamiliar with
continuum fracture mechanics to grasp the notion of strain localization, crucial to
understand how an inherently discontinuous phenomena as cracking can be repre-
sented by a continuum approach. Section 2.2 gives a brief account of large strain
kinematics. The formal thermodynamic framework for the construction of the con-
stitutive equations is established in section 2.3. The remaining sections of chapter
2 discuss the details of the elastic and plastic responses, including the stress-elastic
strain relationship, yield criteria, flow rule and the hardening and softening laws.

In order not to interrupt the continuity of chapter 2, the consistency of the
proposed constitutive model with the second law of thermodynamics is discussed
in appendix C. For similar reasons, lengthy mathematical derivations have been
relegated to appendix A.1. A remark concerning notation is in order here. Whereas
in chapter 2 (and also in chapter 3) , direct notation is predominantly used, in ap-
pendix A.1, both direct and indicial notation are employed. The convention index
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adopted in this appendix follows Marsden and Hughes [63], in which the nature
of the tensorial quantity (covariant-contravariant) changes depending of the place-
ment of the suffix (superindex or subindex). Considering that our developments are
embedded in the setting of a cartesian representation, to some readers, such a re-
fined, admittedly convoluted notational scheme might seem utterly pretentious and
unnecessary. However, rather than pretentiousness or extravagant claims to gener-
ality, we adopt this notation because, in our opinion, it enables us to go through
some subtle steps of large strain plasticity theory that very often are inadvertently
overlooked when using simpler notational schemes.

Appendix B is also connected with the contents of chapter 2. It contains an
analytical study of the frictionless compaction of a cylindrical specimen. This ap-
pendix will allow the reader not steeped in the intricacies of large strain plasticity
to gain some insight into this theory and acquire familiarity with terms like defor-
mation gradient, rate of deformation tensor or plastic flow rule, which certainly are
not of common usage in the daily engineering practice.

Chapter 3 deals with the time integration of the constitutive laws. In section
3.1, the basic ideas underlying the implicit-explicit (IMPLEX) integration scheme
and the arguments in support of such non-conventional method are provided. Sec-
tion 3.2 discusses the solution of the return-mapping equations, and in section 3.3
the stress update and algorithmic tangent moduli expressions stemming from the
IMPLEX scheme are presented. The derivation of the algorithmic tangent mod-
uli takes tedious algebra and hence is addressed in appendix A.4. Those readers
not actively involved or interested in the numerical implementation of the model
can perfectly skip chapter 3. However, they are advised to, at least, skim the
chapter and read the brief overviews given at the outset of each section, so that
they can capture, without the finer detail, the essence of the proposed integration
procedures.

Chapter 4 is concerned with the assessment of the formulation and numerical
implementation of the model. First, an abridged overview of some aspects of the
global numerical implementation are provided in the introductory section. The two
remaining sections present the example used for the validation, namely, a Brazilian
or diametral compression test and the pressing and ejection of a thin cylindrical
part.

Chapter 5 contains a detailed case study of the compaction of an axially sym-
metric multilevel adapter in an advanced CNC press machine. Sections 5.1 and 5.2
concentrate on the modeling of the tool set and the external loads acting. Section
5.3 deals with the simulation of the pressing stage; the effect of innacuracies in
the input data in terms of final density distribution receives special attention. The
question of optimization of the pressing sequence is addressed in section 5.3.3, and
the analysis of the ejection process is discussed throughly in section 5.4.

Finally, Chapter 6 provides some concluding remarks and identifies areas for
future research.



Chapter 2

Continuum modeling of the
powder behavior

In the previous introductory chapter, the breaking up of the global system into its
parts and the more relevant observable occurrences were described. We detailed
there briefly the phenomenological aspects of the powder sub-system relevant to our
goal, namely, the work hardening tendency of confined powder at high pressures,
and the initiation and growth of cracks in localized zones due to inappropriate
compaction schemes or improper tooling deflection. In this chapter, we first present
(section 2.1) a brief overview of the analysis of these phenomena, with emphasis
placed on the characterization of failure. To this end, we consider two simple tests:
the double compaction of a cylindrical part, for describing the hardening behavior,
and the tensile test, for analyzing the fracture phenomenon. Both tests allow a one
dimensional representation of the above-mentioned phenomenological features and
provide a fairly comprehensive introduction without requiring further insight into
the mathematical background.

In the remainder of the chapter, attention is restricted to the development of
a formal framework for describing mathematically the abovementioned physical
events observed in the powder sub-system. Although the origins of these physical
changes are to be sought in microstructural aspects, our analysis is based on the
continuum approach and consequently we ascribe these physical changes to the
relative motion of continuous distributed portions of material (continuum particles).
Section 2.2 is devoted thus to carry out a purely kinematic analysis by providing
adequate means of measuring the status of deformation at a given particle without
concern of the exterior factors provoking such deformation. Since thermal effects
are ignored, it is evident, therefore, that physical properties associated to a particle
of the medium are solely determined by the history of deformation at this point.
To judge whether a particular deformation process induces permanent changes in
the physical structure of the medium or not, the history of deformation path for a
material point at a fixed instant is related to the stress state via the constitutive
equation or constitutive law. Roughly, if the stress in a given point of the medium

11
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is beyond a critical value, mechanical properties vary permanently in a fashion
dictated by the constitutive equation. From section 2.3 onwards, we concentrate
on deriving the proposed constitutive model for the powder.

In order to preserve the phenomenological character of our discussion, math-
ematical derivations and concepts which are not crucial for the understanding of
the underlying physics, yet may be relevant for a deeper and detailed analysis, are
relegated to Appendix A.

2.1 Phenomenological aspects within a one dimen-
sional setting

2.1.1 Densification phenomenon

In the double compaction of a cylindrical part (figure 2.1), the powder is compacted
by applying simultaneously an equal amount of pressure and movement by both
the upper and lower punches. The compaction pressure Pu is defined as the force
exerted by the punches, divided by the cross section of the compact perpendicular
to the pressure direction. An overall mathematical characterization of the harden-
ing phenomenon is provided by the so-called compressibility curve (average density
against compaction pressure). It describes the extent to which a mass of powder
can be densified by the application of pressure. Physical mechanisms of deforma-
tion indicate an increasing resistance of the compact against further densification,
and this is translated in the compressibility curve into a steadily decreasing slope
approaching asymptotically a final density (see figure 2.1c), referred as full density,
which is below the theoretical density of the sintered material.

Die surface roughness reduces the extent of bulk particle movement and a lower
density is attained in regions furthest away from the pressing punches. These gra-
dients in the axial direction can be estimated easily by means of a one dimensional
analysis, which is commonly used for calibrating some useful parameters, such as
the friction coefficient [83]. All variables are considered constant over the cylindri-
cal cross section. The radial pressure exerted on the die wall by the compact is
related to the axial stress in each cylindrical section through a constant ktr, some-
times referred as pressure transmission coefficient [31, 28], which takes always a
value less than one. Frictional forces developed at the die wall are accounted via a
typical Coulomb law. A force balance on the infinitesimal slice of height dz shown
in figure 2.1 yields

πR2(−p(z + dz) + p(z)) + (2πRdz)τfr = 0, (2.1.1)

where p is the axial pressure, R is the radius of the cylindrical part, z is the axial
coordinate and τfr is the tangential stress due to the interaction with the die wall.
Taking a uniform friction coefficient µ throughout the contact surface, we arrive at
the boundary value problem

dp

dz
=

2πktr
R

p(z), z ∈ [−L
2
,
L

2
], p(|L/2|) = Pu, (2.1.2)
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Figure 2.1 Two step compaction procedure. (a) Pressure distribution (b) Density dis-
tribution f(c) Compressibility curve

whose solution is the symmetric exponential function, shown in figure 2.1a,

p(z) = Pue
− 2µktr

R (L/2−|z|). (2.1.3)

Thus, axial pressure on the powder mass decreases with increasing distance to the
face of the pressing punches, attaining its minimum at z = 0. Density distribution
presents a similar profile, as illustrated in figure 2.1b. The extent of these gradients
is promoted by the length to diameter ratio h/2R and by friction between die and
powder, which assesses the importance of reducing both factors in the common
practice of green compact manufacturing.

2.1.2 Cracking phenomena and their modelling

Prior to proceeding with the analysis, it is worthwhile to point out some notions
about the terminology used for describing the phenomenon we are interested in.
In the context of the manufacturing of green compacts, we consider a source of
failure any defect that either motivates the rejection of the compact, or remain in
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the part after sintering and affects the final properties and performance. Hence,
the situation of failure is relative to a particular material and its technical aspects.
For instance, for structural P/M materials, a high level of porosity is considered
as a defect due to its undesirable effects on mechanical properties, whereas for
self-lubricant parts, porosity is crucial for meeting their oil retaining requirements.
Defects in green compacts span a wide range of imperfections. They may be very
visible to the naked eye or very fine and extremely difficult to detect. Cracks
are the most common defects. The classical conception of crack entails the onset
and propagation of microdefects along a discontinuity line, which is not necessarily
straight or smoothly oriented [3]. Other representative defects, whose definitions do
not fit completely into the above-mentioned conception of crack, are the crumbling
of the edges and corners of the compact and the appearance of surface bulges,
due to inadequate removal of air during the compaction [43]. On the other hand,
fracture implies the breaking of the compact into two or more parts and it is
induced mainly by cracking. With some abuse of terminology, we occasionally may
use indiscriminately throughout the text the terms cracking, fracture and failure
to refer to the appearance of any evidence of mechanical damage.

In order to describe mathematically the cracking phenomenon, we have first to
understand the connection between the interplay of dissipative actions that take
place at the grain scale in the affected area and the macroscopic behavior of the
material. Cracking implies a breakage of the mechanical bonds between powder
particles [112], and this loss of particle cohesion becomes manifest at the macrolevel
in gradual local degradation of the effective green strength. Since we are using a
continuum-based description, it is required a constitutive model with softening, i.e.,
a decrease in strength with additional deformation.

2.1.2.1 Strain localization

A controversial issue of the continuum approach we have invoked for describing
our system is its inability, without any further enhancements, of handling spatial
discontinuities, which are intrinsic to the cracking phenomena. This limitation
may seem to render the chosen approach questionable on fundamental grounds.
However, the underlying mathematical aspects of stress-strain plastic softening
relationships permit to model the discontinuity surface associated to a crack as a
high gradient of inelastic strains concentrated along a band of finite thickness (strain
localization). As is customary in the related literature [10], a one dimensional
analysis of a tensile test will provide the guidance to understand this feature.

Let us consider for this purpose that the green compact obtained in the double
action compaction described previously is ejected from the die and placed between
two supports, using adhesive, and subjected to a gradually increasing axial dis-
placement δ on its top surface. All properties are assumed to be constant through
the cross section.

As a direct consequence of die frictional forces during pressing, the level of inter-
granular cohesion is not uniform throughout the specimen, attaining its minimum
at the middle plane, as it indicates the density distribution shown in figure 2.1b.
For the sake of clarity, let us assume that the material within a central band Ωa
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Figure 2.2 Tensile test. Pre-peak distribution of: (a) strain (b) displacement.

of width la possesses a tensile strength lower than in the surrounding material Ωb,
i.e., σya > σyb . Prior to reaching σya in the central band Ωa, a Hooke’s law is obeyed
and stress, σ, or load F , is proportional to strain ε, or displacement δ. Assuming
a uniform Young’s modulus E, we find

For δ ≤ σay
EL

=⇒




ε(z) =

δ

L
, ∀z ∈ [0, L],

σ(z) = Eε =
Eδ

L
, ∀z ∈ [0, L].

(2.1.4)

Therefore, the specimen exhibits a uniform strain field up to the yield strength σya
(figure 2.2). Immediately after the yield strength σya is reached, softening starts in
Ωa, i.e. a gradual degradation of mechanical strength accompanying an increase in
strain, as it indicates the descending branch BC of the stress-strain curve shown
in figure 2.3, and plastic yielding is confined to that domain.

At a given instant t after onset of yielding, the stress in domain Ωa has decreased
from σya to σa(t). Obvious equilibrium considerations require uniformity of stress in
the entire domain σa(t) = σb(t). Inasmuch as the material outside the band has a
greater yield strength σyb > σb(t), under increasing external prescribed displacement
δ̇ > 0, its mechanical properties remain unaltered and it simply unloads in an elastic
manner along path AB (figure 2.3). Thus, at any time after the onset of yielding
there exist, for the same stress level, two different strain levels along the specimen
(εa 6= εb) (figure 2.4). This tendency towards plastic yielding in localized regions
accompanied by elastic unloading in the surrounding material is a distinctive feature
of strain softening constitutive models, and it is referred to as strain localization.
The mathematical explanation of this bifurcation of the strain field is to be sought
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Figure 2.3 Stress-strain response.

in the local change of character of the governing set of differential equations, which
cease to be elliptic for the static case [70]. In the one-dimensional setting, loss of
ellipticity occurs when the tangent modulus ET becomes negative.
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Figure 2.4 Tensile test. Post-peak distribution of: (a) strain (b) displacement.

The post-peak rate of change of the strain ε̇a in Ωa as a function of σ̇a is given
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by

σ̇a = E (ε̇a − ε̇pa) = E

(
ε̇a − σ̇a

H

)
=⇒ ε̇a =

EH

E +H
σ̇a = ET σ̇a. (2.1.5)

For deriving the equation above, we have used some basic considerations em-
bodied in the classical theory of plasticity [42, 51, 53], namely, the additive decom-
position of the strain ε into elastic εe and plastic part εp, and the evolution of stress
during plastic loading in terms of the plastic strain rate ε̇p. Material brittleness is
characterized by the so called isotropic softening modulus H ≤ 0, and ET is the
slope of the descending branch of the stress-strain curve shown in figure 2.3. Note
that the range of values within which softening modulus may lie is restricted by
the requirement that ET is negative, hence |H| < E.

Likewise, rate of change of the strain ε̇b in the undamaged material is obtained
straightforwardly as

σ̇b = Eε̇b =⇒ ε̇b =
σ̇b
E
. (2.1.6)

By substituting equations 2.1.5 and 2.1.6 in the equilibrium condition σ̇a = σ̇b, one
obtains the relationship between strain rates in both domains

ε̇a =
E +H

H
ε̇b. (2.1.7)

Expression 2.1.7 shows that whereas in Ωa strain increases (ε̇a > 0), there is a
strain release in Ωb (ε̇b < 0). Using the compatibility requirement ε̇ala+ε̇b(L−la) =
δ̇ and equations 2.1.7, 2.1.6 and 2.1.5 we obtain, upon rearrangement, the force-
displacement rate response after yielding

Ḟ =
EA

L

(
1 +

E

H

la
L

) δ̇. (2.1.8)

From equation 2.1.8, we can deduce that different values of la yield different post-
peak paths. The smaller the value of la, the steeper the slope of the path. For
la → 0 the softening branch BC of the force-displacement curve (figure 2.5) ap-
proaches the initial elastic branch AB, which is not acceptable from the physical
point of view. This fact highlights the relevance of the role played by the size of the
localization zone in the material response. Although physical interpretations may
be suggested (e.g., average distance between inhomogeneities or micro-pores in the
green compact), they are meaningless in the context of the standard continuum
smeared-crack approach we have adopted, in which la is determined by the min-
imum element size of the spatial discretization used in the subsequent numerical
resolution.

The absence of a physically grounded intrinsic width la, thus, spans a space
of infinite continuum solutions. When choosing a particular spatial discretization,
one of this solution is obtained. This strong mesh dependence can be partially
alleviated by reinterpreting the role of the continuum softening modulus H in the
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Figure 2.5 Force-displacement response.

formulation of the constitutive model. Consider next the energy consumed during
the interval [0, t∞], where t∞ denotes the time when the load carrying-capacity of
the bar is totally exhausted:

Wext =
∫ t∞

0

∫

Ω

σε̇ dΩ dt =
∫ t∞

0

∫

Ωa

σε̇ dΩ +

= 0︷ ︸︸ ︷∫ t∞

0

∫

Ωb

σε̇ dΩ

=
∫ t∞

0

σε̇ (A la) dt =
∫ t∞

0

σ (ε̇e + ε̇p) la dt

=
∫ t∞

0

σε̇p (A la) dt =
∫ t∞

0

σ
σ̇

H
(A la) dt =

[
1
2
σ2

H
(A la)

]0

σy

=
1
2
σ2
y

|H| (A la).

(2.1.9)

Energy dissipation is, thus, exclusively due to plastic flow in the localization
band, since the surrounding material remains in the elastic state throughout the
process. If we divide the amount of energy dissipated Wext by the cross sectional
area A, we obtain the energy necessary to achieve fully exhaustion of the load-
carrying capacity of a bar of unit area. This concept of energy is tantamount to the
so-called fracture energy Gf , defined, in the context of classical fracture mechanics,
as the mechanical energy required for the formation of a unit of fracture surface.
The fracture energy can be calibrated experimentally for each fracture mode(figure
2.6), and thus it can be interpreted as material property. Enforcing that the energy
dissipated along the localization band equals the fracture energy, we have

Gf =
Wext

A
=

1
2
σ2
y

|H| la . (2.1.10)

Equation 2.1.10 suggests that, for avoiding dependency to mesh refinement, soft-
ening modulus H has to be also a function of the mesh size and not a uniformly
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distributed local variable, as it was presumed. Then, rephrasing equation 2.1.10,
we obtain

|H| =
(

1
2
σ2
y

Gf

)
la = |Ĥ|la, (2.1.11)

where the material property |Ĥ| is denominated the intrinsic softening modulus.
A reliable choice of the numerical localization bandwidth la for more complicated
spatial discretizations is dictated not only by the size of the mesh elements, but
also by the orientation of the crack within the mesh [74].

A further sophisticated alternative within the continuum framework which avoids
this drawback is the Strong Discontinuity Approach [91], in which the negligible
character of the intrinsic length scale justifies the mathematical simplification of
assuming zero band thickness. The Strong Discontinuity Approach allows the rep-
resentation of displacement jumps across the localization band, which are precluded
in our description since standard finite elements can only exhibit finite jumps of
strain across the element boundaries (figure 2.4).

Mode I Mode II Mode III

Figure 2.6 Fracture modes. In the opening mode or mode I the loads inducing fracture
are perpendicular to the plane of the crack, as in the tensile test we are describing. Modes
II and III are shearing modes, with loads acting on the crack plane.

2.2 Kinematics of plastic large deformations

Consider the powder sub-system as a deformable body B consisting of continuously
distributed material occupying, at a reference time t0, a region Ω0 of Rn (n = 2, 3).
Deformation is measured from this reference configuration, which does not coincide
necessarily with the loose powder state. We assume that the deformation at time
t relative to the reference configuration is given by the one-to-one C2 mapping
ϕ : Ω0 → Ωt ⊂ Rn. The position vector, with respect to a fixed origin o, of particle
X ∈ B in the so-called current configuration Ωt is given by

x = ϕ (X, t) , (2.2.1)
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or in component form
xa = ϕa(X, t) , (2.2.2)

where x = xaēa, being {ēa}, (a = 1 . . . n) an orthogonal basis vector. An alter-
native Cartesian basis {ĒA} (A = 1 . . . n) is used for describing the position of
material1 points X = XAĒA.

The deformation gradient of mapping (2.2.1), defined as

F (X, t) =
∂ϕ (X, t)
∂X

or F aA(X, t) =
∂ϕa(X, t)
∂XA

, (2.2.3)

plays a crucial role in characterizing the local deformation at X. However, the
deformation gradient itself is not a suitable means of measuring straining. The
physical interpretation of the polar decomposition of F (see Eq.(A.1.6) in Appendix
A), suggests that the local rigid rotation must be purged from any measure of strain,
since a rigid rotation maintains the distance between particles and hence does not
alter physical properties of the body. A wide range of possible strain tensors, with
the common characteristic of being independent of the rotational part of F, can
be established in both the reference configuration Ω0 and the current configuration
Ωt. We shall employ as material strain measure the Green-Lagrange strain tensor,
defined in the reference configuration Ω0 as

E(X) =
1
2

(C(X)− 1) , (2.2.4)

where C = FT ·F is the right Cauchy-Green tensor, and 1 is the second order
identity tensor2 in Ω0. In analogous manner, the strained state is characterized in
the current configuration Ωt by the so-called Almansi strain tensor

e(x) =
1
2

(
1− b-1(x)

)
, (2.2.5)

where b-1 is called the Finger deformation tensor b-1 = F-T ·F-1. A useful rela-
tionship between the spatial and material strain tensors is given by

e = ϕ∗(E) = F-T ·E·F-1, (2.2.6)

where the operator ϕ∗(•) is referred to as the push-forward transformation induced
by ϕ (see Eq.(A.1.12) in Appendix A).

Inasmuch as plastic deformations are governed by rate form constitutive equa-
tions, it is pertinent to summarize some expressions for the rates of deformation
tensor. The spatial velocity gradient l is given by

l(x) = Ḟ·F-1, (2.2.7)

being Ḟ the derivative of F with respect to time holding X fixed. Its symmetric
part:

1Upper case indices refer to the reference configuration Ω0 and lower case indices are related
to the current configuration. See Appendix A for more details.

2More precisely, 1 can be interpreted, for this equation, as the metric tensor in Ω0 (see
Eq.(A.1.9) in Appendix A).
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d =
1
2
(l + lT), (2.2.8)

is called the rate of deformation tensor, and it turns out to be the Lie derivative
(see Eq.(A.1.20) in Appendix A) of the spatial strain tensor e, i.e. d = Lve.

2.2.1 Multiplicative decomposition

So far, we have presented some tensorial fields expressions for characterizing the
deformation of our powder continuum sub-system at any time, regardless of the
extent and nature of this deformation. A further step in the kinematic description
is to analyze separately the elastic and plastic contributions to the deformation
state. As is customary in the literature of compaction modeling [15, 81, 7, 90],
we introduce the standard local multiplicative decomposition of the deformation
gradient into plastic and elastic parts:

F = F̂e ·Fp, (2.2.9)

where Fp accounts for a pure plastic local deformation from Ω0 to a fictitious3

stress-free intermediate configuration Ω̂t and F̂e represents a pure elastic loading
from the intermediate state Ω̂t to the current configuration Ωt. Observe that the
elastic counterpart of the deformation gradient, F̂e, is defined in the intermediate
configuration Ω̂t, whereas Fp maps objects in the reference configuration Ω0 to Ω̂t.
An elastic strain measure in Ωt can be established, by analogy with Eq.(2.2.6), as

ee =
1
2
(1− b-1

e ), (2.2.10)

where b-1
e is the elastic Finger deformation tensor, b-1

e = F̂
-T

e · F̂
-1

e . The same
similarity can be exploited for deriving an expression of a plastic strain tensor in
Ω̂t:

êp =
1
2
(1− b̂

-1

p ), (2.2.11)

with b̂
-1

p = F̂
-T

p ·F̂
-1

p . Furthermore, it can be proved (see A.1.30 in Appendix A)
that

e− ee = F̂
-T

e ·êp ·F̂
-1

e , (2.2.12)

i.e., the difference between the spatial strain e and the elastic spatial strain ee is
equal to the tensor resulting of transforming, via F̂

-1

e , the plastic tensor êp defined
in Ω̂t to the spatial configuration Ωt. This means that a physical meaning of pure
spatial strain tensor cannot be attached to the difference e− ee, since both elastic
and plastic effects are involved in its definition.

3Note that, despite its seemingly resemblance with the state reached upon pressure release in a
ordinary compaction process, the intermediate configuration Ω̂t may be physically unachievable,
since residual stress are unavoidable.
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2.2.1.1 Extent of plastic and elastic deformations

Kinematic relationships deduced hitherto are valid regardless of the extent of plastic
and elastic deformation experienced by the body during its motion. However, in
order to keep the subsequent derivations as simple as possible, it is worth inquiring
whether some approximations might be introduced in the particular case of cold
axial compaction of a standard metallic powder. For example, for pure cooper
PM parts, the ratio of the volume of loose powder in a die to that of the final
compact made from it at the end of the pressing stage ranges between 2.6 and 2.8
[96]. This means that, if we choose the reference configuration Ω0 of the continuum
body as the region occupied by the powder in its loose state, and the deformed
configuration Ωt as the region occupied by the green compact before punch removal,
then an infinitesimal volume elemental placed in Ω0 shrinks to a factor 2.7 in Ωt,
as it emanates from the conservation of mass local equation det(F) ∼ 1/2.7. In
addition to this large strains, large local rotations may also be involved, especially
in multilevel parts in which material flow around corners is pronounced. A deeper
insight into the nature (elastic or plastic) of these considerable straining shows that
the behavior of the powder is basically plastic. Compacted parts undergo slight
expansions (spring-back) in both pressing and radial direction upon pressure release
[100]. The magnitude of these dimensional changes are three to four orders smaller
than the characteristic dimension of the compact [106], which suggests that a vast
portion of the deformation experienced by the powder during pressing is basically
unrecoverable, i.e. plastic4. A common assumption in modeling the pressing stage
[16, 81, 109] is thus to consider that elastic strains are small compared to unity
during the pressing stage.

On the other hand, during the subsequent ejection from the die, apart from
the above mentioned partial5 recovery of the (small) elastic strains developed in
the pressing stage, the green compact may undergo deformation states entailing
softening plastic behavior in localized zones of the body (see Section 2.1.2). Since
unsintered parts are considered to be quasi-brittle, the extent of plastic strains
developed in this zones are also assumed to be small. Furthermore, the motion of
the compact through the die cavity during ejection involves no solid rigid rotations,
since punches push only in the (vertical) pressing direction6. These kinematics
assumptions (small elastic and plastic strains accompanied of negligible rotations)
indicates that, if we take as reference configuration the deformed state at the end
of compaction, an approximated description of the deformation of the powder sub-
system during the pressure release and ejection stages may be carried out employing
an infinitesimal plastic strain theory.

In summary, the kinematic description based on the multiplicative decomposi-
tion (A.1.21) admits two approximations. During the pressing stage, large plastic

4An alternative method of demonstrating the extent and importance of plastic deformation
during compaction is to measure the increases in the microhardness of individual particles after
varying amounts of compaction [43].

5Residual stresses upon pressure release may be presented in non-homogeneous plastic defor-
mation states [48].

6This assumption holds only for conventional axial pressing processes. Splitting die system or
isostatic pressing would require revision of this hypothesis.
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deformations are presented accompanied by small elastic strains, whereas during
pressure release and ejection, the magnitude of both plastic and elastic strains are
relatively small. Since the former approximation constitutes a broader framework
encompassing both cases, attention is restricted henceforth to detail the strain mea-
sures derived from this particular approach of finite plastic deformations and small
elastic strains.

The methodology for obtaining the strain measure in this case parallels that fol-
lowed in the classical infinitesimal theory. The difference between the intermediate
configuration Ω̂t and the current configuration Ωt becomes insignificant. Tensorial
fields defined in Ω̂t can be transformed directly into spatial tensorial fields. In
particular, êp ≈ ep, which implies, in accordance with Eq.(2.2.12), the additive
decomposition of the spatial strain tensor7:

e(x) = ee(x) + ep(x). (2.2.13)

Another valuable consequence of the assumption of infinitesimal elastic strains is
that ee can be regarded as a linearized strain tensor:

ee(x) =
1
2
(Je(x) + JTe (x)), (2.2.14)

wherein Fe = 1 + Je.
The same reasoning (see Appendix A) applies for the rate of deformation tensor,

which inherits the additive structure shown above:

d = de + dp. (2.2.15)

Furthermore, it can be easily verified that the plastic and elastic parts of the rate of
deformation tensor are the Lie derivatives of the plastic and elastic Almansi strain
tensors, i.e.

dp = Lvep and de = Lvee , (2.2.16)

respectively.

2.3 Thermodynamic consistency

After establishing adequate tensors for characterizing the deformation at the neigh-
borhood of each material particle X, attention is now turned to describe mathe-
matically the effects of such deformation processes on the physical attributes of the
powder sub-system. The preliminary step in this mathematical description is to
select the appropriate set of independent scalar and tensorial fields whose values
at a given time allow to determine uniquely the Cauchy stress field and other state
functions. Since thermal effects are ignored, all these variables can be expressed
in terms of the deformation history through adequate functional relationships. We
set as the basic state variable the deformation itself, expressed by the current value

7In Appendix A (Eq.(A.1.34)), this simplification is carried out in a more rigorous manner.
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(at time t) of the deformation gradient F. The elastic part of the deformation
gradient, F̂e, is regarded as another tensorial state variable, linked to the recover-
able deformation of the powder sub-system. The remaining fields are the so-called
internal or hidden variables [61], denoted collectively by ξ. Since the evolution
of these variables are related with irreversible mechanisms, it seems reasonable to
classify ξ according to the nature of the internal physical changes associated with
each mechanism. Specifically, we categorize the set of internal variables into in-
ternal hardening variables, ξh, and internal softening variables, ξs, a classification
that discloses the phenomenological aspects discussed in section 2.1. Without loss
of generality, we assume that the as yet unspecified internal variables are all scalar
variables. Hence, the α-th hardening mechanism, for instance, is characterized
by the scalar field ξhα = ξhα(x, t). Furthermore, it follows from the inherent irre-
versibility of the hardening and softening phenomena that ξ̇hα ≥ 0, α = 1, 2 . . . nih,
and ξ̇sβ ≥ 0, β = 1, 2 . . . nis, i.e., the internal variables have the non-decreasing
property. Later, it will be discussed further the physical meaning of each internal
variable and their evolution equations in terms of plastic deformation paths.

The Cauchy stress field, denoted by σ(x, t), and other state functions, are re-
lated to the state variables {F, F̂e, ξ

h, ξs} through a set of constitutive equations.
We shall attempt to derive the mathematical form of these constitutive relationships
within a rational thermodynamic framework, although it might prove expedient a
shift towards pragmatism in some aspects of the derivation. We postulate the ex-
istence of a Helmholtz free energy function ψ, defined per unit reference volume.
In the absence of thermal variations, ψ coincides with the internal energy per unit
reference volume, and it includes the elastic strain energy and all other forms of
energy that do not contribute to kinetic energy. We adopt here the hypothesis,
favored by Mandel and others (see Ref. [61]), in which the free energy depends on
the current value of the deformation gradient F solely through its elastic part, F̂e.
In the small elastic strain regime and assuming isotropic elastic response, we may
legitimately write8:

ψ = ψ(ee, ξ
h, ξs). (2.3.1)

2.3.1 Physical interpretation of changes in the value of the
internal energy

To appreciate the effect of a change in the state variables in the value of the internal
energy, we take the time derivative of Eq.(2.3.1):

ψ̇ =

ψ̇d︷ ︸︸ ︷
∂ψ

∂ee
: de +

ψ̇h︷ ︸︸ ︷
∂ψ

∂ξhα
ξ̇hα +

ψ̇s︷ ︸︸ ︷
∂ψ

∂ξsβ
ξ̇sβ , (2.3.2)

where de is the elastic part of the rate of deformation tensor9.

8See section (A.1.1) in Appendix A for further details.
9See Proposition (A.1.1) in Appendix A.
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2.3.1.1 Changes due to elastic deformation

The first term of the right-hand side of Eq.(2.3.2), ψ̇d, represents the rate of change
in internal energy due to elastic deformation of the body. During pressing, typically
ψ̇d > 0, which means that a portion of the energy supplied to the powder sub-system
is stored in the form of recoverable deformation. As it is suggested by the success in
predicting density distributions by using rigid-plastic constitutive models, in which
elastic effects are neglected [104], the elastic behavior of the powder particles plays
a relatively minor role in the macroscopic response of the compact during the
pressing operation. In the subsequent unloading, however, the way in which this
elastic energy is released (ψ̇d < 0) is of central importance for the final mechanical
properties of the compact, since it controls the degree of spring-back [64].

2.3.1.2 Changes associated with strain hardening

The term ψ̇h is the rate at which mechanical energy, per unit reference volume, is
stored in the powder sub-system due to interlocking of rough grains, plastic defor-
mation and cold welding of particles, and other microscopic events macroscopically
correlated with a strain-hardening tendency. These events are likely to occur only
under compressive load states. Hence, during pressing it is expected ψ̇h > 0 ,
whereas in the following pressure release and ejection ψ̇h = 0.

2.3.1.3 Changes associated with (inelastic) release of energy

The last term accounts for the release of energy (ψ̇s ≤ 0) associated with the
breakage of bonds between particles under tensile/shear straining. It was discussed
in section (2.1.2) that material softening implicates localization of inelastic strains.
Hence, the release of energy tends to occur in concentrated regions, in contrast
to the overall manifestation of ψ̇d and ψ̇h. The body may experience this type
of microstructural alterations during both pressing and post-pressing operations,
although they are more frequent in the latter.

Early stages of compaction

The physical interpretation of ψ̇s in the early stages of the pressing operation
requires further consideration. At this point of the compaction route, densification
takes place principally by rearrangement of the powder particles [36], and therefore
the body does not possess a significant cohesive strength. In the event of pressing
of multilevel parts, corner regions, characterized by pronounced material flow, are
prone to shear conditions with low levels of hydrostatic pressure, which eventually
would activate the softening mechanisms. Nevertheless, the lack of adhesion of pow-
der particles renders the role of softening, interpreted as deterioration of strength,
dubious in this particular situation, because there are no measurable strength to
be degraded. We shall make the assumption, thus, that the strain-softening mecha-
nism is not active until certain level of densification, characterized by certain value
of the hardening variables ξh*, has been reached, or expressed mathematically:
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ξh < ξh* ⇒ ψ̇s(X, t) = 0, ∀ X ∈ Ω0. (2.3.3)

An additional argument in support of this assumption is the lack of experimental
data for fracture energy (a material parameter which is intimately tied to the
rate of energy release ψ̇s) in the range of low densities. Indeed, in order to ensure
adequate green strength for further handling, tests conducted to determine fracture
energy can be only performed on specimens compacted to densities greater than
a certain value, say 5 g/cm3 for iron based powder [48]. Therefore, motivated
by the dubious role of the softening mechanism for lower densities, and in the
absence of experimental data for fracture energy, assumption (2.3.3), which in turn
is equivalently to consider perfect plasticity under tensile/shear stress conditions,
appears reasonable.

2.3.2 Decomposition of the free energy function

In Section 2.2.1, we introduced the additive decomposition of the spatial strain
tensor into elastic and plastic parts. It is natural to inquiry at this point whether
a similar decomposition might hold for the free energy. Large strain plasticity
literature abounds with references to the hypothesis of additive decomposition of
the free energy into (uncoupled) elastic and plastic parts [61, 92, 93], and it has
been also advocated by some authors in the specific field of powder compaction
modeling [81, 109, 7, 62]. This assumption implicates that the elastic response
is not influenced by the structural changes experienced by the powder during the
pressing stage or, in other words, the elastic parameters do not depend on the level
of densification. Experimental evidence, however, confirms the opposite trend. As
in the case of porous and granular material, the elastic properties of the powder
are observed to be strongly dependent on volumetric strain [89, 84, 86]. Thus, the
energy stored in the powder sub-system is described in more realistic terms using
the following additive decomposition:

ψ(ee, ξ
h, ξs) = ψ0 + ψe(ee, ξ

h) + ψp(ξh, ξs). (2.3.4)

The independent term of the right-hand side of Eq.(2.3.4), ψ0, can be inter-
preted as the inelastic energy stored (in form of cold welding, interparticle locking,
etc.) in the undeformed body. If the reference configuration Ω0 coincides with the
loose powder state, then we assume ψ0 = 0, for all points X ∈ Ω0

10. The elastic
counterpart, ψe, depends on both the elastic strain tensor and the hardening vari-
ables, for the reasons outlined above, whereas the value of the plastic free energy
ψp is determined by the current value of the set of hardening and softening internal
variables.

The stress power measured per unit reference volume is given by Pi = τ : d and
the local dissipation (assuming isothermal processes) D is the difference between
the stress power and the rate of change in internal energy, D = τ : d−ψ̇, where τ is

10ψ0 is included in the definition of ψ only for avoiding negative values of ψ, which may arise
due to the release of energy associated with softening ψ̇s < 0. However, it only plays a conceptual
role and its value is irrelevant for the subsequent numerical integration.
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the spatial Kirchhoff stress. Using the additive splitting of the rate of deformation
tensor and factoring common terms, the dissipation function reads

D = (τ − ∂ψe

∂ee
) : de + τ : dp − ∂ψe

∂ξhα
ξ̇hα −

∂ψp

∂ξhα
ξ̇hα −

∂ψp

∂ξsβ
ξ̇sβ . (2.3.5)

The second law of thermodynamics, i.e. D ≥ 0, must be satisfied in all conceivable
motions, hence the coefficient of de must vanish (Coleman-Noll procedure) [61],
which implies that the Kirchhoff stress tensor is the derivative of the free energy
with respect to the elastic strain tensor.

τ =
∂ψe

∂ee
. (2.3.6)

The dissipation inequality then becomes

D = τ : dp − (
∂ψe

∂ξhα
+
∂ψp

∂ξhα
)ξ̇hα −

∂ψp

∂ξsβ
ξ̇sβ . (2.3.7)

The most crucial aspects of the model remains to be addressed. On the one
hand, an expression for ψe is needed to completely determined the elastic response.
We deal with this topic in the following section. On the other hand, evolution
equations for the set of internal variables, ξh and ξs, and for dp have to be derived,
as well as constitutive relationships (consistent with inequality (2.3.7)) between
internal variables ξh and ξs and their conjugate variables (in the sense of dissipation
per unit reference volume). This task entails considerable complexity and will
confine our attention in the remainder of the chapter.

2.4 Elastic response

Motivated by the smallness of the elastic strains, the structure of the elastic free
energy function is borrowed from that of classical infinitesimal theory:

ψe(ee, ξ
h) =

1
2
(3κetr2 ee + 2µe dev ee : dev ee), (2.4.1)

where tr ee denotes the trace of the spatial elastic tensor ee, tr ee = δab(ee)ab, and
dev ee = ee− 1

3 tr ee1 is the deviator of ee. The bulk modulus κe and shear modulus
µe are expressible in terms of the Young’s modulus Ee and the Poisson’s ratio νe,
which are not constant but dependent on the hardening internal variables:

κe =
Ee(ξh)

3(1− 2νe(ξh))
and µe =

Ee(ξh)
2(1 + νe(ξh))

, (2.4.2)

a fact that reflects the aforementioned coupling between the elastic response and the
hardening mechanism. Observe that ψe depends on ee only through the tensorial
invariants tr ee and ‖dev ee‖2 = dev ee : dev ee, which implicates an isotropic elastic
response. The adoption of the isotropic assumption is a somewhat controversial
issue. Ultrasound velocity measurements, collected by Coube et al. [26], show that
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anisotropy develops at high densities, resulting in die pressed parts which are stiffer
in the transverse direction than in the pressing direction. However, presumably
because the predominance of plastic deformation masks the effects of elastic events,
a precise knowledge of how to characterize this induced elastic anisotropy is still
lacking, and recourse to the isotropy hypothesis is very common in continuum
modeling of powder compaction [81, 7, 15, 12]. The price of this simplistic approach
is that, say Ee employed in Eq.(2.4.2) is calibrated in the pressing direction, then
the degree of radial spring-back may result underestimated.

An important implication of using the elastic free energy function 2.4.1 is that,
at a constant ξh, the relation between stresses and elastic strains is linear. This issue
is also marked by controversy. Experiments conducted by Mosbah et al.[69] have
revealed that a non-linear elasticity law is more adequate for describing the behavior
during unloading and ejection phases. In the work of Pavier [83], this conclusion is
also corroborated. However, it is claimed there that, as a first approximation, the
dependence of the elastic secant modulus on the stress state can be disregarded.

For later purposes, it is convenient to express 2.4.1 as the contraction of tensorial
quantities:

ψe(ee, ξ
h) =

1
2
ee : ce(ξh) : ee, (2.4.3)

where ce denotes the fourth-order elasticity tensor in the current configuration,
defined as

ce = κe1⊗ 1 + 2µe(Isym − 1
3
1⊗ 1), (2.4.4)

wherein 1 = δabēa ⊗ ēb denotes the second-order identity tensor and Isym =
1
2
(δacδbd + δadδbc) ēa ⊗ ēb ⊗ ēc ⊗ ēd is the fourth-order symmetric tensor. Ac-

cording to Eq.(2.3.6), the spatial Kirchhoff stress tensor at time t is then given
by

τ (x, t) =
∂ψ

∂ee
= ce : ee. (2.4.5)

It is important to note that the validity of (2.4.1) and (2.4.5) is restricted to
the case of a stress-free reference configuration. The derivation of a more general
expression can be found in section A.1.1 of Appendix A.

A complete description of the elastic response necessitates that explicit depen-
dence of Young’s modulus Ee and Poisson’s ratio νe on the hardening variables is
determined. As we have not yet specified the set of internal hardening variables,
this task will be properly accomplished in section 2.5.4.

2.5 Plastic response

As stated earlier, the unequivocal definition of the physical attributes at X ∈ Ω0

and at time t ∈ [t0, tf ], after experiencing a deformation process given by x =
ϕ (X, t), involves the knowledge of the current values of the set of independent
state variables {F, F̂e, ξ

h, ξs}. The deformation gradient F (the primary or driving
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variable) at any t̂ ∈ [t0, t] can be directly obtained by differentiation of the mapping
ϕ. If no plastic deformation occurs, then F = F̂e. In this case, the powder
sub-system maintains its initial physical attributes and the Kirchhoff stress tensor
depends only of the point value of F.

On the contrary, if dissipative processes take place, physical attributes are al-
tered, and to obtain the correct final state of the body, the deformation path must
be traced from the reference configuration. It is precisely here where the usefulness
of the internal variables is brought to light. They can be regarded as mathematical
objects introduced for avoiding an explicit dependence of the stress state and other
properties on the history of deformation. Thus, additional equations are needed to
relate the current values of the internal variables ξ with the plastic deformation tra-
jectory. Based on the mathematical statement that any curve is fully described by
its differential equation (with adequate initial conditions), these relationships are
given in rate form. Another set of differential equations is provided by the flow rule,
which define the plastic rate of deformation tensor dp as a function of the stress
and other state variables. An essential element in the definition of these evolution
equations is the yield function, which, in conjunction with the loading/unloading
conditions, governs the onset and continuance of plastic deformation.

In summary, obtaining the local plastic response in the domain of interest [t0, tf ]
entails the resolution of a system of (first-order) ordinary differential equations
supplemented by suitable initial conditions, with the time t as the independent
variable, the components of F̂e (or Fp) and ξ as dependent variables11, and a
function of time of the deformation gradient F(t) as the source term. The highly
non-linear character of this ODE renders impossible to get a closed-form solution.
Therefore, the aim of this section is to formulate the corresponding differential
equations in a form amenable to a subsequent numerical implementation.

2.5.1 Internal variables

For consistency with the rest of state variables, it is reasonable to give a dimen-
sionless character to ξ, hence they are termed strain-like internal variables12. A
judicious selection of ξ involves a compromise between accuracy of the description
and complexity of the resulting system of governing equations, and it is further
influenced by the availability of experimental data supporting the choice.

2.5.1.1 Hardening variables

Concerning the set of internal hardening variables ξh, a review of the vast literature
on the subject shows that the proposal of using a single scalar internal variable, for

11In practice, the dependent variables are neither Fp nor F̂e (they do not even appear in the
numerical formulation, as we shall see in the next chapter), but any related strain measure, as ee

or ep. The reasoning behind this is that the isotropy assumption renders irrelevant the role of the
plastic spin wp = 1

2
(lp − lTp ) [92].

12Note that with this particular choice of dimensions for ξ, their conjugated forces in the sense

of rate of plastic free energy (see Eq.(2.3.7)): Ξ =
∂ψp

∂ξ
, can be interpreted as stress-like internal

variables.
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capturing the inelastic behavior under compressive load states, prevails over more
complex theories. It has been found that this pragmatic approach yields realistic
descriptions for the majority of loading conditions that occur in practical pressing
schedules. The definition of such variable in terms of the plastic deformation path,
however, is marked by much controversy. The most common assumption is formu-
lated in terms of the compressive volumetric plastic strain accumulated during the
deformation [21, 104, 33, 16]. The overridden argument in support of this particu-
lar assumption comes from the fact that the internal variable defined in this way
can be practically identified with the density itself, thereby being very easy to mon-
itor and measure experimentally. A plausible objection, however, is that when the
compact approaches the theoretical density, its properties, in some aspects, parallel
those of the dense metal, in which plastic flow is activated mainly by distorsional
deformation, rather than volumetric deformation. Hence, it is felt that the inter-
nal variable should depend also on the deviatoric part of the accumulated plastic
strain. This alternative hypothesis is theoretically substained and experimentally
confirmed in the work of Cocks et al. [22]. More specifically, they show that an
adequate description of the compaction process is better provided by an internal
variable intimately connected with the work done during the compaction, thereby
including both deviatoric and volumetric plastic strains.

Pursuing this line of discussion, however, is not the prevailing goal of our work,
therefore we simply adopt the former classical hypothesis of a single internal hard-
ening variable (nih = 1) associated with the accumulated volumetric plastic strain.
Suppose that the material is subjected to a monotonically increasing compressive
load, such that trdp(t) < 0, for all t ∈ [t0, tf ] . The internal hardening variable,
henceforth denoted by ξh, at time t ∈ [t0, tf ] is defined as

ξh(t) = ξh0 e
−
∫ t

t0

trdp dt
, (2.5.1)

where ξh0 = ξh(t0). The equivalent rate form expression is achieved by deriving
with respect to time:

ξ̇h = −ξhtrdp. (2.5.2)

Definitions (2.5.1) and (2.5.2) are valid only in this particular case of a compressive
stress state always at yield. Later on, once the rule governing the plastic flow is
addressed, a general rate form definition of ξh will be provided.

Resemblance between ξh and the relative density becomes readily apparent by
expressing the equation for conservation of mass:

ρ(X, t) =
ρ0(X)
J(X, t)

, (2.5.3)

where ρ and ρ0 stands for the current and initial density, respectively and J = detF
is the Jacobian determinant, in rate form. Using the chain rule, derivation with
respect to time of the above equation leads to

∂ρ

∂t
= ρ0

∂J−1

∂t
= −ρ 1

J

∂J

∂F
Ḟ. (2.5.4)
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Introducing the expression
∂J

∂F
= JF-T (2.5.5)

in Eq.(2.5.3) and using the definition (2.2.7) of the velocity gradient, it yields

∂ρ

∂t
= −ρtrd. (2.5.6)

To get a dimensionless expression, the above equation is divided by the theoretical
density, denoted by ρth. Thus,

η̇ = −ηtrd, (2.5.7)

being η = ρ/ρth the relative density. Finally, substitution of the decomposition
(2.2.15) of the rate of deformation tensor in Eq.(2.5.7) and the assumption of neg-
ligible elastic strains leads to

η̇ = −ηtr (dp + de) ≈ −ηtr (dp). (2.5.8)

Comparison of the rate form equations Eq.(2.5.8) and Eq.(2.5.2) substantiates the
similarity between ξh and η in loading histories with a steady accumulation of
compressive plastic strains.

2.5.1.2 Softening variables

The specification and discussion of the role played by the other group of internal
state variables ξs deserve particular attention, since it is one of the novelties of
the proposed approach. Indeed, the majority of the continuum modeling efforts
in the powder manufacturing field has been devoted to characterize the hardening
behavior, leaving unaddressed the other phenomenological facet, softening, at least
within a formal thermodynamic framework with internal variables.

Similarly to the hardening variables ξh, the definition of the softening state
variables ξs is cast in terms of the plastic strain trajectory, particularly as a function
of combined dilatational/shear accumulated plastic strains:

ξ̇s = ξ̇s(dev dp, trdp), with trdp > 0. (2.5.9)

However, there is a striking difference between hardening and softening behavior
in regards to the experimental recording of such plastic strain trajectories. Strain
hardening involves normally an overall manifestation, which means that in a stan-
dard compaction test, for example, every point X ∈ Ω0 of the powder is at yield
during the pressing stage. This fact, in conjunction with negligible die wall friction,
ensures a fairly uniform strain pattern during the experiment. Hence, the internal
variable ξh (which may be thought of as the relative density) is obtained at each
time by simply recording average density values.

By contrast, experimental tests involving softening, i.e. fracture tests, are char-
acterized by localized yielding, as briefly discussed in section 2.1.2. Consequently,
after bifurcation of the response, the plastic strain field cannot be represented by a
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single (tensorial) value and average values are meaningless. To monitor the inelas-
tic strain in the localization band, it would be necessary to mount a displacement
transducer across this band, which is not possible in practice.

Therefore, in the absence of this experimental measurements, the selection and
definition of a particular group of softening internal variables ξs must be based on
physically plausible assumptions, many of them borrowed from constitutive models
of cohesive-frictional materials. In addition, this task is further facilitated by in-
troducing the concept of yield function, formulated herein in the spatial Kirchhoff
stress space. The evolution of ξs can be interpreted in stress space as changes in
size, location and shape of the locus of critical points defined by the yield function.
It is difficult to picture such geometric transformations without a particular yield
locus in mind. Hence, the definition of ξs is deferred until later, and attention is
focused in the following in the characterization of the proposed yield function.

2.5.2 Yield function

The condition defining the yield locus in the Kirchhoff stress space is expressed as

φ(τ , ξh, ξs) = 0, (2.5.10)

explicitly indicating the dependence on both ξh and ξs. However, for the reasons
outlined above, only the functional form

φ|ξs=0 = φh(τ , ξh) (2.5.11)

(supposing that ξs(t0) = 0), is actually supported by experimental tests. This
parametric family of surfaces is taken as the point of departure for defining the
form of the yield locus in a general case ξs > 0. In particular, we assume that
the yield locus determined by φ(τ , ξh, ξs) = 0, with ξs > 0, can be obtained as a
combination of affine transformations on the yield locus φh(τ , ξh) = 0, or portions
thereof, the number of independent transformations being limited by the number of
internal softening variables nis. For instance, should the yield surface be an ellipse
for ξs = 0 then it will keep this elliptical shape for ξs > 0, but with a variation of
its size (contraction) and location in stress space.

By invoking the isotropy assumption13, the yield function can be written as
a function of the invariants of τ . The formulation in terms of the first invari-
ant (I1) of the stress tensor and the second invariant (J2) of its deviatoric part,
extensively used in powder compaction modeling, is adopted herein. Particu-
larly, to simplify the algebra, the yield condition is expressed as a function of
the mean stress p = 1

3I1 = 1
3 tr τ , and the norm of the deviatoric part of τ , i.e.

q =
√

2J2 =
√
dev τ : dev τ . The influence of a third invariant is ignored and,

consequently, the parametric family of yield loci φ(τ , ξh, ξs) = 0 can be fully char-
acterized in the p-q Kirchhoff space.

13Experimental and theoretical studies have revealed that small anisotropy is induced at high
densities in close die compaction processes [97]. However, we are not concerned in this work with
such effects on the plastic response.
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The proposed yield surface is determined by three surfaces which intersect non-
smoothly. In Fig. 2.7 , the relative position of these three surfaces is depicted for
two different states. For moderate levels of densification (Fig. 2.7.a), the elastic
domain is bounded by a Drucker-Prager envelope and a elliptical cap (centered
at the origin). This two-surface yield criterion captures some of the essential fea-
tures of the powder behavior, such as the pressure-sensitive character of the plastic
response, and the large contrast between compressive and tensile strength. The
equation of the ellipse is given by

φe = q2 + s22p
2 − s21s22 = 0, (2.5.12)

where s1 is the major axis and s2 the eccentricity (see figure 2.7.a). Both quantities
are regarded as state functions, hence s1 = s1(ξh, ξs) and s2 = s2(ξh, ξs). The
Drucker-Prager surface is a straight line in the p-q plane:

φd = q + αp− c = 0, (2.5.13)

where c = c(ξh, ξs), customarily referred to as cohesion14, stands for the intersec-
tion with the q-axis , and α = α(ξh, ξs), termed the parameter of internal friction,
is the slope (figure 2.7.a). For higher levels of densification, a third surface comes

Von Mises line
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Figure 2.7 Yield surfaces for two different states. (a) Drucker-Prager + elliptical cap,
for moderate level of compaction (b) Drucker-Prager + elliptical cap + Von Mises, for
high level of compaction (close to full density)

into play, as depicted in Fig. 2.7.b. The horizontal line in the (p,q) plane represents
a classical pressure-independent Von Mises criterion, whose expression is given by

φv = q − cv = 0. (2.5.14)
14The state varialbe c is so named because it is reminiscent of the cohesion defined in a Mohr-

coulomb model rather than because its physical meaning. It can be regarded as the shear strength
under zero hydrostatic stress.
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This additional surface is introduced to account for the fact that the deviatoric
stress measure q cannot exceed the yield strength of the fully dense material (see
Coube [26]). In other cap models, this restriction is accommodated by recourse to
ellipsoidal shaped yield functions which tend to a Von-Mises line when the compact
approaches full density [108, 109]. The constitutive parameter cv (see figure 2.7.b)
and the yield strength of the fully dense material, denoted by σy, are related by

cv =

√
2
3
Jσy. (2.5.15)

As the Drucker-Prager and ellipse parameters, cv is regarded as a state function,
cv = cv(ξh, ξs).

The elastic domain in the stress space is defined formally as

Eτ =
{
τ | φα(τ , ξh, ξs) ≤ 0, for all α ∈ {e, d, v}} . (2.5.16)

Since our developments are embedded in the contex of rate-independent plastic-
ity, the stress state must remain on the boundary of Eτ , denoted by ∂Eτ , during
plastic deformation intervals, the so-called consistency condition. The nature of
the phenomenological events associated with such plastic deformation is different
depending on the location of the stress state on ∂Eτ . The following division of Eτ

is, hence, of considerable assistance in enhancing the understanding of these events.
For the case depicted in Fig. 2.7.a, for instance, we have

∂Eτ = ∂Eeτ ∪ ∂Edτ ∪ ∂Ed,eτ , with ∂Edτ ∩ ∂Eeτ = ∅, (2.5.17)

where ∂Eeτ corresponds to the elliptical cap, ∂Edτ stands for the Drucker-Prager
envelope and ∂Ed,eτ is the intersection of both surfaces. Yielding at ∂Eeτ implicates
hardening behavior, whilst ∂Edτ is linked to the softening response, hence the de-
nomination of failure surface. The nature of the behavior at the singular point
∂Ed,eτ is somewhat less transparent and deserves some scrutiny.

2.5.3 Flow rule

To carry out the analysis further, it is necessary to provide evolution equations
for the plastic strains. As is customary in the framework of incremental plasticity
theory, the plastic rate of deformation tensor dp is presumed to be aligned to the
gradient of a certain plastic potential function. More precisely, each surface of the
elastic boundary is associated to a particular plastic potential function. Thus, if
the stress state is located on the yield surface α ∈ {e, d, v}, i.e. τ ∈ ∂Eατ , the plastic
rate of deformation tensor is obtained by

dp = λ̇αmα = λ̇α
∂Qα

∂τ
for τ ∈ ∂Eατ , (2.5.18)

where mα stands for the plastic flow vector, λ̇α is a positive scalar factor, referred
to as consistency parameter or plastic multiplier and Qα is the plastic potential
function associated to ∂Eατ . The flow rule (2.5.18), so named because it resembles
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the constitutive equation of a viscous fluid, does not hold for the situation τ ∈
∂Eα,βτ , α, β ∈ {e, d, v}, that is, if the stress state is on the interception of two
yield surfaces. The gradient at this singular point is not unique, and (2.5.18) is
conveniently replaced by

dp =
∑

γ∈{α,β}
λ̇γmγ , for τ ∈ ∂Eα,βτ , (2.5.19)

an expression which goes by the name of Koiter’s rule. The consistency parameters
obey the standard Karush-Kuhn-Tucker loading/unloading conditions [92]:

λ̇α ≥ 0, φα(τ , ξh, ξs) ≤ 0, (2.5.20)

and
λ̇αφα(τ , ξh, ξs) = 0, (no sum on α), (2.5.21)

along with the consistency condition:

λ̇αφ̇α(τ , ξh, ξs) = 0, (no sum on α). (2.5.22)

2.5.3.1 Elliptical cap (∂Eeτ )

The assumption of associated flow rule on the elliptical surface has proved to be
reasonably accurate for modeling most pressing processes [22]. This assumption
postulates that the functional forms of the yield locus and the plastic potential
function coincides. Hence, in view of Eq.(2.5.12), the plastic potential function for
τ ∈ ∂Eeτ can be written as

Qe(τ , ξh, ξs) = q2 + s22p
2. (2.5.23)

The plastic flow vector,

me =
∂Qe

∂τ
= 2dev τ +

2
3
s22p1, (2.5.24)

is thus normal to the cap surface, as displayed in Fig.2.8.a15. According to Eq.(2.5.18)
and Eq.(2.5.24), dp is obtained by

dp = λ̇e
(

2dev τ +
2
3
s22p1

)
, for τ ∈ ∂Eeτ . (2.5.25)

Experimental data for calibrating the yield surface parameters s1, s2, c, α and
cv, which will be presented later, show that the elliptical cap lies in the second

15For illustration purposes, me is plotted in the p-q plane perpendicular to the cap surface. But
one has to bear in mind that the condition of normality is defined in the 6D Kirchhoff stress space,
by virtue of Eq.(2.5.24), which means that dp is a vector in the 6D stress space perpendicular
to the surface Qe = K, with K constant. However, the projection onto the p-q plane of such
entities does not inherit this normality condition, since the p-q stress space is not isomorphic to
6D tensor stress space [98], and therefore the actual angle subtended by me and Qe = K in the
p-q plane is not right.
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Figure 2.8 Direction of the plastic flow. (a) Associated flow (ellipse) + linear plastic
potential function (b) Singularity at the vertex.

quadrant of the p-q plane (p < 0) for the whole range, supported by experiments,
of such parameters. Stated otherwise,

τ ∈ ∂Eeτ ⇒ p < 0. (2.5.26)

A useful result can be extracted from this condition. Taking the trace of both sides
of Eq.(2.5.25), it yields

trdp = λ̇e2s22p for τ ∈ ∂Eeτ . (2.5.27)

Hence, by virtue of condition (2.5.26) and the positiveness of λ̇e, expression (2.5.27)
reveals that plastic strain increments are compressive (trdp < 0) whenever yielding
occurs in the stress range determined by the elliptic surface. Furthermore, it follows
from the above condition and from Eq.(2.5.2) that the general expression for the
evolution of the hardening variable ξh takes the form

ξ̇h = −ξhλ̇e2s22p. (2.5.28)

Thus, stress states on ∂Eeτ are unequivocally correlated with hardening behavior,
being precluded the occurrence of a different phenomenological trend.

2.5.3.2 Drucker-Prager yield surface (∂Edτ )

Whereas the hypothesis of associated flow rule is generally accepted, and almost
tacitly invoked, in the case of the elliptical cap ∂Eeτ , the direction of dp when the
stress point lies on the Drucker-Prager envelope ∂Edτ is plagued by much contro-
versy. Some authors simply extend the validity of the associative assumption and
consider that dp is normal to the failure line [20, 90, 33]. However, this hypothesis
is clearly at odds with reality (it over-predicts the dilatational response), as expe-
rimental studies carried out by Pavier [83] and Sinka [94] evidence. These studies
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reveal that the direction of dp is only adequately described by the normality con-
dition in the cap portion ∂Eeτ . As the stress state approaches the interception
with the Drucker-Prager envelope, the plastic strain increment becomes steeper.
Eventually, at the interception point ∂Ee,dτ , dp turns vertical and the nature of
the plastic flow ceases to be compressive. Furthermore, according to Pavier [83],
dp maintains this vertical orientation in the Drucker-Prager stress range, or, in
other words, the material flows at constant volume when yielding occurs on the
Drucker-Prager surface ∂Edτ , being precluded the occurrence of dilatation. Moti-
vated by these observations, some authors have favored the assumption of isochoric
(trdp = 0) plastic flow on the failure surface [17, 109].

Apart from the above mentioned studies, the characterization of the plastic
flow in the failure region does not feature in the literature on powder compaction
modeling, whereby recourse is to be made to models developed for other granular
material, such as soils, to further guide our analysis in this respect. Frictional
effects in a granular material are manifested by volumetric dilatancy, especially in
the low confinement regime [105]. Therefore, it is plausible to expect also a similar
behavior, in some extent, in the powder. To accommodate this dilatancy in the
flow rule, when using the Drucker-Prager yield criterion (2.5.13), the most common
plastic potential function employed is formulated as

Q̂d = q + β̂p, (2.5.29)

and the corresponding flow vector is given by

m̂d =
∂Q̂d

∂τ
=

dev τ

‖dev τ‖ +
1
3
β̂1. (2.5.30)

Note that the equation Q̂d = K, with K constant, also defines a straight line, as
the yield criterion (2.5.13), in the p-q plane. The material parameter β̂, the slope
of such line, is often called dilatancy factor [60], and it represents the ratio of the
volumetric and shear (deviatoric) part of the plastic rate of deformation, i.e.

β̂ =
trdp

‖dev dp‖ . (2.5.31)

With a vanishing dilatancy factor (β̂ = 0), the isochoric plastic flow is recovered,
and associated plasticity results if β̂ = α.

Nevertheless, it has been long known that, when a backward Euler integra-
tion scheme is applied to solve the resulting differential equations, the use of the
plastic potential function (2.5.29) gives rise to numerical difficulties. A complete
understanding of the reasons behind such difficulties requires some notions of the
structure of the integration scheme. Skipping for now the derivation details, which
will be addressed in Chapter 3, we can roughly say that the stress update algorithm
resulting from this time-integration procedure is based on, first, the computation
of a certain elastic predictor or trial stress, by assuming elastic behavior through-
out a given step. If such trial stress lies outside the elastic domain, that is, if it
violates the algorithmic counterpart of Eq.(2.5.20), then the updated stress is ob-
tained by projecting the trial state back to the yield surface (return map). The
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return direction depends basically on the direction of the plastic flow vector m̂d,
but they do not necessarily coincide. For illustration purposes, however, suppose
that the return direction is aligned with m̂d, and furthermore, that the yield sur-
face is fixed. In Fig. 2.8.b, the orientation of m̂d, which is constant, is sketched for
a value of the dilatancy factor β̂ < α. The return map would bring a trial stress
such as τ trA , lying on the left hand side of the Drucker-Prager apex (intersection
of ∂Edτ with the abscissa), back to a point τA ∈ ∂Edτ . Difficulties are encountered,
however, when the trial state lies in the shaded region on the right hand side of
the apex (Fig. 2.8(b)). Clearly, the return direction that would project the trial
stress τ trB back to the yield surface (to the apex) is not derived from the potential
function (2.5.29). This singularity might seriously affect the rate of convergence
of the iterative scheme which accompanies the incremental analysis, and hence the
robustness and reliability of the numerical predictions.

Parabolic plastic potential function
It can be readily concluded from the foregoing explanation that the root cause

of these difficulties is the non-smoothness of the plastic potential surface defined
by (2.5.29) at the apex. The solutions proposed to alleviate this shortcoming are
basically of two types. On one hand, one may introduce an additional cap to “round
off” the linear potential function at that point [32]. On the other hand, one may
resort to a different potential function meeting the requirement of smoothness at
the apex [105, 56]. Here the latter approach is adopted. The proposed parabolic
plastic potential function, expressed as

Qd(τ , ξh, ξs) = q2 + β(ξh, ξs) p, (2.5.32)

with β > 0, is adequate to this end, since the corresponding flow vector:

md =
∂Qd

∂τ
= 2 dev τ +

1
3
β1, (2.5.33)

is horizontal, in the p-q plane, at the apex (q = 0), and, consequently, the normals
to the potential surface cover all possible return directions.

The equation Qd = K, with K constant, defines a parabola in the p-q plane,
hence the name of parabolic potential. The use of parabolic plastic potential func-
tions can be traced back to the work of Willam et al.[34], and it is frequently utilized
for the characterization of failure mechanisms for cohesive frictional materials [38].
However, there is a fundamental difference between these constitutive models and
the one presented here. Willam’s model is a parabolic extension of both the yield
criterion and the potential function, i.e., both the yield and the potential functions
are parabolic-shaped. The essence of our approach, by contrast, is to introduce a
parabolic potential function, but maintaining the classical (linear) Drucker-Prager
yield criterion (see Fig. 2.9). In this way, the singularity at the vertex is circum-
vented and, at the same time, the simplicity and the computational convenience
of using a linear yield criterion is retained. It should be remarked that claims
with regard to the necessity of “rounding off” the Drucker Prager yield surface at
the apex for avoiding the singularity are unfounded, and might be ascribed to an
over-exposure to associated plasticity.
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Figure 2.9 Parabolic plastic potential surface, for γ close to zero.

Thermodynamic consistency

With such an approach, which appears to be a truly novel element of the present
development, one is faced with the unexplored task of determining a functional form
for the state function β = β(ξh, ξs). In order to avoid thermodynamically unrea-
sonable results, the functional form of β must be consistent with the dissipation
inequality (2.3.7), which, for the case in which only the Drucker-Prager yield surface
is active (ξ̇h = 0), reduces to

D = τ : dp − ψ̇s = τ : dp − ∂ψp

∂ξs
ξ̇s ≥ 0. (2.5.34)

As outlined in section (2.3), the term ψ̇s is associated with a release of energy,
i.e. ψ̇s ≤ 0. Hence, the worst conceivable circumstances for the satisfaction of
inequality (2.5.34) correspond to the case ψ̇s = 0. A sufficient condition for ensuring
the positiveness of D is therefore

τ : dp ≥ 0. (2.5.35)

According to Eq.(2.5.18) and Eq.(2.5.33), the plastic rate of deformation tensor
takes the form

dp = λ̇d(2 dev τ +
1
3
β1), for τ ∈ ∂Edτ . (2.5.36)

with λ̇d ≥ 0. Substitution of (2.5.36) in (2.5.35) leads to:

τ : dp = λ̇d
(

2dev τ : τ +
1
3
β1 : τ

)
= λ̇d

(
2q2 + βp

) ≥ 0. (2.5.37)
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The bracketed term of Eq.(2.5.37) is expressible as a polynomial in q by enforcing
the yield condition (2.5.13):

τ : dp = λ̇d
(

2q2 − β

α
q +

β

α
c

)
. (2.5.38)

It is straightforward to show that the above inequality is fullfiled for all q ≥ 0
provided that (

β

α

)2

− 8
cβ

α
≤ 0 ⇒ β ≤ 8cα. (2.5.39)

It follows from the above condition, hence, that a logical choice for the functional
form of β is

β = γ cα, with 0 ≤ γ ≤ 8. (2.5.40)

The material parameter γ controls the plastic dilatancy, and it is considered con-
stant over the whole stress range. In order to reproduce the behavior described by
Pavier [83], γ is set to values close to zero, so that the the plastic flow is practically
isochoric in the whole range of stresses, except in a small neighborhood at the apex,
wherein the flow vector rotates until becoming purely dilatational for q = 0 (see
Fig. 2.9).

2.5.3.3 Von Mises surface (∂Edτ )

The Von Mises yield surface represents a theoretical threshold in stress space be-
yond which inelastic volumetric deformation ceases and only deviatoric flow can
occur. In this aspect, the behavior of the powder at this stress range parallels that
of the fully dense material. The direction of plastic flow is obtained, thus, from the
following potential function:

Qv(τ ) = q2. (2.5.41)

The plastic flow vector is, hence, purely deviatoric:

mv =
∂Qv

∂τ
= 2dev τ . (2.5.42)

Note that the definition (2.5.2) of internal hardening variable indicates that
hardening is precluded when yielding takes place at ∂Evτ :

ξ̇h = −ξhtrdp = 0. (2.5.43)

2.5.4 Hardening laws

Using the standard chain rule for the partial derivatives of a function of several
variables, we can write

ṡ1 =

ṡ1h︷ ︸︸ ︷
∂s1
∂ξh

ξ̇h +

ṡ1s︷ ︸︸ ︷
∂s1
∂ξs

ξ̇s = ṡ1h + ṡ1s . (2.5.44)



2.5 Plastic response 41

The same holds for the other state variables:

ṡ2 =
∂s2
∂ξh

ξ̇h +
∂s2
∂ξs

ξ̇s = ṡ2h + ṡ2s , (2.5.45)

ċ =
∂c

∂ξh
ξ̇h +

∂c

∂ξs
ξ̇s = ċh + ċs , (2.5.46)

α̇ =
∂α

∂ξh
ξ̇h +

∂α

∂ξs
ξ̇s = α̇h + α̇s , (2.5.47)

ċv =
∂cv
∂ξh

ξ̇h +
∂cv
∂ξs

ξ̇s = ċvh + ċvs (2.5.48)

Here the subscripts h and s denote hardening and softening respectively. This
decomposition is particularly appealing since it permits a separate description of
both phenomena. Relationships between the hardening counterparts of each state
variable, i.e. ch, and the internal hardening variable are called hardening laws, ċh =
ċ(ξh)ξs=cte. Conversely, softening laws are relations of the type ċs = ċ(ξs)ξh=cte, i.e.
relating the softening counterpart of the state variables and the internal softening
variables. Attention is restricted in this section to describe the former group of
relationships, the hardening laws. Dependence of the elastic parameters on ξh is
also addressed herein.

2.5.4.1 Elliptical surface parameters (s1h, s2h)

Major axis (s1h)
In Section B.1 of Appendix B, some useful expressions are drawn from an ap-

proximated (ignoring elastic effects) analysis of triaxial loading on a cylindrical
specimen. According to these expressions, the functional form of s1h(ξh) can be
obtained by monitoring the pressure required for achieving different levels of den-
sity16 when a specimen is compacted isostatically, or, in other words, it corresponds
to the hydrostatic yield stress in compression. For iron-based powders, the expres-
sion of s1h is found to be given by [83]:

s1h = Jscy1h =
ρ0

ρ
As1

(
ln

(
1− ηapp
1− ξh

)) 1
Ns1

. (2.5.49)

The parameters As1 and Ns1 are empirically adjusted for each alloy composition.
The relative apparent density ηapp is defined as

ηapp =
ρapp
ρth

, (2.5.50)

where ρapp and ρth are, respectively, the apparent and theoretical density of the
powder. Note that scy1h denotes the mayor axis of the elliptical yield surface in the

16In conformance with definition (2.5.1) of hardening internal variable, density herein refers to
the overall density of the specimen measured after being extracted from the mold.
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Cauchy stress space. The Jacobian determinant J is introduced to put in correspon-
dence experimental (true) stress data with Kirchhoff stress values. For purposes
of simplification in the subsequent numerical integration, it proves advantageous
to invoke again the assumption of negligible elastic strains and approximate, in
expression (2.5.49), the Jacobian determinant as

J =
ρ0

ρ
=
ρ0/ρth
ρ/ρth

≈ η0
ξh
, (2.5.51)

where
η0 =

ρ0

ρth
. (2.5.52)

Approximation (2.5.51) permits to cast s1h solely in terms of the internal hardening
variable ξh:

s1h(ξh) =
η0
ξh
As1

(
ln

(
1− ηapp
1− ξh

)) 1
Ns1

. (2.5.53)
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Figure 2.10 Hydrostatic yield stress in compression scy1h versus internal hardening vari-

able ξh. Stress data represented in Cauchy (true) stress space. Experimental data from
isostatic compression tests carried out by Pavier [83] on Distaloy AE powder specimens.

In figure 2.10, values of scy1h, obtained in hydrostatic compression tests carried out
by Pavier [83], are plotted versus ξh for an iron base powder (Distaloy AE) with
parameters ρ0 = 3.04g/cm3 and ρth = 7.33g/cm3. Fitting Eq.(2.5.49) to these
experimental data we have As1 = 95.4439MPa and Ns1 = 0.6506. The curve fit
bears close similarity to a typical compressibility curve (see figure 2.1.c), strictly its
inverse, with a steadily increasing slope, in such a way that the hydrostatic yield
strength asymptotes to infinity when ξh approaches unity.

Eccentricity (s2h)

The state variable s2h is related to the radial to axial stress ratio ktr, also known
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as pressure transmission coefficient, through the following expression:

s2h(ξh) =

√
3(1− ktr(ξh))
1 + 2ktr(ξh)

, (2.5.54)

as deduced in Appendix B.1. In figure 2.11, radial to axial stress ratio measures,
collected by Sinka [94] on a Distaloy AE powder specimen, are displayed for several
relative (inelastic) densities. Two regions can be distinguished in this plot. Experi-
mental data points from approximately ξh = 0.65 show a clear increasing tendency,
whereas data for low relative densities (0.55 − 0.65) are widely scattered. These
discrepancies at low densities are attributable to the lack of accuracy in monitoring
stress values at this density range on powder materials. Furthermore, experimental
information is available only for ξh > 0.55, hence the behavior for densities close
to ηapp is also uncertain.
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Figure 2.11 Radial to axial stress ratio versus internal hardening variable ξh. Expe-
rimental data obtained from simulated closed die compactions conducted by Sinka et al.
[94] on Distaloy AE powder specimens.

In view of this lack of experimental evidence, it proves advantageous to employ
predictions of micromechanical models for the early stages of compaction. Those
predictions assert that the initial radial to axial stress ratio is ktr0 = 1/3 [22].
Note that this assertion is at odds with other descriptions found in the literature.
Cante et al.[17] claimed that the eccentricity of the elliptical cap approaches zero,
or equivalently ktr → 1, at values close to the apparent density. However, this
assumption implies that the bulk powder cannot sustain any shear stress or, equiv-
alently, it ascribes a fluid-like behavior to the cohesionless powder, which is not
totally realistic.

The following empirical equation is proposed here for the radial to axial stress
ratio (see figure 2.11):
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ktr(ξh) =
{
ktr0, if ξh ≤ ηktr

,
(ξh − ηktr )(Aktrξ

h +Bktr ) + ktr0, if ξh > ηktr .
(2.5.55)

Note that the proposed functional form for ktr acknowledges the abovementioned
facet of powder characterization by fixing ktr in a constant value ktr0 = 1/3 for
densities below ηktr

. Calibration of the parameters for this particular Distaloy AE
alloy gives Aktr = 1.074, Bktr = 0.242 and ηktr = 0.635. In figure 2.12, the curve
s2h = s2h(ξh) obtaining by introducing Eq.(2.5.55) in Eq.(2.5.54) is shown.
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Figure 2.12 Values of the elliptical cap yield surface eccentricity (s2h), obtained by sub-
stituting the fitting equation (2.5.55) for ktr in Eq.(2.5.54), versus the internal hardening
variable ξh.

2.5.4.2 Drucker-Prager yield surface parameters (ch, αh)

The location of the Drucker-Prager failure line in the p−q plane for several densities
is obtained by performing, at least, two sets of fracture tests, namely a uniaxial
compression test and and a Brazilian disc or diametral compression test. The
failure line is then plotted by connecting fracture stress points corresponding to
the same density.

Cohesion (ch)

Coube [25] followed the above procedure to collect values of cohesion, shown in
figure 2.13, and values of the parameter of internal friction αh, displayed in figure
2.14.a, as a function of ξh for a Distaloy AE powder. The curve fit for the cohesion
is given by the equation17

ch(ξh) =

√
2
3
η0
ξh
ccyh =

√
2
3
η0
ξh
Ache

Bchξ
h

. (2.5.56)

17Notice that the factor
p

2/3 accounts for the fact that the deviatoric stress q = ‖dev τ‖ is
not a Von Mises effective stress measure.
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Figure 2.13 Cohesion, in Cauchy (true) stress space, against internal hardening vari-

ables ξh. Experimental data obtained by experiments carried out by Coube [25] on Dis-
taloy AE powder specimens.

Calibration of this equation for the data shown in figure 2.13 yieldsAch = 0.001MPa
and Bch = 11.2368.

Inspection of the cohesion ch, which can be regarded as the shear strength under
zero hydrostatic stress, and the hydrostatic yield stress in compression s1h attained
at a given value of the relative density, say ξh = 0.9, indicates that the green
compact is notably weaker in tension/shear than in compression, up to a factor
s1h/ch ≈ 24.

Internal friction parameter (αh)
Two curve fits for the parameter of internal friction αh(ξh) are shown in figure

2.14.a. From a regression analysis standpoint, the best fit is obviously the linear one.
From a physical point of view, however, the values of αh predicted by this linear fit
in the range of low densities (ξh < 0.65) are meaningless. The reasoning underlying
these unsatisfactory predictions is that, in order to ensure a finite value for the yield
stress in uniaxial compression, the parameter of internal friction cannot exceed the
slope (in absolute value) of the stress path in the p − q plane corresponding to a
uniaxial compression test (see figure 2.14.b) [60]. It can be easily deduced that the
slope of the uniaxial compression stress path is −√6, hence we have the condition

αh <
√

6. (2.5.57)

For ξh = 0.6, we can see in figure 2.14.a that the linear fit estimates αh ≈√
2/3 · 3.05 = 2.49, which is greater than

√
6 ≈ 2.45.

Thus, the appropriate fit is a constant one, also shown in figure 2.14.a:

αh = αh0, (2.5.58)

with αh0 =
√

2/3 · 2.81 = 2.29.
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Figure 2.14 (a) Parameter of internal friction αh versus internal hardening variable

ξh. Experimental data obtained by experiments carried out by Coube [25] on Distaloy
AE powder specimens. (b) Representation of the stress path corresponding to a uniaxial
compression test. The parameter of internal friction αh cannot exceed the slope of such
stress path.

As in the case of s2h, empirical observations concerning the evolution of αh

for the range of low densities are not available, since an unavoidable requirement
for undertaking fracture tests is that the specimen must posses some degree of
consolidation, so as to be ejected from the die cavity without rupture. It seems
more suitable in this regard to undertake flowability tests and other experiments
in which the behavior of the powder in its cohesionless state can be characterized.
Exploring such subject goes beyond the scope of this work. Hence, the assumption
of a constant parameter of internal friction over the whole range of density will be
adopted.

2.5.4.3 Von Mises yield surface parameter (cvh)

Experimental isodensity yield stress points in p−q space are presented in figure 2.15.
The tests for obtaining such information were conducted by Pavier[83] by subject-
ing cylindrical powder (Distaloy AE) specimens to different triaxial loading paths
(consolidated and over-consolidated compression tests). In figure 2.15.a, isodensity
contours are constructed by using an elliptical cap together with a Drucker-Prager
failure line. On the other hand, in figure 2.15.b, isodensity contours are modified
by introducing an additional horizontal straight line (Von Mises surface).

It is readily seen here that the best fit to the stress data points is provided
by the isodensity contours plotted in figure 2.15.b, in which the Von Mises yield
surface is considered. The failure line and the hardening cap on their own (see
figure 2.15.a) overpredict the yield stress of the material in the vicinity of the their
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intersection, to such an extent that the physically unattainable threshold σy (the
yield strength of the full dense material) is clearly exceeded at a relative density
η = 0.982 .
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Figure 2.15 Experimental data from consolidated and over-consolidated compression
tests (Pavier [83]) on Distaloy AE powder specimens. Isodensity contours employing (a)
Drucker-Prager + Elliptical cap, (b) Drucker-Prager + Elliptical cap + Von-Mises

The comparison displayed in figure 2.15 conveys the relevance of the role played
by the Von-Mises yield surface in the later stages of compaction. To proceed with
the calibration of the hardening counterpart of the Von Mises parameter, cvh, we
identify, as usual, relative density and hardening internal variable (ξh ≈ η), on the
basis that the slight difference between them (due to volumetric elastic strain) is
of the same order as the measurement error. In figure 2.16.b, the values of cvh
resulting from the fit shown in figure 2.15.b are plotted versus ξh . The curve
ABC represents the path traced by the deviatoric stress measure qcyint (see figure
2.15.a) at the intersection of the Drucker-Prager and the elliptical cap (∂Ed,eτ ). The
curve BD is the quadratic fit to the data points obtained from figure 2.15.b. In
order to put the evolution of cvh in a mathematically suitable form, we assume
that the curve cvh = cvh(ξh) is composed of the branches AB and BD. From
the apparent density up to ηv0, the Von Mises surface is reduced to a point, the
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intersection ∂Ed,eτ . In practice, this means that the Von Mises yield surface is not
considered for computational purposes for ξh < ηv0. It is only for densities above
ηv0 when it actually comes into play. The following empirical correlation reflects
these considerations:
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Figure 2.16 (a) Definition of qcyint as the deviatoric stress measure at the intersection of

the Drucker-Prager and the elliptical cap (∂Ed,eτ . (b) Von Mises parameter cvh vs internal
hardening variable ξh. The curve AC corresponds to qcyint = qcyint(ξ

h), whereas BD is the
quadratic fit to the data points obtained from the isodensity contours shown in 2.15.b.

cvh(ξh) =





qint =
√

2
3
η0
ξh
qcyint, if ξh ≤ ηv0,√

2
3
η0
ξh
σy(1−Acvh(ξ

h −Bcvh)(1− ξh)), if ξh > ηv0.

(2.5.59)

The fitted parameters for the Distaloy AE powder are Acvh = 58.160, Bcvh =
0.8252, σy = 370MPa and ηv0 = 0.92.

The relative merits of employing an additional surface, to enhance the calibra-
tion of experimental stress data point, instead of, say, a unique yield function, will
become manifest later. Indeed, inspection of Eqs. (2.5.18), (2.5.36) and (2.5.42)
reveals that the plastic flow vector on ∂Edτ , ∂Eeτ and ∂Evτ , respectively, is linear
in τ , a feature that will offer a remarkable aspect of simplicity in the subsequent
numerical integration.

2.5.4.4 Elastic parameters (Ee,νe)

As mentioned in section (2.4), the neglect of anisotropy effects renders the elas-
tic response governed only by two parameters, the Young’s modulus Ee and the
Poisson’s ratio νe. Experimental measures of the Poisson’s ratio show a high vari-
ability with density, but without a clear trend [83]. This high variability is due to
the difficulty in measuring accurately stresses in the radial direction. Hence, the
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hypothesis of constant Poisson’s ratio, of a value equal to that of the fully dense
material (νe = 0.29), is regarded as a reliable approximation.

Experimental data of Young’s Modulus as a function of density, provided by
Pavier [83], are shown in figure 2.17. The following exponential fit is proposed

Ee(ξh) =
η0
ξh
E0e

BE(ξh−η0), (2.5.60)

with E0 = 1360.92 MPa and BE = 8.82 for a Distaloy AE18.
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Figure 2.17 Young’s Modulus Ee vs internal hardening variable ξh. Experimental data
obtained by tests conducted by Pavier [83] on Distaloy AE powder specimens.

In using the above expression, we should bear in mind that this experimental
correlation was obtained in triaxial tests by subjecting a cylindrical specimen to
cycles of axial loading and unloading at different levels of (constant) radial pressure.
Although it was observed that the relation between increments of axial stress and
axial strain depends on the level of radial pressure, Pavier [83] suggested that, as
a first approximation, this dependence may be disregarded.

On the other hand, by measuring the velocity of sound in the pressing direction
on previously compacted Distaloy AE cylindrical specimens, Coube [25] concluded
that an estimation for the elastic modulus in a stress-free situation is given by the
following linear equation

Ee(ξh) =
η0
ξh

(YE1 + YE2ξ
h), (2.5.61)

where YE1 = −16383.47MPa and YE2 = 39073.95MPa.
In view of the experimental procedures from which Eqs. 2.5.60 and 2.5.61

are drawn, it seems more reasonable to employ Pavier’s empirical law 2.5.60 in de-
scribing the elastic behavior in situations of confinement, whereas, in circumstances
closer to unstressed configurations, Coube’s relation (Eq.(2.5.61)) seems more ade-
quate. A comparison of the values obtained by evaluating 2.5.60 and 2.5.61 at, say

18Note that the elastic free energy function (2.4.1) was defined per unit reference volume, hence
the necessity of the (approximated) Jacobian factor η0/ξh.
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ξh = 0.9, reveals that the Young’s Modulus predicted by the former is up to five
times larger than the one predicted by the latter. Obviously, these two notoriously
different estimations can be reconciled by using a unique non-linear elastic law, as
the one presented in Mosbah [69], in which the elastic secant modulus Ee (the de-
nomination “Young’s modulus” would be a misnomer in this case) depends further
on the stress state. Such generality, however, would complicate substantially the
subsequent numerical integration.

2.5.5 Softening laws

The softening constitutive laws are relationships between the softening counterpart
of the state variables defining the size, shape and location of the yield condition,
and the as yet unspecified set of internal softening variables ξs. Each affine trans-
formation of the surfaces defining the yield condition in stress space is associated
with a particular physical meaning. On this basis, we shall discern which variables
should come into play for achieving a sufficient degree of realism, and, on the other
hand, which can be disregarded. Note that the number of relationships that can be
considered is constrained by the availability of experimental data to support such
relations.

2.5.5.1 Elliptical surface parameters (s1s, s2s)

It will be assumed that the compressive strength of the material remains unaltered
in the course of failure events, i.e.:

ṡ1s = 0 → s1(ξh, ξs) = s1(ξh) = s1h(ξh), (2.5.62)

ṡ2s = 0 → s2(ξh, ξs) = s2(ξh) = s2h(ξh). (2.5.63)

Hence, the shape and size of the elliptical cap are completely determined by the
internal hardening variable ξh. At first sight, this hypothesis may appear too
stringent from a physical standpoint. However, from a practical point of view, for
replicating the behavior of interest insofar as determination of cracks is concerned, it
suffices to account for the decay of mechanical strength in the tensile/shear regime,
since the compact is more prone to failure in the pressure release and ejection stages,
when these conditions prevail. Furthermore, the benefits arising in the subsequent
numerical integration of the constitutive equation, due to the simplicity afforded
by this assumption, outweighs any slight lack of accuracy that might result.

2.5.5.2 Von-Mises yield surface parameter (cvs)

The Von Mises yield surface only plays an active role under circumstances of high
degree of confinement. Upon pressure release, the stress state at every point of
the compact moves away from the cap and the Von Mises yield surfaces to the
tensile/shear region. It seems reasonable, therefore, to disregard also the influence,
as far as failure analysis is concerned, of the Von Mises yield surface. This implies
to extend the hypothesis made above for the state variables s1 and s2, and assume
that
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ċvs = 0 → cv(ξh, ξs) = cv(ξh) = cvh(ξh). (2.5.64)

i.e. the Von Mises parameter cv is insensitive to changes of the softening internal
variable ξs.

We must note emphatically that a general constitutive softening law ċvs =
ċvs(ξs) can be accommodated in the formulation without any conceptual differ-
ence. The guidelines would be the same as the ones that we shall describe in the
ensuing discussion (Drucker-Prager yield surface parameters). The only substantial
change would arise in the numerical integration, since the integration of any con-
stitutive law involving softening poses a great mathematical challenge, as it will be
discussed in Chapter 3. Besides, any constitutive relation must be substainted by
the corresponding experimental tests, and empiric observations, concerning frac-
ture energy measurements, in tests in which the stress path involves yielding on
the Von Mises surface are not available at present.

2.5.5.3 Drucker-Prager yield surface parameters (cs, αs)

We focus now on the details concerning the evolution of the Drucker-Prager failure
envelope in stress space when softening takes place. This surface bounds the tensile
and shear, for low degree of confinement, regions, hence a decrease of mechanical
strength is reflected by a motion towards the origin of the Drucker-Prager yield
surface in the p-q plane. We shall assume that the uniaxial tensile strength, which
is related to the Drucker-Prager parameters through the expression

σt =

√
3
2

√
6c√

6 + α
, (2.5.65)

(see figure 2.18) decays at the same rate as the cohesion c. It follows from Eq.(2.5.65),
and considering relation (2.5.58), that this assumption is tantamount to assert the
constancy of α. Therefore, the parameter of internal friction α is independent of
both ξh and ξs and α can be regarded as a material constant , i.e.

α̇s = 0 → α = αh0. (2.5.66)

Therefore, in view of Eqs. (2.5.62), (2.5.63), (2.5.64) and (2.5.66), the task of
establishing the set of softening laws is reduced to find the relationship cs = cs(ξs).
To take developments a step forward, we have first to specify the set of internal
softening variables. As it was pointed out in Eq.(2.5.9), the assumption of strain
softening is adopted, which means that the amount of softening depends only on
the length of the trajectory in the plastic strain space but not on the strain path
itself [53], i.e.:

ξs1 =
∫ t

t0

‖dev dp‖ dt, for τ ∈ ∂Edτ ∪ ∂Ed,eτ ∪ ∂Ed,pτ , (2.5.67)

ξs2 =
∫ t

t0

trdp dt, for τ ∈ ∂Edτ ∪ ∂Ed,eτ ∪ ∂Ed,pτ , (2.5.68)
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or in rate form:

ξ̇s1 = ‖dev dp‖, for τ ∈ ∂Edτ ∪ ∂Ed,eτ ∪ ∂Ed,pτ , (2.5.69)

ξ̇s2 = trdp, for τ ∈ ∂Edτ ∪ ∂Ed,eτ ∪ ∂Ed,pτ . (2.5.70)

Note that in Eqs. (2.5.67) to (2.5.70), it is explicitly remarked that ξs1 and ξs2
only evolve during intervals of plastic loading in which the stress state remains on
the Drucker-Prager failure line. Therefore, the rate form definitions (2.5.69) and
(2.5.70) can be rephrased in terms of the plastic flow vector on ∂Edτ :

ξ̇s1 = ‖dev dp‖ = 2λ̇dq, (2.5.71)

ξ̇s2 = trdp = λ̇dγαc. (2.5.72)

In Eq.(2.5.46), it was assumed the additive decomposition of the cohesion rate,
ċ = ċh + ċs. The usefulness of this decomposition will become apparent in the
numerical integration. A close inspection of the definitions of ξh, ξs1 and ξs2 reveals
that the simultaneous occurrence of both hardening and softening is only possible
when the stress state lies on the intersection ∂Ed,eτ of the elliptical cap and Drucker-
Prager line, where precisely more numerical difficulties are encountered19. However,

19In the subsequent numerical integration, the coupling between hardening and softening when

the stress state is located at the intersection point ∂Ed,eτ will be eliminated by modifying the
evolution equation for ξs1, that will take the form ξ̇s1 = (1 − H(λ̇e))(2λ̇dq), where H(•) denotes
the Heaviside function. Hence, it will be assumed that the occurrence of softening is precluded

at ∂Ed,eτ .
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for the sake of clarity, we preclude this possibility from our current analysis and
presume that yielding takes place only at ∂Edτ . Therefore, we can legitimately write

ċ = ċs, → c(t) = c0 +
∫ t

tis

ċsdt. (2.5.73)

where tis denotes the time at which yielding at ∂Edτ is initiated and c0 is the
cohesion at this time:

c0 = c(ξh(tis), ξs10, ξ
s
20). (2.5.74)

Observe that the initial cohesion c0 depends on the degree of hardening, character-
ized by ξh(tis), achieved in previous compacting processes. If ξsβ(tis) = 0, β = 1, 2,
the initial cohesion c0 coincides with the cohesion20 that one would obtain from
the curve of virgin material ch(ξh).

We are now faced with the task of setting a correlation between cs and ξs.
Motivated by the exponential structure of the majority of empirical hardening laws
seen in the previous section, the following softening law is adopted

cs(ξs1, ξ
s
2) = c0(e

1
c0

(H01(ξ
s
1−ξs10)+H02(ξ

s
2−ξs20)) − 1). (2.5.75)

Recall that we only have at our disposal experimental fracture energy values, mea-
sured in a single test, for calibrating the parameters H01 and H02, hereafter re-
ferred to as softening parameters. Thus, we are confronted with the dilemma of
whether to neglect the influence of one of the internal variables or to calibrate one
of these parameters, say H01, and consider the other one as a dependent variable
H02 = H02(H01). The dilemma can be resolved if we take into account the relative
influence of both internal variables in the material response. Dividing Eq.(2.5.72)
by Eq.(2.5.71), we get

ξ̇s2

ξ̇s1
= γ

αc

2q
. (2.5.76)

It was set forth in section (2.5.3) that, in order to reproduce the behavior
observed experimentally , the dilatancy parameter γ is set to values close to zero.
This fact, according to Eq.(2.5.76), brings into prominence the effect of shear plastic
strain in the material response, i.e.:

ξ̇s1 À ξ̇s2. (2.5.77)

Therefore, it will be assumed that ξ̇s2 = 0, and the set of internal softening variables
is reduced to the single scalar variable ξs = ξs1.

However, one has to be aware of the limitations imposed by hypothesis (2.5.77).
Its validity hinges on assuming that q is greater, or of the same order, as c. This
condition, although seldom, may fail in some circumstances. For instance, in an
hypothetical hydrostatic tensile test, in which the stress state is such that q = 0,
variable ξ̇s1 would not evolve, and hence no failure would be predicted unless the
degrading effect of dilatational deformations (ξs2) is acknowledged.

20In practice, (see Eq.(3.2.89) in chapter 3), we simply make c0 = ch.
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Figure 2.19 Softening counterpart of the cohesion variable cs vs internal softening
variable ξs. The continuum softening modulus H is the tangential slope of this curve.
The softening parameter H0 is the tangential slope for ξs = ξs0.

With only one internal softening variable, the softening law (2.5.75) can be then
written as:

cs(t) = c0(e
H0(ξs−ξs0)

c0 − 1). (2.5.78)

The remaining softening parameter H0 is the initial slope of the plot cs vs ξs (see
figure 2.19). The tangential slope H at any value of ξs, defined by the following
rate equation:

ċs = Hξ̇s, (2.5.79)

is termed the continuum softening modulus [76]. By differentiation of Eq.(2.5.78),
H can be expressed as:

H = H0
c0 + cs
c0

= H0
c

c0
. (2.5.80)

Calibration of the softening parameter

The procedure to calibrate the softening parameter H0 was outlined in a sim-
plified manner in section 2.1.2, within a one-dimensional setting. We shall now
address this topic more in depth, since it constitutes one of the novelties of our
modeling approach. For this purpose, consider the work gf , per unit reference
volume, that has to be expended to decrease the cohesion from a value c0 to zero:

gf =
∫ t∞

tis

τ : d dt. (2.5.81)

where tis denotes the time at which yielding is initiated.
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Using the additive decomposition of the rate of deformation tensor (Eq.(2.2.15)),
we get

gf =
∫ t∞

tis

τ : de dt+
∫ t∞

tis

τ : dp dt. (2.5.82)

In virtue of Eq.(2.3.6), the first integral of the right hand side of the above equation
takes the form: ∫ t∞

tis

τ : de dt =
∫ t∞

tis

∂ψe

∂ee
: de dt. (2.5.83)

where ψe is the elastic free energy function, defined in Eq.(2.4.1). As proved in
Proposition A.1.1 of Appendix A, the rate of change of ψe is given by

ψ̇e =
∂ψe

∂ee
: de +

∂ψe

∂ξh
ξ̇h. (2.5.84)

Employing Eq.(2.5.84) in Eq.(2.5.83), we get
∫ t∞

tis

τ : de dt =
∫ t∞

tis

(ψ̇e − ∂ψe

∂ξh
ξ̇h) dt. (2.5.85)

We now suppose that, during intervals of plastic loading, the stress state remains
on ∂Edτ . This implies that the cap yield surface is not active, λ̇e = 0, and according
to the rate equation (2.5.28), the internal hardening variable ξh does not evolve, i.e
ξ̇h = 0. This observation permits to simplify Eq.(2.5.85) and omit the hardening
term, resulting:

∫ t∞

tis

τ : de dt =
∫ t∞

tis

ψ̇e dt = ψe(ee(t∞))− ψe(ee(tis)). (2.5.86)

Assuming that the initial elastic strains are zero, we have

ψe(ee(tis)) = ψe(0) =
1
2
ee : ce : ee = 0. (2.5.87)

The term ψe(ee(t∞)) vanishes if we presume that the stresses are fully released at
time t∞, i.e.:

ψe(ee(t∞)) =
1
2
ee(t∞) : ce : ee(t∞) =

1
2
ee(t∞) :

0︷ ︸︸ ︷
τ (t∞) = 0. (2.5.88)

Then, Eq.(2.5.82) reduces to the integral over the interval [tis, t∞] of the rate
of plastic work (per unit reference volume):

gf =
∫ t∞

tis

τ : dp dt. (2.5.89)

Using the flow rule (2.5.36), the above equation is rephrased as:

gf =
∫ t∞

tis

λ̇d(2q2 + γαcp) dt. (2.5.90)
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Employing Eqs. (2.5.71), (2.5.79) and (2.5.80), the plastic multiplier λ̇d can be
expressed in terms of the cohesion variable and the norm of deviatoric stress:

λ̇d =
ξ̇s

2q
=

c0
2H0cq

ċ. (2.5.91)

Substitution of Eq.(2.5.91) in Eq.(2.5.90) yields

gf =
∫ t∞

tis

c0
2H0cq

(2q2 + γαcp)ċ dt

=
c0

2H0

∫ 0

c0

2q2 + γαcp

cq
dc.

(2.5.92)

To proceed with the integration of (2.5.92), we need an additional ingredient:
the path followed by the stress state during the process. This ingredient, in con-
junction with the yield condition, permits the expression of the integrand of (2.5.92)
as a function of the cohesion21.

We turn now our attention to describe the diametral compression test that
will allow us to calibrate parameter H0. These tests were carried out by Jonsén
[50] on Distaloy AE powder cylindrical specimens, previously compacted at various
densities, by applying two diametrically opposite forces (see figure 2.20.a). These
forces induce at the center of the disc a tensile stress state which eventually leads
to the initiation of a crack that propagates rapidly along the loaded diameter. The
solid curve of the force vs displacement graph displayed in figure 2.21.a corresponds
to the force monitored during the test until the specimen fractures. The area under
this curve encompasses not only the irretrievable energy consumed in the formation
of the diametral crack, but also the recoverable elastic energy. In order to purge this
recoverable contribution from the balance of energy, an additional test is needed.
The specimen is split into two halves (see figure 2.20.b) and its response is evaluated
under the same experimental conditions as in the previous test. The result of this
additional experiment is the dashed curve also shown in figure 2.21.a. Finally, the
energy W required to produce such a crack is grossly estimated as the shaded area
enclosed by the solid and dashed lines.

As discussed in section 2.1.2, the fracture energy, denoted by Gf , is a measure of
the energy required for the formation of a unit of fracture surface. Thus, fracture
energy values are obtained by simply dividingW by the area Af of material affected
by the crack (see figure 2.21.b). Experimental results for each relative density are
shown in figure 2.22. An exponential equation seems to provide a good fit to these
data:

G(dct)
f (ξh) =

η0
ξh
AGf

eBGf
ξh , (2.5.93)

with AGf
= 0.1487 J/m2 and BGf

= 9.5102. 22.

21Observe that this path dependence is an inherent property of materials with different behavior
in tension and compression. A classical pressure-independent Von Mises plasticity model, for
instance, would not exhibit this path dependence, as it may be deduced from Eq.(2.5.92) by
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Figure 2.20 Diametral compresison test. (a) The powder cylindrical specimen is sub-
jected to two diametrically opposite forces. A crack develops along the loaded diameter.
(b) The specimen is split into two halves along the loaded diameter.
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Figure 2.21 (a) Typical force versus displacement graph for a diametral compression
test. (b) Area of the specimen employed to compute the fracture energy.

setting α = γ = 0: gf =
c0

2H0

R 0
c0

2q2

cq
dc =

−c20
H0

.

22It is important to remark that fracture energy values plotted in figure 2.22 are measures per
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Figure 2.22 Fracture Energy vs ξh. Fracture Energy is defined herein per unit current
surface. Experimental values provided by Jonsén [50] (Distaloy AE powder specimens).

The link between experimental data and the softening constitutive law is pro-
vided by the following balance of energy in the damaged volume Ωf [75]:

W = G(dct)
f Af =

∫

Ωf

gf(X)dV. (2.5.94)

Under the assumption that gf is approximately uniform over Ωf , and considering
a localization bandwith lf , the above expression takes the form

G(dct)
f = gf(X)lf . (2.5.95)

Inserting Eq.(2.5.92) in Eq.(2.5.95), we get

G(dct)
f = lf

c0
2H0

∫ 0

c0

2q2 + γαcp

cq
dc. (2.5.96)

We mentioned in our introductory chapter (see section 2.1.2) that, with a view
towards minimising the dependency to mesh refinement, the softening modulus is
related to the localization bandwith23 through the following expression

H0 = lf Ĥ0, (2.5.97)

where Ĥ0 stands for the intrinsic softening parameter [76], defined as

Ĥ0 =
c0(ξh)

2G(dct)
f

∫ 0

c0

2q2 + γαcp

cq
dc. (2.5.98)

unit current surface, which is the typical definition of fracture energy. However, in conformance
with the rest of stress and energy quantities involved in the formulation of the constitutive equa-

tions, the fracture energy G(dct)
f is defined on the reference configuration, i.e. it is an energy per

unit reference surface, hence the factor
η0

ξh
in Eq.(2.5.93).

23The localization bandwith or characteristic length lf is intimately tied to the size and orien-
tation of the subsequent spatial discretization. See reference [74] for further details.
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The superindex “dct” attached to the symbol Gf indicates that this quantity
corresponds to the fracture energy measured in a diametral compression test. The
intrinsic softening Ĥ0, on the other hand, is not accompanied by any superindex.
This notational convention has been deliberately introduced to highlight one of
our basic assumptions in this regard. Indeed, whereas fracture energy is clearly
a quantity sensitive to the loading history followed during the experimental test,
we shall consider that the intrinsic softening parameter does not depend on the
loading history. In other words, we regard the intrinsic softening parameter Ĥ0

as a state function, i.e., a quantity that can be uniquely determined at any time
by the point values of the state variables. In this case, according to Eq.(2.5.98)
and Eq.(2.5.93), the softening parameter only depends on the internal hardening
variable, that is Ĥ0 = Ĥ0(ξh). The intrinsic softening modulus is then defined by
analogy with Eq.(2.5.80) as:

Ĥ = Ĥ0
c0 + cs
c0

, (2.5.99)

is also a state function, but it further depends on the internal softening variable,
Ĥ = Ĥ(ξh, ξs). Note that neither the softening modulus H nor the softening
parameter H0 can be viewed as state functions.

To complete the calibration, it would be now pertinent to evaluate analytically
the integral appearing in Eq.(2.5.98). To this end, one needs the analytical expres-
sion of the stress path traced during the de-cohesion process at points within the
cracking band. For the case of a diametral compression test, the derivation of such
expressions is far from being obvious, as it may surmised from the stress analysis
(in the elastic range) carried out by Timoshenko [102].

To overcome this difficulty, it proves advantageous to exploit the fact that the
diametral compression test is but an indirect test to measure the tensile strength
of brittle or quasi-brittle materials (hence the alternative denomination of indirect
tension test [107]), on which direct uniaxial tensile test are difficult to perform.
The experimental configuration of the diametral compression test is such that the
developing of the crack at the loaded diameter takes place under Mode I or opening
mode conditions, which, in turn, are the same conditions encountered in a standard
uniaxial tensile test. On this basis, a plausible assumption is to consider that the
fracture energy measured in a uniaxial tensile test is approximately equal to that
corresponding to the diametral compression test, i.e.:

G(dct)
f ≈ G(tt)

f , (2.5.100)

the superindex “tt” signifying tensile test. Under such assumption, the analyti-
cal evaluation of the integral in Eq.(2.5.98) becomes feasible, as we show in the
following.

In a uniaxial tensile test, the ratio q/p at points belonging to the cracking band
is approximately linear:

q ≈ m̂ p, (2.5.101)

since necking is not very pronounced in quasi-brittle materials [41] and thus the
uniaxial stress state prevails after bifurcation of the response. For a tensile test,
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m̂ =
√

6, as it is deduced from figure 2.18.a. Enforcing the yield condition in
Eq.(2.5.101), we get an expression of q as a function of the cohesion c:

q =
m̂

m̂ + α
c = m̃c. (2.5.102)

Inserting the above equation into Eq.(2.5.98) and integrating, an expression for the
intrinsic softening modulus Ĥ0 is finally achieved:

Ĥ0 = − c20

2G(dct)
f

2m̃2 − γm̃ + γ

m̃
. (2.5.103)

Inspection of the empirical laws (2.5.93) and (2.5.56) shows that both are expo-
nential functions of the internal hardening variable. It follows from Eq.(2.5.103),
thus, that the dependence of the intrinsic softening parameter on ξh exhibits also
an exponential format:

|Ĥ0(ξh)| = η0
ξh
AHe

BHξ
h

, (2.5.104)

where

AH =
2(m̃2 − γm̃ + γ)

3m̃

A2
ch

AGf

, (2.5.105)

BH = 2Bch −BGf
. (2.5.106)

In figure 2.23, relation (2.5.104) between the intrinsic softening parameter |Ĥ0|
and ξh is plotted. The graph shows that Ĥ0 is close to zero for the range of
low densities. This observation confirms the hypothesis made in section 2.3, and
represented by Eq.(2.3.3) , asserting that the softening mechanism is not active
for low densities. Another interesting conclusion can be drawn from the values
displayed in figure 2.23. The magnitude of |Ĥ0| for ξh ≈ 0.95 is approximately 1.0
MN/mm3. Considering a typical width crack of, say, 0.1 mm, the resulting value
of the softening parameter would be |H0| = 0.1 · 1.0MN/mm2 = 0.1 · 106MPa.
On the other hand, the Young’s Modulus corresponding to the same density range
(see figure 2.17) is approximatelyEe ≈ 150GPa = 0.15 · 106MPa. This gives a
ratio Ee/H0 ≈ 1.5, i.e., both moduli are of the same order of magnitude, which,
in turn, implies that the order of magnitude of elastic and plastic strains are the
same in deformation processes entailing only softening. This assertion is one of the
basic assumptions made in section 2.2.1.

A noteworthy feature of the present approach is the hypothesis presented above
by which the intrinsic softening parameter Ĥ0 is regarded as a state variable. The
lack of experimental data concerning fracture energy in other fracture tests pre-
cludes the possibility of strictly corroborating this hypothesis. Nevertheless, it
would be instructive to briefly examine and put on a quantitative basis the conse-
quences of such proviso. For this purpose, consider a compression test characterized
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Figure 2.23 Intrinsic softening parameter Ĥ0 vs internal hardening variable ξh.

by a stress path during plastic loading given by q = −√6p (see figure 2.14.b) 24. For
a typical value γ = 0.01 of the dilatational coefficient and a parameter of internal
friction α = 2.29, we get

Ĥ0 = −15.8
c20

2G(ct)
f

. (2.5.107)

where G(ct)
f stands for the fracture energy associated to a uniaxial compression test.

The same operations for a uniaxial tensile test yields

Ĥ0 = −0.52
c20

2G(tt)
f

. (2.5.108)

In view of Eq.(2.5.107) and Eq.(2.5.108), the fracture energy measured in a uniaxial
compression test would be 15.8/0.52 ≈ 30 times greater that the linked to the one
obtained in a uniaxial tensile test. For other granular media, such as concrete, this
ratio gives approximately 100 [82].

24The ratio q/p is not linear in a compression test after bifurcation, since important shear
stresses develop at the localization band [61] (fracture occurs under shear mode or mode II con-
ditions (see figure 2.6)) and, consequently, the hypothesis of uniaxial stress state is no longer
valid. However, the approximation adopted here q/p = −√6 (the same path traced during elastic
loading) serves as a first approximation for estimating the fracture energy associated to this test.
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Chapter 3

Integration of the
constitutive equation

3.1 Preliminaries

The preceding chapter was devoted to describe mathematically the effects that a
given deformation history has on the physical attributes of the powder at a point
X ∈ Ω0 . The result was the formulation of a system of constitutive laws and
evolution equations subjected to a set of unilateral constraints. For clarity, we
summarize again these relations:

I. Deformation and strain history up to current time t ∈ [t0, tf ] (given):

t̂ 7→ Ft̂(X) = F(X, t̂), where t̂ ∈ [t0, t], (3.1.1)

e =
1
2

(
1− F-T ·F-1

)
. (3.1.2)

II. Elastic strain-stress relationship

τ =

τ0︷ ︸︸ ︷
F · S0 · FT + ce : (e− ep), where S0 = S(t0), (3.1.3)

ce = κe1⊗ 1 + 2µe(I − 1
3
1⊗ 1), (3.1.4)

with κe = κe(ξh) and µe = µe(ξh) given in Eqs. (2.4.2) and (2.5.60).

III. Elastic domain in Kirchhoff stress space

Eτ =
{
τ | φβ(τ , ξh, ξs) ≤ 0, for all β ∈ {e, d, v}} , where (3.1.5)

φe = φ1 = q2 + s22(ξ
h)p2 − s21(ξh)s22(ξh), (3.1.6)

63
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φd = φ2 = q + αp− c(ξh, ξs), (3.1.7)

φv = φ3 = q − cv(ξh), (3.1.8)

with p = 1
3 tr τ and q =

√
dev τ : dev τ .

IV. Flow rule

Lvep = dp =
3∑

β=1

λ̇βmβ , where (3.1.9)

me = m1 = 2dev τ +
2
3
s22(ξ

h)p1, (3.1.10)

md = m2 = 2 dev τ +
1
3
γ c(ξh, ξs)α1, (3.1.11)

mv = m3 = 2 dev τ . (3.1.12)

V. Evolution of internal variables

ξ̇h = −ξhλ̇e2s22(ξh)p, (3.1.13)

ξ̇s = 2λ̇dq, (3.1.14)

with initial values ξh(t0) = η0 and ξs(t0) = 0.

VI. Softening and hardening laws (in rate form)

ṡ1 =
∂s1h
∂ξh

ξ̇h, (3.1.15)

ṡ2 =
∂s2h
∂ξh

ξ̇h, (3.1.16)

ċ =
∂ch
∂ξh

ξ̇h +Hξ̇s, (3.1.17)

ċv =
∂cvh
∂ξh

, (3.1.18)

where s1h = s1h(ξh), s2h = s2h(ξh), ch = ch(ξh), H = H(ξs) and cvh =
cvh(ξh) are given in Eqs. (2.5.53), (2.5.54), (2.5.56), (2.5.80) and Eq.(2.5.59),
respectively.

VII. Karush-Kuhn-Tucker loading/unloading conditions and consistency condition

λ̇β ≥ 0, φβ(τ , ξh, ξs) ≤ 0, (3.1.19)

λ̇βφβ(τ , ξh, ξs) = 0, (no sum on β), (3.1.20)

λ̇βφ̇β(τ , ξh, ξs) = 0, (no sum on β). (3.1.21)
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The underlying ODE structure of the governing equations listed above becomes
apparent by expressing all the variables involved in the problem in terms of a
set of generalized stresses, defined as Σ = (S, r), where S is the second Piola-
Kirchhoff stress tensor and r stands for the stress-like vector of internal variable
with components:

r =
[
s1
c

]
, (3.1.22)

which, in turn, is related with the vector of strain-like internal variables [ξh, ξs]T

through the generalized plastic moduli D, defined as

D =



∂s1h
∂ξh

0

∂ch
∂ξh

H


 . (3.1.23)

By performing pull-back transformations on the constitutive equations, and after
some straightforward, albeit lengthy, manipulation, one gets the following general-
ized representation of the system of ordinary differential equations governing the
local response of the powder at X ∈ Ω0

1:

Σ̇ = A(Σ, Ė) +
3∑

β=1

λ̇βΞβ(Σ). (3.1.24)

This system is supplemented with the initial conditions Σ(t0) = (S0, r(ξ0)). The
components of the generalized stress tensor Σ and the plastic multipliers λ̇β , (β =
1, 2, 3) are the dependent variables, whereas the rate of change of the Green-
Lagrange strain tensor Ė is the source term. The evolution of Σ is further re-
stricted by the loading/unloading and consistency conditions, which in terms of Σ
are written as

λ̇β ≥ 0, φβ(Σ) ≤ 0, (3.1.25)

λ̇βφβ(Σ) = 0, (no sum on β), (3.1.26)

λ̇βφ̇β(Σ) = 0, (no sum on β). (3.1.27)

The problem of integrating numerically the initial-value ODE equation repre-
sented by Eq.(3.1.24), in conjunction with conditions (3.1.25), (3.1.26) and (3.1.27),
constitutes the central problem of computational plasticity [92]. The remainder of
this chapter is focused on solving this problem and addressing the mathematical
questions that arises in its treatment.

1The derivation of the expressions for A = A(Σ, Ė) and Ξβ = Ξβ(Σ) is not quoted herein.
The interested reader is urged to consult Appendix A.2 for the details of such derivation.
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3.1.1 Implicit Backward-Euler and IMPLEX integration
schemes

As customarily, the continuous time domain [t0, tf ] of interest is discretized in
non-overlapping intervals, [t0, tf ] =

⋃N
n=1[tn, tn+1]. Then, the exact derivative in

Eq.(3.1.24) is approximated by an algebraic finite difference. Finally, substitution
of this approximation into the ODE equation leads to an algebraic finite difference
equation [45]. One of the most employed methods in computational plasticity arises
when the derivative at time tn+1 is approximated as

(
Σ̇

)
n+1
≈ Σn+1 −Σn

∆tn+1
. (3.1.28)

The resulting finite difference scheme is known as the implicit Backward Euler
difference scheme. The associated non-linear difference equation takes the form

Σn+1 −Σn = ∆tn+1A(Σn+1, Ėn+1) +
∑

β∈Jact

∆λβn+1 Ξβ(Σn+1), (3.1.29)

where ∆tn+1 = tn+1 − tn and ∆λβn+1 = ∆tn+1λ̇
β stand for the length of the

time interval and the β-th discrete plastic multiplier, respectively. The discrete
counterpart of the Karush-Kuhn-Tucker conditions (3.1.25), (3.1.26) and (3.1.27)
read

∆λβn+1 ≥ 0, φβ(Σn+1) ≤ 0, (3.1.30)

∆λβn+1φ
β(Σn+1) = 0, (no sum on β). (3.1.31)

The reason behind the popularity of such method is, on one hand, that it
provides a suitable framework for the enforcement of the algebraic Karush-Kuhn-
Tucker constraints, leading to the classical return mapping algorithm [92]. On the
other hand, the implicit Backward Euler scheme turns out to be, in general, uncon-
ditionally stable [93]. Section 3.2 is devoted to discuss the salient features of such
integration scheme when applied to our specific problem. One of the issue that will
receive particular consideration is that of the uniqueness of solution. As a matter
of fact, the task of ensuring the existence and uniqueness of solution will require
to modify the evolution equations (3.1.13) and (3.1.14), although these modifica-
tions will be accommodated without significantly compromising the adequacy of
the empirical correlations established in the previous chapter.

The source term in the ODE (3.1.24) is the rate of change of the Green-Lagrange
strain tensor Ė. This fact is consistent with the strain-driven character of the con-
stitutive model, whereby all variables can be expressed in terms of the deformation
history through adequate functional relationships. Therefore, the deformation his-
tory is presumed known when solving the ODE (A.2.13). From the algorithmic
point of view, this statement means that the strain rate is prescribed in the inter-
val [tn, tn+1] when solving the associated difference equation (3.1.29).

In practice, however, the function F = F(t), t ∈ [t0, tF ] is not available as such.
Our aim is to obtain the mechanical response of the powder sub-system under
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external loads (punch actions). To this end the weak form of the momentum equa-
tion is discretized via a Galerkin finite element projection2. Then, the numerical
solution of the discrete system of equations, whose basic unknowns are the nodal
displacements, is obtained by performing an incremental analysis accompanied by
iterations so as to ensure convergence to equilibrium states. The strain increment
∆E = En+1−En is calculated from the current displacement field, which is updated
at the beginning of each iteration, and the previously converged configuration (at
tn) through adequate kinematic relationships.

If a standard Newton-Raphson procedure is employed for this iterative pro-
cess, as is the case here, the spectral properties of the so-called algorithmic tangent
moduli are a crucial issue for preserving the quadratic rate of asymptotic conver-
gence that characterizes Newtown’s method. It is widely known that if the posi-
tive definiteness of the the algorithmic tangent moduli cannot be guaranteed, the
performance of the Newton-Raphson method may be seriously impaired, affecting
eventually the ability of the considered algorithm to provide results at affordable
computational costs. The algorithmic tangent moduli stemming from the implicit
integration of an elasto-plastic model equipped with softening, as in our case, is a
typical example in which the proviso of positive definiteness is not satisfied, a fact
intimately tied with the character of unstable material model associated to this
type of approach [6].

The need to circumvent this barrier to computability has prompted investi-
gations of alternative means of integrating the constitutive model. The solution
adopted herein is the one pioneered by Oliver et al. [79, 80], originally conceived
for addressing the problem of robustness and stability arising in the numerical
simulation of material failure within the framework of the Strong Discontinuity
Approach. The algorithmic details concerning this integration scheme are given in
section 3.3.

Oliver et al. coined the term IMPLEX (IMPLicit-EXplicit) to suggest that
the proposed methodology shares some of the features of both implicit and ex-
plicit integration schemes. The essence of the method is to solve explicitly for
some variables, in the sense that the values at the beginning of the increment are
presumed known, and implicitly for other group of variables. In this aspect, the
IMPLEX methodology parallels that followed in the so-called semi-implicit integra-
tion scheme, developed by Moran et al. [68, 5]3. However, the primary motivation
behind the semi-implicit strategy is to reduce the equation solving effort associated
to the solution of the fully implicit scheme, whereas the IMPLEX method is basi-
cally intended to enhance the spectral properties of the algorithmic tangent moduli.
Indeed, the remarkable stability exhibited by IMPLEX solutions [80] is attributed
to the fact that the above mentioned group of explicit variables are extrapolated
values of the same quantities computed at previous time steps by accomplishing a
fully implicit integration. The distinguishing feature of the IMPLEX methodology
is, hence, that it does entail the solution at each time increment of the non-linear

2So far, attention has been confined to the local response at a point X ∈ Ω0, which, in fact,
corresponds to a quadrature point of a typical finite element

3This integration procedure is characterized for being implicit in the incremental plastic strain,
but explicit in the plastic flow direction and the hardening moduli
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system of equations stemming from the implicit backward-Euler difference scheme.
Furthermore, with an appropriate choice of the explicit variables, the algorith-

mic tangent tensor adopts a very simplified format, to such an extent that if the
terms due to non-linear kinematics are discarded, the resulting tangent tensor is
step-constant. This means that if one disregards other sources of non-linearities
rather than the material one, the structural tangent stiffness matrix would be con-
stant and the convergence to equilibrium states could be achieved, theoretically,
in only one iteration per time step, as it is shown in the original work of Oliver
et al.[79]. A further implication of this statement is that, if during a computer
run the convergence of the global Newton-Raphson iteration scheme is hindered
by any reason, one should seek the causes that inhibit convergence in geometric
singularities or in the roughness of the response associated to the contact with the
punches (boundary conditions) rather than in material non-linearities.

Although the IMPLEX integration, as the fully implicit scheme, is first-order
accurate [80], the global error associated to the IMPLEX scheme is comparatively
larger for the same time step size. Hence, the IMPLEX method demands more
time steps than the implicit procedure for obtaining the same accuracy in the
results. Nevertheless, the consequences of this drawback are not too drastic, since,
in practical loading situations, the step size is to be considerably reduced by the
need to accurately resolve the abrupt nature of the contact response between the
powder and the tooling.

Another characteristic of this integration scheme is that the yield condition is
not enforced at time tn+1, i.e, the updated stresses emanating from the IMPLEX
integration violates the consistency condition. Note that this is a feature inherent
to the explicit character of the proposed method. It should be remarked, however,
that in contrast to standard explicit forward Euler procedures [27], the accumu-
lated error remains bounded as the solution progresses[80]. Indeed, if one considers
a process involving yielding in which the application of the external actions are
reasonably smooth, the explicit values, obtained as extrapolations of implicitly in-
tegrated quantities at previous steps, would not differ substantially from those
furnished by a fully implicit scheme at time tn+1, and thus the stress state would
remain very close to the boundary of the elastic domain. By contrast, in those
circumstances in which the response is far from being smooth, as in the abrupt
transition from compressive yielding to elastic conditions that accompanies the up-
per punch pressure release, the yield condition may be substantially violated. In
order to overcome this adverse effect, Oliver et al.[80] have proposed an adaptive
time step algorithm that keeps the error in these cases into appropriate bounds.

3.2 Implicit integration scheme

We consider a time discretization of the interval [t0, tf ] =
⋃N
n=1[tn, tn+1], and let

{ξhn, ξsn,En,Ep,n} be the initial data at tn. We regard also the deformation gradient
Fn+1 at tn+1 as given. Our aim is to find the state variables at the end of the
interval [tn, tn+1] by applying a implicit backward Euler difference scheme to the
constitutive evolution equations summarized at the beginning of this chapter.
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We begin by the elastic constitutive relationship (3.1.3). Since this relation is
not expressed in rate form, we can simply write its discrete counterpart as:

τn+1 = Fn+1 · S0 · FT
n+1 + ce,n+1 : (en+1 − ep,n+1). (3.2.1)

Observe that the notation ce,n+1 indicates that ce,n+1 = ce(ξhn+1). In order to
satisfy the requirement of objectivity, the flow rule represented by Eq.(3.1.9) is
transformed back to the reference configuration Ω0 and then approximated as:

Ep,n+1 = Ep,n +
3∑

β=1

∆λβn+1ϕ
∗
(
mβ
n+1

)
, (3.2.2)

where ∆λβn+1 denotes the discrete plastic multiplier ∆λβn+1 = ∆tn+1 λ̇
β , with

∆tn+1 = tn+1 − tn. The symbol ϕ∗(•) stands for the pull back operator4 ϕ∗(•) =
F-T
n+1 · (•) ·F-1

n+1. We revert again to the spatial description by obtaining the push
forward, defined as ϕ∗(•) = F-T

n+1 · (•) · F-1
n+1, of Eq.(3.2.2):

ϕ∗(Ep,n+1) = ϕ∗(Ep,n) +
∑

β∈Jact

∆λβn+1ϕ∗
(
ϕ∗

(
mβ
n+1

))
⇒

ep,n+1 = ĕp,n +
∑

β∈Jact

∆λβn+1m
β
n+1. (3.2.3)

Remark 3.2.1. The breve symbol in ĕp,n is attached to indicate that ĕp,n is a strain
measure computed at time tn but transformed to the current configuration Ωn+1

via a push forward operation:

ĕp,n = ϕ∗(Ep,n) = F-T
n+1 ·Ep,n · F-1

n+1. (3.2.4)

The above can be rephrased also, after simple algebra, in terms of the incremental
deformation gradient ∆Fn+1 = Fn+1 · F-1

n ,

ĕp,n = F-T
n+1 ·Ep,n · F-1

n+1 = ∆F-T
n+1 · ep,n ·∆F-1

n+1, (3.2.5)

or symbolically,
ĕp,n = ϕ∆

∗ (ep,n) , (3.2.6)

ϕ∆
∗ (•) being the push-forward operation relating the incremental motion from con-

figuration Ωn to Ωn+1. This notation will be used henceforth to denote any tensorial
quantity computed at tn but pushed forwardly to the current configuration Ωn+1.
In this way, for instance, τ̆n = ϕ∗(Sn) = ϕ∆

∗ (τn). This notational convention will
permit us to easily draw analogies with infinitesimal classical plasticity formula-
tions, by simply setting ĕp,n ≈ ep,n, or τ̆n ≈ τn = σn.

4Push-forward and pull-back transformations depend on the covariant or contra-variant na-
ture of their arguments. Strain measures are considered herein covariant tensors, whereas stress
quantities are contravariants. For further details, see Appendix A, Eqs. (A.1.12) and (A.1.13)
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The same approximation of the time derivative is carried out on the evolution
equations (3.1.13) and (3.1.14), leading to the following difference equations:

ξhn+1 = ξhn − 2ξhn+1∆λ
e
n+1s2,n+1

2 pn+1, (3.2.7)

ξsn+1 = ξsn + 2∆λdn+1qn+1, (3.2.8)

where pn+1 = 1/3tr τn+1 and qn+1 = ‖dev τn+1‖. The parameters governing the
size and shape of the elliptical cap surface and the location of Von Mises yield
surface can be obtained through functional evaluations, i.e. s1,n+1 = s1(ξhn+1),
s2,n+1 = s2(ξhn+1) and cv,n+1 = cv(ξhn+1). On the other hand, the expression for
the cohesion state variable can be drawn from the rate equation (3.1.17) as:

cn+1 = cn +
∂ch
∂ξh

∣∣∣∣
n+1

(ξhn+1 − ξhn) +Hn+1(ξsn+1 − ξsn). (3.2.9)

Finally, the discrete counterpart of the Karush-Kuhn-Tucker loading/unloading
conditions are given by

∆λβn+1 ≥ 0, φβn+1 ≤ 0, (β = 1, 2, 3) (3.2.10)

∆λβn+1φ
β
n+1 = 0, (β = 1, 2, 3) (no sum on β). (3.2.11)

where
φen+1 = φ1

n+1 = q2n+1 + s2,n+1
2 p2

n+1 − s1,n+1
2 s2,n+1

2, (3.2.12)

φdn+1 = φ2
n+1 = qn+1 + αpn+1 − cn+1, (3.2.13)

φvn+1 = φ3
n+1 = qn+1 − cv,n+1. (3.2.14)

A widely used procedure, which can be justified as a product formula based on
an elastic-plastic operator split [92], to cast the loading-unloading conditions in a
format readily amenable to computational implementation is to introduce the trial
elastic state. This trial state arises from assuming elastic behavior throughout the
time step [tn, tn+1]:

etrp,n+1 = ĕp,n, (3.2.15)

ξh,trn+1 = ξhn, (3.2.16)

ξs,trn+1 = ξsn. (3.2.17)

τ trn+1 = Fn+1 · S0 · FT
n+1 + ce,n : (en+1 − ĕp,n). (3.2.18)

If the convexity of the elastic domain holds5, it can be shown [92] that if

φβ,trn+1 = φβ(τ trn+1, ξ
h,tr
n+1, ξ

s,tr
n+1) < 0, ∀β = 1, 2, 3, (3.2.19)

5By examination of figure 2.7 (section 2.5.2), and by straightforward geometric considerations,
we can immediately conclude that the elastic domains displayed are convex in stress space. For a
typical Distaloy AE, whose empirical correlations were detailed in section 2.5, this conclusion can
be extended for the whole range of possible configurations of the three yield surfaces. For other
materials, the fulfillment of the convexity condition must be inspected cautiously.
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then the trial elastic state is inside the elastic domain and, therefore, the deforma-
tion is entirely elastic. In this case, the updated state corresponds to the above
shown trial elastic state. By contrast, if one or more yield conditions are violated,
i.e.

φβ,trn+1 > 0, for any β = 1, 2, 3, (3.2.20)

then the tentative assumption of elastic response is rejected, and the updated state
is obtained by “returning” the trial state to the yield surface, in order to meet the
corresponding consistency condition.

The computation of elastic predictor step does not entail any difficulty, since
it involves only functional evaluations. The complexity lies thus in the plastic
corrector step, which constitutes the thrust of the return mapping algorithm. A
crucial issue in return mapping algorithms with multisurface yield conditions is the
determination of the set of active constrains [92], defined as

Jactn+1 =
{
β ∈ {1, 2, 3} | ∆λβn+1 > 0

}
. (3.2.21)

One salient feature of this set of active constrains is that Jactn+1 ⊆ Jact,trn+1 , where
Jact,trn+1 is given by

Jact,trn+1 =
{
β ∈ {1, 2, 3} | φβ,trn+1 > 0

}
. (3.2.22)

This assertion means that if only one yield condition φα,trn+1 is violated, then ∆λαn+1 >

0, but if several yield conditions are active, then the condition φα,trn+1 > 0 does not
guarantee that ∆λαn+1 > 0 [92].

Inserting the discrete flow rule (3.2.2) in Eq.(3.2.1), we get

τn+1 =Fn+1 · S0 · FT
n+1 + ce,n+1 : (en+1 − ĕp,n)

−
3∑

β=1

∆λβn+1 ce,n+1 : mβ
n+1.

(3.2.23)

Using the preceding relation and the definition (3.2.18) of trial stress, an easy
manipulation produces the result

τn+1 = τ trn+1 + ∆ce,n+1 : (en+1 − ĕp,n)−
3∑

β=1

∆λβn+1 ce,n+1 : mβ
n+1. (3.2.24)

The fourth-order tensor ∆ce,n+1 in the above expression, defined as

∆ce,n+1 = ce(ξhn+1)− ce(ξhn) = (κen+1 − κen)1⊗ 1 + 2 (µen+1 − µen)Idev. (3.2.25)

does not appear in classical plasticity formulation. This term reveals the coupling
between elastic and plastic responses, i.e. the fact that the elastic moduli Ee

increases as hardening progresses.

Remark 3.2.2. Expression (3.2.24) possesses a compelling geometric interpretation,
illustrated in figure 3.1. The projection of the trial elastic stress τ trn+1 in the p-q
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Figure 3.1 Geometrical interpretation of the effect of coupling between elastic and
plastic response.

plane lies outside the elastic domain. Since only the elliptical yield surface is active,
then ∆λen+1 > 0 and ∆λdn+1 = ∆λvn+1 = 0. The unusual feature here is that
the return direction is not determined by the vector ce,n+1 : me

n+1. Rather, the
location of the trial stress is changed to τ trn+1 +∆ce,n+1 : (en+1− ĕp,n) before being
projected back to the yield surface using the direction ce,n+1 : me

n+1. Another
remarkable feature is that, as the Poisson’s ratio is regarded as a constant, the
direction determined by ∆ce,n+1 : (en+1 − ĕp,n) is aligned with ce,n+1 : (en+1 −
ĕp,n).

Therefore, the effect of the coupling between plastic and elastic response is
the alteration of the projection direction. In Appendix A.2, remark A.2.1, it is

concluded that the altered plastic flow vector
4
me, defined from the following ex-

pression

∆λe
n+1 ce,n+1 :

4
me = ∆λe

n+1 ce,n+1 : me
n+1 −∆ce,n+1 : (en+1 − ĕp,n), (3.2.26)

differs from the associated flow vector me
n+1 by terms that are one order of mag-

nitude larger than the elastic strains.

For convenience, we summarize in BOX 3.2 the resulting nonlinear coupled
system for the unknown state variables at tn+1.

3.2.1 Modification of the evolution equations

Our attention is concentrated now on the system of non-linear equations listed
in BOX 3.2. The presence of the unilateral constrain, represented by the loading-
unloading conditions, renders the task of solving this system of equations a challeng-
ing task. A widely employed strategy [92] for tackling such problem is to interpret
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I. Trial elastic stress:

τ trn+1 = Fn+1 · S0 · FT
n+1 + ce,n : (en+1 − ĕp,n).

II. Stress update:

τn+1 = τ trn+1 + ∆ce,n+1 : (en+1 − ĕp,n)−
3∑

β=1

∆λβn+1 ce,n+1 : mβ
n+1.

III. Update of the internal variables:

ξhn+1 = ξhn − 2ξhn+1∆λ
e
n+1s2,n+1

2 pn+1,

ξsn+1 = ξsn + 2∆λdn+1qn+1,

IV. Hardening and softening laws:

s1,n+1 = s1h(ξhn+1), s2,n+1 = s2h(ξhn+1), cv,n+1 = cvh(ξhn+1),

cn+1 = cn +
∂ch
∂ξh

∣∣∣∣
n+1

(ξhn+1 − ξhn) +Hn+1(ξsn+1 − ξsn), with

Hn+1 =
cn+1

c0(ξhn+1)
H0(ξhn+1).

κen+1 = κe(ξhn+1), µen+1 = µe(ξhn+1).

V. Loading/unloading conditions:

∆λβn+1 ≥ 0, φβn+1 ≤ 0, ∆λβn+1φ
β
n+1 = 0, (β = 1, 2, 3) (no sum on β),

Box 3.2.1 Return mapping algorithm.

the integration as the search for the optimality conditions of a convex minimization
problem. The existence and uniqueness of solution of such problem can be thus
asserted in a sound way, and techniques from mathematical programming theory
can be used to devise efficient and robust algorithms [44].

However, for applying with confidence these convex mathematical theorems
and programming procedures, one has to be sure that the integration problem
represented in BOX 3.2 can take the form of the minimization of a convex function
on a convex set. Departure from these convexity assumptions implies that the
existence and uniqueness of solution cannot be guaranteed by means of fundamental
theorems of convex analysis, and hence conventional mathematical programming
techniques have to be employed cautiously.

In the context of rate-independent plasticity, the set on which the solution is
to be searched is determined by the yield condition. Hence, one requirement is
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the convexity of the elastic domain in the space of generalized stresses. The other
standard prerequisite is that the diagonal compliance operator

G =
[
ce
−1 0
0 D−1

]
, (3.2.27)

is to be positive definite, so as to ensure that it defines a metric, i.e. Σ : G : Σ ≥ 0
for all Σ. Clearly, this is not the case, since the generalized hardening moduli D
(see Eq.(3.1.23)) lacks positiveness when the softening mechanism is active (H < 0).
Hence, we see that, again, the presence of softening affects adversely the algorithmic
treatment of our model by means of standard procedures.

In view of these circumstances, we are compelled to find other means to both
ensure the existence and uniqueness of solution and devise an algorithm to effi-
ciently find this solution. As it may be surmised, this is not an obvious task, due to
the tightly coupled character of the governing equations. The two main sources of
difficulties are the coupling between elastic and hardening behavior, symboliced by
the term ∆ce,n+1 : (en+1 − ĕp,n) in Eq.(3.2.24), and the coupling between harden-
ing and softening, which takes place when the return mapping algorithm places the
updated stresses on the intersection between the Drucker-Prager and the elliptical
yield surfaces. The following two items explained how to alleviate these difficulties
by modifying the evolution equation for the internal variables without eliminating
important details of the response.

3.2.1.1 Internal hardening variable

One of the basic assumptions of the proposed model is that the magnitude of the
elastic strains is negligible in comparison with the irrecoverable deformations. A
consequence of such proviso (see section 2.5.1) is that, in the course of monotonic
increasing compressive loading history, the internal variable ξh can be practically
identified with the relative density η. In appendix B.2, the validity of this hypothesis
is assessed by undertaking an analysis of the monotonic hydrostatic compression of
a cylindrical specimen. The conclusion drawn from this analysis is that the ratio
between the relative density and internal hardening variable is bounded by

η

ξh
≤ e

s1
κe . (3.2.28)

Hence, the validity of this assumption hinges on the ratio between the hydrostatic
yield stress in compression s1 and the elastic bulk modulus κe. The relation |1 −
es1/κ

e | versus η is plotted in figure 3.2 using the empirical correlations derived for
the Distaloy AE powder (see section 2.5.4, Eqs. (2.5.53) and (2.5.60)). It is clear
from that figure that the difference between relative density and internal hardening
variable is negligible (∼ 10−3) for almost the whole range of densities. Therefore
the experimentally calibrated values of κe and s1 for a typical Distaloy AE support
the hypothesis that ξh ≈ η in monotonic increasing compressive loading history.

The only objection that can be raised against this hypothesis is when the relative
density approaches unity. According to arguments set out in section 2.5.4, the
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hydrostatic yield strength in compression asymptotes to infinity in this event, and
since κe remains bounded, the hypothesis of ξh ≈ η would no longer hold. However,
note that in this case neither the kinematics assumptions regarding the additive
decomposition of d and e are valid, and, thus, the usefulness of the numerical
prediction as a whole might be questionable. .
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Figure 3.2 Function |1− es1/κ
e | vs η for a typical Distaloy AE powder.

The following proposition demonstrates that the hypothesis of small elastic
strains can be exploit further to derive an approximation of the discrete evolution
equation (3.2.7) for the internal hardening variable.

Proposition 3.2.1. Under the assumption of small elastic deformations, an ap-
proximation for the update of the internal hardening variable is given by

ξhn+1 = ξhnHJ (∆λen+1(ηn+1 − ηn), ηn
ηn+1

)
ηn+1

ηn
, (3.2.29)

where HJ(•) is the function defined by:

HJ(x, y) =
{

1, x > 0,
y, x ≤ 0, (3.2.30)

and ηn+1 =
η0

detFn+1
and ηn =

η0
detFn

denote the relative densities at time tn+1

and tn, respectively.

Proof.
The proof follows easily from the conservation of mass equation and the as-

sumption of negligible elastic strains.
¤

The foregoing result admits also an interpretation in the p-q plane. The follow-
ing proposition is useful in this regard.



76 3. Integration of the constitutive equation

Proposition 3.2.2. The trial stress defined in Eq.(3.2.18) can be alternatively
expressed as:

τ trn+1 =
¦
τn + ∆tn+1 ce,n : dn+1, (3.2.31)

where
¦
τn is defined through the following formula:

¦
τn = τ̆n − (c̆e,n − ce,n) : (en+1 − ĕp,n), (3.2.32)

where τ̆n = ϕ∆
∗ (τn) and c̆e,n = ϕ∆

∗ (ce,n).

Proof. First, the constitutive equation at time tn is transformed to configuration
Ωn+1 via the incremental push forward operator ϕ∆

∗ (•)6, i.e.:

ϕ∆
∗ (τn) = ϕ∗(S0) + ϕ∆

∗ (ce,n) : ϕ∆
∗ (en+1 − en) . (3.2.33)

This result is subtracted from Eq.(3.2.18), and upon rearrangement, we get

τ trn+1 = ϕ∆
∗ (τn)− (ϕ∆

∗ (ce,n)− ce,n) : ϕ∆
∗ (en − ep,n) + ce,n : (en+1 − ϕ∆

∗ (en))

= τ̆n − (c̆e,n − ce,n) : (en+1 − ĕp,n) + ce,n : (en+1 − ϕ∆
∗ (en)).

(3.2.34)

Using the properties of the push forward operator, the last term on the right-hand
side of the above equation can be written as:

ce,n : (en+1 − ϕ∆
∗ (en)) = ce,n : ϕ∗(En+1 −En) . (3.2.35)

Finally, the discrete version of the rate of deformation tensor, which is given by

dn+1 = ϕ∗
(
Ė

)
≈ 1

∆tn+1
ϕ∗(En+1 −En) , (3.2.36)

is substituted into Eq.(3.2.34), yielding the desired result. ¤
This alternative format for the trial elastic stress is particularly appealing be-

cause it can be related to the modified evolution equation (3.2.29). Indeed, obtain-
ing the volumetric part of Eq.(3.2.31):

ptrn+1 = p̆n + ∆tn+1 κ
e
n trdn+1. (3.2.37)

Using the spatial version of the conservation of mass equation, the above equation
can be expressed as

ptrn+1 = p̆n + κen log
ηn
ηn+1

. (3.2.38)

In virtue of the preceding equation, it turns out that a compressive deformation
(ηn+1 > ηn) is characterized by a component of τ trn+1 −

¦
τn along the p-axis of the

vector negative, i.e.
ptrn+1 ≥ p̆n ⇒ ηn ≥ ηn+1. (3.2.39)

6The push forward of the double the contraction between a fourth-order tensor and second-
order tensor is equal to the double contraction of the push forward of both tensors, i.e. ϕ∗(ce : e) =
ϕ∗(ce) : ϕ∗(e).
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It proves expedient to use this result for interpreting graphically the evolution
equation (3.2.29). In figure 3.3, several plausible trial stress states are plotted
(labelled from A to F). Only in the situation7 A the internal hardening variable
evolves, since the elliptical yield surface is clearly active (∆λen+1 > 0), and the
deformation is compressive ptrn+1 < p̆n. In the situation encountered in B, note
that ∆λen+1 > 0, but ptrn+1 > p̆n, hence ξhn+1 = ξhn. The other scenarios, C, D
and E, represent also states in which the internal variable remains in its converged
value ξhn.
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Figure 3.3 Different scenarios for the evolution of the internal hardening variable. Only

in situation labelled as A, the internal hardening evolves, i.e. ξh
n+1 > ξh

n.

3.2.1.2 Internal softening variable

The experimental correlations set forth in sections 2.5.4 and 2.5.5 were obtained
by monitoring the evolution of the corresponding yield stress, say the cohesion c,
as one of the internal variables increases, say ξh, and whilst the other (ξs) is held
fixed. Thus, the hardening response is calibrated assuming that no degradation
of mechanical strength -softening- occurs during the experiment, and vice versa,
softening mechanism is calibrated presuming that ξh does not evolve.

The hardening behavior is linked to yielding on the elliptical cap surface through
the plastic multiplier λ̇e, and strain softening is associated to yielding on the
Drucker-Prager surface through λ̇d. In accordance to Koiter’s rule, when the up-
dated stress lies on the intersection ∂Ed,eτ between both yield surfaces, the consis-
tency parameters λ̇d and λ̇e are nonzero and, therefore, the hardening and softening

7For illustration purposes,
¦
τn in situation A have been considered consistent with the yield

condition, i.e φe(
¦
τn, ξhn) = 0. However, observe that this condition is not necessarily satisfied,

since
¦
τn 6= τn (only in small strains

¦
τn = τn holds).
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mechanism act concurrently. From the physical standpoint, this implies that hard-
ening and softening counteract each other, that is, the strain hardening produced
by densification is partially counterbalanced by the softening mechanism. Which
of these effects dominates the response eventually cannot be known a priori.

From an algorithmic point of view, this simultaneous occurrence of both hard-
ening and softening may cause problems of convergence during the iterations of the
return mapping algorithm. It is the author’s experience that under such circum-
stances the iterates move on and off the active constraints and cause the algorithm
to zigzag, placing in each iteration the solution on a different location without
converging to any value.

Besides, in a fully implicit integration scheme, inconsistencies during the local
integration of the constitutive equations at any point of the body generally manifest
themselves in other stages of the computational cycle, affecting, for instance, the
convergence of the global iterations. By contrast, in our algorithmic treatment, the
internal forces at tn+1 are computed using stresses stemming from the IMPLEX
integration scheme, and the updated values arising from the implicit integration
are used only, via extrapolation, in subsequent time steps. Consequently, the
convergence of the global iteration scheme may mask the lack of convergence of the
local iterative procedure associated to the implicit integration, giving a false sense
of security by suggesting that everything is correct, while in fact the computed
results may be utterly misleading.

These computational drawbacks motivate the following simplification of the
discrete evolution equation (3.2.8) for the internal softening variable:

ξsn+1 = ξsn +
(
1−H(∆λen+1)

)(
1−H(∆λvn+1)

)
2∆λdn+1qn+1. (3.2.40)

where H(•) stands for the Heaviside function. This modification implies that the
occurrence of strain softening is precluded when the updated stress lies on either
∂Ed,eτ or ∂Ed,vτ , i.e., the interception points of the Drucker-Prager surface with
the cap surface and with the Von-Mises surface, respectively. It is emphasized
again that, according to the arguments given in the beginning paragraph, there
are no empirical laws accounting for the simultaneous occurrence of hardening and
softening an, thus, this modification does not actually compromise the correctness
of the hardening and softening laws derived in sections 2.5.4 and 2.5.5.

3.2.2 Return mapping algorithm using a fractional-step based
method.

In this section, the procedure to solve the return-mapping equations is described.
The distinguishing feature of this procedure is the iterative process adopted to “re-
turn” the trial stress to the yield surface, which is not a standard Newton-Raphson
scheme or variants thereof. The algorithmic procedure is summarized in BOX 3.2.2.

The proposed methodology can be viewed as a natural extension of the two-step
algorithm derived from the elastic-plastic operator split, in the sense that it consists
in the repetitive application of a predictor-corrector procedure. In each iteration, the
predictor state arises from freezing the internal variables and solving the resulting
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1. Compute trial elastic stress

τ trn+1 = Fn+1 · S0 · FT
n+1 + ce,n : (en+1 − ĕp,n), (3.2.41)

Jact,trn+1 =
{
β ∈ {e, d, v} | φβ,trn+1 > 0

}
. (3.2.42)

IF Jact,trn+1 = ∅ THEN
Set (•)n+1 = (•)trn+1 EXIT

ELSE
k =1, Jact,(1) = Jact,trn+1 , ξ(0) = [ξhn, ξsn],

ENDIF

2. Predictor step of the FSM return mapping algorithm. Obtain τ (k) and
∆λβ,(k), β ∈ Jact,(k) solving∗

τ (k) = τ trn+1 + ∆c(k−1)
e : (en+1 − ĕp,n)−

∑

β∈Jact,(k)

∆λβ,(k) c(k−1)
e : mβ,(k),

(3.2.43)

φβ(τ (k), ξ(k−1)) = 0, ∀β ∈ Jact,(k), (3.2.44)

where
c(k−1)

e = ce(ξ(k−1)), mβ,(k) = mβ(τ (k), ξ(k−1)). (3.2.45)

(∗If Jact,(k) contains more than two indices, this system has to be solved for each pair of

indices).

IF ∆λβ,(k) < 0, for any β ∈ Jact,(k)

Reset Jact,(k) =
{
β ∈ {e, v, d} | ∆λβ,(k) > 0

}
.

Goto to step 2.
ENDIF

3. Corrector step . Update of the internal variables.

ξh,(k) = ξhnHJ(∆λe,(k)(ηn+1 − ηn), ηn
ηn+1

)
ηn+1

ηn
, (3.2.46)

ξs,(k) = ξsn+
(
1−H(∆λe,(k))

)(
1−H(∆λv,(k))

)
2 ∆λd(τ (k), ξ(k)) q(k). (3.2.47)

4. Check convergence
IF |φβ(τ (k), ξ(k))| < TOL1, ∀ β ∈ Jact,(k) AND ‖ξ(k) − ξ(k−1)‖ < TOL2

Set (•)n+1 = (•)k EXIT
ELSE

Set k ← k + 1. Goto step 2.
ENDIF

Box 3.2.2 Basic steps of FMS return mapping algorithm.
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return-mapping problem (Eqs. (3.2.43) and (3.2.44) in BOX 3.2.2). The corrector
step consists in updating the internal variables (Eqs. (3.2.46) and (3.2.47)) using
the stress state computed in the predictor stage . The cycle is repeated until a
convergence criterion is met. Note that this procedure can be also regarded as
a fractional step method [111], extensively applied in fluid mechanics [8], since it
is based on the decoupling of the evolution equations for the the plastic strains
and the internal variables. For this reason, we shall henceforth use the shorthand
denotation FSM method for designating the proposed procedure.

In accordance with the proposal put forward by Simo[92], the set of active
constraints Jact is updated during the iterative process, specifically at the end of
the predictor stage (see BOX 3.2.2). If it turns out that any of the presumed
active constrains is negative, then the predictor-corrector scheme is halted and
the first step is performed again with the new set of active constrains, obtained
from dropping the corresponding indices from Jact,(k). One of the most attractive
feature of the FSM method lies precisely on the simplicity in the determination
of this set. Such simplicity can be attributed mainly to the particular functional
forms of both the yield condition and the plastic flow vector. Indeed, note that
the yield condition is constructed by a quadratic function (the elliptical cap yield
surface ∂Eeτ ) and two affine functions (the Drucker-Prager yield surface ∂Edτ and
the Von Mises yield surface ∂Eeτ ). Then, it follows that the intersection between
those curves (∂Ee,dτ , ∂Ee,vτ , ∂Ed,vτ ) can be obtained straightforwardly in closed form.
Moreover, inspection of (3.1.10), (3.1.11) and (3.1.12) reveals that the plastic flow
vector on each surface can be viewed as an affine transformation of the Kirchhoff
stress tensor, namely

mβ = 2 dev τ + (uβ p+ vβ)1, (3.2.48)

where the coefficients uβ and vβ for each surface are given by

ue =
2
3
s22, ud = uv = 0, (3.2.49)

ve = vv = 0, vd =
1
3
γ cα. (3.2.50)

To explain why the proposed formats of both the yield condition and the plastic
flow vectors allow considerable simplification on the update of the set Jact,(k), let
us consider, for instance, that Jact,(k) = {d, v}, i.e. the Drucker-Prager and the
Von Mises yield surfaces are active at iteration k. The enforcement of the plastic
consistency conditions φd,(k) = 0 and φv,(k) = 0 places the value of the stress8 τ (k)

at the interception point ∂Ed,vτ , which, as pointed out above, can be computed in
closed form. Equation (3.2.43) (see BOX 3.2.2) for the particular case in which
Jact,(k) = {d, v} takes the form:

τ (k) = τ trn+1 −
∑

β∈{d,v}
∆λβ,(k) c(k−1)

e : mβ,(k). (3.2.51)

8For notational simplicity, we omit the index n+ 1 to those variables that are updated during
the iterative process, i.e. τ (k) = τn+1,(k)



3.2 Implicit integration scheme 81

Projection of the above equation onto the p-q plane yields the following scalar
equations

ptrn+1 − p(k) =
∑

β∈{d,v}
∆λβ,(k)

(
3κe,(k−1)(uβ,(k−1) p(k) + vβ,(k−1))

)
, (3.2.52)

qtrn+1 − q(k) =
∑

β∈{d,v}
∆λβ,(k)(4µe,(k−1) q(k)). (3.2.53)

The only unknowns in the above equations are the plastic multipliers ∆λd,(k) and
∆λv,(k). Thus, Eqs. (3.2.52) and (3.2.53) constitute a linear system of two equa-
tions with two unknowns, that can also be easily solved in closed form. To disclose
whether the two constraints are active, one has to check if both ∆λd,(k) and ∆λv,(k)

are positive. If not, the index associated to the negative plastic multiplier is dis-
carded from the set of active constraints, and the iteration is restarted.

The question of uniqueness of solution of the predictor stage is easily resolved,
in view of the convexity of the elastic domain in stress space. Furthermore, we shall
see later that this solution can be also obtained in closed form, regardless onto which
yield surface the trial stress is projected. This reduction of the equation solving
effort is another motivation for favoring the FSM method over other conventional
procedures.

However, the issue of existence of uniqueness of solution of the global algorithm
deserves more consideration, since it is not apparent which conditions guarantee
such desirable feature. To make matters as concrete as possible, we shall ascertain
these conditions separately for each representative set of active constraints.

CASE I : Elliptical yield surface

Consider a trial stress state such that Jact,trn+1 = {e}. The predictor stage at the
first iteration (k = 1) involves the solution of the following system of equations:

p(k) =
p
(k−1)
up

1 + 2κe,(k−1) ∆λe,(k)s(k−1)
2

2 , (3.2.54)

q(k) =
q
(k−1)
up

1 + 4µe,(k−1) ∆λe,(k)
, (3.2.55)

φe,(k) = q(k)
2

+ s
(k−1)
2

2
p(k)2 − (s(k−1)

1 s
(k−1)
2 )2 = 0, (3.2.56)

where, for this first iteration, p(k−1)
up = p

(0)
up = ptrn+1 and q

(k−1)
up = q

(0)
up = qtrn+1, and

(•)(k−1) = (•)n. Thus, the only unknown quantities in the above are p(k), q(k) and
∆λe,(k). Once the values of p(k) y q(k) have been obtained, the stress tensor can be
calculated as

τ (k) = p(k) 1 +
q(k)

qtrn+1

dev τ trn+1. (3.2.57)

Notice that the flow on the elliptical yield surface is associative. Thus, according
to the geometric interpretation suggested by Simo [92], solving the above system
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Figure 3.4 FSM scheme when only the elliptical yield surface is active. (a) No densifi-
cation occurs . (b) Densification takes place.

amounts to find the closest point projection of the trial stress onto the elliptical yield
surface in the metric defined by c

(k−1)
e . This case has been studied extensively and

powerful general methods have been established for their solution. Furthermore,
this elliptical model falls within the class of general quadratic models of classical
plasticity9. The existence and uniqueness of the solution are guaranteed in this
case by virtue of the convexity of the yield condition. Furthermore, this unique
solution can be computed by solving a quartic equation [92]. In particular, after
some algebra, Eqs. (3.2.54), (3.2.55) and (3.2.56) can be reduced to the following
quartic polynomial in q(k):

a4 q
4 + a3 q

3 + a2 q
2 + a1 q + a0 = 0, (3.2.58)

where the coefficients ai, i = 1 . . . 4 are given by

a4 = b2
2, a3 = 2 b1 s22 qup b2, a2 = s22

(
(qup s2 b1)2 + pup

2 − s21b22)
)
, (3.2.59)

a1 = −2 s22(s1 s2)
2 b1 qupb2, a0 = −(s1 s32 b1 qup)

2, (3.2.60)

and
b2 = (1− b1 s22), b1 =

κe

2µe
. (3.2.61)

The unique positive root of Eq.(3.2.58) in the interval [0, s1 s2] can be determined
in closed form by a modified version of a classical solution procedure for quartic
equations[92].

The update of ξh, see Eq.(3.2.46), the so-called corrector stage, is solely governed
by the change of relative density (which is prescribed during the iterations) and

9Note that during the predictor stage of the FSM method, the internal variables do not evolve,
hence we can say that this step represents a problem of perfect plasticity.
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the nonzero character of ∆λe,(k). Hence, the value of τ (k) is not actually needed
for computing ξh,(k). To improve the performance of the algorithm (see BOX
3.2.2), it proves convenient thus to check before undertaking the predictor stage
if ηn+1 > ηn. Such being the case, the predictor step for k = 1 can be skipped
and one can directly update the internal variable as ξh,(1) = ξhn ηn+1/ηn. Then,
the predictor step is accomplished by solving equations Eqs. (3.2.45),(3.2.46) and
(3.2.47), with p(k−1)

up and q(k−1)
up defined in this case as

p(k−1)
up = ptrn+1 + ∆κe,(k−1) tr (en+1 − ĕp,n), (3.2.62)

q(k−1)
up = ‖dev τ trn+1 + 2 ∆µe,(k−1) dev (en+1 − ĕp,n)‖. (3.2.63)

Once obtained (p(k), q(k)), the stress is updated as

τ (k) = p(k) 1 +
q(k)

q
(k−1)
up

(
dev τ trn+1 + 2∆µe,(k−1) dev (en+1 − ĕp,n)

)
. (3.2.64)

In summary, when only the elliptical yield surface is active, convergence of
the iterative predictor-corrector scheme is actually achieved only in one effective
iteration. If no densification occurs (ηn+1 ≤ ηn), then ξhn+1 = ξhn and the updated
stress is computed projecting the trial stress τ trn+1 onto the elliptical surface, which,
in turn, involves the solution of a quartic equation. If densification takes place
(ηn+1 > ηn), the internal hardening variable is updated and the stress τn+1 is
obtained as the projection of a modified trial state onto the elliptical yield surface
defined by ξhn+1. This procedure is outlined in BOX (3.2.2) and illustrated in figure
3.4.

CASE II : Elliptical and Drucker-Prager/Von Mises yield surface

Consider now a situation in which Jact,(1) = {e, d} (see figure 3.5.a). This
means that the trial state lies within the cone defined by the vectors c

(0)
e : me,(1)

and c
(0)
e : md,(1) emanating from τ (1). The stress state τ (1) is simply obtained as

the intersection point between the Drucker-Prager line and the elliptical cap. The
expression for this intersection point is given by:

pe,d =
2 c α− 2 s2

√
(α2 + s22)s

2
1 − c2

2 (α2 + s22)
, (3.2.66)

qe,d = c− αpe,d. (3.2.67)

Remark 3.2.3. A crucial observation concerning the existence of solution is that
the expression under the radical in Eq.(3.2.66) must be positive. In figure 3.5.b,
this term is plotted against the internal hardening variable for the Distaloy AE
calibrated in the previous chapter. From this plot it can be concluded that this
condition is satisfied for the considered material, a fact that could be expected10 as

10Care is to be exercised to ensure that this proviso is satisfied in the range of low densities,
since curve fitting may lead to inconsistencies in this respect.
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1. Initializations

k = 1, ξh,(0) = ξhn, ξsn+1 = ξsn,

2. Predictor stage

τ (k−1)
up = τ trn+1 + ∆c(k−1)

e : (en+1 − ĕp,n). (3.2.65)

IF ηn+1 > ηn
Goto step 3

ELSE
Compute τ (k) as the projection of τ

(k−1)
up onto the yield surface

defined by ξh,(k−1) (∼ solve the quartic equation (3.2.58))
ENDIF

3. Corrector step

ξh,(k) = ξhnHJ(ηn+1 − η, ηn
ηn+1

)
ηn+1

ηn
.

4. Check convergence

IF |φe(τ (k), ξh,(k))| < TOL1, AND ‖ξh,(k) − ξh,(k−1)‖ < TOL2

Set (•)n+1 = (•)k EXIT
ELSE

Set k ← k + 1. Goto step 2.
ENDIF

Box 3.2.3 FSM method when only the elliptical yield surface is active (Jact,trn+1 = {e}).
Since the update of the internal hardening variable (step 3) does not depend on the stress
state computed in step 2, the predictor stage has to be accomplished only once, i.e. only
one effective iteration is required for achieving convergence.

the hydrostatic yield strength in compression s1 is much larger than the cohesion
c (s1 À c). Furthermore, it follows from Eq.(3.2.66) that

p < 0 ⇐⇒ s21(s
2
2 + α2) > c2 (1− 4α2). (3.2.68)

Since α ∼ 2 > 0.25, Eq.(3.2.68) reveals that the intersection point ∂Ee,dτ lies for
all ξh in the second quadrant of the p − q plane (p < 0). This observation further
substantiates the correctness of one of our basic hypothesis made in the previous
chapter (see Eq.(2.5.26)).

Since, in virtue of Eq.(3.2.40), the internal softening variable is unaffected when
∆λe > 0, then the corrector stage of the FSM scheme only involves the update of ξh,
in a manner analogous to the procedure described in the previous case (Jact = {e}).
The only difference may arise in the update of the set of active constraints. In
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Figure 3.5 (a) Case in which the Drucker-Prager and elliptical yield surfaces are active
in the first iteration of the FSM scheme. (b) Radicand of expression (3.2.66) versus the
internal hardening variable. This graph has been obtained using the calibrated curves
for the Distaloy AE presented in the previous chapter. The positiveness of these values
ensures that the intersection ∂Ed,eτ exists for all ξh.

iteration k = 2, this set may remain unaltered ( Jact,(2) = {e, d}) or change to
either Jact,(2) = {e} or Jact,(2) = {d}.

If ηn+1 > ηn, the former scenario Jact,(2) = {e, d} would require only to compute
again the intersection between the updated yield surfaces (see figure 3.6.a). Thus,
convergence would be achieved in only two iterations of the FSM scheme. The
situation Jact,(2) = {e} is depicted in figure 3.6.b. The modified trial stress τ

(1)
up

(see Eq.(3.2.65) in BOX 3.2.2) is placed outside the cone defined by c
(1)
e : me,(2)

and c
(1)
e : md,(2), and, hence, the plastic multiplier ∆λd,(2) would result negative.

In this case the updated stress would be computed by projecting τ
(1)
up back to

elliptical cap (solving the quartic equation (3.2.58)). Therefore, a total of three
predictor-corrector iterations would be necessary to converge.

It is worth noting that the other situation Jact,(2) = {d} is not feasible, that is,
if the elliptical yield surface is active in the first iteration of the FSM procedure,
it remains necessarily active also in the second iteration. To show this, consider,
for simplicity, an unstressed configuration S0 = 0. The statement ∆λe,(2) > 0
is tantamount to requiring that the modified trial stress τ

(1)
up lies in the region

above the straight line, in the p− q plane, emanating from τ (2) and with direction
c
(1)
e : md,(2) (see figure 3.5.b). To avoid a clash with the superscripts for the

iterations, we simply denote the projections of τ (2), τ
(1)
up and τ trn+1 onto the p − q

plane by (pn, qn), (pu, qu) and (pt, qt), respectively. Hence the condition we have
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to ascertain can be write as

qu ≥ qn + a (pn − pu), (3.2.69)

wherein a denotes the slope of the line a = κeγcα/(2µequ) > 0. From expressions
(3.2.62) and (3.2.63), it follows that

pt = κentr en+1 − ĕp,n, pu = κen+1tr en+1 − ĕp,n, (3.2.70)

qt = 2µen‖deven+1 − ĕp,n‖, qu = µen+1‖dev en+1 − ĕp,n‖, (3.2.71)

and, thus,

qt =
Een
Een+1

qu = b qu, pt =
Een
Een+1

pu = b pu, (3.2.72)

for the Poisson’s ratio is constant and so the quotient κen/κ
e
n+1 is directly Een/E

e
n+1 =

b > 0. By substituting Eq.(3.2.72) into inequality (3.2.69), and upon rearrange-
ment, we are led to

(
qt −

(
qn + a (pt − pn)

))
+ b (qt + a pt) ≥ 0. (3.2.73)

Since ∆λe,(1) > 0, the following inequality holds

qt −
(
qn + a (pt − pn)

) ≥ 0, (3.2.74)

and hence the first term on the right-hand side of (3.2.73) is always non-negative.
To prove that the other term is also non-negative, consider the limit case in which
qt = qn + a (pn − pt). In this instance, inequality (3.2.73) takes the form

b (qn − a pn) ≥ 0. (3.2.75)

For the above inequality to hold for all a, b > 0, it is sufficient that pn < 0, i.e., the
intersection ∂Ed,eτ must lie in the second-quadrant of the p−q plane. This condition
is always satisfied, as stated in Eq.(3.2.68).

In conclusion, the solution of the return-mapping algorithm when the Drucker-
Prager yield surface and the elliptical yield surface are involved is unique, and can
be obtained only in two or three iterations of the FSM predictor-corrector scheme.
This conclusion can be also extended to cover the case in which the elliptical and the
Von Mises yield surfaces may be active, by simply noting that the yield condition
represented by the Von-Mises surface is a degenerate case (α = γ = 0) of the
Drucker-Prager yield condition.

CASE III : Drucker-Prager and Von Mises yield surface

Consider a stress state such that Jact,(1) = {d, v}. Computing the updated
stress state in this case is trivial, since it does not require any further labor other
than determining the intersection between both the Drucker-Prager surface and
the Von-Mises surface:

qd,v = cv(ξhn), (3.2.76)
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Figure 3.6 (a) Case in which the Drucker-Prager and elliptical yield surfaces are active
in the second iteration. (b) Case in which only the elliptical yield surface is active after
performing the predictor step of the second iteration.

pd,v = (c(ξhn)− qd,v)/α, (3.2.77)

where (pd,v, qd,v) denotes the intersection between both surfaces. Recall that this
aspect of simplicity stems from the modification of the evolution equation for the
internal softening variable proposed in subsection 3.2.1.2.

CASE IV : Drucker-Prager yield surface

The remaining situation is that in which only the Drucker-Prager yield surface
is active, that is, Jact,trn+1 = Jact,(k) = {d}, for all k = 1, 2 . . . The evolution equations
Eq.(3.2.46) and Eq.(3.2.47) suggest that the internal hardening variable remains in
its converged value, ξhn+1 = ξhn, whereas the softening variable evolves according to:

ξsn+1 = ξsn + 2 ∆λdn+1 qn+1. (3.2.78)

The above equation clearly shows that the update of ξs depends on the current
stress through its deviatoric part qn+1. Therefore, the return mapping algorithm
cannot be handled exactly in a finite number of iterations, in contrast to the situa-
tions encountered in cases I, II and III. Our concern here is to check if the sequence
defined by the predictor-corrector FSM scheme is convergent to an unique solu-
tion, and to analyze the conditions under which such convergence, if any, can be
guaranteed.

The equations for the predictor stage are obtained by projecting Eq.(3.2.43)
(see BOX 3.2.2) onto the p− q plane:

p(k) = ptrn+1 −∆λd,(k) κen γ αc
(k−1), (3.2.79)
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q(k) =
qtrn+1

1 + 4µen ∆λd,(k)
, (3.2.80)

φd,(k) = q(k) + αp(k) − c(k−1) = 0. (3.2.81)

After some algebra, the above system of equations can be reduced to the following
quadratic polynomial in q(k):

Γ(q(k)) = q(k)
2

+
(
αptrn+1 + c(k−1)(χ− 1)

)
q(k) − χ c(k−1)qtrn+1 = 0, (3.2.82)

where
χ = α2γ

κe

4µe
. (3.2.83)

As ∆λd,(k) ≥ 0, it follows from Eq.(3.2.80) that q(k) ∈ [0, qtrn+1]. Evaluating
Eq.(3.2.82) at q(k) = 0 yields

Γ(0) = −χ c(k−1)qtrn+1, (3.2.84)

All the variables appearing in the above are positive, hence Γ(0) ≤ 0 for all c(k−1) ≥
0. Similarly, at q(k) = qtrn+1 we have

Γ(qtrn+1) = qtrn+1 (qtrn+1+αptrn+1−c(k−1)) ≥ qtrn+1 (

φd,tr
n+1︷ ︸︸ ︷

qtrn+1 + αptrn+1 − cn) > 0, (3.2.85)

since c(k−1) ≤ cn and φd,trn+1 > 0. Therefore, from the intermediate value theorem we
deduce that the quadratic equation Eq.(3.2.82) have only one root in the interval
[0, qtrn+1], and, consequently, the solution τ (k) to the system of equations of the
predictor step is unique.

The update of the internal softening variable that characterize the corrector
step can be directly inferred from Eq.(3.2.78):

ξs,(k) = ξsn + 2 ∆λd(ξs,(k), τ (k)) q(k). (3.2.86)

It is important to observe that ∆λd(ξs,(k), τ (k)) 6= ∆λd,(k), that is, the plastic
multiplier ∆λd,(k) arising from the solution of the predictor step is not used for
updating the internal variable. The only information from the predictor step em-
ployed to correct the internal variables is the stress state τ (k). With this in mind,
∆λd(ξs,(k), τ (k)) is obtained from Eq.(3.2.80) and then substituted in Eq.(3.2.78),
leading to

ξs,(k) = ξsn +
qtrn+1 − q(k)

2µen
. (3.2.87)

The predictor equation (3.2.82) depends on ξs,(k−1) through the cohesion c(k−1).
It is expedient, thus, to invoke the constitutive law (3.2.9) and recast Eq.(3.2.87)
also in terms of c(k):

c(k) = cn +H(k)(ξs,(k) − ξsn) = cn +
H(k)

2µen
(qtrn+1 − q(k)). (3.2.88)



3.2 Implicit integration scheme 89

Recall (see Eq.(2.5.80) in section 2.5.5) that the expression for the exponential
softening modulus H(k) is given by:

H(k) = H0(ξhn)
c(k)

c0(ξhn)
= Hn

0

c(k)

cnh
. (3.2.89)

Finally, Eq.(3.2.89) is inserted into Eq.(3.2.88). Upon rearrangement, one obtains
the following expression for the update of cohesion:

Θcr = c(k) =
cn

1− Ĥn
0

cnh
(qtrn+1 − q(k))

=
cn

1 +
|Ĥn

0 |
cnh

(qtrn+1 − q(k))
, (3.2.90)

with Ĥn
0 defined as a dimensionless softening parameter:

Ĥn
0 =

Hn
0

2µen
. (3.2.91)

3.2.2.1 Convergence analysis

Equation (3.2.82), corresponding to the predictor stage, can be conveniently rephrased
as:

Θpd = c(k−1) =
q(k)(q(k) + αptrn+1)

1
2
χ(qtrn+1 − q(k)) + q(k)

. (3.2.92)

Note that, according to the above equation,

Θpd = c(k−1) ≥ 0 ⇔ q ≥ qmin = max(0,−αptrn+1). (3.2.93)

Hence the solution qn+1 necessarily lies in the interval [qmin, qtrn+1]. Likewise, since
qn+1 ∈ [qmin, qtrn+1], it follows immediately from Eq.(3.2.90) that c(k) ∈ [cmin, cn],
where

cmin =
cn

1 +
|Ĥn

0 |
cnh

(qtrn+1 − qmin)
. (3.2.94)

Inspection of Eq.(3.2.90) and Eq.(3.2.92) indicates that the problem can be
posed in the alternative form of finding the limit of the sequence {q(k)} defined by
the recursion formula:

Θpd(q(k+1)) = Θcr(q(k)), (3.2.95)

that is,

q(k+1)(q(k+1) + αptrn+1)
1
2
χ(qtrn+1 − q(k+1)) + q(k+1)

=
cn

1 +
|Ĥn

0 |
cnh

(qtrn+1 − q(k))
, (3.2.96)

with q(0) = qtrn+1.
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Sufficient conditions for convergence

Our concern now is to analyze the properties of this sequence. The next result
establishes sufficient conditions for convergence11.

Proposition 3.2.3. Let {q(k)} be the sequence defined by the recursion formula

Θpd(q(k+1)) = Θcr(q(k)), q(0) = qtrn+1.

Assume that:

I) Θpd(q) and Θcr(q) are continuously differentiable in [qmin, qtrn+1].

II) Θpd(q) and Θcr(q) are monotonically increasing functions, i.e Θ̇pd(q) ≥ 0 and
Θcr(q) ≥ 0, ∀q ∈ [qmin, qtrn+1].

III) Θpd(qtrn+1) ≥ Θcr(qtrn+1) and Θpd(qmin) ≤ Θcr(qmin).

IV) There exists an unique solution q∗ in the interval [qmin, qtrn+1] to the equation
Θpd = Θcr.

Then, the sequence {q(k)} converges to q∗.

Proof. The proof is carried out by showing that {q(k)} is a bounded monotonic
(decreasing) sequence. In virtue of assumption I, we can expand Θpd(q(k+1)) and
Θpd(q(k+1)) in Taylor series about q(k):

Θpd(q(k+1)) = Θpd(q(k)) + Θ̇pd(ηp)(q(k+1) − q(k)), ηp ∈ [q(k+1), q(k)], (3.2.97)

Θcr(q(k+1)) = Θcr(q(k)) + Θ̇cr(ηc)(q(k+1) − q(k)), ηc ∈ [q(k+1), q(k)]. (3.2.98)

Employing the recursion formula, we may write the above equations as

Θcr(q(k))−Θpd(q(k)) = Θ̇pd(ηp)(q(k+1) − q(k)), ηp ∈ [q(k+1), q(k)], (3.2.99)

Θcr(q(k+1))−Θpd(q(k+1)) = Θ̇cr(ηc)(q(k+1) − q(k)), ηc ∈ [q(k+1), q(k)]. (3.2.100)

The monotonic character of {q(k)}, i.e. q(k+1) ≤ q(k) for all k = 0, 1, 2 . . . is proved
by induction on k. The result holds trivially for k = 0, q(1) ≤ q(0), as can be
deduced from assumptions II and III and by evaluating Eq.(3.2.99):

Θcr(q(0))−Θpd(q(0)) = Θ̇pd(ηp)(q(1) − q(0))⇒
Θcr(qtrn+1)−Θpd(qtrn+1) ≤ 0, Θ̇pd(ηp) ≥ 0 ⇒ q(1) ≤ q(0).

(3.2.101)

Therefore, assume now that the result is also true for some k = i, that is, q(i) ≤
q(i−1). Combining Eq.(3.2.99) and Eq.(3.2.100) we get

q(i+1) − q(i) =
Θ̇cr(ηc)
Θ̇pd(ηp)

(q(i) − q(i−1)). (3.2.102)

11These conditions only applies when softening is involved.
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Since both Θ̇cr and Θ̇pd are nonnegative for all q ∈ [qmin, qtrn+1] (assumption II), it
follows immediately that q(i+1) − q(i) ≤ 0.

To complete the proof, we shall show that q(k) ∈ [qmin, qtrn+1] for all k, i.e.
the sequence is bounded, and hence convergent. To this end, we shall argue by
contradiction. Suppose that there exists k > 0 such that q(k) ∈ [qmin, q∗]. From
Eq.(3.2.99), the following property can be deduced:

Θcr(q(k)) ≤ Θpd(q(k)), (3.2.103)

for all k. Since from assumption III Θpd(qmin) −Θcr(qmin) ≤ 0, we know by the
intermediate value problem that Θpd − Θcr has a zero in [qmin, q(k)], a fact that
contradicts assumption IV , hence q(k) ∈ [qmin, qtrn+1] for all k. Furthermore, since
the sequence is decreasing, it follows immediately that q∗ is its limit, as asserted.

¤

We are now confronted with the task of ascertaining whether the particular
functional forms of Θcr and Θpd (see Eqs. (3.2.92) and (3.2.90), respectively) satisfy
the sufficient conditions listed in the foregoing result. In regards to the condition of
continuity and differentiability, notice that both Θpd and Θcr are rational functions
of q:

Θpd =
Npd(q)
Dpd(q)

, Θcr =
Ncr
Dcr(q)

. (3.2.104)

Since Dcr(q) 6= 0 for all q ∈ [qmin, qtrn+1], Θcr(q) is continuously differentiable on
the interval [qmin, qtrn+1]. For qtrn+1 = 0, the predictor function Θpd has a singularity
at q = 0, i.e. Dpd(0) = 0. However, as it may inferred from Eqs. (3.2.82) and
(3.2.88), in this case the solution to the return mapping algorithm is trivial, since
the internal variable does not evolve and the trial stress is simply “returned” to
the Drucker-Prager apex, i.e.:

qtrn+1 = 0 =⇒ qn+1 = 0, cn+1 = cn, pn+1 =
cn
α
. (3.2.105)

Thus, in order to ensure also the continuity and differentiability of Θpd, the partic-
ular case qtrn+1 = 0 will be excluded from the analysis.

Condition II states that Θ̇cr(q) ≥ 0 and Θ̇pd(q) ≥ 0. The verification for Θcr

is straightforward:

Θ̇cr(q) =
cn |Ĥn

0 |

cnh
(
1 +
|Ĥn

0 |
cnh

(qtrn+1 − q(k))
)2

≥ 0, ∀q. (3.2.106)

To study the sign of the derivative of Θpd, we can write

Θpd(q) =
q

1
2
χ(qtrn+1 − q) + q

(q + αptrn+1) = F (q) (q + αptrn+1), (3.2.107)
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where F (q) ∈ [0, 1] for q ∈ [qmin, qtrn+1]. Using the product rule, we get

Θ̇pd(q) = Ḟ (

>0︷ ︸︸ ︷
q + αptrn+1) + F. (3.2.108)

Since χ ≥ 0, the derivative of F :

Ḟ =
1
2

χ qtrn+1
(1
2
χ(qtrn+1 − q) + q

)2
, (3.2.109)

is also positive for all q. Hence, it follows from Eq.(3.2.108) that Θ̇pd(q) ≥ 0 for all
q ∈ [qmin, qtrn+1].

The condition III at the extremes of the interval is also satisfied:

Θpd(qtrn+1)−Θcr(qtrn+1) = qtrn+1 + αptrn+1 − cn = φd,trn+1 > 0 (3.2.110)

Θpd(qmin)−Θcr(qmin) = 0− cn

1 +
|Ĥn

0 |
cnh

(qtrn+1 − qmin)
≤ 0. (3.2.111)

Finally, we prove in the following that the function Θ(q) = Θpd(q) − Θcr(q)
has an unique zero in the interval [qmin, qtrn+1] (condition IV ). In turn, this result
provides the assurance that there exists12 an unique solution to the return mapping
algorithm when Jact,trn+1 = {d}.

Proposition 3.2.4. The function defined as Θ(q) = Θpd(q) − Θcr(q), with Θpd

and Θpd given in Eq.(3.2.90) and Eq.(3.2.92), respectively, has an unique zero in
the interval [qmin, qtrn+1].

Proof. Multiplying Θ = 0 by the denominators of Θpd and Θcr (which are non-
vanishing ∀ q ∈ [qmin, qtrn+1]), a cubic polynomial R(q) =

∑3
i=0 ri q

i = 0 is obtained.
After elementary manipulations, the coefficients (ri, i = 0 . . . 3) are found to be
given by:

r3 = −|Ĥ
n
0 |
cnh

, r2 = (1 +
|Ĥn

0 |
cnh

(qtrn+1 − αptrn+1)), (3.2.112)

r0 = −1
2
cnq

tr
n+1χ, r1 = r2 − cn(1− 1

2
χ). (3.2.113)

12In proposition 3.2.4 it is shown that the norm of the updated deviatoric stress tensor can
be obtained by finding the root of a cubic equation in [qmin, q

tr
n+1]. Hence, the return mapping

problem when Jact,trn+1 = {d} can be viewed also as a root finding problem. This root may be
obtained by other numerical means, such as the closed-form expressions based on Cardano’s
method [87], or variants thereof, and not necessarily by the proposed method. Nonetheless,
for completeness, the convergence properties of the sequence defined by the FSM algorithm is
discussed herein.
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Evaluation of the polynomial R at the extremes of the interval yields

R(qmin) = −cn (

>0︷ ︸︸ ︷
1
2
χ(qtrn+1 − qmin) + qmin) ≤ 0, (3.2.114)

R(qtrn+1) = qtrn+1(q
tr
n+1 + αptrn+1)− cn = qtrn+1 φ

d,tr
n+1 ≥ 0. (3.2.115)

Thus, since R(qmin) and R(qtrn+1) have opposite signs, we know by the intermediate
value theorem that there exist n roots of R in [qmin, qtrn+1], with n = 1 or n = 3.
The signs of r0 and r3 indicate that R(0) < 0 and R(−∞) > 0. Therefore, following
the same logic as above, R = 0 have m negative roots, with m = 1 or m = 3. If
we suppose that n = 3, then the total number of zeros would be n + m = 4 or
n + m = 6, which cannot be true, since the polynomial is cubic. Hence, R has
only one root in [qmin, qtrn+1], and, consequently, Θ possesses an unique zero in
[qmin, qtrn+1], as asserted. ¤
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Figure 3.7 Linearly convergent FSM sequence.

Therefore, we conclude that the functional forms of Θcr and Θpd, given in
Eq.(3.2.90) and Eq.(3.2.92), respectively, fulfill the sufficient conditions for the
sequence defined by the recursion formula (3.2.95) to converge. As a corollary,
we can say that the FSM algorithm for the case Jact,trn+1 = {d} converges to the
solution of the return mapping algorithm regardless of the location of the trial stress
(ptrn+1, q

tr
n+1) and the value of the material parameters χ, α and Ĥn

0 . It is worth
noting that no restriction is placed on the amount of allowable softening, symbolized
by Ĥn

0 , which is one of the drawbacks that plague elastic-plastic models equipped
with softening [92].
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Rate of convergence

To assess the computational efficiency of the FSM algorithm, it is of paramount
interest to study its rate of convergence. The following result address this question.

Proposition 3.2.5. Let {q(k)} be the convergent sequence defined by the recursion
formula Θpd(q(k+1)) = Θcr(q(k)). Let q∗ denote the limit of this sequence and
consider an interval [q∗, β] ⊂ [q∗, qtrn+1] such that

Θ̇pd(η)
Θ̇cr(η)

< 1, (3.2.116)

for all η ∈ [q∗, β]. Let N be a positive integer such that q(N) ≤ β. Then, the error,
denoted as e = q−q∗, decreases for all k ≥ N , being the rate of this decrease linear.

Proof. Expressing Θpd(q(k+1)) and Θcr(q(k)) in Taylor series about q∗ and
truncating after the first order term yields:

Θpd(q(k+1)) = Θpd(q∗) + Θ̇pd(ηp)(

e(k+1)

︷ ︸︸ ︷
q(k+1) − q(q∗)), ηp ∈ [q∗, q(k+1)], (3.2.117)

and

Θcr(q(k)) = Θcr(q∗) + Θ̇cr(ηc)(

e(k)

︷ ︸︸ ︷
q(k+1) − q(k)), ηc ∈ [q∗, q(k)], (3.2.118)

respectively. Subtracting Eq.(3.2.118) from Eq.(3.2.117) gives:

Θpd(q(k+1))−Θcr(q(k)) =
(
Θpd(q∗)−Θcr(q∗)

)

+ Θ̇pd(ηp) e(k+1) − Θ̇cr(ηc) e(k).
(3.2.119)

Since Θpd(q∗) = Θcr(q∗) and Θpd(q(k+1)) = Θcr(q(k)) , after solving for e(k+1) we
get

e(k+1) =
Θ̇cr(ηc)
Θ̇pd(ηp)

e(k). (3.2.120)

For k > N , q(k), q(k−1) ∈ [q∗, β]. Then, the error decreases by a factor Θ̇cr(ηp)/Θ̇pd(ηc),
ηp ∈ [q∗, q(k+1)], ηc ∈ [q∗, q(k)]. Eq.(3.2.120) further shows that e(k+1) depends lin-
early on e(k). ¤

Thus, the above proposition shows that the rate of convergence is linear in a
neighborhood of the solution in which Θ̇cr > Θ̇pd. It is straightforward to prove,
by contradiction, that this condition of greater slope of the predictor curve in some
[q∗, β], β ∈ [0, qtrn+1 − q∗] always holds. Suppose that Θ̇cr(q∗) < Θ̇pd(q∗). The
continuity assumption implies that for some ε > 0 Θpd(q∗+ ε) < Θcr(q∗+ ε), which
is a contradiction, since Θpd(q) ≥ Θcr(q) for all q ∈ [q∗, qtrn+1].
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The so-called asymptotic convergence factor [87] Θ̇cr/Θ̇pd can be estimated
grossly using the mean value theorem:

Θcr

Θpd
=

Θcr(qtrn+1)−Θcr(qmin)
Θpd(qtrn+1)−Θpd(qmin)

=
|Ĥn

0 |/cnh(qtrn+1 − qmin)
1 + |Ĥn

0 |/cnh(qtrn+1 − qmin)
1

φd,trn+1

cn
+ 1

.
(3.2.121)

This estimation reveals that the asymptotic convergence factor is inversely propor-
tional to the yield equation evaluated at the trial stress φd,trn+1. Hence the FSM
algorithm converges more rapidly with trial stresses located far from the yield sur-
face (φd,trn+1 À cn), since in this case Θ̇cr/Θ̇pd approaches zero.
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Figure 3.8 Quadratically convergent FSM sequence.

The conclusion that can be drawn from the preceding discussion is that the FSM
algorithm offers a remarkable aspect of robustness, inasmuch as it converges to the
solution regardless of the values of the material properties, and furthermore, its
convergence is even faster when the trial stress is placed far from the yield surface.
Nevertheless, it is natural to inquire at this point whether other schemes, viewed
also in the light of the predictor-corrector methodology, might exhibit higher rates
of convergence. To assist in the answering of this question, it proves helpful to,
first, illustrate graphically the performance of the standard FSM method. In figure
3.7 the predictor and corrector equations Θpd = 0 and Θcr = 0 are represented in
the c− q plane. The predictor step consists in finding the intersection between the
horizontal lines (c constant) and the predictor curve Θpd = 0. The corrector step,
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on the other hand, involves solving the intersection of the corrector graph Θcr = 0
and the vertical lines (q constant).

The plot in figure 3.8 clearly identifies the strategy to follow in arriving at a
FSM algorithm with a higher rate of convergence. The predictor stage would remain
unaltered (projection onto the yield surface with c constant), whereas the corrector
step would be modified and accomplished by finding the intersection between the
curve Θcr = 0 and the straight line tangent to Θpd = 0 at q(k−1). The corresponding
sequence is defined by the recursion formulae:

Θpd(q(2k−1)) = Θcr(q(2k−2)), (3.2.122)

Θcr(q(2k)) = Θpd(q(2k−1)) + Θ̇pd(q(2k−1))(q(2k) − q(2k−1)), (3.2.123)

with k = 1, 2 . . . and q(0). The analysis of the convergence of this sequence is
undertaken in a similar manner to that presented in proposition 3.2.5.13 We simply
quote the final result (for k →∞):

e(2k−1) =
Θ̇cr(q∗)
Θ̇pd(q∗)

e(2k−2), (3.2.124)

e(2k) =
1
2

Θ̈cr(q∗)
Θ̇pd(q∗)− Θ̇cr(q∗)

e2(2k−1). (3.2.125)

Combining Eqs. (3.2.124) and (3.2.125), we get

e(2k) =
1
2

Θ̈cr(q∗)
Θ̇pd(q∗)− Θ̇cr(q∗)

(
Θ̇cr(q∗)
Θ̇pd(q∗)

)2

e2(2k−2). (3.2.126)

The above equation reveals that the rate of convergence of this modified FSM
algorithm is quadratic. However, in return for its enhanced convergence, a necessary
condition for the sequence defined by Eqs. (3.2.124) and (3.2.125) to be monotonic
decreasing is that Θ̈pd > 0 in a neighborhood of the solution, i.e., the predictor
function must be convex. To check if this condition is satisfied, Eq.(3.2.108) is
differentiated with respect to q, yielding

Θ̈pd = 2Ḟ + F̈ (q + αptrn+1). (3.2.127)

After some manipulation, F̈ can be expressed as

F̈ =
−2 (1− 1/2χ)

q(1− 1/2χ) + 1/2χqtrn+1

Ḟ . (3.2.128)

Substitution of the above into Eq.(3.2.127) leads to

Θ̈pd = 2Ḟ
(
1− − (1− 1/2χ)

q(1− 1/2χ) + 1/2χqtrn+1

(q + αptrn+1)
)
. (3.2.129)

13The only difference lies in that, in Eq.(3.2.123), Θpd(q
(2k−1)) is expanded in a Taylor series

around q∗ up to the second order term.
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So the predictor function is convex whenever the following inequality is satisfied:

1 >
(1− 1/2χ)

q(1− 1/2χ) + 1/2χqtrn+1

(q + αptrn+1), (3.2.130)

which, upon rearranging, gives

1
2
χ(qtrn+1 + αptrn+1)− αptrn+1 > 0. (3.2.131)

It follows from the preceding equation that the convexity condition cannot be guar-
anteed for any admissible values of the trial stress and the material parameter χ.
Only for ptrn+1 < 0 the above inequality holds regardless of the value of χ.

In conclusion, we have seen that, by simply modifying the equation for the
update of cohesion in the corrector step, it is plausible to devise a quadratically
convergent method preserving the predictor-corrector character. This modification,
in turn, involves the linearization of the predictor function, and as a consequence,
the convexity of this function appears as an additional requirement for convergence.
However, inequality (3.2.131) clearly shows that this condition cannot be ensured
for all conceivable trial stress states. Therefore, in the interest of robustness, this
appealing quadratically convergent FSM scheme is abandoned in favor of the ori-
ginal linearly converging one.

3.3 IMPLEX integration scheme

The arguments in support of the implicit-explicit (IMPLEX) integration scheme
were already put forward in subsection 3.1.1. Here we simply choose those variables
to be treated explicitly and derive the stress update and the algorithmic tangent
modulus arising from this choice. The reader is referred to the work of Oliver et
al. [79, 80] for further details on the structure of this integration scheme.

By definition, the internal variables are monotonically increasing functions of
time, i.e. ξ̇ ≥ 0. For this reason, they are logical candidates to be treated explicitly,
since its evolution can be predicted more accurately than other variables exhibit-
ing non-monotonic behavior. The following analysis pursues, thus, to develop an
expression for explicitly updating the set of internal variable at tn+1 using values
obtained in previous time steps by an implicit integration procedure.

To this end, consider first the Taylor expansion of the exact solution, denoted
by an overbar on the symbol for the internal hardening, to the governing differential
equation at tn−1 around tn:

ξ̄n−1 = ξ̄n +
∂ξ

∂t

∣∣∣∣
ξ̄n

(tn−1 − tn) +O(∆2tn), (3.3.1)

or alternatively,

ξ̄n = ξ̄n−1 +
∂ξ

∂t

∣∣∣∣
ξ̄n

∆tn +O(∆2tn), (3.3.2)
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where
∂ξ

∂t

∣∣∣∣
ξ̄n

= ξ̇(ξ̄n, τ̄n). (3.3.3)

Next, the Taylor expansion is carried out again around tn, but evaluated at tn+1,
yielding

ξ̄n+1 = ξ̄n +
∂ξ

∂t

∣∣∣∣
ξ̄n

∆tn+1 +O(∆2tn+1). (3.3.4)

If the remainder term O(∆2tn+1) is truncated in the above equation, then the re-
sulting expression would correspond to a standard explicit finite difference equation.
The application of the above explicit difference equation for marching the solution
forward from one time level to the next time level presents the inconvenience that,
since the yield condition is not enforced at tn+1, the error would accumulate and
the yield condition may be substantially violated, leading to updated stress pro-
hibitively far from the yield surface. In order to avoid that this drift from the
yield surface grows unboundedly, Oliver et al.[79, 80] propose to approximate the
derivative in Eq.(3.3.4) using the derivative appearing in expression Eq.(3.3.2).
Therefore, truncating the term O(∆2tn) in Eq.(3.3.2), one gets

ξn = ξn−1 +
∂ξ

∂t

∣∣∣∣
ξn

∆tn, O(∆2tn). (3.3.5)

The above constitutes an implicit finite difference equation, in the sense that
the internal variable at tn, ξhn, is obtained by an expression that uses a derivative
evaluated also at tn. Hence ξn−1 and ξn can be regarded as the values of the internal
variables obtained at times tn−1 and tn, respectively, by solving the return mapping
algorithm outlined in the previous section. From Eq.(3.3.5), we can deduce that

∂ξ

∂t

∣∣∣∣
ξn

=
ξn − ξn−1

∆tn
, O(∆tn). (3.3.6)

Finally, inserting the above approximation into Eq.(3.3.4), and truncating the re-
mainder term, yields

ξ̃n+1 = ξn + (ξn − ξn−1)
∆tn+1

∆tn
, O(∆tn+1∆tn). (3.3.7)

This expression represents the update of the internal variables at tn+1 in terms of
implicit values computed at tn and tn−1. The distinction between approximated
quantities stemming from the IMPLEX integration and from the pure implicit
integration schemes is made by attaching a tilde symbol over the IMPLEX variables.

Note that the IMPLEX algorithm is a multistep method, since two points (tn
and tn−1) are used to advance the solution in time to point tn+1. The order
of the extrapolation represented by Eq.(3.3.7) can be increased by simply using a
higher-order approximation for the derivative at tn. However, accuracy assessments
carried out by Oliver et al. [80] show that the benefits arising from this practice
are quite subtle and do not outweight the concomitant increase of computational
storage requirements.
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The set of state variables defining the size and shape of the yield surfaces can
be obtained at time tn+1 from the corresponding hardening/softening laws, using
the vector of internal variables derived in Eq.(3.3.7) as argument, that is:

s̃1,n+1 = s1h(ξ̃hn+1), s̃2,n+1 = s2h(ξ̃hn+1), c̃v,n+1 = cvh(ξ̃hn+1), (3.3.8)

c̃n+1 = cn +
∂ch
∂ξh

∣∣∣∣
n+1

(ξ̃hn+1 − ξhn) + H̃n+1(ξ̃sn+1 − ξsn), (3.3.9)

where

H̃n+1 =
c̃n+1

c0(ξ̃hn+1)
H0(ξ̃hn+1). (3.3.10)

In regards to the plastic multipliers, the update suggested by Oliver et al. is
also adopted:

∆λ̃
β

n+1 = ∆λβn
∆tn+1

∆tn
, β = e, d, v, (3.3.11)

i.e., the IMPLEX discrete plastic multiplier ∆λ̃
β

n+1 at tn+1 is directly computed
by multiplying the corresponding implicit discrete plastic multiplier at tn by the
quotient ∆tn+1/∆tn. It should be mentioned, however, that the derivation of
this update does not display the same mathematical rigor as the one presented
in Eq.(3.3.7) for the internal variables. This can be explained as follows. The
IMPLEX scheme was originally conceived for integrating numerically elastic-plastic
constitutive models with associated flow rules and a single internal variable [79].
Under such conditions, and by properly defining the flow rule, the rate of change
of the internal variable can be identified with the continuum plastic multiplier,
i.e., ξ̇ = λ̇. In this instance, one can legitimately obtain the update as ∆λ̃n+1 =
∆λn∆tn+1/∆tn, since ∆λ = ∆ξ. In our case, by contrast, we have three plastic
multipliers and two independent internal variables whose evolution equations also
involve stress measures, and thus, such identity cannot be established, hence the
ad-hoc character of the proposed update (3.3.11).

Notice that the extrapolation of the plastic multipliers does not entails allocating
additional storage for implicit values at tn−1. Expression (3.3.11) also reveals that
the elastic or inelastic nature of the response predicted by the IMPLEX integration
scheme at tn+1 is dictated by the response computed implicitly at tn. This may
give rise to numerical overshoots and oscillations in the transition from elastic to
plastic conditions and vice versa. Schemes for adaptively controlling the length of
the time step, also covered by the work of Oliver et al.[80], prove advantageous in
diminishing the deleterious effects on the quality of the computed response of such
shortcomings.

Our developments in this section have been focused thus far on those variables
(ξ and ∆λβ) whose updates can be handled explicitly. Attention is confined now to
compute the Kirchhoff stress tensor at tn+1. Since the concept of extrapolation is
not applied for such computation (stresses are treated implicitly), the methodology
for deriving this update equation parallels that followed for devising Eq.(3.2.24) in
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the implicit case. Thus, we can directly write

τ̃n+1 = τ trn+1 + ∆c̃e,n+1 : (en+1 − ĕp,n)−
3∑

β=1

∆λ̃
β

n+1 c̃e,n+1 : m̃β
n+1, (3.3.12)

where we have simply replaced the implicit quantities in Eq.(3.2.24) by IMPLEX
quantities (with tilde). The fourth-order tensors ∆c̃e,n+1 and c̃e,n+1 are evaluated
as

∆c̃e,n+1 = ce(ξ̃hn+1)− ce(ξhn), c̃e,n+1 = ce(ξ̃hn+1), (3.3.13)

whereas the plastic flow vector is given by

m̃β
n+1 = mβ(ξ̃hn+1, τ̃n+1). (3.3.14)

In general, obtaining τ̃n+1 from Eq.(3.3.12) requires solving a non-linear tensor
equation. However, as alluded to earlier (see Eq.(3.2.48)), in our case, the plastic
flow vector on each surface is an affine transformation of the Kirchhoff stress tensor,
i.e.,

m̃β
n+1 = Ãβ

n+1 : τ̃n+1 + B̃,
n+1 (3.3.15)

where the fourth-order and second-order tensors Ãβ
n+1 and B̃β

n+1 are defined as

Ãβ
n+1 = 2 Idev +

1
3
ũβn+1 1⊗ 1, (3.3.16)

B̃β
n+1 = ṽβn+1 1, (3.3.17)

respectively, with the yield surface dependent parameters ũβn+1 and ṽβn+1, β =
e, d, v, given by (see Eqs. (3.2.49) and (3.2.50)):

ũen+1 =
2
3
(s̃2,n+1)2, ũdn+1 = ũvn+1 = 0, (3.3.18)

ṽen+1 = ṽvn+1 = 0, ṽdn+1 =
1
3
γ c̃n+1 α. (3.3.19)

Substituting Eq.(3.3.15) into Eq.(3.3.12) and solving for τ̃n+1 yields

τ̃n+1 = R̃−1
n+1 :

(
τ trn+1 + ∆c̃e,n+1 : (en+1 − ĕp,n)−

c̃e,n+1 :
3∑

β=1

∆λ̃
β

n+1 B̃β
n+1

)
,

(3.3.20)

where

R̃n+1 = I + c̃e,n+1 :
3∑

β=1

∆λ̃
β

n+1Ã
β
n+1. (3.3.21)

Equation Eq.(3.3.20) constitutes a closed-form formula for the Kirchhoff stress
update at tn+1. This update admits the following deviatoric-hydrostatic decompo-
sition:

τ̃n+1 = dev τ̃n+1 + p̃n+1 1, (3.3.22)
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where

dev τ̃n+1 =
dev τ trn+1 + 2∆µ̃en+1 dev (en+1 − ĕp,n)

1 + 4 µ̃en+1

∑3
β=1 ∆λ̃

β

n+1

(3.3.23)

p̃n+1 =
ptrn+1 + ∆κ̃en+1 tr (en+1 − ĕp,n) + 3 κ̃en+1

∑3
β=1 ∆λ̃

β

n+1ṽ
β
n+1

1− κ̃en+1

∑3
β=1 ∆λ̃

β

n+1ũ
β
n+1

. (3.3.24)

3.3.1 Algorithmic elastoplastic tangent moduli

Our emphasis so far has been entirely local, i.e., attention has been confined to
determine the local stress state at time tn+1, given a prescribed deformation state
and a set of initial data. However, the ultimate goal in the numerical simulation of
the powder sub-system is to solve an initial boundary problem for the displacement
field. The numerical solution of this problem relies on the spatial discretization,
via a Galerkin finite element projection, of the weak form of the momentum equa-
tion. Due to the non-linear character of the problem, a time-discretization of this
variational form is also necessary, and the response is finally obtained by solving a
sequence of linearized problems.

The theory underlying the spatial and time discretization, as well as the lin-
earization of the resulting weak formulation are not addressed in this work. The
reader is referred to the vast literature on the subject [5, 113, 88] for further details.
Here we limit ourselves to provide an expression for the algorithmic tangent moduli,
which is a key step in the above mentioned linearization of the weak formulation.

The algorithmic tangent moduli is obtained merely by applying the directional
derivative relative to a strain increment to the update formulas of the integration
algorithm [92]. In connection with this, we recall that the stress values furnished
by the IMPLEX integration scheme determine the internal forces appearing in the
weak formulation of the problem. Hence we shall focus on the algorithmic tangent
operator consistent with this integration scheme.

In using the algorithmic tangent moduli on the computation of the response,
one is tacitly assuming that the linearization is carried out after the stress-update
algorithm is introduced [5]. Therefore, consider the term corresponding to the
internal forces of the total lagrangian weak form statement at time tn+1:

Gintϕn+1
(S̃n+1,η0) =

∫

Ω0

Fn+1 · S̃n+1 ·Grad η0 dΩ. (3.3.25)

We shall not dwell on formal considerations concerning the above expression, suffi-
cient be it to say that Grad η0 symbolizes the material gradient operator, defined
in cartesian coordinates as

(Grad η0)aA =
∂η0 a

∂XA
. (3.3.26)

acting on the material test function η0, which, in turn, belongs to a proper space of
functions. The Second Piola-Kirchhoff stress tensor S̃n+1 is the material counter-
part of the spatial Kirchhoff stress tensor obtained by the IMPLEX stress-update
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formula (3.3.20). Linearization about the current configuration Ωn+1 involves ob-
taining the directional derivative of Eq.(3.3.25) in the direction of an incremental
displacement ∆U , that is,

D∆U Gintϕn+1
(S̃n+1,η0) =

∫

Ω0

D∆U Fn+1 · S̃n+1 ·Grad η0 dΩ+
∫

Ω0

Fn+1 ·D∆U S̃n+1 ·Grad η0 dΩ.
(3.3.27)

We restrict our attention to the second term on the right-hand side of the above
equation, which after the finite element projection, gives rise to the so-called ma-
terial stiffness matrix. From the definition of directional derivative, and by using
the chain rule, we get

D∆U S̃n+1 =
d

dε

∣∣∣∣
ε=0

(
S̃n+1(ϕn+1 + ε∆U)

)

= C̃ep,n+1 :
d

dε

∣∣∣∣
ε=0

(
En+1(ϕn+1 + ε∆U)

)
,

(3.3.28)

where the components of the material algorithmic tangent moduli C̃ep,n+1 are given
by

(C̃ep,n+1)ABCD =
(S̃n+1)AB

(En+1)CD
. (3.3.29)

Thus, C̃ep,n+1 can be derived by finding the operator satisfying

∂S̃n+1

∂tn+1
= C̃ep,n+1 :

∂En+1

∂tn+1
. (3.3.30)

However, since the stress-update formula (3.3.20) is cast in terms of spatial quanti-
ties, it is convenient to obtain first the spatial algorithmic tangent moduli c̃ep,n+1,
and then transforming this tensor into the reference configuration via a pull-back
operation.

The spatial algorithmic tangent moduli c̃ep,n+1 is defined by the spatial coun-
terpart of Eq.(3.3.30):

Lvτ̃n+1 = c̃ep,n+1 : Lven+1 = c̃ep,n+1 : dn+1, (3.3.31)

wherein the Lie derivative Lv(•) is used to preserve objectivity. An expression
for c̃ep,n+1 is obtained by applying the Lie operator to the stress-update formula
Eq.(3.3.20). The simplicity, in comparison to an standard implicit integration
scheme, afforded by the use of the IMPLEX stress-update scheme is manifested
by the fact that the derivative of the plastic multipliers and the internal variables
vanishes, in virtue of the extrapolated character of these variables, that is, ∆λ̃

β

n+1

and ξ̃n+1 do not depend on the deformation state at tn+1. However, even with
this simplification, it takes tedious algebra to derive a closed-form expression for
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c̃ep,n+1. This derivation is hence relegated to Appendix (A.4), and we simply
record here the final expression, which takes the following form:

c̃ep,n+1 = R̃−1
n+1 :

(
ãe,n+1(ẽe,n+1) + c̃e,n+1 :

(
I −

3∑

β=1

∆λ̃
β

n+1z̃
β
n+1(τ̃n+1)

)
.

(3.3.32)

The isotropic fourth order tensor R̃n+1 was introduced when deriving the closed
form expression for the stress-update (see Eq.(3.3.21)). On the other hand, the
tensor ãe,n+1(ẽe,n+1) is given by the following formula

ãe,n+1(ẽe,n+1) = −2
((
κ̃en+1−

2
3
µ̃en+1

)(
1⊗ẽe,n+1+tr ẽe,n+1I

)
+2 µ̃en+1 Is(ẽe,n+1)

)
,

(3.3.33)
where ẽe,n+1 is the elastic strain tensor computed as

ẽe,n+1 = en+1 −
(
ĕp,n +

3∑

β=1

∆λ̃
β

n+1m̃
β
n+1

)
. (3.3.34)

and the operator Is(•) has the following component form:

(Is(•))abef =
1
2
(
(•)afδbe + (•)bfδae). (3.3.35)

The expression for z̃βn+1(τ̃n+1) is given by

z̃βn+1(τ̃n+1) = ãτ,n+1(ũ
β
n+1, τ̃n+1) + 2 ṽβn+1I, (3.3.36)

where the yield surface dependent parameters ũβn+1 and ṽβn+1 were defined in Eqs.
(3.3.18) and (3.3.19), respectively. The structure of tensor ãτ,n+1 is rather similar
to that of ãe,n+1:

ãτ,n+1(ũ
β
n+1, τ̃n+1) = 2

(1
3
(
ũβn+1−2

)(
1⊗ τ̃n+1 +tr τ̃n+1I

)
+4 Is(τ̃n+1)

)
. (3.3.37)

Remark 3.3.1. The fourth order tensors ãe,n+1(ẽe,n+1) and z̃βn+1(τ̃n+1) arise from
applying the Lie derivative to the metric tensor, which is involved in the definition
of both the elasticity tensor and the plastic flow vectors. Thus, if these terms are
discarded from Eq.(3.3.32), one obtains the algorithmic tangent operator for the
IMPLEX integration scheme corresponding to a small strain formulation, since in
this kinematical approach the distinction between reference and current configura-
tions are negligible for the purposes of computing stress and strain. The resulting
expression reads

c̃ep,n+1|‖e‖¿1 = R̃−1
n+1 : c̃e,n+1. (3.3.38)

Expanding this equation using Eq.(3.3.21) gives

c̃ep,n+1|‖e‖¿1 = κ̃imxn+1 1⊗ 1 + 2 µ̃imxn+1 Idev, (3.3.39)
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where

κ̃imxn+1 =
κ̃en+1

1 + 3 κ̃en+1

∑3
β=1 ∆λ̃

β

n+1ũ
β
n+1

=
κ̃en+1

1 + 2 κ̃en+1∆λ̃
e

n+1(s̃2,n+1)2

(3.3.40)

µ̃imxn+1 =
µ̃en+1

1 + 4 µ̃en+1

∑3
β=1 ∆λ̃

β

n+1

(3.3.41)

Inspection of Eq.(3.3.39) indicates that, in the small strain setting, the algorithmic
tangent operator emanating from the IMPLEX integration scheme is an isotropic
tensor of rank 4, characterized by two parameters, which, in analogy to the no-
tation for the elastic bulk and shear modulus, are denoted by κ̃imxn+1 and µ̃imxn+1.

Furthermore, since ∆λ̃
β

n+1 ≥ 0, it follows from Eqs. (3.3.40) and Eq.(3.3.41) that

κ̃imxn+1 ≤ κ̃en+1, (3.3.42)

µ̃imxn+1 ≤ µ̃en+1, (3.3.43)

where the inequality or equality holds accordingly as the material is deforming
plastically or elastically, respectively.

As alluded to in section 3.1.1, the development of the implicit-explicit integra-
tion scheme was prompted by the need to enhance the spectral properties of the
algorithmic elastoplastic moduli, whose positive definiteness cannot be guaranteed
when using an standard implicit integration scheme, mainly due to the presence
of strain softening. Since, according to Eqs. (3.3.40) and Eq.(3.3.41), κ̃imxn+1 > 0
and µ̃imxn+1 > 0, it follows then that the algorithmic elastoplastic moduli shown in
Eq.(3.3.39) is positive-definite. Another remarkable property of this small strain
algorithmic operator is that it does not depend on the deformation state at tn+1,
hence it turns out to be step-constant.

One can conclude from the foregoing remark that the positive-definiteness of the
algorithmic elastoplastic moduli is guaranteed in those situations in which a small
strain kinematics is sufficient to yield a realistic description of the deformation
state. As pointed out in section 2.2.1, the ejection stage, which, in turn, is the part
of the compaction cycle in which the compacted powder is more liable to develop
cracks, falls within this type of situations, since the magnitude of plastic and elastic
strains are relatively small, and, besides, the motion of the compact through the
die cavity during ejection involves no solid rigid rotations. Therefore, we can assert
that, in contrast to the situation that one would encounter if a standard implicit
integration scheme is employed, the numerical performace of the algorithm is not
impaired14by the presence of strain softening, at least in the computation of the
response corresponding to the ejection stage.

14This is, of course, insofar as material non-linearities are concerned. The numerical per-
formance may be seriously affected by the characteristics of the contact problem, specially the
stick-slip behavior when Coulomb friction models are used.
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To further improve the confidence in the numerical performace of this integra-
tion scheme, the spectral properties of the (large strains) algorithmic elastoplastic
tensor shown in Eq.(3.3.32) should be also examined. As it may be surmised, a
rigorous analysis concerning the positive-definite character of c̃ep,n+1 in a general
situation, i.e., for any ẽe,n+1 and τ̃n+1 entails substantial difficulties. An easier
route is to determine the order of magnitude of the tensors ãe,n+1 and z̃βn+1, and
see if their influence in the value of c̃ep,n+1 is significant.

Consider first a situation in which the response predicted by the integration
scheme is entirely elastic. In this case, the spatial elastoplastic tensor adopts the
form:

c̃ep,n+1|∆λβ=0 = c̃e,n+1 + ãe,n+1(ẽe,n+1). (3.3.44)

According to expression (3.3.33), the order of magnitude of ãe,n+1 is ‖ãe,n+1‖ ∼
Ẽen+1 ‖ẽe,n+1‖, whereas ‖c̃e,n+1‖ ∼ Ẽen+1. Hence,

c̃e,n+1

ãe,n+1
∼ ‖ẽe,n+1‖. (3.3.45)

By hypothesis, the extent of elastic strains is significantly less than unity (‖ẽe,n+1‖ ∼
10−3, in accordance with data plotted in figure 3.2). We see thus that the contri-
bution of ae in the computation of c̃ep,n+1 is not significant15.

On the other hand, in the course of plastic deformation, the term involving
z̃βn+1, that is,

3∑

β=1

∆λ̃
β

n+1z̃
β
n+1(τ̃n+1), (3.3.46)

comes also into play. In this case, however, the task of disclosing whether the
influence of this contribution is relatively important or not is by no means trivial,
due mainly to the variability of the plastic multipliers ∆λ̃

β

n+1. We proceed first
by estimating the order of magnitude of z̃βn+1(τ̃n+1). According to Eq.(3.3.36), we
have

‖z̃βn+1‖ ∼ max(‖ãτ,n+1‖, ‖ṽβn+1‖). (3.3.47)

Using Eq.(3.3.37), we get

‖ãτ,n+1(τ̃n+1)‖ ∼ ‖ũβn+1‖‖τ̃n+1‖ ∼ ‖‖τ̃n+1‖‖, (3.3.48)

since ‖ũvn+1‖ = ‖ũdn+1‖ = 0 and s2 ∼ 1 (see figure 2.12), and, hence, ‖ũen+1‖ ∼
(s̃2,n+1)2 ∼ 1. Besides, taking into account Eq.(3.3.19):

ṽβn+1 ∼
{

0, if ∆λ̃
d

n+1 = 0,

α γ c̃n+1, if ∆λ̃
d

n+1 > 0.
(3.3.49)

15Incidentally, if one discards the term ae from the definition of c̃ep,n+1, then a hypoelastic
constitutive equation would be recovered, Lvτ = ce : Lvee
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According to the empirical correlations set forth in the previous chapter, α ∼ 2,
and γ is chosen close to zero, say γ ∼ 10−2, hence

ṽβn+1 ∼
{

0, if ∆λ̃
d

n+1 = 0,

10−2 c̃n+1, if ∆λ̃
d

n+1 > 0.
(3.3.50)

Using estimations (3.3.48) and (3.3.50) in (3.3.47), we finally obtain

‖z̃βn+1‖ ∼
{
‖τ̃n+1‖, if ∆λ̃

d

n+1 = 0,

max(‖τ̃n+1‖, 10−2 c̃n+1), if ∆λ̃
d

n+1 > 0.
(3.3.51)

We concentrate our attention now in an estimation for the the plastic multipliers.
The following expression for ∆λ̃

β

n+1 can be deduced from Eq.(3.3.11):

∆λ̃
β

n+1 = ∆λβn
∆tn+1

∆tn
=

∆tn+1

∆tn
qtrn − qn
4µen qn

, β = e, d, v. (3.3.52)

The above expression becomes indeterminate when qn → 0, that is, when the
updated stress state at a given tn is either at the intersection of the elliptical yield
surface cap with the p−axis, or at the Drucker-Prager yield surface apex. We
address first the case in which this singularity does not occur. Assuming that the
time discretization is sufficiently regular and fine so as to ensure that ∆tn ∼ ∆tn+1

and ‖τn‖ ∼ ‖τ̃n+1‖, we obtain

∆λ̃
β

n+1 ∼
‖τ trn+1 − τ̃n+1‖
‖τ̃n+1‖Ẽen+1

, β = e, d, v. (3.3.53)

Therefore, from (3.3.53) and (3.3.51), it follows that, in a situation in which the
updated stress does not lie in the vicinity of neither the Drucker-Prager yield surface
apex nor the intersection of the cap surface with the p−axis, the order of magnitude
of the term shown in Eq.(3.3.46) can be estimated as

‖
3∑

β=1

∆λ̃
β

n+1z̃
β
n+1‖ ∼





‖τ trn+1 − τ̃n+1‖
Ẽen+1

, if ∆λ̃
d

n+1 = 0,

max(
‖τ trn+1 − τ̃n+1‖

Ẽen+1

,
10−2 c̃n+1

Ẽen+1

), if ∆λ̃
d

n+1 > 0.

(3.3.54)
The above estimation indicates that, using a time discretization so that ‖τ trn+1 −
τ̃n+1‖ ¿ Ẽen+1 suffices to ensure that the term represented by (3.3.46) is negligible
in comparison with unity, and thus, it can be disregarded when analyzing the
spectral properties of the algorithmic elastoplastic tensor c̃e,n+1. Roughly speaking,
the time discretization of the interval of interest should avoid that the trial stress
lies “too far” from the yield surface 16. It would be enough to guarantee that the

16As a matter of fact, this restriction of the size of the time steps arises also from accuracy
requirements of the return mapping algorithm.
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distance between the trial stress and the yield surfaces remains of the same order
(or lesser) than the magnitude of the stresses, that is, ‖τ trn+1 − τ̃n+1‖ ∼ ‖τ̃n+1‖,
since in this case

‖
3∑

β=1

∆λ̃
β

n+1z̃
β
n+1‖ ∼

‖τ trn+1 − τ̃n+1‖
Ẽen+1

∼ ‖τ̃n+1‖
Ẽen+1

∼ ‖ẽe,n+1‖, (3.3.55)

i.e., it would result of the same order as the elastic strains.
The indeterminacy arising in Eq.(3.3.52) when the stress state is at the intersec-

tion between the cap yield surface and the p−axis (pn = −s1,n) can be resolved by
using the volumetric counterpart of Eq.(3.3.52), which in the case of the elliptical
cap surface can be deduced from Eq.(3.2.54), and reads:

∆λ̃
e

n+1 =
∆tn+1

∆tn
ptrn − pn

pn 2κen(s2,n)2
=

∆tn+1

∆tn
ptrn − s1,n

s1,n 2κen(s2,n)2
. (3.3.56)

Note that, according to the experimental correlations outlined in the previous chap-
ter, s1 > 0 17 and s2 > 0. Thus, the value of the plastic multiplier ∆λ̃

e

n+1 remains
bounded and, following the same logic that led to (3.3.53), it can be concluded that
the validity of the estimation (3.3.55) also holds in this particular case.

We deal now with the situation in which the stress state is placed at the apex
of the Drucker-Prager yield surface. In this case, the plastic multiplier can be
alternatively obtained from Eq.(3.2.79):

∆λ̃
d

n+1 =
∆tn+1

∆tn
ptrn − pn
κen αγcn

. (3.3.57)

The above expression indicates that ∆λ̃
d

n+1 grows unboundedly as the deterioration

of cohesion progresses, that is, ∆λ̃
d

n+1 → ∞ as cn → 0. On the other hand, the
fact that cn → 0 implies that c̃n+1 → 0. Hence, in this limit case, it follows from
(3.3.51) that

‖z̃dn+1‖
∣∣
c→0
∼ ‖τ̃n+1‖ → 0. (3.3.58)

Consequently, the order of magnitude of the term represented by Eq.(3.3.46) cannot
be determined a priori, since ∆λ̃

d

n+1‖z̃dn+1‖
∣∣∣
c→0
∼ 0 ·∞, that is, an indeterminacy

arises. If it turns out that ∆λ̃
d

n+1‖z̃dn+1‖ ∼ 1 (or greater), the resulting algorithmic
elastoplastic moduli lose its positive-definite character, as it may deduced from
Eq.(3.3.32), and, eventually, this may lead to a deterioration of the numerical
performance of the algorithm.

The solution adopted herein to overcome this potential source of difficulties is
to set a lower limit, greater than zero, for the cohesion. In this way, the plastic
multiplier remains bounded and the indeterminacy in (3.3.57) is eliminated. This

17As a consequence of the curve fitting process, values of s1 close to zero may appear at low
densities. However, it is highly recommended, in the interest of numerical robustness, to modify
the curve fit in this cases and set a lower limit for the hydrostatic yield strength s1, say s1 >
10−4MPa.
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solution has proved useful in circumventing the aforementioned potential problems.
However, the physical implications of such ad-hoc solution has not been properly
evaluated, and this aspect of the analysis of the spectral properties of c̃ep,n+1 should
be subject of debate in future developments on this topic.

In conclusion, the unconditional positive definiteness exhibited by the small
strain algorithmic elastoplastic tensor, see Eq.(3.3.39), is inherited by the large
strain algorithmic elastoplastic tensor c̃e,n+1, provided that the size of the time
steps is small enough to keep the trial stress close to the yield surface. Furthermore,
a lower limit for the cohesion has to be set in order to avoid potential singularities
when the deformation process entails updated stresses at the apex of the Drucker-
Prager yield surface.



Chapter 4

Numerical assessment

4.1 Introduction

The objective of this chapter is to assess the formulation and numerical implemen-
tation of the model presented in the preceding chapters. To this end, we consider
two representative examples, namely, a Brazilian or diametral compression test and
the pressing and ejection of a thin cylindrical part.

Quantitative and qualitative assessment

A quantitative assessment of the mechanism of crack formation requires to mon-
itor the crack during its development and to evaluate the effects of the developing
crack in some measure of forces. During die compaction processes, the powder
specimen is encapsulated in the die cavity and, consequently, any attempt to ob-
serve “in situ” how the crack is formed is, to date, unfeasible [99]. Therefore, the
quantitative assessment of this facet of the model must be carried out by recourse
to common fracture tests, in which previously compacted parts are subjected to
controlled loads. In particular, the Brazilian or diametral compression test is em-
ployed here. Numerical results will be compared with the experimental response
on Distaloy AE powder specimens reported in the work of Jonsén et al [50], which
includes, among other experimental data, a pictorial description of the develop-
ment of the crack at different stages of the test. The simulation of the diametral
compression serves also to analyze the implications of using either a displacement-
based finite element formulation or a mixed formulation with displacements and
pressures as basic variables.

The simulation of the pressing and ejection of a thin cylindrical part seeks to
highlight the utility of the numerical model in reinforcing the physical understand-
ing of how well-known crack typologies are developed. The experimental data to
validate this test have been obtained from the extensive crack database collected by
Zenger et al. [112]. As opposed to the diametral compression test, this simulation
provides only a qualitative assessment of the model, as far as prediction of cracks
is concerned.

109
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Before launching into details of the numerical validation, it is convenient to
provide an abridged overview of some aspects of the numerical implementation
which, albeit not addressed in depth in this work, are crucial for acquiring a proper
grasp of the ensuing computed results.

4.1.1 Overview of the modeling setting

Characterization of the tooling sub-system

The tooling sub-system is regarded as a set of isotropic continuum bodies that
interact with each other and with the powder sub-system. It is assumed that
during operation the tools undergo small deformations in comparison with their
dimensions, and that plastic flow and other inelastic events do not take place.
Consequently, a small strain elastic constitutive model is sufficient to yield a realis-
tic description of the behavior of the tooling sub-system, with the material of each
tool characterized by its corresponding Young’s modulus and Poisson’s ratio.

Finite element formulation

The standard displacement-based discretization is employed in all the simula-
tions shown here. Nevertheless, with a view towards assessing the adequacy of
this standard formulation, an alternative finite element approximation based on a
mixed variational formulation, with displacements and pressure as basic variables,
has also been tested in the simulation of the diametral compression test. For de-
tails on the implementation procedure of the standard formulation, the reader is
referred to the classical finite element literature [5, 113, 24, 27]. The methodology
for implementing the mixed formulation, including the corresponding stabilization,
parallels that followed in Cervera et Agelet [1, 18] for J2-flow theory plasticity
model1, with continuous linear interpolation for both displacements and pressure
fields.

The formulation has been specialized to address plane strain and axisymmetric
problems2. Although the derivation of a general three-dimensional formulation is
conceptually straightforward, the associated increase in computational cost com-
pelled us to disregard three-dimensional simulations in this work.

A word concerning axisymmetric conditions is in order here. Considering the
simulation of the uniaxial compaction process as an axisymmetric problem requires
axial symmetry in both geometry and loading. The vast majority of manufactured
parts are not, in strict sense, solids of revolution, since the presence of features such

1Galerkin mixed elements with continuous linear interpolation for both fields are subject to
pressure instability[6]. In the small strain case, the structure of the stabilization method adopted
by Cervera et Agelet [1, 18], which, incidentally, is based on the sub-grid scale concept [23],
is readily tailored to the weak form containing our multi-surface constitutive model. However,
extension to large strains is fraught with serious difficulties that undermine considerably the
robustness of the global algorithm. This fact has to be kept in mind when debating the merits
and drawbacks of using standard or mixed formulations.

2No practical applications of powder compaction occurs under plane stress conditions. When
needed, the plane stress constraint can be imposed (exactly in the elastic range and approximately
in the plastic one) by an appropriate conversion of the elastic constants[5].
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as through and blind holes disrupts the axial symmetry. Nevertheless, in most cases
these features do not alter significantly neither density nor stress fields, and one can
analyze the process studying a characteristic cross section in which the influence of
such geometric alterations is negligible. Another implication of regarding the prob-
lem as axisymmetric is that the development of a crack is assumed to exhibit also
axial symmetry. Experience shows us that this fact is at odds with reality, since
the propagation of cracks is inherently a three-dimensional phenomenon. Indeed,
if, after cutting a compacted part into pieces, one detects a crack-like defect on a
particular cross-section, it is hardly expected to observe the same defect on every
cross sections. In this regard, however, it should be remarked again that the accu-
rate representation of the actual propagation of the crack is not the primary goal
in this work, but merely to detect its initiation. Therefore, the hypothesis of axial
symmetry seems a reasonable simplification for an initial exploratory analysis.

Remeshing strategy. Element technology

A Lagrangian viewpoint is adopted for describing the motion of the mesh.
Rather than adaptive remeshing [54] or similar techniques, the procedure followed
here to avoid the detrimental effect of progressive mesh distortion is based on the
so-called Particle Finite Element Method (PFEM). The distinguishing feature of
this method, which was originally conceived for solving incompressible flows with
free-surfaces [47] and later on extended to solid mechanics problems [77], is that,
roughly speaking, the set of nodes (material points) defining the finite element mesh
is the same throughout the deformation; only the connectivity matrix is modified.
As a consequence, the mapping of history dependent variables from the “old mesh”
to the “new mesh” is trivial for the case of nodal properties, such as the velocity.
For the case of variables defined at the quadrature points, such as the stress and
the density fields, a standart least-square smoothing is used to obtain nodal val-
ues and eventually transfer the information to the new mesh. In order to avoid
spurious numerical diffusion, it proves advantageous in this respect to accomplish
the smoothing process incrementally, in the sense that the smoothing operator is
applied to the incremental change in the corresponding field rather than to the
total values [77]. Another salient feature of the PFEM strategy is its ability to
recognize free boundary surfaces. This a key issue in the simulation of the powder
fill and powder transfer operations, in which the powder can easily flow. However,
we shall not delve into such details since the study of these manufacturing stages
is not contemplated in this work.

The PFEM imposes a limitation concerning element technology. Indeed, an
essential requirement in using such method is that the finite elements are to be three-
nodes triangular elements (linear). The acclaimed inaccuracies that may emerge in
the response when using linear triangular elements are discussed in section 4.2.2.

The formulation of the the weak form has been carried out using an updated
Lagrangian strategy, in which the reference configuration is taken as the placement
of the body at the previous converged step[77].

During the simulation of the pressure release and ejection stages, the finite ele-
ments are not severely distorted, since, as discussed in section 2.2, the magnitude
of both elastic and plastic strain is not significant (small strain regime). In the in-
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terest of computational efficiency, it is convenient to split the problem and consider
separately the simulation of the pressing stage and the post-pressing stages, since it
seems devoid of meaning to apply any mesh update procedure in the computation
of these post-pressing stages. This can be automatically accomplished with the aid
of some restart utility that takes the set of historic variables recorded at the end of
the computation of the pressing phase as the initial conditions for simulating the
subsequent ejection stage.

Regularization of the softening law

In section 2.5.5, see Eq.(2.5.97), the localization bandwidth lf appeared as
a link between the continuum softening modulus H0 and the intrinsic softening
modulus Ĥ0. In order to alleviate the detrimental effect of mesh sensitivity, i.e., lack
of convergence under mesh refinements, which is inherent to constitutive models
equipped with softening, it was pointed out that the localization bandwidth at each
quadrature point should depend on the size and orientation of the corresponding
element. Here we simply set lf =

√
Ae, where Ae is the area of the corresponding

triangular element, that is, the localization bandwidth depends only on the element
size. More elaborate theories [74] have been put forward to also acknowledge the
orientation of the crack within the element. However, such sophistication is only
warranted when the concern is to reproduce the exact details of crack propagation,
which is not our case.

Time discretization

The choice of an adequate partition of the time interval of interest is, in general,
a matter of experience. An uniform discretization is not advisable from a computa-
tional efficiency point of view, being preferable to devise some heuristic or adaptive
schemes. During the pressing stage, the major restriction on the size of the time
step arises from accuracy considerations of the IMPLEX integration scheme. As
alluded to in section 3.3, one can use the adaptive time stepping scheme proposed
by Oliver et al.[79] to keep the error adequately bounded. Alternatively, a heuristic
that proves effective is to select the length of the time increment according to the
compressibility curve of the material (pressure vs density), so that the size of the
time step is reduced as the slope of the compressibility curve becomes more pro-
nounced. On the other hand, elastic conditions prevail presumably throughtout the
post-pressing stages. Hence, the choice of the size of the time step in this case is
dictated mainly by considerations of the powder-tooling contact response. Special
care is to be exercised at those points in the fabrication cycle in which the nature of
the input data is abrupt, as in the transition from pressure release to the stripping
of the compact from the die.

Contact algorithm

Concerning the computation of the interaction powder-tooling, contact condi-
tions in the normal direction are imposed as a pure geometrical constraint. Two dif-
ferent strategies are used to treat numerically such constraint, namely, the penalty
method and the augmented Lagrangian strategy. The implication of considering
one or other method are examined in section 4.3. In order to account for the fact
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that the powder becomes stiffer as densification progresses, a density dependent
penalty parameter is employed when using the penalty strategy. On the other
hand, the constitutive behavior in the tangent direction is characterized by the
corresponding friction coefficient, which may be distinct for each member of the
tooling set. This friction coefficient depends upon density and sliding velocity at
the interface. The contact detection algorithm is based on the construction of an
interface mesh by which the interacting portions of two contacting bodies are rea-
dily identified. Penetration of one body into another is, in turn, characterized by a
certain strain measure defined at each element of this interface mesh (see Ref. [77]
for more details).

4.2 Diametral compression test

A brief description of this test was outlined in section 2.5.5. As pointed there,
the experimental data for checking the validity of the computed results have been
obtained from the work of Jonsén et al. [50, 49]. This experimental work includes
a detailed pictorial description of the crack development [50], as well as relevant
quantities concerning the characterization of fracture, such as tensile strength and
fracture energy, for several densities (ranging from 4.90 g/cm3 to 7.35 g/cm3). The
numerical simulations presented here correspond to an specimen of final average
density ρ = 7.21 g/cm3. Load data corresponding to this density level are given in
[49].

Note that the diametral compression test was also employed in section 2.5.5 for
calibrating the softening law. At first glance, it appears that, in using this test
for also assessing the model, we are violating a well-known precept of numerical
modeling according to which the experimental results used for calibrating a model
should not be also employed for its validation. However, the observance of this rule
is only strictly necessary when the distribution of stress and stain is practically
uniform and therefore the connection between overall strain and stress measures is
direct, as in the characterization of the hardening response. Indeed, in this case one
has to simply record average density values (strain measure) and pressure values
(stress measure) during a closed die compaction test and, then, the exact form of
the constitutive relationship is obtained by fitting these data. By contrast, the
derivation of the softening law is not direct, due to the localization of strains asso-
ciated with strain softening. The only available experimental data is the fracture
energy, and, consequently, a host of assumptions is implied in relating the decrease
of cohesion in the zone affected by the cracking process (stress measure) and the
accumulated inelastic shear deformation (strain measure). Thus, the use of the
same test for validating the model can be viewed as a legitimate means of assessing
the correctness of such assumptions.

A schematic description of the experimental setup is shown in figure 4.1. Force
is applied over two diametrically opposite arcs of angular width 2αB = 14◦. The fix-
ture tools are modeled as elastic bodies, with Young’s modulus Etool = 2.1 105MPa
and Poisson’s coefficient γ = 0.3. The specimen is compacted by single-action press-
ing of an iron based Distaloy AE powder. The apparent density of the powder is
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3.10 g/cm3, and the full green density 7.48 g/cm3. An uniform density distribu-
tion is assumed, as the only information provided in this regard is the final average
density (ρ0 = 7.21g/cm3) of the compacted specimen. The final dimensions are
D = 25mm and t = 5mm, where D denotes the diameter and t the height of the
cylindrical specimen. According to [31], these dimensions (t/D = 0.2) ensure that
the proviso plane stress can be employed to analyze the stress state during the
experiment. For simulating the experiment, a vertical displacement of 0.2 mm is
prescribed upon the top face of the upper fixture tool.

F

D = 25 mm

14º

Figure 4.1 Diametral compression test

As regards to material properties, the yielding mechanism is characterized by
an initial cohesion c = 29.9MPa and an internal friction parameter α = 2.2.
These values follow from the curve-fitting equations derived in chapter 2 (see Eqs.
2.5.56 and 2.5.58) by simply setting the internal hardening parameter to ξh ≈ η =
7.21/7.48 = 0.96.

A remark concerning calibration of material parameters, however, is in order
here. The material parameters appearing in the hardening law relating cohesion
and relative density, represented by Eq.(2.5.56), see section 2.5.4, were calibrated
using data collected from fracture tests carried out by Coube [25] on Distaloy AE
powder specimen. However, the composition of the mixture employed by Coube is
slightly different from that used by Jonsén et al. The subtle difference lies in the
additives, specifically, in the lubricant. The mixture in Coube’s experiments incor-
porates 1% Hoechst microwax, whereas Jonsén’s diametral compression tests were
conducted using Distaloy AE powder with 0.6% Kenolube. We shall assume in this
respect that the use of different lubricants does not affect significantly the mechan-
ical properties of the green compact. This assumption is made in the absence of
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experimental data concerning cohesion of Distaloy AE with 0.6% Kenolube. Nev-
ertheless, we must note carefully that presuming that the cohesion (green strength)
of a green compact part is not influenced by the type of lubricant and the addition
level is quite objectionable, as it is shown in the work of Degnan et al. [29], and,
therefore, this hypothesis should be adequately contrasted in future developments.

As mentioned in previous chapters, the characterization of the elastic response
is a somewhat controversial issue. Two empirical relations were presented in section
2.5.4 for the Young’s modulus as a function of relative density (internal hardening
variable) (see Eqs. 2.5.60 and 2.5.61). Evaluation of the former, the one advocated
by Pavier [83], at ξh = 0.96 yields Ee = 168444.0MPa, whereas the linear relation
proposed by Coube [25], on the basis of measurements of the velocity of sound on
an unstressed specimen Eq.(2.5.61), gives Ee = 21127.0MPa. The consequences
of using one or the other relation will be properly assessed later. Other relevant
material parameters are the Poisson’s coefficient (νe = 0.29) and the intrinsic
softening modulus, which can be obtained from the graph shown in figure 2.23,
giving Ĥ0 = 9.0 · 105MPa/mm. The dilatancy factor γ is set to 0.01.

4.2.1 Results

4.2.1.1 Numerical aspects

Prior to compare the experimental results with the calculated response, it is expe-
dient to carry out a preliminary convergence analysis, under refinement of the dis-
cretized time and spatial domains, and to investigate the implications of employing
either standard displacement-based or mixed displacement-pressure formulations.
The experimental data that will serve as the basis for the quantitative assessment
of the problem is the graph of applied load F versus deflection v in the vertical
direction. Thus, it seems appropriate to perform these analysis by examining F −v
plots. The vertical deflection v corresponds to the displacement prescribed upon
the nodes located at the top face of the fixture tool, whereas the applied load F is
obtained as the sum of the forces at these nodes.

Using the mesh layout displayed in figure 4.2, in which the higher mesh density
in the vertical central band is dictated by foresight of the fact that the dominant
crack will be located along the loaded diameter, and setting Ee = 21127.0MPa,
a study varying the number of time steps3 is undertaken. Figure 4.3 shows the
result of such study. The plot of applied load versus deflection takes essentially
the same form in all the studied cases, the only substantial difference being the
post-peak behavior. The branch OA corresponds to linear elasticity. After point
A, a slight decrease in slope occurs. This subtle change of stiffness indicates crack
initiation at the center of the disc. The development of the central dominant crack
progresses until the maximum force is reached (point B in case N = 800). The
magnitude of the maximum force estimated using N = 50 steps differs from that

3In order to facilitate the comparison, equally space intervals have been used. However, we
should note that considerable gain in computational efficiency can be achieved by means of an
adaptive time stepping scheme, as the one proposed by Oliver et al. [79]. For instance, due to
the implicit contribution of the IMPLEX integration algorithm, the elastic response OA could be
obtained in a single step.
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Figure 4.2 Mesh layout
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Figure 4.3 Applied load versus deflection. Results for several number of time steps.

calculated with N = 800 by only 4.3 %. Following the attainment of the peak-
load, the central fiber suddenly ceases to contribute to the rigidity in the vertical
direction, and the computed force drops rapidly (point C). The abruptness of this
decay is accentuated as the time step size is reduced. The post-peak ascending
branch (CD) corresponds, approximately, to the response of a specimen spli into
two halves. As it is apparent that further increase in the number of step will
not significantly improve the accuracy, the prediction using N=800 steps will be
considered as reliable, and therefore, this discretization of the time domain will be
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employed throughout the subsequent simulations. It has to be mentioned that, in
computing the five cases presented, only one equilibrium iteration at each time step
was required to achieve convergence.
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Figure 4.4 Applied load against deflection. Result for several meshes, characterized by
the size h of their elements.

Our concern now is to examine the sensitivity of the numerical results to sub-
sequent mesh refinement. Five different meshes characterized by the size of their
elements h are used4. Computed results are shown in figure 4.4. As far as the
magnitude of the peak value of the load is concerned, the sequence of graphs dis-
played in figure 4.4 exhibits clear convergence with refinement of the mesh. The
peak value predicted by using the mesh labelled as h = 0.4mm is only a 0.6 %
lower than the one obtained with the coarser mesh h = 0.6mm. On the other
hand, the magnitude of the “residual force” - the force calculated at the onset of
the post-peak ascending branch - ranges between 2.85 kN and 2.91 kN, although
without a clear monotonic convergence tendency. In view of these circumstances, it
seems that going to finer discretizations will not improve significantly the accuracy.
Hence, the mesh labelled as h = 0.4mm, which corresponds to the one displayed
previously in figure 4.2, will be taken as the finite element mesh for the simulations
shown in the sequel.

The force versus displacement curves obtained by using two different finite ele-
ment procedures, namely, a standard displacement-based formulation and a mixed
displacement-pressure approximation, are depicted in figure 4.5. Inspection of this
diagram indicates that the use of one or another formulation is inconsequential, as
the two curves are practically indistinguishable.

4The mesh layouts used in this study are patterned after the non-uniform mesh depicted in
figure 4.2. The typical size h corresponds hence to the size of the elements in the central region
that will eventually contain the dominant crack. Care is to be exercised in selecting the mesh size
in the region where the load is applied to the specimen, since excessively coarse meshes may not
represent adequately the stress concentration, leading to a mechanism of failure different from
that of cracking along the loaded diameter.
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Figure 4.5 Applied load against deflection. Comparison between results computed
using a standard displacement-based formulation and a mixed displacement-pressure for-
mulation.
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Figure 4.6 Applied load versus deflection. Comparison of computed results using dif-
ferent elastic properties with experimental data collected by Jonsén et al. [49]. The
post-peak descending branch B-C is shown in magnified form.

4.2.1.2 Computed versus experimental results

Quantitative results

We are now in the position to compare the computed response (using N =
800 steps , typical mesh size h = 0.4mm and standard displacement-based for-
mulation) with the experimental results. The plots of the computed force ver-
sus vertical deflection for two distinct Young’s modulus Ee = 168444.0MPa and
Ee = 21127.0MPa, in conjunction with the corresponding experimental curve, pro-
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vided by Jonsén et al. [49], are depicted in figure 4.6. This diagram clearly shows
that the Young’s modulus estimation Ee = 168444.0MPa, obtained from triaxial
measurements [83], is utterly inadequate for characterizing the elastic response of
the green compact under the conditions of this diametral compression test, being
more appropriate the estimation Ee = 21127.0MPa, derived from ultrasound tests
[25]. Nonetheless, even in this case, significant differences with experimental data
are observed. Indeed, the slope of the numerical F − v graph remains constant
until point A. By contrast, the plot of the experimental force versus deflection
traces initially a non-linear path OM. Then, it becomes linear up to the point N,
at which, according to Jonsén et al. [49], the elastic nature of the graph ceases
due to the initiation of the central crack. The progressive decrease in slope ob-
served experimentally (path NP) during crack growth is more pronounced that the
decrease in slope predicted by the model (path AB), which is practically unnotice-
able. As a consequence, the computed peak load (point B) exceeds notably (20 %)
the maximum force measured experimentally (point P). Discrepancies in the post-
peak behavior are also noteworthy. In the experiment, a relatively gradual decay of
load is recorded (path PQ), whereas this decay occurs precipitously (path BC) in
the simulated response, resulting a residual force underestimated by approximately
30 %. The enlarged view of path BC, shown in the upper-right part of figure 4.6,
reveals that the transition from B to C, albeit quite abrupt, is not instantaneous,
that is, several time steps are required in its computation5.

Qualitative results

Figure 4.7.a contains images recorded experimentally by Jonsén et al [50] during
the loading process. The leftmost picture corresponds to the initiation of the crack
at the center of the disc (point N in the F − v curve shown in figure 4.6). The
central image shows the state of the crack at the point of maximum load (point
P in figure 4.6). Finally, the rightmost picture displays the aspect of the crack
at the end of the loading process (point S in figure 4.6). Aside from the central
“dominant” crack, secondary cracks are distinguishable around the contact zones.

Cracks impair strength. Thus, a natural way of representing such defects is
by plotting contours of cohesion (green strength), in which crack locations are
identified as those areas affected by a local decrease of cohesion. The corresponding
sequence (initiation of the central crack, maximum load and end of the test) of
computed contour plots of cohesion is shown in figure 4.7.b. In the leftmost plot,
the local decay of cohesion observed in the center of the disc indicates the initiation
of the crack. In the central contour plot (maximum load), we can see that this loss of
cohesion propagates to the periphery of the disc along the loaded diameter. Close to
the center of the disc, this propagation occurs along a single path. Near the loading
surface, however, the de-cohesion path seems to bifurcate into two branches. Such
bifurcation (or “crack branching”) is not detected in the experiment. Inspection of
the rightmost plot (end of the test), indicates that, eventually, loss of cohesion has
been more intense along one of these branches. The resulting “dominant” path,

5An instantaneous drop would correspond to a perfectly brittle response. A force versus dis-
placement graph that exhibits such feature warns of trouble with potential snap-back behavior [27].
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Figure 4.7 (a) Images recorded experimentally by Jonsén et al [50]: initiation of the
crack, point of maximum load, and end of the loading process. (b) Contour plots of
computed cohesion corresponding to such stages. (c) Contour plot of computed cohesion
at the end of the loading process, showing the spatial grid used in the computation.

which spans approximately 80% of the length of the diameter, displays a distinctly
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crack-like appearance, and bears close similarity with the crack observed in the
corresponding photograph. Note that other regions with relatively low cohesion,
located mainly around the contact zones, are discernable in the final contour plot.
The aspect of these patterns of low cohesion are in remarkable agreement with the
abovementioned secondary cracks detected experimentally.
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Figure 4.8 Horizontal displacement contour lines. The graph shows the horizontal

displacement measured along the horizontal diameter AAÂ´.

In figure 4.7.c, the final cohesion contour is plotted in conjunction with the fi-
nite element mesh used for the computation. This plot allows us to distinguish the
band of elements along which loss of strength is localized. A result that also assists
in visualizing this localization phenomenon is the plot of horizontal displacement
contour lines, displayed in figure 4.8. Close spacing of lines relates to steep slopes
and wide spacing to gentle inclines. Hence, the intense concentration of lines pre-
sented along the loaded diameter is indicative of an abrupt change in the horizontal
displacement, as it is shown in the accompanying graph of figure 4.8.
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4.2.2 Discussion and concussions

The numerical results shown in figure 4.3 serve as a convincing proof that the solu-
tion provided by the IMPLEX integration algorithm converges as the length of the
time step is reduced. In addition, we pointed out that only one iteration per step,
for the five cases presented, was required to achieve convergence to equilibrium
states, a fact that highlights the robustness of the IMPLEX integration scheme.
Not least among its merits is the ability to compute the post-peak response (curve
BCD in figure 4.3). A pure implicit integration scheme, without further enhance-
ments such as cumbersome continuation methods [71, 27], would probably fail in
simulating the post-peak behavior, since the tangent stiffness matrix derived from
this integration scheme ceases to be positive definite at this point.

The sequence of force versus displacement diagrams presented in figure 4.4 indi-
cates that the energy6 dissipated during the loading process apparently converges
as the mesh is refined. As mentioned in section 2.1.2.1, lack of convergence upon re-
finement of the finite mesh is one of the flaws that plagues the numerical treatment
of models exhibiting strain-softening behavior. Hence, the proposed regularization
of the softening law proves useful, at least in this example, in alleviating this prob-
lem. We should note that this assessment only furnishes information regarding
the dependency of the results on the size of the elements. A complete assessment
should also acknowledge the directional dependence on mesh topology [4]. The
smeared crack model presented in this work is very elementary in this respect and
does not contain any enhancement to deal with such issue . The predictions made
by our model will be thus inevitably affected by this mesh-induced directional bias.
However, knowing with detail the exact orientation of the potentially developing
cracks is not the goal of our analysis, thus such modeling deficiency is relatively
inconsequential.

It is widely known that, in many applications such as metal plasticity, the use
of linear triangular elements in conjunction with displacement-based finite element
formulation, suffers a detrimental overstiff phenomenon known as “volumetric lock-
ing” [9]. With a view towards assessing the efficiency, in our context, of the standard
formulation in comparison with alternative formulations not theoretically prone to
volumetric locking, a mixed finite element approximation with displacements and
pressure as basic variables has been tested. Results presented in figure 4.5 were
aimed at comparing the calculated force versus displacement response under these
two approaches. According to this diagram, no appreciable differences are found
in using mixed or standard formulation. This “unexpected” similarity may be ex-
plained as follows. The developing of the crack (see figure 4.7) along the loaded
diameter takes place under mode I or opening mode conditions, which, inciden-
tally, are the same conditions that characterizes fracture in a pure tensile test. This
implies that the the stress state at a representative plastically deforming element
traces a path which lies approximately within the first quadrant of the p-q plane

6Recall (see figure 2.21) that the energy dissipated can be estimated in terms of the area
enclosed by the force displacement graphs of unsplitted and splitted tests.
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(tensile regime). As illustrated in figure 2.9 (chapter 2), in this stress regime, the
plastic flow involves a dilatational component, due to the use of a parabolic plastic
potential function, and this volumetric component, in turn, becomes dominant as
the stress state approaches the vertex of the Drucker-Prager failure line. Hence, the
material represented by our plasticity model in this range of stresses is not plasti-
cally incompressible. The absence of this kinematical constraint may thus explain
why both formulations yield identical responses7.

According to the preceding discussion, thus, the simulation of cracks which
develops under mode I is not affected by volumetric locking, even when using
standard displacement based formulation. Experimental observations indicate that,
during the manufacturing process, the vast majority of cracks usually grows under
this opening mode [99]. Consequently, in view of these facts, and considering,
in regards to the mixed approach, the increase of computational effort and the
previously mentioned questionable reliability of the stabilization procedure, it seems
reasonable to favor the standard displacement based formulation over the mixed
approach. Certainly, volumetric locking may emerge in other situations. At high
densities, for instance, the material flows at constant volume when yielding on
the von Mises yield surface, i.e., it becomes plastically incompressible. However,
as mentioned in chapter 2, the validity of the constitutive relationships might be
questionable as a whole, since the basic hypothesis of small elastic strain is violated.
Hence, further sophistication is not warranted.

As regards the results shown in figure 4.6, the large difference observed be-
tween the responses obtained by using different elastic parameters conveys the
relevance of choosing an adequate estimation for the Young’s Modulus. In this
case, the computed F −v graph corresponding to the the Young’s modulus estima-
tion Ee = 21127.0MPa, derived from ultrasound tests conducted by Coube [25],
is in closer agreement with the experimental data. This fact is in conformity with
the argument set out in section 2.5.4 when dealing with the calibration of the elas-
tic parameters, according to which, Coube’s empirical relationship (Eq.(2.5.61)) is
more appropriate in circumstances of low degree of confinement. However, even in
this case, significant discrepancies between predicted and experimental curves are
detected.

The different elastic behavior exhibited by the computed response and the expe-
rimental data, linear and non-linear8, respectively, highlights, again, concern with
the characterization of the elastic response, which should receive more careful con-
sideration in future improvements of the model. On the other hand, the different
trends observed in the inelastic branches up to the peak load -the computed re-
sponse has a steeper slope (see figure 4.6, paths AB)- may be attributable to several

7Another apparently plausible explanation is that, in plane stress problems, the thickness of
the element can change to accommodate incompressible materials, and hence volumetric locking
will not occur[5]. However, as alluded to earlier, this reasoning is not valid, as the plane stress
proviso is imposed here in an approximated manner, which follows from a plane strain formulation
by an appropriate conversion of elastic constants.

8The non-linear behavior at the beginning of the curve may be alternatively attributed to
initial seating and settling errors during experiments, and not necessarily to non-linear material
behavior.
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factors. A plausible explanation is that the stress conditions along the localization
band may be not adequately represented by the approximated plane stress formu-
lation. This hypothesis should be corroborated in future developments by under-
taking a three-dimensional analysis. The model overpredicts the maximum force
in approximately 20 %, and the displacement at which this peak value is reached
in 11 %., amounts which are within a reasonable range of accuracy, considering
the significant uncertainty (10-15%) attached to the experimental determination of
tensile properties in green compacts9.

The post-peak portion of the curve corresponds to the unstable growth of the
central dominant crack. The computed force experiments a drastic decrease, as op-
posed to the relatively mild decay observed experimentally. The computed residual
force is underestimated in approximately 30%. As a result, the energy dissipated
during the process is overestimated. The main contributor to this discrepancy10

may be found in the elementary character of our crack modeling approach. Indeed,
as mentioned earlier, our model does not permit a precise tracking of the developing
cracks. As a consequence, the propagating localization band could tend to follow
certain preferred directions dictated by the mesh, and, eventually it may travel
along bifurcated paths, giving rise to spurious “crack branching”, as the one ob-
served in the contour plot of cohesion displayed in figure 4.7.b (central picture). An
immediate implication of such spurious branching is that the extent of the region
affected by loss of cohesion increases, resulting in a overestimation of the dissipated
energy.

We reiterate that the quality of the obtained results must be judged in the light
of the aim and purpose of our investigation. The model has undoubtedly proved to
be efficient in detecting the formation of the experimentally observed macroscopic
crack. In addition, as seen in figure 4.7, the de-cohesion pattern predicted by
the model is in remarkable agreement with the experimental images of the crack
development. Admittedly, the results can be improved. However, as it may be
inferred from the preceding discussion, if one wishes to bring the computed solution
into closer agreement with experimental evidence, aside from possible refinements
of the hypothesis involved in the calibration of the fracture energy, it would be
necessary to abandon the elementary smeared crack approach in favor of more
sophisticated, and complex, continuum-based methods [75].

9The material parameter that has more influence in the location of the peak load is the cohesion
variable (c). Note that the experimental values for cohesion shown in chapter 2 are derived data
[14], in the sense that they are obtained from raw data (tensile and compression strength, for
instance) through an interpretation process full of assumptions. Thus, in addition to the error
involved in obtaining the raw data, one has to acknowledge the uncertainty associated to such
assumptions.

10The post-peak portion of the curve is also highly sensitive to test conditions [61]. Hence,
the relevant features of the experimental environment (total stiffness of the testing frame, for
instance) should be also acknowledged if the response is to be accurately predicted.
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4.3 Pressing and ejection of a thin cylindrical part

A cylindrical part made of an iron based Distaloy AE powder, with apparent density
ρapp = ρ0 = 3.04 g/cm3 and theoretical density ρth = 7.33 g/cm3 is pressed until
reaching a final density ρ = 7.18g/cm3. The punches and the die are considered
elastic materials characterized by a Young’s modulus Etool = 210000MPa and a
Poisson’s ratio νtool = 0.3. Their dimensions are displayed in figure 4.9.

Die
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Figure 4.9 Dimensions of punches and initial die cavity.

The motion of the upper and lower punches is controlled by prescribing vertical
displacements on its top and bottom surfaces, respectively. During pressing, the
upper punch moves downward with constant velocity 10mm/s while the lower
punch and the die remain stationary. Release of axial pressure takes place at a rate
20mm/s by gradually lifting the upper punch. During ejection from the die, the
lower punch pushes the compact upward at a constant rate 40mm/s.

This example focuses on the formation of cracks due exclusively to elastic ex-
pansion of the compact upon exiting the die. Contribution of friction effects to the
occurrence of cracks will be therefore ignored by setting the friction coefficient to
a low constant value 11 µ = 0.01. Furthermore, these circumstances of negligible
friction will allow us to draw approximated analytical expressions for estimating
the stress state during axial unloading. In order not to disrupt the continuity of
the presentation, these derivations are relegated to appendix B.3.

Material parameters are obtained from the calibration presented in chapter 2.

11Assuming an ideally frictionless process is not advisable since, upon total removal of the upper
punch, ill-conditioning may arise due to the absence of restrictions on the vertical direction.
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We recall that two alternative empirical relationships for the Young’s modulus as a
function of relative density were quoted. Here we shall adopt the one advocated by
Pavier [83], see Eq.(2.5.60), since it yields substantially larger values that Coube’s
estimation [26] (see Eq.(2.5.60)) and, therefore, the effects of elastic expansion are
accentuated.

Figure 4.10 Initial mesh layout.

The initial finite element mesh is shown in figure 4.10. The average size of the
elements of the powder body is le = 1mm, whereas the size of the elements at
the boundaries of punches and die in contact with the powder is, approximately,
0.5mm. In general, a practice that proves advantageous in ensuring a successful
performance of the contact-detection algorithm is to select the element size at the
boundaries of the tooling bodies equal or smaller than the element size used at
the boundary of the powder body. Tooling elements can be graded from small-size
at the boundaries in contact with the powder to become coarser with increasing
distance from these surfaces.

4.3.1 Results and discussion

4.3.1.1 Study of convergence with refinement of time discretization

In the example of the Brazilian test, see section 4.2.1.1, the issue of convergence
under refinement of the time discretization was examined in a problem involving
softening behavior. The goal now is to explore this issue in situations in which
hardening behavior dominates the response, i.e., during pressing of the powder
within the die.



4.3 Pressing and ejection of a thin cylindrical part 127

A
x
ia

l 
p

re
s
s
u

re
 (

M
p

a
) n = 10

n = 50

n = 100

n = 200

A
A

Time (s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

0.92 0.94 0.96 0.98 1
400

450

500

550

600

650
B

B

Figure 4.11 Average axial pressure during pressing versus time. Results for several
number of time steps (uniformly spaced). The final portion of the curves is shown in
magnified form.

Figure 4.11 shows axial pressure versus time graphs computed using different
number of (constant) time steps. The sequence of graphs is clearly convergent.
The simulation with N = 200 steps can be taken as the “correct” solution, as it is
apparent that going to smaller time step sizes will not improve significantly the ac-
curacy of the predictions. Inspection of the initial portion of the curves, however,
reveals an anomalous behavior. At the very first increment, the solution calcu-
lated for the four cases presented “overshoots”. The magnitude of the deviation
decreases as the time step is reduced, being practically imperceptible for N = 200
steps. This overshooting is not connected with any type of instability, since the
computed response returns to the presumably correct course at the second step.
For instance, for N = 50 steps, the axial stress computed at the first increment
is largely overestimated (40 MPa, in contrast to the 0.1 MPa predicted with N =
200 steps). Despite this initial substantial error, the drift from the correct curve
in subsequent increments remains bounded, being the magnitude of the maximum
pressure (compaction pressure) only 3.5 % below the pressure computed with N =
200 steps.

The origin of this non-physical overshooting behavior is to be sought in the nu-
merical integration of the constitutive equation, more precisely, in the intricacies of
the IMPLEX integration scheme. As explained in section 3.1.1, the essence of this
integration procedure is to obtain the stresses and other state variables at a given
time step in terms of variables computed at the previous time step by accomplish-
ing an implicit integration. At the very first increment, obviously, no information
is available to carry out the extrapolation. The integration algorithm resolves this
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Figure 4.12 Average axial pressure during pressing versus time. Results for several
number of time steps (constant and variable time steps). The final portion of the curves
is shown in magnified form.

inconsistency by further assuming that the plastic multipliers are initially zero.
Such assumption, in turn, amounts to presume that the body behaves elastically
at the first step. This explains why, for the four cases, axial stresses at the first
increment lie along a straight line (see figure 4.11).

It follows then that the natural way to counteract this overshooting problem
is to reduce the time step size12. However, dimishing uniformly the step size over
the whole time domain is not an efficient practice. It is preferable a “smart”
distribution of the time step lenght that permits the reduction of the integration
error at reduced computational cost. To reinforce this view, in figure 4.12, the
response obtained using 50 and 200 equally-sized spaced time intervals is compared
with the solution computed with 50 variable-sized time steps. The size distribution
for the non-uniform discretization is shown in figure 4.13.b. The relatively small
size of the two first intervals is dictated by the need to overcome the overshooting
problem. The size of the subsequent time steps is directly connected with the
compressibility of the material. As the slope of the pressure versus density curve
becomes more pronounced, the length of the time step is progressively reduced, so
that the incremental changes in stress remains approximately constant. Inspection
of figure 4.12 indicates that a similar level of accuracy is obtained by using either

12Alternative ad-hoc procedures can be put forward to alleviate this problem. For instance, a
plausible option is to obtain the response at the initial step by performing a classical pure implicit
integration. This procedure is quite effective provided the exact implicit algorithmic tangent
moduli is available. Such not being the case, convergence failure may occur and, therefore, the
solution may be “worse than the disease”.
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Figure 4.13 (a) Number of iterations (global scheme) against time step number and
(b) length of the time interval versus time step number. Both results correspond to the
case N = 50 (variable) steps shown in figure 4.12

200 steps uniformly spaced or 50 steps with sizes non-uniformly distributed. The
use of this “smart” step size distribution has reduced thus the computational effort
by a factor 200/50 = 4. Finally, figure 4.13.b. displays the number of global
equilibrium iterations required to achieve convergence at each increment for the
case N = 50 variable time steps. The number of iterations ranges between 2 and 4,
resulting in a total number of computational cycles (number of increments times
number of iterations) of 113.

4.3.1.2 Assessment of the contact algorithm

Figure 4.14 displays the average axial and radial pressure versus time on the com-
pact during pressing and axial unloading computed with two different contact al-
gorithms, namely, the contact penalty method and the augmented Lagrangian tech-
nique13. The penalty factor, denoted here as Kp, is made proportional to the
Young’s modulus14 of the material, that is, Kp = aEe. Two values of the propor-
tionality factor a has been tested.

The initial shallow portion of the curves is not shown, since the three solutions
are practically identical. The ascending and descending branches correspond to

13The augmented Lagrangian method is applied together with a double loop Uszawa type al-
gorithm.The inner loop refers to the iterations for solving the weak form whilst the lagrange
multiplier is held constant. The outer loop serves for updating the lagrange multiplier [110].

14As mentioned at the outset of this chapter, the contact detection algorithm used here is based
on the construction of an powder-tooling interface mesh[77]. This, in turn, allows us to define the
penalty parameter locally at each element of the interface mesh. Here it is made proportional to
the Young’s modulus of the powder elements adjoining the nodes that define the corresponding
interface element.
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Figure 4.14 Average axial and radial pressure versus time (during pressing and axial
load release stages). Comparison between results computed by using two different con-
tact algorithms, namely, a contact penalty strategy, for two different penalty parameters
Kp (which are proportional to Young’s modulus Ee of the compacting powder), and an
augmented lagrangian technique.

pressing and axial unloading, respectively. The penalty method with the larger
parameter (a = 10−1) and the augmented lagrangian technique are undistinguish-
able up to t = 0.92 s for both axial and radial pressures. Thereafter, the penalty
solution with larger parameter (a = 10−1) oscillates about the smooth solution ob-
tained with the augmented lagrangian method. The oscillations are more intense in
the axial response. The response calculated with the low penalty factor (a = 10−2)
exhibits a progressive drift from the other two solutions. The magnitude of this
deviation at the end of pressing is approximately 10 % for both axial and radial
pressures, whereas the radial pressure upon total axial unloading, denoted by σresr ,
is underestimated by almost 12 %.

The solution obtained by using the augmented Lagrangian strategy can be con-
sidered as the more accurate, and therefore reliable, solution, since the constraint of
impenetrability is more rigorously enforced that in the penalty case, at the expense
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Figure 4.15 Axial stress, at a node located on the top surface of the compact, versus
time (pressing and axial load release stages). Comparison of the performance of penalty
and augmented lagrangian contact techniques.

of a substantial increase of computational cost 15. The gradual deviation of the
penalty solution with the low parameter (a = 10−2) is due precisely to a poor en-
forcement of the non-penetration constraint. On the other hand, the non-physical
oscillatory behavior exhibited by the penalty response with the large parameter
a = 10−1 can be plausibly attributed to an ill-conditioning of the problem due
to an excessive large penalty factor. The magnitude of such oscillations becomes
more evident by plotting, instead of average pressure, the axial stress at a node
belonging to the upper boundary surface (see figure 4.15).

If the scope of the analysis were to merely examine average density and stresses
after compaction in relatively large domains, the effect of these oscillations would
be not too deleterious. Indeed, during the analysis of the pressing stage, this oscil-
latory behavior manifests itself in uneven density and stress distributions along the
boundary of the powder body. Due to the stable character of hardening behavior,
these uneven patterns tend to dissapear as we move far from the boundary, and
as a consequence, final average quantities are not seriously affected. By contrast,
the consequences of inaccurately resolving the contact response are more dramatic
when the main concern is the analysis of cracks. The reason behind this is the
sensitiveness, of both physical and computational nature, exhibited by the green
compact during the post-pressing operations. If the oscillations of the computed

15For the outer loop, the number of iterations is between 4 and 20, on average 8, depending
on the difficulty in determining the correct status (active or inactive) of the interface elements.
This implies that the computational cost rises more than 8 times in comparison with the more
simplistic contact penalty approach.



132 4. Numerical assessment

forces are sufficiently severe, the stress state at a boundary element may result
seriously perturbed, with the consequent drop of mechanical strength (cohesion).
Due to the unstable nature of softening materials, this perturbation may propage
inwards, leading to the formation of “spurious” numerical cracks, which can be
quite misleading and eventually lead to incorrect design decisions.

In view of the importance of obtaining an oscillation-free contact response, the
augmented Lagrangean contact strategy appears to be more appropriate. The
solution with the small penalty parameter a = 10−2 is also ostensibly smooth
and regular, and, in addition, the maximum deviation in predicting final forces
is approximately 12%, which, although certainly not a negligible error, can be
considered within acceptable engineering accuracy. However, we should keep in
mind that the choice of this particular penalty factor is based on heuristics rather
than in any physical argument. Although it gives an oscillation-free response in
this example, it is uncertain whether it will behave satisfactorily in other cases.
Therefore, in the interest of robustness and reliability of the computed solution,
it is preferable to adopt the more expensive augmented Lagrangian strategy for
computing, at least, the contact response during the phases of axial pressure release
and ejection from the die.

Analytical estimation of the lateral pressure upon axial unloading

The residual radial pressure, denoted as σresr , is the pressure exerted by the
die upon total release of the applied axial load (see figure 4.14). This pressure
and the roughness of the die wall will determine the magnitude of the frictional
forces that will have to be overcome for ejecting the part. According to the radial
pressure versus time graph shown in figure 4.14, the residual lateral pressure, for
the augmented Lagrangean case , yields |σresr | ≈ 320MPa. Considering that the
maximum radial pressure is |(|σmaxr ) ≈ 517MPa, this implies a reduction in lateral
pressure of 38% upon axial unloading.

In appendix B.3, the stress state during axial load release is studied analytically
by presuming elastic conditions and a homogeneous deformation state. According
to Eq.(B.3.9) in this appendix, such drop in lateral pressure can be expressed as a
function of the compaction pressure |σmaxz |:

|∆σr| = Mul|σmaxz |, (4.3.1)

where Mul is a parameter that includes the effects of the die geometry and the
elasticity of the powder and the die:

Mul =
νe

(1− νe) +
Ee

Ktool

. (4.3.2)

The Young’s Modulus of the powder Ee can be obtained by evaluating expres-
sion Eq.(2.5.60) (section 2.5.4) at ξh ≈ η = 7.18/7.33 = 0.98, yielding Ee =
196068MPa. The constant Ktool represents the stiffness of the die in the ra-
dial direction (see figure B.3 in appendix B.3). For the given geometry Ktool =
470600MPa. Substituting these quantities in Eq.(4.3.2), we have Mul = 0.28.
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Thus, taking into account that |σmaxz | ≈ 685MPa, the drop in lateral pressure
estimated analytically gives 37%, only 1% less than the decrease calculated with
the finite element solution.

4.3.1.3 Assessment of the crack prediction methodology

We consider first the case corresponding to an ejection with total removal of the
upper punch followed by an upward movement of the lower punch. Figure 4.16.a
contains a sequence of three contour plots of cohesion during this ejection process.
In the leftmost plot, the compact is still confined within the die cavity. It follows
from the uniformity exhibited by the cohesion distribution that the green strength
has not been altered and remains at the same value attained at the end of the
pressing stage. In the central plot, almost one half of the compact has already
emerged from the die. To make more distinguishable changes in cohesion, this
plot is displayed in magnified form in figure 4.16.b with a narrower grayscale. A
de-cohesion pattern, in the form of darker “spots”, is observed along the emerged
portion of lateral surface. This mechanical damage is apparently superficial, since
only the outer layer of elements is appreciably affected by loss of cohesion.

The rightmost plot of figure 4.16.a is the cohesion contour map at a point where
85% of the upper portion of the part is clear of the die. An enlarged view of such
plot is displayed in 4.16.c. In addition to the above mentioned lateral de-cohesion
pattern, which has progressed along the perimeter, decrease in cohesion is detected
at the upper half portion of the part. The degradation is more intense along the
upper layer of elements. Near the axis, the resulting decay is estimated in 95% of the
value of cohesion attained at the end of the pressing stage. As we move downward,
the intensity of the degradation diminishes gradually and becomes more diffuse.

Figure 4.16.d shows schematic descriptions of two type of crack patterns ob-
served experimentally in Class I parts16. These sample crack layouts have been
obtained from the almost exhaustive crack database elaborated by Zenger et al
[112], and are accompanied by a code that facilitates the identification of plau-
sible causes of the formation of these cracks. The agreement with experimental
evidences, therefore, becomes qualitatively apparent by comparing the computed
contour plots with these schematic descriptions. The mechanical deterioration ob-
served on the lateral surface appears due to the absence of a smooth taper to allow
some degree of radial relaxation. The other typology of failure, the one detected on
the top surface, is almost ubiquitous in the ejection of Class I parts, and is caused
by bending stresses. As illustrated in figure 4.17.a, radial pressure acts only on
the portion of the outer surface still restrained by the die. The line of action of
the resultant radial force passes through a point P located at a distance e below
the center of gravity C. A bending moment is therefore induced because of the
eccentricity of the resultant force, and consequently, tensile stresses are set up at

16A commonly used classification system groups the P/M manufactured parts according to their
complexity, features, number of levels and the tooling system used to make the part. “Class I”
parts, the simplest ones, are one level thin (height less than 6.35 mm) parts, pressed in only one
direction and with little density variation. Thus, the compacted cylinder shown in this example
falls into this category[112].
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Figure 4.16 (a) Contour plots of computed cohesion during emergence of the compact
from the die. The central and rightmost plots are displayed in magnified form in (b) and
(c), respectively. (d) Qualitative description of cracks observed in thin parts reported in
the database of common cracks collected by Zenger et al. [112]
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Figure 4.17 (a) Eccentricity of the the resultant of lateral stresses causes bending of
the part. (b) Deflected shape showing the finite element mesh in the simulated part
(displacements scaled up 10 times).

the upper horizontal fibers. The magnitude of these flexural stresses varies directly
as the bending moment and inversely as the moment of inertia with respect the
circumferential direction. This fact explains why thin parts are prone to this type
of failure. The bending deformation mode becomes more evident by scaling up the
displacements (see figure 4.17.b).

The non-homogeneity of the computed cohesion distribution indicates that the
mechanisms of strain softening have been certainly activated. Elements of the lat-
eral and upper surface at which the cohesion is markedly lower may be loosely
interpreted as locations of macroscopic cracks. However, the de-cohesion patterns
shown above do not exhibit, admittedly, a distinctly crack-like appearance, if com-
pared, for example, with the results depicted in figure 4.7, section 4.2, when dis-
cussing the simulation of the Brazilian test. Several hypothesis can be put forward
to explain this apparently “poor” representation. Foremost of them is that the
finite mesh employed in the calculations (see figure 4.17.b) may be too coarse for
adequately capturing localization of plastic strains. In support of this hypothesis,
we should point out that the defects on the lateral surface have been described
experimentally as “very shallow” surface cracks (lamination cracks) [112].

In order to further inquire about this conjecture, an analysis with a finer mesh
has been carried out. The alternative mesh is shown in figure 4.18.a. The typical
element size has been set to approximately 0.15 mm, which results in almost 10000
elements only for the body powder, in contrast with the 1000 elements of the mesh
displayed in figure 4.17.b. The aim is not to examine the compaction process in its
entirety, but merely to evaluate the ability of the model in replicating the flexural
cracks appearing on the horizontal top surface. For simplicity, thus, the effect of
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Figure 4.18 Dieless case (a) Overly refined mesh (b) Contour plot of cohesion with
displacements scaled up 10 times.

the die has been replaced by prescribed lateral pressure (200MPa) acting on the
lower fourth of the part. The corresponding contour plot of computed cohesion is
shown in figure 4.18.b. Loss of cohesion is more accentuated along three (on each
half) easily discernable vertical paths emanating from the top surface of the part,
which, in turn, implies that localization of plastic strain has indeed taken place.

The hypothesis advanced previously seems thus to be sustained. A finer mesh
ensures a more “pleasing” and realistic aspect. However, it should be stressed
again that the ultimate goal of the results provided by the numerical model is to
ascertain whether a given fabrication route will lead to defective parts or not. The
model should have the capability of predicting the formation of macroscopic cracks,
but without the need of giving an accurate description. From the contour plots of
cohesion obtained with the coarser mesh shown in figure 4.17.b, one can conceivably
conclude that, in this case, the ejection schedule with total axial unloading will lead
invariably to defective parts due to tensile stresses induced by bending. The exact
dimensions of these bending cracks and their exact distribution over the upper
surface are of little concern. Consequently, going to unduly fine meshes, as the one
displayed in figure 4.18.a, is inefficient from a practical point of view. Too many
refinements in engineering solutions pertain to secondary errors; they increase the
complexity, but do not improve the solution [14].

Analysis of the process in the mean-deviatoric stress plane

In order to disclose in full the nature of the phenomenological events (harden-
ing, softening and elastic behavior) that takes place during the process, it proves
instructive to plot in the mean-deviatoric stress plane17 the stress history at a
representative point together with the respective sequence of surfaces defining the

17The constitutive equations developed in chapter 2 were cast in terms of Kirchhoff stress
measures. However, the engineering sense of stress is more clearly conveyed by using Cauchy or
true stresses. Hence the mean (or hydrostatic) stress is defined in this case as p∗ = 1/3 tr σ, and

the deviatoric stress measure as q∗ =
p

3/2 devσ : devσ
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Figure 4.19 Stress trajectory in the mean-deviatoric stress plane of a point located on
the top face of the part. (a) Pressing (path AB), release of axial load (path BCD) and
ejection (up to the onset of bending, path DE). (b) Enlarged view of the first quadrant.
Path EF represents elastic loading due to tensile bending stresses. Path FG indicates
decrease of cohesion (green strength) due to strain softening.

yield condition.
Figure 4.19.a represents the stress evolution at a node located close to the upper

face of the part. During the pressing stage, the stress state traces the path AB.
The monotonically increasing character of this loading history ensures that the
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powder is always at yielding during this phase. The strength of the material thus
raises progressively. This hardening behavior is indicated by the expanding yield
surfaces (dashed lines). The yield surfaces drawn with a solid line represents the
yield condition at the end of the pressing stage. Within the region enclosed by
these yield surfaces, the behavior of the material is presumed to be elastic.

During axial unloading, the stress state follows a piecewise approximated lin-
ear path BCD. The yield condition is not affected during this phase, since the
entire trajectory lies within the elastic region and, thus, mechanical properties are
not altered. By definition, the deviatoric stress measure q∗ must remain positive.
Thereby, the descending tendency of the stress trajectory breaks down at point C,
at which the trajectory is “reflected”. The slopes (in absolute value) of the descend-
ing and ascending branches are consequently identical. An analytical estimation
for this slope is developed in appendix B.3, Eq.(B.3.10). Point C corresponds to a
hydrostatic stress state and it marks18 the transition to stress states in which the
radial pressure is dominant (σr > σz). At point D, the axial pressure exerted by
the upper punch is totally released.
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pressure release for three different densities.

The removal of the upper punch is followed by the upward movement of the
lower punch for ejecting the part out of the die. As the part moves toward the
die exit, the radial stress at the analyzed material point diminishes gradually. This
elastic unloading process is represented by the descending path DE in figure 4.19.a.
When the analyzed point starts emerging from the die, the magnitude of the stress

18Due to the deliberately low value of the friction coefficient, shear stresses are negligible and
radial stresses are approximately constant along the radial direction. Hence radial and hoop
stresses are identical, and the deviatoric stress measure can be expressed simply as q∗ = |σz−σr|.
Hence, q∗ = 0 implies σz = σr. See appendix B.3 for further details.
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at this node practically vanishes, and the stress state remains thus close to the
origin (point E). Ejection progresses and, when half of the part is out of the die,
the eccentricity of the lateral force begins to produce the aforementioned bending
deformation (see figure 4.17.b). As a consequence, the upper portion of the part
is stretched, hence put into tension. This bending deformation causes the stress
state to move within the elastic tensile region (first quadrant of the mean-deviatoric
stress plane), which is shown in magnified form in figure 4.19.b, until eventually
reaching the Drucker-Prager failure line at point F . Yielding on this failure surface
induces a decrease of cohesion (softening) of approximately 85%, from 35 MPa to
5 MPa, and consequently, the Drucker-Prager failure line shifts toward the origin.
This is illustrated graphically by the sequence of parallel dashed lines. During this
continued yielding, the stress stress traces the path FG.

Observe that, upon total axial unloading, the stress state lies practically on the
Von Mises yield surface (point D in figure 4.19.a). We pointed out in section 2.5.5
that this yield surface can be also conceivably viewed as a failure envelope associated
with compressive and triaxial failure mechanisms. Therefore, the closeness of point
D to this threshold gives clear indication that a final density of 7.18 g/cm3 (98 %
of the theoretical density) is unduly high and some type of failure, such as radial
crushing, may be thereby imminent. This fact would have escaped notice by merely
examining the computed distribution of the Von Mises yield strength cv, since, as
mentioned in section 2.5.5, the magnitude of this variable results unaffected when
yielding takes place on the Von Mises yield surface19.

In order to further clarify the influence of the final density on the stress state
upon axial pressure release, two additional analysis with lower compaction densities
have been run. The results are given in figure 4.20. From this diagram, one
can immediately conclude that moderate target densities imply more favorable
circumstances, since points D1 and D2 are relatively far from the critical Von Mises
threshold20. Incidentally, observe that the slopes of the axial unloading paths are
practically identical for the three cases. This observation is in conformity with the
insensitiveness, analytically inferred in appendix B.3 (see figure B.5), of the value
of the slope to changes in the magnitude of the Young’s modulus.

4.3.1.4 Hold down ejection

The key factor to prevent cracking caused by bending of the part is to maintain a
certain level of axial load during ejection [112]. The upper punch must accompany
the lower punch in its upward motion, “sandwiching” the part until it is completely
out of the die cavity and thus avoiding the tendency to bend. The modeling of the
hold down pressure is accomplished here by simply controlling the displacement of
the top surface of the upper punch, which is gradually lifted until reduction of the
axial load to the desired level. Due to the negligible character of friction forces,
this procedure ensures the constancy of the upper punch pressure during ejection,

19The unavailability of adequate experimental data in this stress regime compelled us to disre-
gard the incorporation of softening for this state variable

20For density ρ = 6.78g/cm3, the Von Mises yield surface “reduces” to a point: the intersection
of the other two yield surfaces (see figure 2.16 in section 2.5.4).
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cohesion (Mpa)

Figure 4.21 Ejection with a hold down pressure of 13% of the compaction pressure.
Contour plots of computed cohesion at the end of the process.

as it can be checked in the axial pressure versus time graph shown in figure 4.22.a
(path be).

Figure 4.21 shows the contour plot of cohesion at the end of the ejection phase
for a case with a hold down pressure of 13% of the compaction pressure. Evidences
of mechanical degradation are detected only along the lateral surface. It is clear
therefore, that, as expected, the hold down ejection method has proven useful in
eliminating the de-cohesion pattern on the upper portion of the part.

This procedure admits a compelling interpretation in the mean-deviatoric stress
plane. In figure 4.22.b, the stress evolution during axial unloading and ejection at
the same material point analyzed previously (see figure 4.19), is drawn for several
hold down pressures. The ejection branches HJ and BG correspond to total ax-
ial unloading and 13 % hold down pressure, respectively. In essence, the effect of
keeping a certain level of axial load is reflected in the mean-deviatoric stress space
as a translation of the unloading branch HJ , which shifts towards the compres-
sion side to BG, so that the final stress state moves far from the tensile region
(first quadrant), thus avoiding the formation of tensile cracks. Needless to say, the
larger the hold down pressure, the further the final stress will be from the tensile
region (points E and F ) and, consequently, the likelihood of tensile-type failure
will decrease. However, large hold down pressures may promote other mechanism
of failure, such as crushing, and, furthermore, due to the concomitant increase of
radial pressure, the deterioration of the lateral surface will be invariably aggravated.

4.3.1.5 Die exit geometry: Estimation of a proper taper angle

The graph shown in figure 4.23 represents the trajectory, in the r − z plane, of
the peripherical upper corner node P. Radial displacements are measured with
respect to the undeformed configuration, whereas changes in vertical position are
referred to the top face of the die. The part gradually expands as it moves toward
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Figure 4.22 (a) Average axial and radial pressure during compaction for ejection
schemes with different hold down pressures. (b) Stress trajectories in the mean-deviatoric
stress plane corresponding to these ejection schedules.

the die exit. The extent of this radial expansion becomes more pronounced after
emergence from the die (point b). The path bc is approximately straight, a fact
that suggests the elastic nature of radial relaxation. The linear approximation to
this path subtends an angle of 0.47 ◦ with the vertical axis. Expansion ceases when
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the node P is located approximately 3 mm above the top face of the die.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
-6

-5

-4

-3

-2

-1

0

1

2

3

4

a

b

c

Radial expansion (mm)

D
is

ta
n
c
e
 t
o

 t
h
e
 t

o
p
 f
a

c
e

 o
f 
th

e
 d

ie
 (

m
m

)

Computed results

Linear approximation (relaxation)

T
0.47ºq   =

P

Figure 4.23 Axial versus radial displacement of a peripherical upper corner point P.
Path bc corresponds to the trajectory traced by P as the emerged portion of the compact
expands elastically.

As mentioned earlier, the loss of computed cohesion observed along the vertical
surface of the cylinder (see figure 4.16.b) can be interpreted as the formation of
superficial cracks (lamination) due to the stress concentration derived from the
shaft corner at the die exit. To minimize this deleterious effect, the die exit has to
be provided with a slight taper, so as to control radial expansion. The usefulness
of the information presented in figure 4.23 is therefore evident. The taper can be
patterned after the computer displacement profile contained in this figure (path
bc). Accoding to this profile, the tapered die exit would have to be at least 3 mm
height and with a lead-in angle of 0.47 ◦.

4.3.2 Conclusions

The simulation of the pressing and ejection of a cylindrical part seeks to highlight
the utility of the proposed model in reinforcing the physical understanding of how
well-known crack typologies, namely, bending and lateral lamination cracks, are
developed. In addition, this simple example typifies perfectly the process of com-
paction, since it touches upon all the relevant issues: pressing, axial unloading,
ejection, radial spring-back, development of cracks, etc. Therefore, the distinct
phenomenological facets of powder behavior can be grasped easily by analyzing the
stress state throughout the process. This task is further facilitated by the approx-
imated analytical closed-form solutions derived in B. In-depth study of one simple
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case is always of great assistance in anticipating and interpreting results for more
complex examples.

The de-cohesion patterns observed in the contour plots shown in figure 4.16.a
demonstrates the ability of the model to detect evidence of macroscopic defects.
The format in which the results are displayed is certainly advantageous from a
practical point of view, as it dispenses with the need for either jointly interpreting
several stress contours, or scrutinizing density distributions to find “suspiciously”
intense gradients.

As pointed out at the outset of this chapter, a rigorous quantitative validation
of the model, as far as formation of crack is concerned, is somewhat elusive. The
assessment of the calculated results in this example is thus largely qualitative. For
instance, comparison of the contour plots of computed cohesion shown in 4.17.b and
4.21 reveals that maintaining a certain level of axial pressure during ejection assists
in avoiding flexural cracks. This numerical prediction concurs with well-known
experimental and industrial findings. Therefore, the numerical model proves useful
in qualitatively evaluating the influence, in the formation of cracks, of variations
in the input data (material parameters, tooling kinematics, etc.).

The qualitative nature of the numerical predictions restricts somewhat the spec-
trum of practical questions that can be conceivably answered by our approach. It
is important to be aware of such limitations and guard against unrealistically high
expectations. We mentioned that the graph of the trajectory of an upper peripher-
ical point during ejection, shown in figure 4.23, suggests somewhat the dimensions
of the taper at the die exit. However, it cannot be expected that the informa-
tion contained in such graph provides the exact taper lead-in angle that ensures a
lamination-free part. To account for the uncertainty associated the calibration of
the material parameters and the unavoidable modeling errors, one has to perform
several runs with different input data so as to assess the effect of such variations and
to obtain a more reliable impresion of the “true” answer. Computer simulations
are there to support engineering judgement, not to supplant it.

The study of convergence with time discretization has shown that, in computing
the pressing stage, the use of variable time steps is essential for avoiding needlessly
small increments and, therefore, exploiting to the maximum the computational
advantages offered by the IMPLEX integration scheme. Adequate time step dis-
tributions can be obtained by using either adaptive time stepping schemes, of the
type described in Ref. [79], or from elaborated heuristics taking into account the
inherent non-linearity of the material. By contrast, in computing the post-pressing
operations, the use of variable time steps only improves marginally the computa-
tional efficiency, since in this case the non-linearity of the problem is due largely to
the roughness of the contact response rather than to material behavior.

Although the theoretical aspects of the contact problem have not been a topic of
discussion in this work, the relevance of the interaction between the compacted part
and the tooling in the formation of post-pressing cracks has rendered necessary a
brief assessment of the accuracy of two alternative contact algorithms, namely, the
penalty method and the augmented Lagrangian strategy. The conclusion reached
from this evaluation is that the augmented lagrangian strategy is more appropriate
for simulating the post-pressing operations. The reason for the rejection of the less
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computational costly penalty method is the oscillatory pattern exhibited by the
computed boundary stresses, which may affect seriously the quality of the results.
The main drawback of the augmented Lagrangian strategy is the dramatic increase
of computational cost - up to 8 times- in comparison with the penalty approach.
Work in progress is precisely aimed at reducing the computational cost associated
to the modeling of the contact response [78, 40].

Even with this more accurate contact algorithm, an inappropriate time or spa-
tial discretization, or any other modeling error may provoke the appearance of “spu-
rious” numerical cracks, mainly at the boundary surfaces. The natural inclination
upon casual inspection of contour plots is to accept as “true” these de-cohesion
patterns, especially when they appear in appealing and pleasing crack-like shapes.
The risk of misinterpretation is therefore high. For this reason, it is strongly re-
commended to check whether the observed loss of cohesion is physically plausible
or, by contrast, it is caused by numerical inaccuracies. This can be conveniently
accomplished by tracking, in the mean-deviatoric stress plane, the stress history
at a representative point of the affected area. If no anomalous oscillations are de-
tected, then the result, in principle, can be trusted. When the stress state is plotted
sequentially together with the corresponding yield surfaces, this procedure has the
added benefit of providing a great deal of insight into the phenomenological behav-
ior of the material since, depending on the location of the stress state in relation
with the yield surfaces, one can ascertain at each step whether the powder at the
analyzed point is deforming elastically or elastoplastically with either softening or
hardening trends.



Chapter 5

Modeling guidelines for
industrial applications:
compaction of a multilevel
part

The aim of this chapter is to evaluate the capabilities of the numerical model de-
veloped in previous chapters as a tool for assisting in the design and analysis of
PM uniaxial die compaction processes, including both pressing and ejection stages.
For this purpose, a detailed case study of the compaction of an axially symmet-
ric multilevel adapter in an advanced CNC press machine is performed, focusing
exclusively on the truly engineering aspect, thus leaving aside mathematical and
numerical formalities. Such carefully analyzed case will also serve to provide some
modeling guidelines, sketch frequent difficulties, as the unavailability of some input
data, and reveal relevant technical details that, although probably trivial for pow-
der metallurgy technologists, may escape notice by researchers, especially if they
possess a deficient background knowledge of advanced CNC press machines.

The geometry and dimensions of the part are displayed in figure 5.1. A salient
attribute is its relatively low height. The finished lengths of the thinner and thicker
levels of the part are 2.7 mm and 5.32 mm, respectively. This means that a small
error of, say, 0.2 mm, which is in the order of the value of the maximum final
elastic deflection of the longest punch, in describing the position of one of the tool-
ing members may induce an unacceptable discrepancy in the predicted density of
about 0.4 g/cm3, and it needs no further arguments that the success in predicting
numerically the formation of cracks during the ejection phase relies considerably
on the quality of the density and stress distribution computed in simulating the
pressing stage. Furthermore, an accurate prediction of tooling deflection is essen-
tial for capturing the formation of cracks in the post-pressing operations. These
circumstances explain the prominence given to the accurate characterization of the
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Figure 5.1 Geometry of the part (dimensions in mm). The axisymmetric geometry is
revolved 270 ◦ for ease of visualization.

tool set and the external loads acting on it in the first part of this chapter (sections
5.1 and 5.2). An aspect that receives careful consideration is the description of
possible deviations from “nominal” or design values of tooling motions. The effect,
in terms of final density distribution, of including such deviations is conveniently
assessed in section 5.3.2.

In dealing with the pressing of complex multilevel parts, it is natural to raise
the question of how to approach the ideal tooling motion that leads to uniform
density throughtout the compact. This question is also addressed in this chapter
(section 5.3.3), but only in an exploratory sense, with a view towards stimulating
the pursue of this line of enquiry in the future, rather than establishing a procedure
of widespread applicability.

It should be anticipated that the part was not finally manufactured according to
the geometry shown in 5.1, which corresponds to the initial customer’s specification.
Unsurmountable difficulties were encountered in ejecting the part safely from the



5.1 Modeling of the compacting tool set 147

die, and this circumstance dictated a slight modification -inconsequential to the
performance of the finished component- in the original geometry. This modification
turned out to be effective and the part was successfully manufactured according to
the revised design. The goal in section 5.4 is, by means of numerical simulations of
several ejection sequences, to explain the reasons behind the difficulties in ejecting
the original part and understand the connection between such difficulties and the
suggested geometry modification.

5.1 Modeling of the compacting tool set

The forces transmitted to the compacting powder during the pressing operation, as
well as the release of such forces during the ejection stage, should be represented
as accurate as possible in order to obtain reliable results. Ideally, the entire press
machine should be modeled, including punches, core rod, die, press fittings, punch
platens and even the mechanical and hydraulic drives. However, the geometrical
and physical characterization of all these press members would require a daunting
labor and a dramatic increase in computational effort. In this work, thus, we shall
consider only those elements directly involved in forming the part, namely, the
upper punch and lower punches, the die and the core rod, the so-called tool set [67],
which, incidentally, constitutes the tooling sub-system, according to the systemic
conception presented in the introductory chapter.

Punch platens, punch holders and punch adapters are excluded from our model
on the basis of their larger rigidity, in comparison with punches, and therefore the
negligible character of their elastic deflections. An assumption intimately connected
with this simplification is that the vertical displacement prescribed at punch faces in
contact with clamp rings is taken directly as the corresponding platen motion. As it
will emerge later, some deviations may be occasionally detected from this assumed
behavior. In this event, the deviation can be incorporated as a perturbation of the
externally applied load.

In figure 5.2.a, we show the schematic of the multi-platen press machine em-
ployed in manufacturing the part. The accompanying drawing, figure 5.2.b, rep-
resents the tooling assembly included in the modeling. The tool set comprises an
upper punch (UP), four lower punches (LIP, LMP, LOP-I and LOP-II), a die and
a core rod. Observe that the lower outer punch labelled as LOP-II is mounted on
the die table. Such an arrangement can be considered as a stepped die or “shelf”
die configuration [35].

The dimensions of the core rod, die and punches are shown in figure 5.3. A
crucial issue in modeling the tool set is to account for the actual length and the
different diameters sections of punches, so as to predict with the maximum level of
accuracy elastic deflections. Features such as blend fillets to reduce stress concen-
trations at change of section are washed out, as the main concern is the study of
the powder behavior. Factors related to the tool set that are also ignored in our
modeling are, among others, the magnitude of the clearances between moving tools,
the wear resistance of tools and busting and buckling phenomena. Such range of
details is important in its own right and should be studied separately.
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Figure 5.2 (a) Cross sectional view of the compacting press. (b) Geometric model of
the tooling items included in the simulation.

5.2 External actions

The effect of mechanical and hydraulic drives is replaced by prescribed conditions
on the portion of punch surface in contact with the clamp rings that fasten me-
chanically the punches to their corresponding adapters (see figure 5.2). These
actions represent mathematically the boundary conditions of the governing differ-
ential equations, and can be specified as displacement or traction conditions de-
pending on the circumstances and the type of press used for compacting the part.
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The action of mechanical drives is usually modeled as prescribed displacement con-
ditions, whereas the effect of hydraulic drives is more adequately represented by
imposing traction (pressure) conditions on the corresponding tool. Occasionally,
in simulating the same compacting process, prescribed conditions can switch from
traction type to displacement type, or viceversa. For instance, standard hydraulic
presses are programmed to apply a fixed pressure, which, from a modeling view-
point, amounts to impose a traction (pressure) condition on the corresponding
punch. However, the press may incorporate a mechanical stop to limit the down-
ward ram movement and therefore control the finished length of the corresponding
level. When such mechanical stop comes into action, fixed pressure condition should
be replaced by a zero incremental displacement constraint.



150 5. Modeling guidelines for industrial applications: compaction of a multilevel part

In advanced CNC press machines, the movement of punch platens is more ac-
curately controlled and synchronized than in standard presses. This fact renders
CNC presses more amenable to be modeled than standard ones. Computer nu-
merical controlled press machines can be programmed to execute a wide variety
of motions, with different displacement and/or pressure profiles. In the following,
we shall concentrate on the description of the CNC press machine employed to
compact the studied part.
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Figure 5.4 Typical tooling motions. (a) Pressing sequence (b) Ejection sequence.

The multiplaten press used for compacting the part incorporates a combination
of mechanically and hydraulically driven systems. The final compacting stroke is
provided by the force of an electric motor. A connecting rod converts the rotary
motion of the main shaft into the reciprocating motion of the upper ram. Conse-
quently, the displacement of the upper ram during the pressing portion of the cycle
exhibits a sinusoidal profile, given by the expression:
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uup =


1−

√
1−

(
lc
lr
sinϕ0

)2

 lr + (1 + cosϕ0)lc, (5.2.1)

where lc and lr stand for the lengths of the crank and the connecting rod, respec-
tively, and uup is the pressing stroke, i.e., the distance travelled by the upper ram
from the onset of pressing (ϕ0) - the position at which the bottom surface of the
upper punch enters the die and comes into contact with the powder- to the extreme
lowest position of the cycle, the so-called bottom dead center, located at ϕ = 180◦.
The rotary motion occurs at constant angular velocity, hence the motion can be
legitimately parameterized in terms of the angular position ϕ, as displayed in figure
5.4.

During the pressing stage, all elements of the tooling system move downward.
The lower punches labelled in figure 5.2.b as LIP, LMP and LOP-I are mounted on
separate platens, whereas the lower outer punch identified as LOP-II is attached
to the die platen. The core rod support is also a movable member, and they all are
operated by hydraulic cylinders placed on the stationary member of the press.

One of the major advantages of using advanced CNC press machines is the
flexibility in reproducing any physically realizable motion. The hydraulic drives
controlling the motion of the lower rams are, in fact, closed-loop motion control
systems. In our case, the velocity of the lower rams during pressing is kept propor-
tional to the velocity of the upper ram, hence their motions also exhibit a sinusoidal
profile, as can be readily appreciated in figure 5.4.a. The angular position and ve-
locity of the rotating shaft is monitored at any time during the cycle by a rotary
encoder. This information is sent to a motion controller, which causes the hydraulic
devices to speed up or slow down to correct the velocity of the punch motion so as
to keep the proportionality. The following equation expresses such condition:

vp = fp · vup, (5.2.2)

vup is the linear velocity of the upper ram and vp is the downward velocity of any
of the lower rams. Furthermore, the condition of vanishing velocity at the bottom
dead center, vup(ϕ = 180◦) = 0, enables us to write directly

up = fp · uup, (5.2.3)

i.e., given an upper ram pressing stroke uup, the desired stroke for the lower punches
can be adjusted by changing the constant fp. The proportionality parameters fp,
henceforth referred to as motion scale factors, must be less than one in order to
ensure that pressing takes place, and they constitute one of the basic operating pa-
rameters of the CNC press machine, that is, parameters that can be easily modified
by the CNC operator by interacting with the CNC display screen.

In figure 5.4.b, we show the withdrawal type tooling kinematics used in re-
moving the analyzed part from the die cavity. It can be readily seen that tool
displacements are linear functions of the angular position, except in the blend re-
gions between paths with different slopes. Observe also that the movement of the
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upper punch is not governed by the sinusoidal relation (5.2.1). This is because the
upper punch is not connected directly to the rotary main shaft. A hydraulically
controlled mechanism, inserted between the upper punch and the upper ram, al-
lows independent movements so that, for instance, the upper punch can still apply
a certain downward load on the compact after reaching the bottom dead center,
the so-called counter pressure or top-punch hold-down pressure. In summary, in
designing and modeling the ejection operation, one specifies the prescribed motion
of each movable tool as a piecewise linear function. In the case in which the up-
per punch is to maintain a certain level of axial pressure, by contrast, one should
impose fixed pressure conditions rather than prescribed displacement.

5.2.1 Theoretical and true prescribed conditions

The tooling displacement diagrams described in the preceding discussion and illus-
trated in figure 5.4 are the motions that, theoretically, the mechanical and hydraulic
drives impart to the corresponding rams or platens. Quite frequently, in modeling
the compaction process, the displacements prescribed at punch faces in contact
with clamp rings are taken directly as such theoretical platen motions, a tendency
also observed in the design of PM parts. Furthermore, these displacement curves
are very often simplified to facilitate their handling, eliminating some apparently
irrelevant details. The resulting data are commonly termed as “theoretical” or
“nominal” displacement profiles.

However, departures from this assumed behavior invariably exist. The exact dis-
placements of the supported portions of punches, core rod and die seldom coincide
with the theoretical displacement profiles. In analyzing an already manufactured
part, the “true” motion curves might be at the disposal of the analyst, provided
that the CNC press has displacemet transducers located sufficiently close to the
punch clamps, and in addition, the CNC data acquisition system was set up to
store digitally displacement data so as to enable subsequent handling and analysis.
In such circumstances, one should employ the recorded data directly as input data
for the numerical simulation, especially if the scope of the analysis is to simply
reproduce the conditions under which the part was produced.

In other situations, however, as when attacking the design problem or when
testing numerically alternative pressing schedules, true displacement curves are
not available. In such cases, the analyst is faced with the task of having to an-
tipate or predict potential deviations from nominal tooling motions. Of invaluable
help for this purpose is to examine and rationalize the discrepancies between “the-
oretical” and “true” motions detected either in compacting parts requiring similar
compaction tonnage - in the case of design analysis - or in producing the same part
but under different pressing and ejection schedules. Not every deviation observed
between “true” and “theoretical” curves is susceptible to theoretical predictions.
We shall distinguish therefore between predictable deviations and unpredictable de-
viations.

• Predictable deviations: This group includes those deviations that can be es-
timated with a certain degree of accuracy. The analyst should have some



5.2 External actions 153

grasp of the press machine performance in order to ascertain the origin of
such discrepancies. An comprehensive listing of all realizable predictable de-
viations is not possible, since they depend largely on the nature of the CNC
press machine employed in manufacturing the part. We summarize the most
relevant predictable deviations encountered in our analysis.

(a) Deviations due to a poor characterization of the tooling subsystem.
The fact that only punches, core rod and die are included in the model intro-
duces an unavoidable error. Excluded press members, such as punch holders,
punch adapters and platens also deflect under high pressures. However, the
major contribution to this modeling error can be attributed to the existence
of adjustable mechanisms inserted between a punch and its corresponding
platen. In the analyzed press machine, for instance, the force exerted by the
hydraulic drives on the lower rams is transmitted to the lower punches through
a practically rigid assembly of mechanically fastened elements . Hence, little
deviation is expected. By contrast, the hydraulically controlled mechanism
inserted between the upper punch and the upper ram, alluded to earlier, con-
tributes considerably to the discrepancy between theoretical and true upper
punch motion because of the inevitably looseness (play) of the parts involved
in such mechanism. To calibrate such error in full load operation, one has to
first measure the deviation in idle conditions, i.e., by compressing an empty
die, and then consider that, approximately, the error increases linearly with
increasing compacting pressure.

(b) Deviations due to overloading of lower rams. In CNC presses in which
the stroke of lower punches is displacement-controlled during pressing, one
cannot ignore the limited capacity of the hydraulic devices that governs their
motions to sustain any applied force. If the programmed press kinematics
induces a unduly high density, and consequently a high force, the servosystem
controller may be pushed out of its regular operating conditions and the lower
ram will simply descends maintaining the level of pressure approximately
constant, and thus not obeying the scheduled motion. Such deviation can
be included in the simulation by simply shifting the condition of prescribed
displacement to prescribed traction on the affected lower punch when the
corresponding force threshold is exceed. Later on, the impact of overlooking
such limited capacity will be assessed in terms of density distribution.

(c) Deviations due to interpolation of punch motions. As can be checked
in figure 5.5, the actual position of the corresponding platens is slightly al-
tered in the blended portions of the displacement diagrams. These devia-
tions may be of the order of magnitude of the elastic deflection of the longer
punches, hence their effect should be included when studying the ejection pro-
cess. Furthermore, tooling displacement diagrams exhibiting sharp corners
are physically unacceptable, since they imply instantaneous change of veloc-
ity and therefore infinite accelerations. In practice, velocity is ramped up or
down gradually so as to avoid these unrealistic accelerations (see figure 5.5).
These details are normally ignored in designing - and also very frequently
in modeling - the compaction process, mainly due to obvious simplicity rea-
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Figure 5.5 Theoretical and true motion of the lower inner punch platen at the end of
the ejection stage.

sons. However, from the numerical standpoint, one cannot underestimate the
benefits arising from using the actual smooth displacement profiles instead
of the sharp ones. In general, computability is affected adversely by rough
input data [6]. This is evident in the case of dynamic analysis. More subtle,
although equally important, is its implications in the numerical integration of
the constitutive equation. As pointed in section 3.3, the degree of accuracy
of the IMPLEX integration scheme hinges to some extent on the input data
smoothness. All the numerical simulations shown in the sequel employ inter-
polated punch trajectories, with peaks rounded using cubic (spline) blends.

• Unpredictable deviations. This group embodies those deviations that display
a distinctly random pattern and, thus, cannot be predicted on the basis of a
deterministic analysis. The impact of the individual and combined effect of
such deviations can be only evaluated by statistical analysis.

It should be remarked that the borderline between predictable and unpre-
dictable deviations depends largely on the beholder and the degree of knowledge
on the press machine. As experience accumulates, initially presumed unpredictable
discrepancies can be converted into predictable ones. Conversely, presumably fore-
seeable deviations turning into uncontrolled perturbations may indicate misfunction
of any of the press machine elements or poor maintenace conditions.

5.3 Simulation of the pressing stage

5.3.1 Estimation of the starting conditions

In modeling the pressing stage of an already manufactured part, one should have
at one’s disposal not only an accurate description of the tooling motion, but also
reliable data concerning the starting conditions of the process. Such starting con-
ditions include the fill position of the lower punches, for calculating the fill height
corresponding to each thickness level, and the powder fill density distribution. In
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realistic circumstances, however, the direct determination of such starting con-
ditions may be plagued by some difficulties. The CNC data acquisition system
usually monitors only absolute position of punch platens. Knowing with sufficient
accuracy, say ±0.1mm, the position of the bottom face of lower punches would
require thus careful measurements of the length of the assembly of press members
connecting lower rams and punches. This may be somewhat difficult to achieve
if, for instance, the die set has been removed and disassembled for repairing when
tackling the computer analysis.

In view of such circumstances, we shall outline in the ensuing discussion the
procedure followed here to confront the unavailability of reliable information con-
cerning the aforementioned starting conditions. Incidentally, observe that the un-
availability of such data creates an scenario very similar to that encountered in the
analysis of a trial design, in which one has to guess appropriate initial die cav-
ity dimensions consistent with the finished lengths of each of the levels within the
compacted part. Thus, the procedure described in the sequel is merely an inverse
analysis, typically used in PM designing. The peculiarity that renders, in our case,
this inverse analysis worthy of special consideration arises from the combination of
two facts: tool motions are non-linear functions of the angular position (time), and
punch elastic deflections have to be included in the calculation of the die cavity
dimensions.

Lup

hlmp
0

Llmp

Lup

hlmp

LupD-

Llmp LlmpD-

uup

ulmp

180ºj

º

Lower middle
punch (LMP)

Upper punch
(UP)

Angular position

Figure 5.6 Pressing sequence, indicating motion of the upper punch and the lower
middle punch. The angle ϕ0 denotes the point in the cycle at which the upper punch
enters the die cavity. The pressing stroke ends at ϕ = 180◦, which corresponds to the
bottom dead center.

The fundamental relation between the prescribed displacement on a given punch
and the height of the level formed by this punch is illustrated in figure 5.6 for the
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particular case of the lower middle punch (LMP). This relation can be expressed
analytically as

h0
lpm − hlpm = uup(ϕ0)− ulpm(ϕ0)− (∆Lup + ∆Llpm). (5.3.1)

The meaning1 of each term of the above equation is also clarified in figure 5.6. The
quantity hlpm is the length, measured at the end of the pressing stage (ϕ = 180◦),
of the level formed by the lower middle punch . This length is approximately the
length measured upon ejection from the die, except for a small correction due to
spring-back. The depth of fill or fill height corresponding to the thickness level
formed by the LMP is denoted by h0

lpm, and it is defined as the distance from the
working end of the upper punch to the working end of the lower middle punch
when pressing commences2 (ϕ = ϕ0). The displacements prescribed at the top
and bottom surfaces of upper and lower middle punch are symbolized by uup and
ulpm, respectively. As already discussed, the shape of the displacement profiles are,
theoretically, sinusoidal (see Eqs. 5.2.1 and 5.2.3), although they may be eventually
affected by some deviations. Finally, the terms ∆Lup and ∆Llpm stand for the total
elastic deflections in the axial direction experienced by the upper punch and the
lower middle punch, respectively.

Similar equations to Eq.(5.3.1) can be derived for the other three thickness
levels:

h0
lpi − hlpi = uup(ϕ0)− ulpi(ϕ0)− (∆Lup + ∆Llpi). (5.3.2)

h0
lpo′ − hlpo′ = uup(ϕ0)− ulpo′(ϕ0)− (∆Lup + ∆Llpo′). (5.3.3)

h0
lpo′′ − hlpo′′ = uup(ϕ0)− ulpo′′(ϕ0)− (∆Lup + ∆Llpo′′). (5.3.4)

Expressions 5.3.1 to 5.3.4 form a system of four equations - one equation for
each lower punch, with ten unknowns: the fill heights corresponding to each level
(4 unknowns), the elastic deflections of punches (5 unknowns), and the angular
position at which the upper punch comes into contact with the powder (1 unknown),
denoted as ϕ0. The elastic deflections ∆L• can be estimated either on the basis of
available data for similar parts, or by means of the uniaxial approximation:

∆L• =
σz(ρf )
Etool

nr∑

k=1

R2
1 −R2

i

R2
k −R2

i

L•. (5.3.5)

The above equation follows from assuming that an uniaxial stress state prevails
throughtout the tubular punch. The constant Etool is the Young’s Modulus char-
acterizing the tooling material whereas Ri stands for the inner radius of the cor-
responding tubular punch and Rk (k = 1, 2, . . .) denotes the outer radii of each
cross section of the punch, sorted by increasing magnitude. The magnitude of the
pressure σz(ρf ) acting on the punch face can be estimated from the compressibility
curve3 as the axial pressure corresponding to the final density ρf of the compact.

1The prefix “lpm” identifies the lower punch that forms the corresponding level of thickness
2We further assume that the time at which the lower punches are established in their filling

positions and the time at which the upper punch comes into contact with the powder coincide.
3The analytical expression for this curve can be derived by combining material curves s1 and

s2, see Eq.(B.3.11) in appendix B.
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Substituting these estimations for the elastic deflection of punches in equations
5.3.1 to 5.3.4 leads to a system of four equations with five unknowns, namely the
4 fill heights and the initial angular position. The closure for this system, as may
be surmised, is provided by the conservation of mass equation:

ρ0V0(h0
lpi, h

0
lpm, h

0
lpo′ , h

0
lpo′′) = ρfVf (hlpi, hlpm, hlpo′ , hlpo′′). (5.3.6)

wherein ρ0 and ρf are the initial and final density, respectively, V0 stands for
the volume occupied by the powder at the onset of pressing and Vf denotes the
volume of the finished part. Note that, in writting Eq.(5.3.6), the hypothesis of uni-
form powder fill density4 distribution has been tacitly invoked. This hypothesis is
adopted in the absence of further information in this respect. If more accurate data
concerning this distribution were available, the left-hand side member of Eq.(5.3.6)
would have to be replaced by the corresponding integral expression.

To obtain the solution of the resulting system of equations, the values of the
unknown quantities h0

• have to expressed as a function of h• and u•(ϕ0). Upon
substitution of h0

• in Eq.(5.3.6), the system is reduced to a single equation in the
unknown ϕ0. Due to its non-linear character, this equation is not amenable to
analytical solution and, consequently, recourse to approximate algorithms, as the
bisection method, is to be made. Once the angular position ϕ0 has been obtained,
the dimensions of the initial cavity h0

• can be retrieved from equations 5.3.1 to
5.3.4.

With these estimated starting conditions at our disposal, we have all the basic
ingredients to construct the geometric model, impose boundary conditions and,
finally, undertake the finite element analysis of the pressing stage. Nevertheless,
it is by no means guaranteed that the final lengths computed in this preliminary
FEM analysis will correspond to the desired design values h•. The closeness of the
computed values to h• relies on the quality of the deflection estimations. A poor
estimation of ∆L• will invariably lead to incorrect final dimensions. In our case,
the relatively small thickness of the part (2.7 mm in its thinner lever) aggravates
the situation, since such inaccuracies in estimating ∆L• will translate in innacurate
density predictions.

A strategy that proves efficient in successively improving the quality of these
estimations is to use the punch deflections computed in the FEM analysis as the
estimations for a subsequent reverse analysis. This iterative strategy is schemati-
cally described in the flowchart displayed in figure 5.7. Iterations are halted when
the difference between computed finished lengths and design values h• are within
prescribed tolerances. In our case, such tolerances are taken as the dimensional tol-
erances contained in the customer’s specification (see figure 5.1). A more in-depth
appreciation of this procedure will be gained through the analysis presented in the
following.

4The initial density ρ0 is taken in this cases as the apparent density of the powder.
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Figure 5.7 Flowchart indicating the computational cycle used for estimating the initial
die cavity dimensions.

5.3.2 Assessment of the effect of an innacurate description
of tooling motions

In this section, the computed results of final density distributions produced by
using theoretical displacement curves as prescribed conditions on tools, on the one
hand, and prescribed conditions closer to true tooling motions, on the other hand,
will be examined and compared so as to assess the impact of overlooking some of
the deviations summarized in section 5.2.1.

The powder employed in making the part is a Distaloy AE iron based powder
with apparent density ρapp = 3.25 g/cm3. Material parameters can be obtained
thus from the empirical adjustment presented in chapter 2. Fill density, which
is assumed uniform throughtout the die cavity, is taken as the apparent density.
Friction between the powder mass and the faces of the tools-die walls and core
rod is modeled via a friction Coulomb law, with coefficient µ = 0.12. The elastic
behavior of the tooling is characterized by a Young’s Modulus Etool = 210GPa
and a Poisson’s ratio νtool = 0.3.

The axial symmetry of the part is exploited and the study is concentrated on a
characteristic radial section so that the FEM analysis can be accomplished in two
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Figure 5.8 Initial mesh layout.

dimensions. The initial finite element mesh is shown in figure5 5.8. The average size
of the elements of the powder body is le = 0.25mm, whereas the size of the elements
at the boundaries of punches and die in contact with the powder is, approximately,
0.15mm, although features on the bottom faces of the part, as over the lower outer
punch-II, demands smaller elements (≈ 0.05mm) at these locations. Observe that
tooling elements are graded from small-size at the boundaries in contact with the
powder to coarser with increasing distance from these surfaces. A glance at figure
5.8 also allows us to appreciate the startling contrast between the volume occupied
by the powder die cavity and the volume occupied by the tooling set.

Results using theoretical punch displacements

The theoretical or nominal displacement profile for the upper punch recipro-
cating motion can be obtained from Eq.(5.2.1). The values of the lengths of the
crankshaft and the connecting rod appearing in such equation are lc = 90mm and
lr = 580mm, respectively. On the other hand, the theoretical motions of lower
punches, core rod and die are fully determined by the motion scale factors shown
in table 5.1. The motion scale factor of the lower outer punch LOP − II and the
die are identical, as they are mounted in the same platen. On the other hand, it
follows from the motion scale factors of LIP and LOP-I that those punches are held
practically stationary during the pressing stage.

The information tabulated in Table 5.2 serves to illustrate the previously men-

5The working end of the upper punch is not flush with the top surface of the die when the
upper punch comes into contact with the powder, as one may expect (see figure 5.8). Nevertheless,
this modification, which has been motivated by simplicity reasons in preprocessing the geometry,
has no influence in the computed results.
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UP LIP LMP LOP-I LOP-II/DIE CORE ROD
f 1 0.043 0.234 0.019 0.26 0.233

Table 5.1 Motion scale factors

UP LIP LMP LOP-I LOP-II
TOLERANCE in h - 0.09 0.10 0.09 0.07

k = 0 ∆L(Uniaxial est.) 0.307 0.352 0.245 0.130 0.036
k = 1 ϕ0 = 160.2 ∆L(k) 0.175 0.298 0.123 0.153 0.0241

h(k) − h - -0.162 -0.080 -0.080 -0.068
k = 2 ϕ0 = 160.9 ∆L(k) 0.195 0.197 0.167 0.0928 0.0204

h(k) − h - -0.070 0.055 -0.049 0.003

Table 5.2 Iterative procedure for calculating the initial die cavity dimensions. Theo-
retical tooling motion case.

tioned procedure for the calculation of the initial die cavity dimensions. The start-
ing values of the elastic deflections ∆L are obtained from the uniaxial estimation
(5.3.5). The iterative sequence is halted when the discrepancis between the com-
puted finished length h(k) and the design value h (see figure 5.1) is within prescribed
tolerances. In the first iteration, the convergence tolerance for the lower inner punch
is not met, due to a too high initial estimation of its deflection. An additional com-
puter run was hence required to achieve consistent starting conditions.
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Figure 5.9 Distance between working ends of upper punch and lower punches as a
function of the angular position during the pressing cycle. Theoretical tooling motion
case.

In figure 5.9, we show the evolution of the lengths of each thickness level as a
function of the angular position. As expected, these curves mimic the sinusoidal
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pattern of the reciprocating motion of the upper ram. The contour plot of the
density computed - by the finite element method - at the end of the pressing
stage is displayed in figure 5.10. The level formed by the lower middle punch
exhibits the highest density, whereas the region with the lowest density is located
above the lower inner punch. To enable direct comparison with experimentally
measure densities, the part is divided into five volumes. The averaged density over
those volumes is shown also in figure 5.10. Experimental and computed results are
presented in table 5.3. It is apparent that numerical results barely resemble the
experimental density measures. Discrepancies between numerical and experimental
data are especially unacceptable in region labelled as five, just over the lower inner
punch.

Density (g/cm )3

6.886.78

7.186.88

6.58

12
34

5

6.806.96

7.047.04

6.99 Experimental

FEM

Figure 5.10 Contour plot of density computed at the end of the pressing stage. Theo-
retical tooling motion case.

Zone 1 2 3 4 5 Overall
ρnum (g/cm3) 6.88 6.78 7.18 6.88 6.58 6.91
ρexp (g/cm3) 6.80 6.96 7.04 7.04 6.99 6.94

ρnum − ρexp (g/cm3) 0.08 -0.18 0.14 -0.16 -0.41 -0.03

Table 5.3 Comparison between computed densities using theoretical tooling motion
(ρnum) and experimentally measured values(ρexp) .

.

Results using “true” punch displacements

We carry out now the simulation of the pressing stage using prescribed condi-
tion on tools closer to the tool motions monitored by the CNC computer during
the compression. The discrepancies between the theoretically predicted and true
motions of LIP, LOP-I, die and core rod are insignificant and the prescribed dis-
placements are therefore the same as in the previous case. By contrast, substantial
errors are detected in the description of the upper punch and lower middle punch
motions. Figure 5.11 shows the theoretical and “true” positions of the top face of
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Figure 5.11 Position of the upper punch ram. Theoretically calculated value (dashed
line) and value monitored and recorded by the CNC data acquisition system (solid line).

the upper punch during the pressing portion of the cycle. The position recorded
by the CNC data acquisition system exhibits a gradual deviation from the theo-
retically calculated reciprocating motion of the main shaft. At the bottom dead
center, the amplitude of this deviation can be estimated at approximately 2 mm.
This deviation is ascribed to the looseness of the parts comprising the hydraulically
operated mechanism, alluded to in section 5.2.1, that controls the force exerted by
the upper punch during ejection, and which is located between the upper punch
and the upper ram.
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Figure 5.12 Force on the lower inner punch computed using pure prescribed displace-
ment condition on the lower middle punch. The horizontal dashed line indicates the
threshold below which the hydraulic device controlling the LMP platen operates correctly.

In discussing the classification of what we have termed “predictable deviations”
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(see section 5.2.1), we pointed out that the hydraulic drives operating the lower
rams execute the scheduled motion only if the resulting force on each punch is below
a certain threshold. In the case of the lower middle punch, the corresponding
hydraulic servosystem operates under regular conditions below 25 Tons. Figure
5.12 shows the FEM computed evolution of the force exerted by the compacting
powder on the lower middle punch using theoretical tooling kinematics, in which
the stroke of the lower punches is assumed to be displacement-controlled during
the entire pressing stage. The information displayed in figure 5.12, however, makes
apparent the inadequacy of such assumption. The computed force at the end of
the end of pressing operation exceeds the maximum allowable force by a factor of
almost two. This unduly high force on the LMP is intimately connected with the
overdensification observed in the region over the lower middle punch (see figure
5.10). According to the suggestion given in section 5.10, the prescribed condition
on the lower middle punch must be modified to accommodate this limited capacity
of the hydraulic device. For forces below 25 Tons, displacements given by the
expression ulmp = flmp · uup will be imposed on the bottom surface of the punch.
When the force rises slightly above 25 Tons, the displacement condition will be
replaced by a pressure-type condition so as to ensure that the lower middle punch
moves downward maintaining the force in 25 Tons.

UP LIP LMP LOP-I LOP-II
TOLERANCE in h - 0.09 0.10 0.09 0.07

k = 0 ∆L(Previous simul.) 0.175 0.298 0.123 0.153 0.0241
k = 1 ϕ0 = 156.7◦ ∆L(k) 0.182 0.325 0.136 0.196 0.016

h(k) − h - -0.0043 -0.057 0.0125 -0.034

Table 5.4 Iterative procedure for calculating the initial die cavity dimensions. “True”
tooling motion case.

LIP LMP LOP-I LOP-II
h0
• comp. using nominal displacement 10.22 6.70 10.52 8.63
h0
• comp. using true displacement 10.87 6.47 11.23 8.20

Difference (%) 5.97 -3.54 6.37 -5.35

Table 5.5 Fill heights (mm) corresponding to each thickness level. Theoretical and
“true” tooling motion cases.

The simulation of the pressing stage is carried out again with these new bound-
ary conditions on both upper punch and lower middle punch, First, we determine
the starting conditions by means of the strategy illustrated in the flowchart con-
tained in figure 5.7. The information concerning such procedure is set forth in
table 5.4. In the first iteration, the differences between calculated lengths of each
thickness levels and the design values are between the prescribed tolerances, hence,
in this case, guesswork is limited to a single computer run6. In table 5.5, we sum-

6The initial estimation of punch deflections employed in this case has been obtained from the
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Figure 5.13 Distance between working ends of upper punch and the lower punches as
a function of the angular position during the pressing cycle.“True” tooling motion case.

marize the fill heights corresponding to each thickness level calculated on the basis
of theoretical and “true” prescribed conditions. According to such data, including
the aforementioned deviations in the UP and LMP motions implies changes on
the die cavity dimensions of, on the average, 5%. The variation during pressing
of the lengths of the levels formed by each lower punch is depicted in figure 5.13.
The effect of the alluded to earlier deficient transmission of motion between the
connecting rod and the upper punch is apparent, as the curves do not display the
characteristic sinusoidal shape observed in the prescribed displacement case.
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Figure 5.14 Contour plot of density computed at the end of the pressing stage. “True”
tooling motion case.

first iteration in computing the starting conditions of the theoretical motion case (see table 5.2).
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Density contours at the end of compression are shown in 5.14, accompanied
by computed averaged density within the analyzed subdomains. These averaged
values are compared with experimental measures in both figure 5.14 and table
5.6. Clearly, numerically predicted densities obtained with the model using “true”
tooling motions correspond more closely with empirically measured densities than
in the theoretical tooling motion case (see figure 5.10). Furthermore, the agreement
can be deemed satisfactory, as differences are within 0.1 g/cm3. This comparison
yields convincing proof of the importance of having an accurate description of
the pressing motion at one’s disposal if one wishes to bring computed results into
quantitative agreement with experimental data, especially if the analyzed part is
relatively thin.

Zone 1 2 3 4 5 Overall
ρnum (g/cm3) 6.78 6.92 7.10 6.94 6.91 6.93
ρexp (g/cm3) 6.80 6.96 7.04 7.04 6.99 6.94

ρnum − ρexp (g/cm3) -0.02 -0.04 0.06 -0.10 -0.08 -0.01

Table 5.6 Comparison between computed densities using “true” tooling motion (ρnum)
and experimentally measured values(ρexp) .

5.3.3 Optimization of the pressing sequence

Inspection of the contour plot contained in figure 5.14 reveals that the density
field obtained with the tooling motion analyzed in the previous section exhibits a
considerable degree of non-uniformity. For instance, the averaged density in the
powder column formed by the lower outer punch LOP-II is 0.24 g/cm3 below the
averaged density in the column formed by the lower middle punch. In view of
this considerable lack of uniformity, it is natural to inquire whether other tooling
motions might have led to more uniform density fields, and how these sequences
of motion can be obtained. This raises the issue of optimization of the pressing
sequence, i.e., how to approach the “ideal” tooling motion that leads to an uniform
density field throughout the compact.

In essence, the strategy followed here to obtain the optimum pressing sequence
is the determination of the tooling motion that ensures a near constant compression
ratio7 in each thickness level of the part. This method is, certainly, but the common
manner in which the dimensions of the fill cavity are calculated in the design stage
[100]. However, rather than address the question in this conventional manner8,
we couch our discussion in the broader context of optimization problems, so as to

7The compression ratio is defined as the ratio of the height of the loose powder to that of the
green compact (for each thickness level).

8An added difficulty here is that, on the one hand, tool motions are non-linear functions of the
angular position - due to the reciprocating nature of the upper punch motion and the inclusion of
the previously outlined predictable deviations -, and in the other hand, punch deflections have to
be taken into consideration. It can be shown that, under such conditions, the system of nonlinear
equations that arises from imposing the condition of constant compression ratio may have no
solution.
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regard the problem from the most general standpoint and, eventually, encourage
further advances in this line of development.

Objective function

A crucial step in the formulation of any optimization problem is the definition
of the function that has to be minimized, the so-called objective function. In our
case, this objective function has to measure the degree of non-uniformity of density
distribution. If we divide the part into n nonoverlapping volumes, an indication of
the degree of deviation from a state of uniform density is provided by the euclidean
norm of the differences between the average density ρi calculated in each volume
and the overall density ρf :

edens =

√√√√
n∑

i=1

(ρi − ρf )2. (5.3.7)

The manner in which the part is divided into volumes has a significant influence
on the nature of the solution. Different divisions may lead to distinctly different
optimal pressing routes. Besides, the complexity in obtaining the solution increases
with increasing number of subdivisions. A limiting case is to choose the partition
provided by the own finite element mesh. However, the density in the volume
associated to a typical finite element is too small to be measured in practice. With
a view towards eventual experimental validation, thus, it proves more convenient
to select easily measurable volumes.

As mentioned above, the aim is to devise a tooling kinematics that approaches
a constant compression ratio in each thickness level of the compact. This consid-
eration leads naturally to the part division sketched in figure 5.15. The compact is
divided by cylindrical surfaces parallel to the pressing direction, resulting in four
“column” subdomains, one for each lower punch. The objective function (5.3.7) for
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Figure 5.15 Division of the part in columns. (a) Initial columns (b) Final columns.

this case reads:

edens =
√

(ρlip − ρf )2 + (ρlmp − ρf )2 + (ρlop′ − ρf )2 + (ρlop′′ − ρf )2. (5.3.8)
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Note that the optimization problem associated to this objective function only
quantifies density gradients between the columns formed by each lower punch. Vari-
ation of density along the pressing direction owing to wall friction is, consequently,
completely ignored. For parts of relatively low height, as the one analyzed here, in
which friction effects do not play a relevant role in determining density distribution,
this division in columns proves adequate. On the contrary, for parts of considerable
height, in which density changes promoted by wall friction become dominant, this
partition may fail in providing useful information and the part should be subjected
to additional horizontal subdivision.

In evaluating the objective function (5.3.8), the overall density ρf can be cal-
culated from simple mass conservation considerations. The determination of the
average density in each column requires more elaborate computations: first one
has to obtain the fill heights consistent with the given tooling motion the finished
lengths of the part - following the procedure outlined in section 5.3.1 - and then to
launch the finite element analysis so as to finally determine these average densities.

Variables or parameters of the problem

The following step in the formulation of our optimization problem is to define
the so-called design variables or parameters. All controllable factors, related with
the press kinematics, whose variation affects to some extent the final density distri-
bution can be included in this group. The logical candidates for being considered as
the design variables of our optimization problem are the set of motion scale factors,
as they entirely characterize the tooling motion. In order to reduce the number
of variables, one of the lower punches that forms the lowest face of the part, the
LOP-I, is assumed to remain stationary, that is, flop′ = 0. The motion scale factor
associated to the core rod is also excluded from the variables or parameters of the
problem, as it induces only density gradients in the pressing direction, which are
practically inconsequential to the value of the objective function. We are left thus
with a total of three variables, namely, the motion scale factors of the LIP, LMP
and LOP-II, or expressed symbolically f = [flip, flmp, flop′ ]. The problem can be
mathematically posed as the determination of the motion scale factors f that min-
imizes the objective function (5.3.8). This problem falls under the general rubric of
nonlinear constrained optimization problems. The constrained character refers to
the fact that the value of the motion scale factors must lie in the interval [0, 1]. A
zero value amounts to keep fixed the corresponding lower punch during the entire
pressing stage, whereas a motion scale factor equal to one means that the lower
punch moves downward at the same velocity as the upper punch and, thus, no
effective pressing takes place. The problem is nonlinear because of the nonlinear
character of the relation between the objective function and the variables.

Solution of the optimization problem. Simplified “column” model.

This nonlinear constrained optimization problem can be attacked, as done for in-
stance in Ref. [57], by recourse to the standard optimization techniques described
in the related literature [71, 85, 19]. However, the discussion of the formalism
involved in such techniques, as well as their adaptation to the problem of optimiza-
tion of the pressing sequence, are huge and complex topics in their own right, and
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falls thereby beyond the scope of this work. Here, we limit ourselves to provide
a reliable approximation to this solution. This approximation may be eventually
used as the starting point9 for solving the problem by the aforementioned elaborate
optimization algorithms.

To determine this approximation of the minimizer of the original functional
objective (5.3.8), we introduce an alternative model for replicating the powder
behavior. The essence of this model is intimately connected with the division in
column subdomains shown previously in figure 5.15. Each powder column is treated
as a separate component, in the spirit of the “column model” described in reference
[103]. This means that transfer of mass between columns is neglected. Densification
on each domain can be studied thus by simply applying the conservation of mass
equation:

ρcollp = ρ0
V 0
lp(h

0
lp)

Vlp(hlp)
, (5.3.9)

where ρcollp denotes the column average density at the end of compression, ρ0 is
the fill density (assumed uniform), and V 0

lp(h
0
lp) and Vlp(hlp) the initial and final

volumes, respectively, of the column corresponding to the lower punch labelled as
“lp”. Now we define, in analogy with (5.3.8), the following objective function:

ecoldens =
√

(ρcollip − ρf )2 + (ρcollmp − ρf )2 + (ρcollop′ − ρf )2 + (ρcollop′′ − ρf )2. (5.3.10)

This “column model” is indeed a very crude approximation to reality, and, in gen-
eral, the values of density predicted by the elementary estimation (5.3.9) would
differ substantially from the values computed by the more sophisticated and real-
istic finite element model. In situations in which overdensification in one column
takes place at the expense of deficient consolidation in the adjoining regions, the
discrepancies would be particularly drastic. In circumstances, on the contrary, in
which transfer of mass between columns is not pronounced, the two estimations
would be more in agreement. Accordingly, the minimum difference between both
predictions would be detected in the case in which redistribution of mass between
columns is, on the average, minimum. It follows from this physically plausible
reasoning that the minimizer of the objective function (5.3.10) associated to the
elementary column model can be regarded as an approximation of the minimizer
of the objective function associated to the finite element model. The quality of
this approximation must be eventually assessed by undertaking a finite element
analysis.

The advantage of this strategy relies on the fact that the solution of the opti-
mization problem linked to the column model is comparatively easy to obtain. The
number of variables is only three, and the evaluation of the objective function is,
computationally speaking, inexpensive. Consequently, evaluation of the function

9Standard optimization techniques are based in iterative schemes. The number of iterations to
achieve convergence relies mainly on the closeness of the starting point to the solution. In view of
the high computational cost associated to each evaluation of the objective function, the process
may become prohibitively expensive if the choice of starting point is not adequate.
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Figure 5.16 Objective function edens as a function of motion scale factors. The lower
outer punch (I) is held stationary in all cases, i.e., flop′ = 0, whereas the motion scale
factors of the other lower punchers are varied from 0 to 0.6.

at a sufficient number of points so as cover the entire range of these variables (the
feasible region [71]) is computationally affordable. The minimum can be directly
obtained as the lowest value of the vector resulting from such evaluations. We
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should remark, however, that this straightforward, although certainly not very el-
egant, way of finding the solution may be not feasible in other cases, because of
either the unaffordable computational cost associated with the evaluation of the
objective function or the large number of variables. In those cases, recourse to
standard optimization algorithms should be made.

Further insight into the nature of the solution is gained if these points are
represented graphically. Figure 5.16 shows five diagrams. Each of these diagrams
is a parametric plot, with the LOP-II motion scale factor flop′′ as parameter, of
the objective function ecoldens versus the LMP motion scale factor flmp, holding fixed
flip.

It is readily apparent from these graphs that holding stationary the lower inner
punch (flip = 0) represents the most favorable situation. This concurs with one’s
intuitive expectation, as the finished length of the levels formed by the LIP and the
LOP-I are identical, hlip = hlop′ . The global minimum is to be sought then in the
diagram displayed on the top left corner of figure 5.16. Visual inspection of this
plot indicates that the global minimum is approximately located at flmp = 0.415
and flop′′ = 0.225.

UP LIP LMP LOP-I LOP-II/DIE
f 1 0.000 0.225 0.000 0.415

Table 5.7 Set of motion scale factors that minimizes the objective function associated
to the elementary column model.

FEM Validation

The combination of motion scale factors10 that minimizes the objective function
associated to the elementary column model is summarized again for convenience in
table 5.7. According to the physical arguments put forward previously, these motion
scale factors should lead to a “near” uniform density distribution. To confirm this
hypothesis, one must perform a finite element analysis, since the column model is
too simplistic as to accept its results at face value. Thus, only a FEM analysis
can provide the assurance that the presumably near-optimum motion scale factors,
listed in table 5.7, define indeed tooling displacements that lead to more uniform
density distribution.

As usual, to carry out the finite element analysis, we obtain first the fill cavity
dimensions consistent with such tooling motion. The iterative procedure is illus-
trated in table 5.8. In figure 5.17, the computed evolution of the length of the levels
formed by each lower punch is displayed. Observe that the curves exhibit a very
subtle inflexion point around ϕ = 170◦, a fact that reflects that the deviation due
to plays in the hydraulic mechanism controlling the position of the upper punch
has been included in constructing the punch displacement profiles.

The average densities in each column subdomain at the end of compression
obtained by the elementary column estimation and by finite element calculations

10The motion scale factor associated to this tool has been set to the one corresponding to the
DIE/LOP-II.
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UP LIP LMP LOP-I LOP-II
TOLERANCE in h - 0.09 0.10 0.09 0.07

k = 0 ∆L(Previous simul.) 0.257 0.249 0.219 0.107 0.0288
k = 1 ϕ0 = 157.5◦ ∆L(k) 0.209 0.324 0.134 0.183 0.0232

h(k) − h - -0.012 -0.152 -0.039 -0.075
k = 2 ϕ0 = 157.7◦ ∆L(k) 0.187 0.312 0.115 0.181 0.0211

h(k) − h - -0.074 -0.062 -0.090 -0.046

Table 5.8 Iterative procedure for calculating the initial die cavity dimensions. Opti-
mized tooling motion case.
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Figure 5.17 Distance between working end of upper punch and lower punches as a
function of the angular position during the pressing stage. Optimized tooling motion
case.

COLUMN LIP LMP LOP-I LOP-II Overall
Column model 6.98 7.02 6.91 6.90 6.96
FEM model 6.95 7.04 6.98 6.97 6.98

ρcol − ρfem (g/cm3) 0.03 -0.02 -0.06 -0.08 -0.02

Table 5.9 Averaged densities ((g/cm3)) obtained by the elementary column estimations
and by the finite element calculations.

.

are compared in table 5.9. Discrepancies between both set of values are within 0.08
g/cm3. Such satisfactory agreement substantiates the hypothesis of the closeness
between the minimizers of the original FEM optimization problem and the one
associated to the column model. Certainly, further improvements in uniformity
of the density distribution might be achieved. The density over the lower middle
punch, for instance, (see figure 5.18), is still 0.09 g/cm3 higher than the average
density above the lower middle punch. As already pointed out, the determination of
motion scale factors leading to further improvements would require a local search,
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by standard optimization techniques, in the vicinity of the values tabulated in table
5.9.

Density (g/cm )

LMP

LIP LOP-I

LOP-II

6.95

7.04

6.98
6.97

3

Figure 5.18 Contour plot of computed density at the end of compression. Optimized
tooling motion case.

So far, the discussion has been limited to the improvement in uniformity of
the final density field. One would expect that motion scale factors leading to
uniform density distribution will also contribute to uniform density fields at any
other point during the pressing operation. In figure 5.19, the variation, with angular
position, of averaged densities in each subdomain is shown for the optimized tooling
motion case and for the tooling motion characterized in the previous section (with
“true” displacement profiles). Comparison of these diagrams clearly confirms this
expectation. The five paths in each case emanates from the same point, which
corresponds to the fill density (ρ0 = 3.25), and deviates gradually from one another
as pressing progresses. However these deviations are considerably more pronounced
in the non-optimized case (figure 5.19.a). Especially intense is the magnitude of
the drift exhibited by the averaged density in the region above the lower middle
punch (zone 3).

A quite relevant result is the magnitude of the forces induced on the punches
during compression. The FEM computed evolution of these forces is depicted in
figure 5.20. Observe that the punch on the lower middle punch remains below
25 Tons, which means that the hydraulic drive controlling this punch remains,
according to the finite element calculations, within the controlled-displacement
regime.

For a rigorous assessment of the proposed methodology, the numerically pre-
dicted improvement in density should be experimentally corroborated. Unfortu-
nately, owing to unavailability of the press machine, it was not possible to manu-
facture the part according to the pressing route determined by the proposed pro-
cedure. This experimental validation, as well as the extension of the methodology
to other part geometries in which friction effects are to be accounted for, are left
to future work.
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Figure 5.19 Evolution of averaged density in each volume. (a) Non-optimized tooling
motion (b) Optimized tooling motion.

5.4 Ejection

Attention is confined now to the simulation of the ejection stage. This stage covers
approximately the portion of compaction cycle ranging from 180◦ to 265◦, and can
be further subdivided into three distinctly different phases. This division is illus-
trated schematically in figure 5.21. The first phase corresponds to partial pressure
release. The upper punch moves slightly upward so as to reduce radial forces and
facilitate the subsequent withdrawal of the die. This phase covers only a small
portion of the entire ejection operation, from11 180◦ to 190◦.

In the second phase, from 190◦ to approximately 240◦, the die moves downward

11Considering that the production rate is approximately 660 pieces per hour, the time required
to carry out a complete cycle can be estimated by tcycle = 3600/660 = 5.45 seconds, and hence
the pressure release stage lasts only about tprel = 5.45 10/360 = 0.15 seconds.
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Figure 5.21 Typical tooling motion profile for the ejection stage.

(withdrawal tooling system) while the two lower punches (LIP and LOP-I) forming
the lowest faces remain stationary so as to support the part. In order to release
some radial pressure, the withdrawal movement of the die may be accompanied
by the downward motion of the core rod and/or the lower middle punch. In the
third stage, ranging from 240◦ to 265◦, the upper punch moves up away from the
compact and, simultaneously, the lower inner punch lifts the part slightly so that
it can be removed by the gripper from the compaction zone.

The finite element results will be also presented according to this division of
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the process. First, we shall carry out the simulation of the pressure release stage.
The computed cohesion contours corresponding to this analysis will be carefully
examined and discussed for different tooling kinematics. If it turns out that no
evidence of cracking is detected, then the computation of the subsequent stage will
proceed. On the contrary, if de-cohesion patterns are observed in the corresponding
contour plot, it is of no practical interest to pursue further the computations, and we
shall concentrate rather in ascertaining the root cause of such de-cohesion patterns.

(a) (b)

1 2

Figure 5.22 Cross-sectional view showing two cracks detected in the green compact.
Microscopic image of: (a) Zone 1 (b) Zone 2

As anticipated at the outset of this chapter, the part being the target of this
study was not finally fabricated exactly following the initial customer’s specifica-
tions, displayed in figure 5.1, due to difficulties in obtaining a free-defect green
compact. Some of the detected defects were visible to the naked eye, and other
were only discerned after microscopic examination. A microscopic view of two of
these observed cracks is shown in figure 5.22. We should point out, however, that
the ensuing discussion is not intended to set up a systematic comparison between
experimentally recorded crack images and computed cohesion contours. The retro-
spective character of the study makes somewhat elusive such rigorous verification
of results. Rather, we limit ourselves to qualitatively examining , by simple compar-
ison of cohesion contours, the adequacy of alternative ejection processes. Consider
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two alternative routes A and B for ejecting the part from the die cavity. If, for
instance, the cohesion computed using the ejection route A remains unaltered dur-
ing the process, whereas the predicted cohesion contours using ejection schedule B
shows clear signs of cracking, we can legitimately say that ejection schedule A is,
comparatively, more appropriate than ejection route B. However, we should refrain
from categorically concluding that ejection schedule A leads to a free defect part,
as this would require confirmation from experience.

5.4.0.1 Pressure release

The finite element analysis of the pressure release stage is restarted12 from the
solution (using “true” punch displacement curves, see section 5.3.2) obtained at
the end of the computation of the pressing stage. In the sequel, two different
sequences of tooling motion are examined.

UP

CORE
ROD

DIE

LOP-II

LOP-I

LMP

LIP

Crack ACrack B

gap

Cohesion (Mpa)

Figure 5.23 Contour plot of cohesion at the end of pressure release stage. Total axial
unloading case.

.

First, we consider a scenario in which the upper punch moves up away from
the compact and the lower platens remain fixed. Every PM practitioner knows
that this practice represents conditions likely to generate a defective part and,
thus, is by no means adequate, especially when dealing with relatively thin parts.
Nevertheless, we shall momentarily overlook such practical recommendation and

12As alluded to in section 4.1, a restart facility in the simulation code provides the flexibility in
automatically initiating the analysis from any point in the computational cycle. In restarting the
analysis, some parameters controlling the solution algorithm can be changed. For instance, for the
ejection stage, kinematic description is restricted to the small strain regime and the remeshing
utility is disabled.
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.

evaluate the ability of the model in reproducing the typology of cracks arising in
these situations. Then, this case will be compared with one in which the upper
punch maintains a certain level of axial pressure and the motions of the lower
punch platens are accurately controlled so as to reduce the detrimental effects of
unbalanced punch deflections.

Procedure I: Total axial unloading (no hold-down force)

In figure 5.23, we show the computed contour plot of cohesion at the end of
the pressure release stage in the case in which the upper punch moves up 0.6 mm
away from the compact and the lower platens remain fixed. Recall (see chapter
4) that crack locations are identified as those areas affected by a local decrease
of cohesion. Examination of the contour plot of figure 5.23 clearly reveals two
de-cohesion patterns, labelled therein as “crack A” and “crack B”, being loss of
cohesion especially intense along the former. In the sequel, we concentrate thus on
describing the formation and ascertaining the root cause of the horizontal crack A.

A glance at the tooling dimensions shown in figure 5.3 indicates that the lower
inner punch LIP is larger, by a factor of almost ten, than the lower outer punch
LOP-II. This fact is reflected in the graphs of vertical displacement of punch work-
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Figure 5.25 Stress trajectory in the mean-deviatoric plane at a point located in the
area affected by the de-cohesion pattern labelled as “Crack A” in figure 5.23.
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ing ends versus the angular position contained in figure 5.24.a. The LIP experiences
the greatest total deflection - approximately 0.2 mm -, in contrast to the almost
negligible change in dimensions of the lower outer punch LOP-II. This means that
the compact moves with the lower inner punch and, consequently gaps are gen-
erated between the working ends of the lower outer punches and the compact, as
can be observed in figure 5.23. In this process, the outer flange is partially gripped
between the LMP outer wall and the LIP-I inner wall, due to friction effects. The
combination of this restraining action and the upward movement of the LIP places
in tension the corner region and the crack is therefore induced. The propagation
of this crack can be visualized in the sequence of cohesion contours displayed in
figure 5.24.b.

In order to corroborate the physical origin of this de-cohesion pattern, the stress
history at a point located in the affected area is plotted in the mean-deviatoric
stress plane (see figure 5.25). The stress state at the beginning of axial unloading is
located at point A. As axial unloading progresses, it moves toward the tensile region
(first quadrant) following the path ABC (elastic regime). At point C, however, it
encounters the Drucker-Prager failure line, which represents the limited ability of
the green compact to resist tensile stresses. Continued strain (of tensile nature),
provoked by the aforementioned uneven tooling deflection, induces continued plastic
yielding and thus a local decrease of cohesion (strain softening), causing the stress
state to travel along the failure line towards the origin (point D). No anomalous
oscillations, due for instance to an unsatisfactory reproduction of the tool-powder
contact behavior, are observed. This indicates that numerical flaws do not pollute
the response, and, therefore, the de-cohesion pattern can be ascribed definitely to
the aforementioned mechanical cause.
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Procedure II: Balanced deflection of lower punches ( with hold-down
force)

The foregoing scenario represents working conditions quite similar to that en-
countered in press machines whose upper rams are actuated exclusively by mecha-
nical drives. One of the major disadvantages of those presses is the sudden release
of force occurring after the rotating drive member reaches the bottom dead center
(ϕ = 180◦). However, we mentioned earlier that the analyzed part was manufac-
tured in a press machine in which, during the post-pressing operations, the upper
punch is operated by a separate hydraulically drive system. This mechanism allows
to apply a certain downward pressure during withdrawal of the die, the so-called
hold down or counter- pressure. In the numerical simulation presented in the fol-
lowing, the upper punch is gradually lifted until the axial force on the upper punch
is set to 10 Tons. The CNC press machines also offers the possibility of accu-
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Figure 5.26 Balanced deflection of lower punches case (hold-down force). Displacement
of the working ends of lower punches, as well as the displacement of the top face of the
upper punch, as a function of the angular position.

.

rately controlling the position of the lower rams. In order to compensate for the
unbalanced punch deflections, the lower inner punch LIP, which is the largest one,
descends 0.05 mm, whereas the lower outer punch LOP-I moves 0.04 mm upward.
The LMP and die platens are kept fixed. Figure 5.26 displays the computed verti-
cal displacement, as a function of the angular position, of the punch working ends
together with the displacement of the top face of the upper punch. According to
the graph corresponding to the UP top face, the imposed reduction in axial force
requires to move the upper punch 0.25 mm upward. The displacement curves cor-
responding to the working ends of the UP, LIP, and LMP-I meet at the end of
the pressure release stage, a fact that indicates that the motions prescribed at the
bottom of the LIP and LMP-I have proved efficient in compensating for the differ-
ences in elastic deflection between punches. The relative uniformity exhibited by
the cohesion distribution computed at the end of pressure release stage, displayed
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in figure 5.27, confirms also this efficiency since, in contrast to the contour plot
computed in the previous situation of uncontrolled punch deflection (figure 5.23),
no appreciable evidences of loss of cohesion are detected.

5.4.0.2 Withdrawal of the die

Using as starting point the results obtained at the end of the pressure release stage,
we tackle now the analysis of the die withdrawal phase. Three different ejection
procedures are numerically tested. In these three alternatives, the compact is held
between the upper punch and the two lower punches forming the lowest faces of
the compact (LIP and LOP-I), which act, thus, as supporting punches as the die
is withdrawn.

Option a: Held stationary the LMP and the core rod.

We shall explore first the consequences of keeping fixed the lower middle punch
and the core rod as the die is lowered. The tooling motion profile corresponding to
this situation is depicted in figure 5.28. This diagram is accompanied by a sequence
of three contour plots of cohesion computed at different times during the process.
In the rightmost plot, which is shown also - in magnified form - in figure 5.29.a,
a horizontal de-cohesion path stemming from the outer wall is observed. This de-
cohesion pattern certainly exhibits a distinctly crack-like appearance. However,
the factor or factors that provoke its development are not readily apparent. In
order to identify these factors, and eventually clarify the physical origin, if any, of
this localized loss of cohesion, we shall propose two alternative, physically plausible
hypothesis.

The first hypothesis considers that the computed crack is due to the effects of
elastic strain release in the radial direction. The observed mechanical degradation
arises when the top face of the die is approximately flush with the top face of the
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Figure 5.28 Prescribed punch displacements as a function of the angular position,
together with a sequence of contour plots of computed cohesion. Case in which the LMP
and the core rod are held stationary.

.

lower middle punch, that is, when the main body of the part is clear of the die.
The radial expansion of the main body coupled with the radial force exerted on
the portion of outer surface still restrained by the die tends to shear the compact
along the radial direction, as pictorially depicted in figure 5.29.b. Accordingly,
this presumably shear-mode (or mode-II ) crack can be eliminated by reducing the
level of radial stress when withdrawing the die. One possibility to carry out this
reduction is, as recommended by Zenger et al. [112], to decrease the degree of
confinement of the part by withdrawing the lower middle punch and the core rod.
Another possibility to reduce the effects of radial expansion would be to diminish
the hold down pressure exerted by the upper punch. However, this practice may
conflict with the requirements for avoiding the crack promoting effect, described
previously, of uncontrolled punch deflections.

The other hypothesis advocates that the root cause of the numerically pre-
dicted crack is the “stepped” character of the die. As already mentioned, the lower
outer punch LOP-II is mounted on the die platen. Thus, as the die descends to
free the part, the LOP-II inevitably moves down away from the compact. This
separation leaves the external portion of the compact vertically unsupported and,
consequently, frictional downward forces between the die and the compact may tend
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Figure 5.29 (a) Contour plot of computed cohesion at φ = 203◦ for the case in which
the LMP and the core rod are held stationary. (b) Schematic representation of the effect
of elastic strain release.
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to pull apart the main body and the bottom section. According to this hypothesis,
thus, the horizontal crack develops predominantly under opening or mode-I load-
ing conditions. In turn, the bending deformation caused by these frictional forces
would also explain consistently the formation of the other discernable de-cohesion
path (see figure 5.29.a), located at the top face of the part.

In order to ascertain which hypothesis is more consistent, we shall carry out two
additional finite element analysis of the die withdrawal stage. In the first one, the
lower middle punch and the core rod accompany the die in its downward motion
so as to release some elastic radial strain. In the second one, the lower inner punch
is kept fixed so that it can support the part while the die descends.

Option b: Withdrawing the core rod and the LPM simultaneously

The tooling displacement diagram, together with a sequence of three contour
plots of cohesion, corresponding to this case are shown in figure 5.30. For ease
of visualization, an enlarged view of the contour plot at ϕ = 230◦ is displayed
in figure 5.31.a. Details of crack propagation through the mesh employed in the
calculations can be appreciated in figure 5.31.b. A qualitative comparison of the
contour plot in figure 5.31.a with that contained in figure 5.29 leads immediately
to the conclusion that withdrawing the lower middle punch and the core rod has
not proved effective in eliminating the observed cracks. Both contour plots exhibits
the same de-cohesion patterns, being the only discernable effect a slight decrease
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Figure 5.30 Prescribed punch displacements as a function of the angular position,
together with a sequence of contour plots of computed cohesion. Case in which the LMP
and the core rod are withdrawn simultaneously with the die.
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Figure 5.31 (a) Contour plot of computed cohesion at φ = 230◦. Case in which the
LMP and the core rod are withdrawn simultaneously with the die. for the kinematics
shown in figure 5.28, for φ = 230◦. (b) The same contour plot showing the mesh used in
the computations.

in the intensity of the degradation along these paths.

Option c: Holding stationary the LOP-II.

The modeling of this scenario requires to consider a tooling arrangement diffe-
rent from the one described in section 5.2. Rather than attached to the die platen,
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Figure 5.32 Prescribed punch displacements as a function of the angular position,
together with a sequence of contour plots of computed cohesion. Case in which the
LOP-II moves independently from the die.

the LOP-II is assumed to be mounted on an independent platen so that it can
support the compact during the downward motion of the die platen. Consequently,
in this ejection schedule the part is fully supported by the four lower punches, as
indicated in the diagram of tooling displacements shown in figure 5.32. Below this
diagram we show the cohesion distribution at three different times during the die
withdrawal. The central plot depicts a situation in which the top face of the die is
practically flush with the working end of the LMP, which is the relative position
of die and LMP at which the de-cohesion patterns reported in the preceding simu-
lations were detected. In this case, by contrast, the cohesion distribution exhibits
a relatively uniform aspect and no evidence of intense loss of cohesion is observed.
This fact clearly substantiates the second hypothesis advanced previously. Thus,
we can conclude from the numerical simulations carried out that the root cause
of the numerically predicted cracks (shown in figure 5.29.a) lies in the “stepped”
character of the die.

Incidentally, examination of the rightmost contour plot in figure 5.32 (displayed
in magnified form in figure 5.33.a) shows a vertical, slightly leaned inwards, de-
cohesion path that develops at the junction between the levels formed by the LOP-I
and the LOP-II. Although the primary goal in studying this ejection schedule was
to merely confront the hypothesis advanced at the onset of the discussion, rather
than rigorously investigate the defects formed in producing the part using this
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Figure 5.33 (a) Contour plot of computed cohesion at ϕ = 226◦. Case in which the
LOP-II moves independently from the die. (b) (c) Enlarged views of the zone at which
the crack is formed (d) Schematic representation of the force generated on the protruding
rim due to radial expansion.

tooling arrangement13, it may prove instructive to, at least superficially, inquire
about the root cause of this de-cohesion pattern.

A plausible explanation for this localized loss of cohesion may lie in the partic-
ular geometry of the LOP-II. Inspection of the plots in figures 5.33.b and 5.33.c
indicates that loss of cohesion in the corner region occurs right after the compact
is totally freed from the radial restraint imposed by the die. The top surface of the
LOP-II is not completely horizontal, but it has a vertical protruding feature (0.2
mm height, see figure 5.1) at the outer edge. As the compact emerges from the
die, it tends to expand radially due to elastic strain release. The radial expansion
of the lower portion of the part, however, is hindered to some extent by the pro-
truding feature. This restriction generates a lifting force (see figure 5.33.d), that,
considering that the leg section is restrained by the radial action of the LOP-II and
the LMP, induces bending of the part. The computed de-cohesion path might be
ascribed thus to the effects of such bending deformation.
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Figure 5.34 Revised geometry (dimensions in mm).

5.4.1 Revised design

Figure 5.34 shows the revised design of the part. The only modification with respect
to the original design is that the difference in length between the levels previously
formed by the LOP-I and LOP-II has been diminished considerably. Furthermore,
a tapered surface has eliminated the abruptness of the cross-sectional change. The
main implication of this geometry modification is that it dispenses with the need
for two separate lower outer punches. Accordingly, the two thin-walled lower outer
punches LOP-I and LOP-II employed in shaping the part in its original conception
are replaced by a single, more massive, lower outer punch, abbreviated LOP, with
a tapered top surface. Observe that this modification is totally consistent with
the hypothesis put forward in the previous section for explaining the difficulties in
producing a free-defect part using the “stepped die” tooling configuration.

UP LIP LMP LOP DIE CORE ROD
f 1 0.043 0.234 0.019 0.173 0.233

Table 5.10 Motion scale factors used for pressing the modified part.

The pressing kinematics is defined by the motion scale factors tabulated in
table 5.10. The determination of the starting conditions and the analysis of the
pressing stage proceed along the same lines described in section 5.3.1. We bypass
thus such details and concentrate exclusively on presenting the computed results
corresponding to the ejection stage.

13In practice, this tooling arrangement with an independently movable LOP-II was not tested
due to equipment limitations.
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Procedure I: Total axial unloading (no hold-down force)

In order to evaluate again the ability of the model in reproducing the typology of
cracks arising in situations of unbalanced punch deflections, we consider first a case
in which the upper punch moves up away from the compact and the lower platens
remain fixed. In figure 5.36, the graphs of the computed displacement of punch
working ends versus the angular position are displayed. Below this diagram, we
show a sequence of contour plots of computed cohesion. A horizontal de-cohesion
path emanating from the junction corner and propagating outwards through the
section change is easily detected in these plots.
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Figure 5.35 Total axial unloading case (modified part). (a) Displacement of the working
ends of lower and upper punches, together with the displacement of the top face of the
upper punch, as a function of the angular position. (b) Sequence of contour plots of
cohesion.

.

The reasoning behind this localized mechanical degradation is essentially the
same outlined in section 5.4.0.1 for explaining the formation of the de-cohesion
pattern labelled as “Crack A” (see figure 5.23). In this case, however, cracking
is markedly more intense that in the one shown previously in figure 5.23. At the
end of the pressure release stage (see figure 5.36), the computed de-cohesion path
spans the whole section, a fact that suggests that fracture is imminent. This can
be readily explained from the punch displacement diagram displayed in figure 5.36.
The difference between the deflections experienced by the lower inner punch and
the lower outer punch in compressing the modified part is more pronounced that in
the original part case (see figure 5.24, curves LIP, LOP-I), due to the greater cross-
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Figure 5.36 Contour plot of cohesion at the end of pressure release stage. Total axial
unloading case (modified part)

.

sectional area of the LOP in comparison to the LOP-I. Bending deformation is
therefore accentuated, and this results, in turn, in an intensification of the cracking
process.

Procedure II: Balanced deflection of lower punches (with hold-down
force)

We carry out now the finite element analysis of a pressure release stage in
which the lower outer punch and the lower middle punch are programmed to move
upward 0.08 mm and 0.06 mm while maintaining a hold down force of 10 Tons.
Figure 5.37 shows the evolution of the computed displacement of the punch working
ends. The curves corresponding to the lower punches gradually approach each
other, eventually meeting at ϕ = 192◦. This indicates that gaps between the lower
punch ends and the compact have been eliminated. In addition, examination of
the contour plot of cohesion displayed in figure 5.38 shows that the programmed
punch strokes have also proved effective in totally mitigating the crack reported
when studying the unbalanced deflection case (figure 5.36).

The conditions computed at the end of the above presented pressure release
stage are used as starting conditions for simulating the rest of the ejection process.
The tooling motions according to which the part was finally manufactured are
displayed in figure 5.39. First the die is lowered so as to free the part. The
downward motion of the die is followed by the withdrawal of the core rod and the
lower middle punch. Finally, the upper punch moves up away from the compact
and the lower inner punch is slightly lifted so as to ready the part for being removed
by the gripper. The cohesion distribution computed at four different positions are
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Figure 5.38 Contour plot of cohesion at the end of pressure release stage. Balanced
deflection of lower punches case (modified part).

shown also in figure 5.39. It is apparent that the cohesion field remains unaffected
during the ejection process. The model predictions, therefore, are in accordance with
experimental evidence and confirm the benefits of manufacturing the part according
to the revised design.

5.5 Conclusions

This chapter was devoted to discuss several aspects concerning the numerical sim-
ulation of the compaction of an axisymmetric multilevel part in an advanced CNC
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Figure 5.39 Prescribed punch displacements as a function of the angular position,
together with a sequence of contour plots of computed cohesion (modified part).

press machine. Emphasis on the first part of the chapter was placed on conveying
the relevance of an accurate characterization of the tooling set and the external
actions acting on it if one whishes to obtain a satisfactory computed response. It
was shown that numerical predictions of density distributions using, as prescribed
conditions on tools, theoretical or nominal motions can result in substantial dis-
agreement with experimental measurements. It is therefore essential to possess a
proper knowledge on the CNC press performance so as to be aware of potential
sources of deviations from nominal tooling motions. Unawareness of such factors
may promote the tendency of rationalizing discrepancies as being due to flaws ei-
ther in the constitutive model or in the algorithmic procedure used to compute
the response and, thus, one would be tempted in this case to either refine the con-
stitutive equation or to increase the accuracy of the approximation so as to bring
numerical predictions into agreement with experimental values. But one does not
increase the strength of a chain by improving the strong links. Further refinements
of these aspects of the model would be in vain, and rather than embarking on these
mathematically and computationally challenging research efforts, one should con-
centrate task of revising the available input data and the characterization of the
tool set.
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An aspect that has also received special consideration is that of the optimization
of the pressing sequence. It was shown that the problem can be posed mathemat-
ically as a nonlinear constrained optimization problem. It was argued that the
solution of this problem can be approximated by the solution of a similar problem
defined in terms of density predictions provided by an elementary “column model”.
The validity of this statement was assessed by a finite element simulation, which
finally corroborated the optimum character of the pressing route calculated on the
basis of the elementary column model. As explained, in instances in which friction
effects play a dominant role in determining density gradients, this column model-
based procedure may fail in determining a pressing sequence close to the “ideal”
tooling motion. Therefore, caution is required in extending this methodology to
the design of parts of considerable height.

To date, the modeling of the pressing stage and the densification phenomenon
have been the focus of the vast majority of research efforts in the field. Both
the abovementioned assessment of the impact of accurately representing the tool
set and the external actions and the determination of optimum tooling motion
were carried out in terms of density values attained at the end of the pressing
stage, and hence, they are essentially further contributions to this research aspect.
By contrast, the analysis of the formation of cracks during the ejection stage lies
outside the scope of conventional finite elements studies of the compaction process,
and can be considered thereby as an original and innovative part of this chapter.

Observations made in this study are in qualitative agreement with experimental
evidences. The absence of easily discernable de-cohesion patterns in the cohesion
distribution computed at the end of the ejection phase - in the modified part case,
see figure 5.39-, provides convincing proof of the consistency of the computed re-
sults. Numerical simulation of several ejection routes have illustrated the difficulties
encountered in manufacturing the part according to the original design. Scrutiny of
the computed cohesion distributions resulting from such simulations have allowed
us to give physically plausible reasons for explaining such difficulties.

The overall impression gained is that the judicious interpretation of cohesion
distributions predicted by the model can provide satisfactory answers to practical
questions related to the design of an adequate ejection route. However, this is not
intended to suggest that the model can predict with certainty, in any circumstances,
the formation and development of cracks. In principle, the numerical simulation
of a given ejection route attempts to answer the question: will this ejection route
lead to a free-defect part ? But such a question demands a categorical yes or
no answer; there is no flexibility and the risk of arriving at wrong conclusions
is thus high. Except in some pathological cases, such as the uncontrolled punch
deflections (see figures 5.23 and 5.36), we should theferore refrain from drawing
definite conclusions from a single simulation. A more fruitful strategy consists in
running several analysis for different alternative ejection procedures, and limiting
ourserlves to answer the question: which of these ejection procedures represents
more favorable conditions for ejecting the part safely from the die? The case study
presented in this chapter has demonstrated that this question can be consistently
answered by our approach.
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The advantages of employing FE simulations of the ejection process becomes
especially apparent when alternative tooling arrangements are to be tested. Design
and manufacturing of the new tooling, together with the changeover of the die set,
are time-consuming and costly tasks. Prior to undertaking these operations, several
FEM analysis can be performed to evaluate the feasibility of the operation.

The capacity to predict crack formation and its implication at the design stage
are not the only issues to be considered when using the numerical model. Normally,
the definite sequence of ejection is achieved by trial-and-error procedures guided
by the operator’s intuitive experience. This means the that the “how” is finally
in hands of the operator. But intuition is difficult to characterize if the “how” is
achieved without a mechanically grounded understanding of the “why”. Numer-
ical simulations can serve the useful purpose of clarifying the reason behind the
appropriateness of the ejection route empirically found, so as to establish practical
recommendations that will facilitate the ejection of similar parts. Last but not
least, numerical FEM simulations have the added benefit of illustrating the pro-
cess by attractive graphics. The visualization of cracks as de-cohesion patterns is
particularly appealing, since it does not require a profound knowledge on the math-
ematical basis of the model. Computed displaced shape displayed in conjunction
with contour plots of cohesion may be of considerable assistance in both fueling
the interest of uninitiated practitioners and stimulating the intuition of experienced
PM technologists.



Chapter 6

Concluding remarks

The primary goal of this work was to explore the possibilities of numerically sim-
ulating crack formation during the post-pressing stages in uniaxial die compaction
processes. A phenomenological approach was adopted to mathematically represent
the behavior of our target system, which comprises both the powder contained in
the die cavity and the tooling employed to consolidate the powder into the final
shape. Research effort has been focused on constructing a large strain elasto-plastic
constitutive model able to describe, in an unified manner, both the densification of
the powder under compressive stress states and the formation of cracks during the
post-pressing operations. The innovative part of our modeling is mainly connected
with the characterization of the latter phenomenological aspect, i.e: cracking.

6.1 On the general features of the proposed con-
stitutive model

For the purpose of modeling the material behavior in stress space, the elastic do-
main is bounded by three surfaces intersecting non-smoothly, namely, an ellip-
tical cap -associated with hardening behavior-, and two classical Von Mises and
Drucker-Prager yield surfaces. The truly original feature of the formulation is
the use of a parabolic plastic potential function to describe the plastic flow on the
Drucker-Prager failure surface. The introduction of this non-classical plastic po-
tential function has proved successful in reproducing the experimentally observed
plastic isochoric behavior in the shear regime, while avoiding the acclaimed nu-
merical shortcomings appearing when jointly using traditional pure isochoric flow
rules and implicit integration procedures. However, the constitutive implications
of the practically pure dilatational deformation occurring when the updated stress
state lies close to the vertex of the Drucker-Prager has not been fully explored.
To further improve the confidence in the proposed constitutive model, this aspect
should be subjected to close scrutiny in future developments.

193
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6.1.1 The fracture modeling

A classical strain localization approach has been adopted for modeling the cracking
phenomenon. Incorporation of a softening law - relating cohesion and accumu-
lated plastic shear strain - permits the representation of macroscopic cracks as high
gradients of inelastic strains concentrated along bands of finite thickness. In turn, a
novel, thermodynamically consistent calibration procedure has been used to relate
material parameters involved in this softening law to fracture energy values ob-
tained experimentally on Distaloy AE specimens. The convergence studies carried
out in dealing with the Brazilian test case indicates that the proposed regularization
of the softening law, although not very elaborated, seems to alleviate the problem
of lack of convergence upon refinement of the finite element mesh. The other main
factor that rendered the choice of a classical strain localization approach objection-
able is the mesh-induced directional bias of the computed cracks - the propagating
localization band tends to follow certain preferred directions dictated by the mesh.
However, it was argued that this criticism is blunted if viewed in the light of the
aim and purpose of our investigation. Our primary concern was to capture any
evidence of macroscopic cracking, but without a compelling necessity of giving an
accurate and detailed description of the crack growth conditions. In this respect,
results presented in chapters 4 and 5 have certainly demonstrated the ability of the
model in revealing evidence of macroscopic defects and in qualitatively evaluating
the influence, in the formation of cracks, of variations in the input data (material
parameters, tooling kinematics, etc). A more realistic representation of the physical
discontinuity would require to abandon this elementary approach in favor of one the
various sophisticated - viz. more complex -, material failure modeling techniques
that have, in recent years, successfully superseded the smeared crack approach in
other fields of solid mechanics. Such refinements will be fruitless, however, unless
other more elementary aspects of the model, equally relevant to the accuracy of
the predictions, are also improved. Accordingly, moving to more sophisticated ap-
proaches for representing the cracking process is not regarded as a priority, at least
in the short term.

6.1.2 The thermodynamic framework

Although certainly not an original contribution of this work, the mathematical
form of the constitutive relationships describing the other phenomenological as-
pects - elastic and hardening behavior - has been derived with the same rigor and
care as the softening law. In fact, one of the distinguishing features of this work is
that the formulation of the constitutive model is entirely cast within a rational ther-
modynamic framework. The foremost motivation in such a thermodynamic sound-
ness was to originate our considerations from the most general standpoint possible,
with a view towards future extensions of the model. For example, the paucity of
experimental results concerning fracture energy compelled us to make some restric-
tive assumptions and eventually consider only one internal variable for capturing
the softening behavior of the green compact. One internal variable may appear
too simplistic for accounting for the effects of the whole range of micromechani-
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cal events occurring at the damage zone. Consequently, flaws in these restrictive
assumptions may be uncovered as more experimental data become available, and
this may dictate the eventual incorporation of additional internal variables. The
thermodynamically consistent structure of the constitutive equation will facilitate
considerably the seamless accommodation in the model of these new variables.

Another motivation was to ensure the satisfaction of the second law of the ther-
modynamics, an aspect often disregarded by many researchers in the field. Com-
patibility with the second law does not imply that the response predicted by our
model is in closer agreement with experimental observations than responses com-
puted using other models not embedded in a thermodynamic framework, but rather
provides the confidence that thermodynamically unreasonable results -“negative
dissipation” - are not produced in loading situations different from that used for
calibrating the model. The demonstration of the consistency of the proposed con-
stitutive model with the second law of thermodynamics, carried out in appendix
C, can be considered also as an original contribution of this work.

6.2 On the integration of the constitutive equation

Due to the presence of strain softening and the non-linear, tightly coupled character
of the governing equations, standard procedures turned out to be inadequate for
carrying out the (implicit) numerical integration of the constitutive equation, and
we were thus compelled to develop an alternative, apparently novel, method for
dealing with this problem. The proposed local integration procedure has the intu-
itive flavor of a fractional step method (FSM), since it is based on the decoupling
of the evolution equations for the the plastic strains and the internal variables.
The algorithmic structure underlying this methodology has been discussed in a
thorough manner, placing special emphasis on the issues of convergence and exis-
tence of solution. In particular, it has been shown that the solution of the return-
mapping algorithm has an unique solution for any conceivable stress state trial.
Another remarkable feature is that plastic consistency is restored in a maximum
of three iterations of the FSM predictor-corrector scheme, except when the trial
stress is projected onto the Drucker-Prager yield surface. In this case, nevertheless,
it has been rigorously proved that the sequence defined by the predictor-corrector
scheme converges unconditionally to the solution, with a linear rate of convergence.
Concerning the global iteration scheme, the introduction of the IMPLEX (implicit-
explicit) integration procedure has proved crucial in avoiding the adverse effects of
softening-induced non-positive definite algorithmic elastoplastic moduli, exhibited
typically by purely implicit, standard integration schemes. Furthermore, it has be-
come evident that, if used in conjunction with an adequate adaptive time stepping
scheme, the IMPLEX procedure offers an efficient solution to the trade-off between
robustness and computational time requirements.
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6.3 On the robustness of the solution algorithm

Numerical experience indicates that the main cause of convergence difficulties is
the inaccurate computation of the powder-tooling contact response. Too large
time steps, an inadequate mesh, specially at regions of stress concentration, or the
combination of these two factors may imply a poor enforcement of the impenetrabil-
ity constraint. Small amounts of interpenetration can be tolerated without serious
consequences in the compression regime (pressing stage). By contrast, contact
inaccuracies are particularly detrimental under tensile stress conditions (ejection
stage). The synergistic combination of the effects of innacuracies in computing
the contact response and the dilatational deformation associated to stress states
lying close to the apex of the Drucker-Prager yield surface induces severe distor-
sion of the mesh at the boundary of the powder body, with consequent negative
impact on the performance of the global algorithm. This fact dictated the choice of
the more computationally costly -in comparison with the penalty approach- aug-
mented lagranian strategy for computing the contact response in the simulation of
the ejection process.

6.4 On the simulation technology

The numerical simulation of the compaction of an axisymmetric multilevel part in
an advanced CNC press machine has enabled us to appreciate the extreme impor-
tance of accurately characterizing the geometry of the tool set and the external
actions acting on it. Although the assessment of the effect of the innacurate repre-
sentation of tooling motions was carried out in terms of final density distributions
-cracking is not a readily quantifiable phenomenon-, similar considerations apply
to the simulation of the formation of cracks during the ejection stage. One should
regard, accordingly, the problem from a broader perspective, more in concordance
with the systemic conception adopted in this work, and not remain exclusively
within the confines of powder constitutive modeling, since discrepancies between
observed and calculated responses may be attributable to an inadequate model-
ing of the tooling sub-system and the environmental actions, rather than in an
unsatisfactory representation of the powder behavior.

The multilevel part case-study has served also to exemplify the use of the model
as a tool for supporting and guiding - but never supplanting - engineer judgement
in a practical problem. It has become apparent that the judicious interpretation
of cohesion distributions can considerably assist in understanding the underlying
physical mechanisms that control the occurrence of cracks during the ejection pro-
cess. Useful insight can be squeezed from simple qualitative comparisons of cohe-
sion contours obtained from simulation of alternative ejection routes. The proposed
computational model is certainly not perfect, as no engineering analysis is, and it
may fail in answering some practical questions. But, as clearly evidenced through-
out this work, it can provide satisfactory answers to many others, which is, in our
opinion, sufficient justification for its use.



Appendix A

Mathematical aspects of the
continuum formulation

A.1 Large strain kinematics

We regard the powder sub-system as a deformable body B consisting of continuously
distributed material occupying, at a reference time t0, a region Ω0 of Rn (n = 2, 3).
As is customary, we designate the position vector X, with respect to a fixed origin
O, of the particle X ∈ B in the reference configuration Ω0 as the label of this
particle throughout the deformation process. We assume that the deformation at
time t relative to the reference configuration is given by the one-to-one C2 mapping

ϕ : Ω0 → Ωt ⊂ Rn. (A.1.1)

Hence, we can write the position vector, with respect to a fixed origin o, of particle
X ∈ B in the so-called current configuration Ωt as

x = ϕ (X, t) . (A.1.2)

We introduce a coordinate system in the reference configuration Ω0, defined by
its origin 0 and a set of orthogonal basis vectors {ĒA} (A = 1, 2, 3), and another
coordinate system in the current configuration Ωt, with its origin in o and orthog-
onal basis vectors {ēa}, (a = 1, 2, 3). Thus, it can be written X = XAĒA and
x = xaēa 1, where the summation convention for two repeated indices holds.

A line element dX placed on point X in Ω0 transforms into a line element dx
placed on x in Ωt according to the linear mapping2

dx = F (X, t)·dX. (A.1.3)
1Convention index used throughout this appendix follows Marsden and Hughes [63]. Upper

case letters refer to the reference configuration Ω0 and lower case for the current configuration
Ωt. Index placement (superindex and subindex) will be discussed later.

2More precisely, F is a linear mapping from the tangent space of Ω0 at X to the tangent space
of Ωt at x, i.e. F : TX(Ω0) → Tx(Ωt) [73, 63].
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The second-order tensor F(X, t) is called the deformation gradient of ϕ [63],
and it can be defined, in abstract form, as

F (X, t) =
∂ϕ (X, t)
∂X

, (A.1.4)

or through its components along the basis vectors {ĒA} and {ēa} as

F aA(X, t) =
∂ϕa(X, t)
∂XA

. (A.1.5)

Impenetrability of matter, i.e. no two particles can occupy the same place in space
at a given time, requires J = det(F) > 0. The gradient tensor F is, therefore, a
non-singular second-order tensor and hence admits the local polar decomposition

F(X) = R(X)·U(X) = V(x)·R(X), (A.1.6)

where R(X) is an orthogonal rotation tensor and U(X) and V(x) are symmetric
positive-definite stretch tensors. The so-called right Cauchy-Green tensor is defined
as

C(X) = FT(ϕ (X))·F (X) = (R(X)·U(X))T ·R(X)·U(X) = U2(X), (A.1.7)

or in component form (omitting explicit indication of the argument)

CAB = gabF
a
AF

b
B , (A.1.8)

where gab is the matrix of the metric tensor associated with the inner product in the
spatial configuration Ωt. Since we are using cartesian coordinates system, we have
gab = δab, being δab the second-order Kronecker delta. In fact, the placement of
the suffix (superscript or subscript) is irrelevant for the value of tensor components
in the setting of a cartesian representation (e.g., F aA = FaA = F aA). However, in
order to distinguish the covariant and contra-variant character of tensors, we shall
attempt to keep the natural position of indices of tensor components. Therefore,
Eq.(A.1.8) indicates that the right Cauchy-Green tensor C with components CAB
is a covariant tensor (of rank 2)3.

We shall employ as material strain measure the Green-Lagrange strain tensor,
defined in the reference configuration Ω0 as

E(X) =
1
2

(C(X)−G (X)) or EAB =
1
2

(CAB −GAB) . (A.1.9)

3In a general coordinate system, the right Cauchy-Green tensor defined by C = FTF can be
regarded as a linear mapping C : TX(Ω0) → TX(Ω0), with component representation CAB . The

associated tensor [63] of C is a covariant tensor C[ : TX(Ω0) → T ∗X(Ω0) (T ∗X(Ω0) is the dual space

of TX(Ω0)) with components CAB = GCAC
C
B , GCA being the matrix of the metric tensor in Ω0.

Thus, rigorously speaking, components defined in Eq.(A.1.5) corresponds to C[ rather than to C.
We make no such a distinction herein and assume that all strain tensors are covariant tensors.
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Note that for a local rigid motion C = G and therefore an unstrained state corre-
sponds to E(X) = 0 . In analogous manner, the strained state is characterized in
the current configuration Ωt by the so-called Almansi strain tensor

e(x) =
1
2

(
g (x)− b-1(x)

)
, (A.1.10)

where b-1 is called the Finger deformation tensor, whose components are

(b-1)ab =
(
F-1

)A
a

(
F-1

)B
b
GAB . (A.1.11)

Both e and b-1 are symmetric positive-definite covariant tensor defined in the
current configuration Ωt.

A remark concerning notation is in order here. Recall that G and g are the
metric tensors in Ω0 and Ωt, respectively. Since both possess the same matrix rep-
resentation in the setting of rectangular cartesian coordinates (the identity matrix),
for simplicity in notation we often make g = 1 and G = 1, where 1 is the second-
order identity tensor. Then, we can write E = 1

2 (C− 1) and e = 1
2 (1− b-1), with

the understanding that the object 1 has different meaning in each case. Likewise,
the deformation gradient of a motionless body may be expressed as F = 1, being 1
interpreted here as a two-point identity tensor relating Ω0 and Ωt. Index notation
proves to be useful when ambiguity is to be removed (e.g. F aA = δaA ).

The push-forward and pull-back transformation induced by ϕ, which relate
tensorial fields between both configurations [63], are denoted by ϕ∗(•) and ϕ∗(•),
respectively. The components of the push-forward of a covariant4 second-order
tensor defined in Ω0 are given by

(ϕ∗ (•))ab =
(
F-1

)A
a

(
F-1

)B
b
(•)AB , (A.1.12)

or in direct notation5

ϕ∗(•) = F-T ·(•)·F-1, (A.1.13)

whereas the components of the pull-back of a covariant second-order tensor defined
in Ωt can be written as

(ϕ∗ (•))AB = F aAF
b
B(•)ab, (A.1.14)

or
ϕ∗(•) = FT ·(•)·F. (A.1.15)

Therefore, in view of (A.1.8) and (A.1.11), the right Cauchy-Green tensor C and the
Finger deformation tensor b-1 can be regarded as the pull-back of the metric tensor

4The definition of the operators ϕ∗(•) and ϕ∗(•) depends on their arguments. The pull-back,

for instance, of a contra-variant tensor in Ωt is defined as (ϕ∗ (•))AB =
`
F-1 Á

a

`
F-1 B́

b
(•)ab.

Since covariant indices can only contract with contra-variant indices, it can be established a rule
for defining ϕ∗(•) and ϕ∗(•) for tensors of any rank [63]. Roughly speaking, a covariant spatial
index, for instance, would transform into a covariant material index via FaA, i.e. T ......aF

a
A = T ......A.

5Recasting the pull-back and push-forward operations in direct notation is a common practice
in solid mechanics literature, and we also adopt it. However, we have to bear in mind that it lacks
of any geometric sense (it is a consequence of the over-reliance on the cartesian structure, see Ref.
[63]), and only definitions in component form Eq.(A.1.12) and Eq.(A.1.14) are strictly valid.



200 A. Mathematical aspects of the continuum formulation

in Ωt, C = ϕ∗(g), and the push-forward of the metric tensor in Ω0, b-1 = ϕ∗(G),
respectively. Furthermore, it can be shown that the Almansi strain tensor is the
spatial counterpart of the Green-Lagrange tensor

e = ϕ∗(E) or eab = (ϕ∗ (E))ab =
(
F-1

)A
a

(
F-1

)B
b
EAB . (A.1.16)

The spatial velocity gradient l is a covariant second-order tensor defined by6

lab = gac
∂vc

∂xb
=

∂

∂t
(
∂xc

∂XB
)
∂XB

∂xb
= gacḞ

c
B

(
F-1

)B
b
, (A.1.17)

where vc denotes the components of the spatial velocity, or in abstract notation

l(x) = Ḟ
(
ϕ-1(x, t)

)
F-1(x, t) , (A.1.18)

being Ḟ the derivative of F with respect to time holding X fixed. The spatial
velocity gradient is not a valid candidate for inclusion in the spatial description of
motion due to the requirement of frame-indifference of any constitutive model [9].
Nevertheless, its symmetric part, called the rate of deformation tensor

d(x) =
1
2
(l(x) + lT(x)), (A.1.19)

does conform with the definition of objective spatial tensor7.Furthermore, the rate
of deformation tensor d can be interpreted as the Lie derivative8 of the Almansi
strain tensor:

d = Lve = ϕ∗

(
∂ϕ∗(e)
∂t

)
= ϕ∗

(
∂E
∂t

)
. (A.1.20)

A.1.0.1 Multiplicative decomposition

The standard local multiplicative decomposition of the deformation gradient into
plastic and elastic parts9 reads

F = F̂e · Fp or F aA = (F̂e)aÂ(Fp)ÂA. (A.1.21)

Although F̂e and Fp cannot be considered as gradients of any deformation mapping,
some kinematic relationship can be derived in analogy with the strain measures
given in Eq.(A.1.7), Eq.(A.1.9), Eq.(A.1.10) and Eq.(A.1.11). In the reference

6Following a frequent abuse of notation x = ϕ (X, t) = x (X, t) and X = ϕ-1(x, t) = X (x, t) .
7d transforms according to d+ = QdQT under a superposed rigid body motion, defined by

the rotation tensor Q, of the spatial configuration.
8Since tensor fields on the reference configuration remain unaltered under spatially superposed

rigid body motions, e is firstly pulled backward from the spatial to the reference configuration,
yielding E, and then differentiated (Ė) prior to being pushed forward to the current configuration
[63].

9To identify those tensorial fields associated to the intermediate configuration Ω̂t, we use a hat
on both the tensorial quantity and the corresponding index
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configuration Ω0, the plastic counterparts of the right Cauchy-Green tensor and
the Green-Lagrange tensor are defined as

Cp = FT
p ·Fp or (Cp)AB = (Fp)ÂA(Fp)B̂BĜÂB̂ , (A.1.22)

Ep =
1
2
(Cp − Ĝ) or (Ep)AB =

1
2

((Cp)AB −GAB) . (A.1.23)

where ĜÂB̂ = δÂB̂ is the metric defined in Ω̂t. Similarly, the elastic right Cauchy-
Green Ĉe and Green-Lagrange Êe tensors, and the plastic Finger deformation
and Almansi strain tensors, b̂

-1

p and êp, respectively, all of them defined in the
intermediate configuration Ω̂t, are given by

Ĉe = F̂
T

e ·F̂e or (Ĉe)ÂB̂ = (F̂e)aÂ(F̂e)bB̂gab, (A.1.24)

Êe =
1
2
(Ĉe − Ĝ) or (Êe)ÂB̂ =

1
2
((Ĉe)ÂB̂ − ĜÂB̂), (A.1.25)

b̂
-1

p = F̂
-T

p ·F̂
-1

p or (b̂
-1

p )ÂB̂ = (F̂
-1

p )A
Â
(F̂

-1

p )B
B̂
GAB , (A.1.26)

êp =
1
2
(Ĝ− b̂

-1

p ) or (êp)ÂB̂ =
1
2
(ĜÂB̂ − (b̂

-1

p )ÂB̂). (A.1.27)

Finally, the spatial elastic finger deformation tensor b-1
e and the elastic Almansi

strain tensor ee take the form

b-1
e = F̂

-T

e ·F̂
-1

e or (b-1
e )ab = (F̂

-1

e )Âa(F̂
-1

e )B̂bĜÂB̂ , (A.1.28)

ee =
1
2
(g− b-1

e ) or (ee)ab =
1
2
(gab − (b-1

e )ab). (A.1.29)

A valuable relationship may be derived from Eq.(A.1.10), Eq.(A.1.29) and Eq.(A.1.27)

eab − (ee)ab =
1
2
((b-1

e )ab − (b-1)ab)

=
1
2
(F̂

-1

e )Âa(ĜÂB̂ − (b̂
-1

p )ÂB̂)(F̂
-1

e )B̂b

= (F̂
-1

e )Âa(êp)ÂB̂(F̂
-1

e )B̂b.

(A.1.30)

Consider that F̂e is expressed as

F̂e = Î + Ĵe or (F̂e)aÂ = δa
Â

+ (Ĵe)aÂ. (A.1.31)

The assumption of infinitesimal elastic strains implies that each component of ten-
sor Ĵe is small compared with unity |(Ĵe)aÂ ¿ 1|. Consequently, we neglect terms
O(‖Ĵe‖) and accept the approximation

F̂e = Î or (F̂e)aÂ = δa
Â
. (A.1.32)
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The same holds for F̂
-1

e . Expanding F̂
-1

e = (Î + Ĵe)−1 in a Taylor’s series and
neglecting again terms O(‖Ĵe‖), we have

(F̂
-1

e )Âa = δÂa . (A.1.33)

Consequently, all tensorial objects defined in the intermediate configuration are
translated into spatial objects by applying identity mappings10 between both con-
figurations.

By substituting Eq.(A.1.33) in Eq.(A.1.30), we obtain

eab − (ee)ab = (F̂
-1

e )Âa(F̂
-1

e )B̂b(êp)ÂB̂ = δÂaδ
B̂
b (êp)ÂB̂ . (A.1.34)

The right-hand side term of Eq.(A.1.34) has no explicit references to any elastic
measure (it can be constructed only in terms of Fp) and consequently it can be
identified as the plastic Almansi strain tensor

(ep)ab = δÂaδ
B̂
b (êp)ÂB̂ . (A.1.35)

By virtue of (A.1.34) and (A.1.35)

e(x) = ee(x) + ep(x), (A.1.36)

i.e. the additive decomposition of the spatial strain tensor into plastic and elas-
tic parts holds under the assumption of infinitesimal elastic strains and arbitrary
plastic deformations.

Dually, in the reference configuration Ω0, the difference between the total Green-
Lagrange strain tensor E and its plastic counterpart Ep yields

E−Ep = ϕ∗(ee) or EAB − (Ep)AB = F aAF
b
B(ee)ab, (A.1.37)

which shows that E−Ep is a material strain tensor induced from the elastic Eulerian
tensor ee via a pull-back transformation. We shall denote Ee = E− Ep, although
acknowledging that Ee is not intrinsically an elastic tensor, as both F̂e and Fp are
coupled geometrically in its definition. A useful expression can be also derived from
the above relations:

E−Ep = ϕ∗(ee) = ϕ∗(e− ep) = ϕ∗(e)− ϕ∗(ep) = E− ϕ∗(ep)
⇒ Ep = ϕ∗(ep) . (A.1.38)

Rate form expressions of the decoupling of plastic and elastic effects are also of
considerable assistance in the formulation of the constitutive model. By inserting
Eq.(A.1.21) in Eq.(A.1.17), we get upon rearrangement

10The “hatted” uppercase indices (in Ω̂t) and the lower case indices (in Ωt) of the component

tensors are interchangeable. Applying, for instance, the identity tensor whose components are δÂa
is equivalent to transform the covariant intermediate index Â of the argument into the covariant
spatial index a.
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l = le + F̂e · l̂p ·F̂
-1

e , (A.1.39)

or in components

lab = (le)ab + gac(F̂e)cÂ(F̂
-1

e )B̂b(̂lp)
Â
B̂
, (A.1.40)

where le stands for the spatial elastic velocity gradient, defined, in analogy with
Eq.(A.1.17), as

(le)ab = gac(
˙̂Fe)cÂ(F̂

-1

e )Âb, (A.1.41)

and l̂p is the plastic velocity gradient (embedded in the intermediate configuration
Ω̂t)

(̂lp)ÂB̂ = (Ḟp)ÂA(F̂
-1

p )A
B̂
. (A.1.42)

Again, assumptions (A.1.32) and (A.1.33) permit the second term of the right-
hand side of Eq.(A.1.40) to be expressed solely through terms depending on Fp

and, hence, it can identified as the plastic velocity gradient lp, whose components
are therefore given by

(lp)ab = gacδ
c
Â
δB̂b (̂lp)ÂB̂ . (A.1.43)

The preceding definitions implicates that the additive decomposition holds for
the velocity gradient tensor, i.e. l(x) = le(x) + lp(x) and, obviously also for its
symmetric part d

d = de + dp. (A.1.44)

Furthermore, it can be easily verified that the plastic and elastic parts of the rate of
deformation tensor are the Lie derivative of the plastic and elastic Almansi strain
tensors, i.e.

dp = Lvep and de = Lvee , (A.1.45)

respectively.

A.1.1 Structure of the free energy function

The dependence of the free energy function per unit reference volume ψ on the
elastic deformation F̂e can be specified in different configurations and in different
functional forms, provided that they satisfy the restriction placed by objectivity,
i.e. ψ must be unaffected by rotations of the deformed configuration Ωt:

ψ̂(F̂e, ξ
h, ξs) = ψ̂(Q · F̂e, ξ

h, ξs), (A.1.46)

where Q is an arbitrary orthogonal tensor. The polar decomposition (A.1.6) for
the elastic part of the gradient deformation reads

F̂e = R̂e · Ûe. (A.1.47)
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By taking QT = R̂e and upon substitution of Eq.(A.1.47) in Eq.(A.1.46), we get

ψ̂(F̂e, ξ
h, ξs) = ψ̂(Ûe, ξ

h, ξs), (A.1.48)

that is, ψ must depend only on the stretching part of F̂e. In particular, in view of
definition (A.1.25) of the elastic Green-Lagrange tensor, we may write

ψ = ψ̂(Êe, ξ
h, ξs). (A.1.49)

The functional form of ψ is further restricted by the isotropy of the elastic response,
which implies a functional form of the type:

ψ = ψ̂(IÊe
, IIÊe

, IIIÊe
, ξh, ξs), (A.1.50)

where IÊe
, IIÊe

and IIIÊe
are the principal invariants of Êe, given by the following

expressions:

IÊe
= t̂r Êe = (Êe)ÂB̂(Êe)ÂB̂ , (A.1.51)

IIÊe
= t̂r Êe · Êe = (Êe)ÂB̂(Êe)B̂Â, (A.1.52)

IIIÊe
= det(Êe). (A.1.53)

In order to revert to a spatial formulation in terms of the elastic strain tensor ee,
we must find expressions IÊe

= f(ee), and so forth, which, as it may be surmised
from definitions (A.1.51), (A.1.52),(A.1.53), and the relationship:

(Êe)ÂB̂ = (F̂e)aÂ(ee)ab(F̂e)bB̂ , (A.1.54)

is a somewhat cumbersome task in a general context of unrestricted elastic strain
magnitude. However, the approximation

(Êe)ÂB̂ ≈ δaÂδbB̂(ee)ab (A.1.55)

holds for the small elastic strain regime, as it is inferred following the same reasoning
applied in derivation (A.1.35). In the light of this simplification, we may identify
the invariants of Êe and ee, and legitimately express the energy function per unit
reference volume as a function of ee:

ψ = ψ(ee, ξ
h, ξs) = ψ(Iee , IIee , IIIee , ξ

h, ξs). (A.1.56)

Proposition A.1.1. The rate of change of the free energy function is given by

ψ̇ =
∂ψ

∂ee
: de +

∂ψ

∂ξhα
ξ̇hα +

∂ψ

∂ξsβ
ξ̇sβ , (A.1.57)

where de is the elastic part of the rate of deformation tensor (see Eq.(A.1.45)).
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Proof. The internal variables ξhα, α = 1, 2 . . . nih, and ξsβ , β = 1, 2 . . . nis are
scalar values and, hence, they can be differentiated with respect to time directly.
The time derivative of ψ, holding ξh and ξs fixed, requires further manipulation.
Using the chain rule and the identity (A.1.45), we get

∂ψ

∂t

∣∣∣∣
ξ=const

=
∂ψ

∂(ee)ab
∂(ee)ab
∂(Ee)AB

∂(Ee)AB
∂t

=
∂ψ

∂(ee)ab

(
F-1

)A
a

(
F-1

)B
b

∂(Ee)AB
∂t︸ ︷︷ ︸

Lvee=de

=
∂ψ

∂(ee)ab
(de)ab .

(A.1.58)

¤

Suppose that at time t0 (x = X) the Cauchy stress field is given by:

σ(x, t0) = σ0(X). (A.1.59)

This initial stress field cannot be directly summed to (2.4.5), since it represents
initial forces (defined in Ω0) measured per unit reference area. This notion of stress
coincides with the definition of the second Piola-Kirchhoff stress tensor, denoted
by S, hence S0(X) = σ0(X). The Kirchhoff stress tensor τ is, in turn, the push-
forward of the second Piola-Kirchhoff stress tensor. Therefore, the current stress
state can be written as:

τ (x, t) = ϕ∗(S0) + ce : ee = F · S0 · FT + ce : ee. (A.1.60)

For completeness, it would be pertinent to analyze if the stress field (A.1.60) is
compatible with the existence of an elastic free energy function. Observe that one
of the fundamental assumption stated in Section (2.3) was that the free energy
function depends on F solely through its elastic part F̂e. It is obvious that this
assumption does not hold for a non stress-free reference configuration, since the
deformation gradient itself is involved in the definition. In the following proposition,
an expression for the elastic free energy is derived for this particular case of non
stress-free reference configuration.

Proposition A.1.2. Under the assumption of small elastic strain, the Kirchhoff stress
tensor τ (x) given by

τ =

τ0︷ ︸︸ ︷
F · S0 · FT +ce : ee, (A.1.61)

can be obtained as the derivative, with respect to ee, of the following elastic free
energy function:

ψe =
ψe0︷ ︸︸ ︷

τ0 : ee +
1
2
ee : ce : ee, (A.1.62)

where S0(X) denotes the initial stress field.
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Proof. Differentiation of the second term of the right-hand side of Eq.(A.1.62)
involves no difficulty. Attention is confined to the first term ψe0. Inserting the
multiplicative decomposition (A.1.21) in the expression of ψe0, we get

ψe0 = F aAF
b
BS0

AB(ee)ab = (F̂e)aÂ(F̂e)bB̂(ee)ab

(Ŝ0)
ÂB̂

︷ ︸︸ ︷
S0

AB(Fp)ÂA(Fp)B̂B

= (F̂e)aÂ(F̂e)bB̂(ee)ab(Ŝ0)ÂB̂ .

(A.1.63)

Note that tensor Ŝ0 is independent of any elastic measure. Thus, taking the deriva-
tive of Eq.(A.1.63) with respect to ee, it gives

∂ψe0

∂(ee)cd
= (Ŝ0)ÂB̂

(
(F̂e)cÂ(F̂e)dB̂ + (ee)ab

∂(F̂e)aÂ(F̂e)bB̂
∂(ee)cd

)
. (A.1.64)

By using the chain rule, and identities (A.1.54) and (A.1.25),

∂(•)
∂(ee)cd

=
∂(•)

∂(Ĉe)ÊF̂

∂(Ĉe)ÊF̂
∂(Êe)ĈD̂

∂(Êe)ĈD̂
∂(ee)cd

= 2
∂(•)

∂(Ĉe)ĈD̂
(F̂e)cĈ(F̂e)dD̂. (A.1.65)

Inserting Eq.(A.1.65) in Eq.(A.1.64), it yields

∂ψe0

∂(ee)cd
= (Ŝ0)ÂB̂

(
(F̂e)cÂ(F̂e)dB̂ + 2(F̂e)cĈ(F̂e)dD̂(ee)ab

∂(F̂e)aÂ(F̂e)bB̂
∂(Ĉe)ĈD̂

)

= (Ŝ0)ÂB̂(F̂e)cÂ(F̂e)dB̂

(
1 + 2(ee)ab

∂(F̂e)aĈ(F̂e)bD̂
∂(Ĉe)ĈD̂

)
.

(A.1.66)

By considering the definition (A.1.24) of Ĉe,

∂(Ĉe)ĈD̂
∂(Ĉe)ÊF̂

=
∂((F̂e)aĈ(F̂e)bD̂)

∂(Ĉe)ÊF̂
gab = δÊ

Ĉ
δF̂
D̂
. (A.1.67)

Hence,
∂((F̂e)aĈ(F̂e)bD̂)

∂(Ĉe)ÊF̂
= gabδÊ

Ĉ
δF̂
D̂
. (A.1.68)

Inserting (A.1.68) in (A.1.66), we finally get

∂ψe0

∂(ee)cd
= (τ0)cd(1 + 2(ee)abgab), (A.1.69)

or in compact notation
∂ψe0

∂ee
= τ0(1 + 2tr ee). (A.1.70)

Under the assumption of small elastic strain, 1À 2tr ee. Therefore:

∂ψe0

∂ee
≈ τ0, (A.1.71)

as asserted. ¤
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A.1.2 Lie derivative of some spatial tensors

The following identities are useful in the linearization of the governing equations.

Proposition A.1.3. The Lie derivative of the metric tensor g is given by

(Lvg)ab = 2 dab, (A.1.72)

where dab is the component matrix of the rate of deformation tensor.

Proof. By using definition (A.1.20) of Lie derivative, we get

(Lvg)ab =
(
ϕ∗

(
∂ϕ∗(g)
∂t

))

ab

=
(
F-1

)C
a

(
F-1

)D
b

∂

∂t
(F cCF

d
Dgcd)

=
(
F-1

)C
a

(
F-1

)D
b
(Ḟ cCF

d
Dgcd + F cC Ḟ

d
Dgcd)

=
(
F-1

)C
a
Ḟ cCgcb +

(
F-1

)D
b
Ḟ dDgad.

(A.1.73)

Finally, inserting the definition of the spatial velocity gradient l (see Eq.(A.1.17))
in Eq.(A.1.73) yields

(Lvg)ab = lba + lab = 2dab. (A.1.74)

¤

Proposition A.1.4. The Lie derivative of the inverse of the metric tensor g−1 is
given by

(Lvg−1)ab = −2

(I)abcd

︷ ︸︸ ︷
gacgbd dcd = −2(I)abcddcd. (A.1.75)

Proof. This relation follows immediately from differentiation11 of the identity
gab gbc = δac and the result presented in proposition (A.1.3):

Lv(g−1 · g) = (Lvg−1)abgbc + gab(Lvg)bc = 0

⇒ (Lvg−1)ae = −gab gec(Lvg)bc = −2 gab gecdbc.
(A.1.76)

¤

The foregoing results can be exploited to obtain the Lie derivatives of the fourth
order tensors involved in the definition of the elasticity tensor (see Eq.(2.4.4)):

ce = κe Ivol + 2µe Idev = (κe − 2
3
µe) Ivol + 2µe Isym,

namely, the volumetric tensor

(Ivol)abcd = (1⊗ 1)abcd = (g−1 ⊗ g−1)abcd = gabgcd, (A.1.77)
11Note that the Lie derivative satisfies the standard product rule, i.e. Lv(A · B) = LvA · B +

A · LvB. This assertion is proved by considering that ϕ∗(A ·B) = ϕ∗(A) · ϕ∗(B) [63].
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the fourth order identity12 tensor,

(I)abcd = gacgbd, (A.1.78)

and the symmetric fourth order identity tensor

(Isym)abcd =
1
2
((I)abcd + (I)abdc) =

1
2
(gacgbd + gadgbc). (A.1.79)

Observe that in the definition of the elasticity tensor, only fully contravariant ten-
sors are involved. This follows from the fact that the elasticity tensor is an operator
that takes strain measures, which are regarded as covariant second-order tensors,
to stress quantities, which are contravariant.

Proposition A.1.5. The Lie derivative of the (fully contravariant) fourth order
volumetric tensor is expressible as:

LvIvol =
O
Ivol : d, (A.1.80)

where the components of the sixth order tensor
O
Ivol are given by the following

formula:

(
O
Ivol)abcdef = −2(gab(I)cdef + gcd(I)abef ). (A.1.81)

Proof. In virtue of the product rule of differentiation, we can write

(LvIvol)abcd = (Lv(g−1 ⊗ g−1))abcd = (Lvg−1)abgcd + gab(Lvg−1)cd. (A.1.82)

Finally, using property (A.1.75), the above equation takes the form

(LvIvol)abcd = (−2 (I)abef def ) gcd + gab (−2 (I)cdef def )

= −2 (gcd(I)abef + gab(I)cdef )def .
(A.1.83)

¤

The following identity can be inferred from definition (A.1.81):

(LvIvol)abcd ecd = −2 (tr e (I)abef + gabeef )def , (A.1.84)

where e denotes any second order covariant tensor.

12The denomination “identity” may appear a misnomer herein. Strictly speaking, the fourth
order identity tensor relating second order quantities in the spatial configuration is defined as
(I)abcd = δacδ

b
d. As stated earlier, in the context of cartesian coordinate system the components

of gab, gab and δab are the same (the Kronecker Delta). However, we shall strive in this appendix
to maintain this distinct treatment because although their components are equal, the underly-
ing meaning of each tensor is different. For instance, whereas the Lie derivative of the metric
Lv(gabēa ⊗ ēb) = 2d, the Lie derivative Lv(δabēa ⊗ ēb) = 0 vanishes.
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Proposition A.1.6. The Lie derivative of the (fully contravariant) fourth order
identity tensor is given by:

LvI =
O
I : d. (A.1.85)

Here the the sixth order tensor
O
I has components:

(
O
I)abcdef = −2(gac(I)bdef + gbd(I)acef ). (A.1.86)

Proof. This proof follows exactly the same lines as the proof of proposition
A.1.5. ¤

Proposition A.1.7. The Lie derivative of the (fully contravariant) symmetric
fourth order identity tensor can be expressed as:

LvIsym =
O
Isym : d. (A.1.87)

where the components of the sixth-order tensor
O
Isym are given by:

(
O
Isym)abcdef = −2(gdf (Isym)abce + gcf (Isym)abde). (A.1.88)

Proof. It follows from the definition (A.1.79) of Isym that

(LvIsym)abcd =
1
2
((LvI)abcd + (LvI)abdc). (A.1.89)

Substituting Eq.(A.1.85) into the above equation yields

(LvIsym)abcd = −2
1
2
(gac(I)bdef + gbd(I)acef

+ gad(I)bcef + gbc(I)adef )def
= −(gacgbegdf + gbdgaegcf

+ gadgbegcf + gbcgaegdf )def .

(A.1.90)

Upon rearranging terms, we finally obtain

(LvIsym)abcd = −(gdf (

2 (Isym)abce

︷ ︸︸ ︷
gacgbe + gbcgae) + gcf (

2 (Isym)abde

︷ ︸︸ ︷
gbdgae + gadgbe )) def

= −2(gdf (Isym)abce + gcf (Isym)abde) def .

(A.1.91)

¤

The following identity can be deduced from definition (A.1.88):

(LvIsym)abcdecd = −2 (eafgbe + gaeebf ) , (A.1.92)

where e denotes any symmetric second order covariant tensor.
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A.1.2.1 Spatial elasticity tensor

The Lie derivative of the elasticity tensor can be written in terms of the quantities
defined in the preceding discussion:

Lvce = κe LvIvol + 2µe (LvIsym − 1
3
LvIvol) +

∂ce

∂ξh
ξ̇h

=
(

(κe − 2
3
µe)

O
Ivol + 2µe

O
Isym

)
: d +

∂ce

∂ξh
ξ̇h.

(A.1.93)

A result of much interest is the double contraction of Lvce and the elastic
Almansi strain tensor. The following proposition addresses this question.

Proposition A.1.8. Let ee be the Almansi stress tensor and ce the fourth or-
der elasticity tensor, both defined in the spatial configuration. Then, the double
contraction of the Lie derivative of ce and ee can be expressed as:

Lvce : ee = ae(ee) +
∂ce

∂ξh
: eeξ̇

h, (A.1.94)

where the components of the fourth order tensor ae are given by:

(ae)abef = −2
((
κe − 2

3
µe

)(
gab(ee)ef + tr ee(I)abef

)

+ 2µe
(
(ee)afgbe + (ee)bfgae

))
.

(A.1.95)

Proof. This follows immediately from substituting identities (A.1.84) and (A.1.92)
into Eq.(A.1.93). ¤

For the sake of notational compactness, it proves advantageous to express ae(ee)
in symbolic notation. This task is not obvious, since the last term of the right hand
side of Eq.(A.1.95) cannot be constructed using conventional symbolic operators.
Thus, we are compelled to introduce a new operator, denoted symbolically as Is(•)
and defined by the following relation

(Is(e))abef =
1
2
(
eafgbe + ebfgae

)
, (A.1.96)

where e stands for any second order symmetric tensor. This operator has the
following remarkable properties. Let d and e be symmetric second order tensors.
Then, it follows from Eq.(A.1.96) that

Is(e) : d =
1
2
(
e · d + d · e)

= sym(e · d). (A.1.97)

Furthermore,
Is(1) = Isym. (A.1.98)
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i.e., when acting on the identity tensor 1, it produces the fourth order symmetric
identity tensor Isym, previously defined in Eq.(A.1.79). Therefore, according to
Eq.(A.1.95) and Eq.(A.1.96), the tensor ae can be symbolically written as

ae(ee) = −2
((
κe − 2

3
µe

)(
1⊗ ee + tr eeI

)
+ 2µe Is(ee)

)
. (A.1.99)

A.1.2.2 Fully covariant tensors

The tensorial objects appearing in the foregoing developments were regarded as
fully contravariant. However, in the formulation of the constitutive equation, fully
covariant fourth-order tensors may come also into play. For instance, the plastic
flow vector is aligned with the rate of deformation tensor, which is a strain measure
and hence it is considered as a fully covariant tensor. Hence, if one wants to
relate through an affine transformation the plastic flow vector m (covariant) to the
Kirchhoff stress tensor τ (contravariant), the corresponding fourth-order operator
A must be fully covariant: .

mab = Aabcd τ
cd +Bcd. (A.1.100)

Here our interest is confined to devise an expression for the Lie derivative of a fully
covariant fourth order tensor of the type

A = AvolIvol +AdevIdev. (A.1.101)

To remove ambiguity and explicitly indicate the covariant nature of this tensor, it
proves helpful to write the above equation in component form:

Aabcd = (Avol − 1
3
Adev)(Ivol)abcd +Adev(Isym)abcd, (A.1.102)

where
(Ivol)abcd = (1⊗ 1)abcd = (g⊗ g)abcd = gabgcd, (A.1.103)

(Isym)abcd =
1
2
((I)abcd + (I)abdc) =

1
2
(gacgbd + gadgbc). (A.1.104)

The derivation of the Lie derivative of the covariant volumetric fourth-order tensor
Ivol and the covariant symmetric identity tensor Isym proceeds along the same lines
discussed for their contravariant counterparts (see Eqs. (A.1.81) and (A.1.88)).
Since no new insight is to be gained from this derivations, we simply quote the
final result:

(LvIvol)abcd = 2
(
gab(I)efcd + gcd(I)efab

)
def , (A.1.105)

(LvIsym)abcd = 2(δfd(Isym)eabc + δfc(Isym)eabd), (A.1.106)

where

(I)deab = δdaδ
e
b, (I)eabc = gabδ

e
c, (Isym)eabc =

1
2
(
(I)eabc + (I)cabe

)
. (A.1.107)
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We reiterate that, when using Cartesian coordinates, raising or lowering indices
do not affect the values of tensor components. Therefore, from a comparison of
Eq.(A.1.105) and Eq.(A.1.81), and also Eq.(A.1.106) and Eq.(A.1.88), we can con-
clude that the expressions for the Lie derivative of Ivol and Isym when those tensors
are regarded as covariants are identical to the corresponding Lie derivatives when
Ivol and Isym are considered contravariant, except for the sign. We can exploit this
analogy to directly derive the covariant counterpart of Eq.(A.1.95):

LvA : τ = aτ (Avol, Adev, τ ) : d +
∂A

∂t
: τ , (A.1.108)

being aτ a fourth order tensor given by the following formula

aτ (Avol, Adev, τ ) = 2
((
Avol − 1

3
Adev

)(
1⊗ τ + tr τI

)
+ 2Adev Is(τ )

)
, (A.1.109)

and τ any contravariant second order tensor.

A.2 Governing equation in generalized stresses

The aim of this section is to show that the set of governing equations can be cast
into the following reduced format:

Σ̇ = A(Σ, Ė) +
3∑

β=1

λ̇βΞβ(Σ), (A.2.1)

wherein Σ denotes a generalized stress variable and A and Ξβ , (β = 1, 2, 3) are as
yet undetermined functions of Σ and Ė.

For this purpose, we first derive the rate form of the elastic relationship τ =
τ0 + ce : ee by applying the Lie derivative:

Lvτ =

=0︷ ︸︸ ︷
Lvτ0 +Lvce : ee + ce : Lvee

= Lvce : ee + ce : (Lve− Lvep)
= Lvce : ee + ce : (d− dp).

(A.2.2)

As stated in section A.1.2.1 (see Eq.(A.1.95)), the Lie derivative of ce can be
expressed in terms of the rate of deformation tensor and the rate of change of
the internal hardening variable. Substituting Eq.(A.1.95) into the above equation
yields

Lvτ =

Lvce:ee︷ ︸︸ ︷
ae(ee) : d +

∂ce

∂ξh
: ee ξ̇

h +ce : (d− dp)

=
(
ce + ae(ee)

)
: d− ce : dp +

∂ce

∂ξh
: ee ξ̇

h,

(A.2.3)



A.2 Governing equation in generalized stresses 213

where the fourth order tensor ae(ee) has been defined in Eq.(A.1.95).
The evolution of the vector of internal variables can be expressed in compact

format as

ξ̇ =
[
ξ̇h

ξ̇s

]
= λ̇1

[−2ξhs22p
0

]
+ λ̇2

[
0
2q

]
=

3∑

β=1

λ̇βhβ , (A.2.4)

where hβ is defined as

h1 =
[−2ξhs22p

0

]
, h2 =

[
0
2q

]
, h3 =

[
0
0

]
. (A.2.5)

In section 2.3, it was established that any state function at current time t is express-
ible as a function of the point values of F, the driving variable, and the strain-like
state variables {ee, ξ}. Nevertheless, the description can be conceived alternatively
in terms of F and a set of stress-like variables, namely τ (or S) and r. Although
within the framework of classical associative plasticity the stress-like internal vari-
able vector r is identified as the thermodynamic conjugate variable to ξ, one need
not to assign a particular thermodynamic meaning to r 13. Variable r can be
any stress-like state function provided that the operator D defined through the
expression

ṙ = D · ξ̇, (A.2.6)

is invertible. The choice

r =
[
s1
c

]
, (A.2.7)

fulfils this condition, since the associated operator

D =



∂s1h
∂ξh

0

∂ch
∂ξh

H


 , (A.2.8)

is invertible whenever
∂s1h
∂ξh

6= 0 and H 6= 0 14. The derivatives
∂s1h
∂ξh

> 0 and

∂ch
∂ξh

> 0 quantify how the elliptical cap and the Drucker-Prager surfaces evolves

upon a change of the internal hardening variable. Thus, they can be regarded as
hardening moduli. The other component of D is the softening modulus H < 0,
defined in Eq.(2.5.79). The operator D is therefore referred to as the generalized
plastic moduli.

The rate form Eq.(A.2.3) of the elastic constitutive relation combined with flow
rule for the plastic strains (see Eq.(3.1.9)) and the evolution equation (A.2.4) lead

13As explained in Appendix C.1, the multisurface nature of our model renders the identification
of these conjugate variables a difficult task.

14In Eq.(2.3.3) it was stated that the softening mechanism was not active for lower levels of
densification, i.e. H = 0. In these circumstances, however, the role of the interval softening
variable ξs is irrelevant and we can simply write ξ = ξh and r = s1.
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to the following equation:

Lvτ = (ce + ae) : d−
3∑

β=1

λ̇β ce : mβ +
3∑

β=1

λ̇β
∂ce

∂ξh
: ee h1β

= (ce + ae) : d +
3∑

β=1

λ̇β
(∂ce

∂ξh
: ee h1β − ce : mβ

)
.

(A.2.9)

Factoring out the elasticity tensor ce in the second term of the right-hand side of
the above, we get

Lvτ = (ce + ae) : d + ce :
3∑

β=1

λ̇β
(

−4mβ︷ ︸︸ ︷
c-1

e :
∂ce

∂ξh
: ee h1β −mβ

)

= (ce + ae) : d− ce :
3∑

β=1

λ̇β
4
mβ .

(A.2.10)

Remark A.2.1. It is worthwhile to digress briefly and examine in depth the struc-
ture of Eq.(A.2.9). In particular, we are interested in underlying those aspects that
make this formulation different from that of classical infinitesimal plasticity, as pre-
sented, for instance, in Simo[93]. The first distinctive feature is the use of objective
rates (Lie derivative) in lieu of standard differentiation . Another difference is the
coupling between elastic and plastic behavior, which is manifested by the term in
Eq.(A.2.9) involving the derivative with respect of ξh of ce. By using definition
(2.4.4) of the elasticity tensor ce, the last term of Eq.(A.2.10) can be expanded in
the following manner:

4
mβ = −c-1

e :
∂ce

∂ξh
: ee h1β + mβ

= −( 1
9κe

Ivol +
1

2µe
Idev

)
:
(∂κe
∂ξh

tr ee + 2
∂µe

∂ξh
dev ee

)
h1β + mβ

=
(− 1

3κe
∂κe

∂ξh
tr ee h1β +

1
3
trmβ

)
1 +

(− 1
µe
∂µe

∂ξh
dev ee h1β + devmβ

)
.

(A.2.11)

As it can be inferred from definition (A.2.5), the following relation between h1β

and the plastic flow vector mβ holds:

h1β = δeβξ
htrmβ . (A.2.12)

Taking the trace of Eq.(A.2.11) and inserting Eq.(A.2.12), we obtain

tr
4
mβ = tr mβ

(
1− 1

κe
∂κe

∂ξh
tr ee δeβ ξ

h
)

= tr mβ
(
1− ∂logκe

∂ξh
tr ee δeβ ξ

h
)
.

(A.2.13)
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To determine the relative influence of the contribution due to non-linear elasticity
in the direction of the plastic flow vector mβ , one has to evaluate the derivative
∂logκe/∂ξh. The elastic bulk modulus can be expressed in terms of the Young’s
modulus Ee through Eq.(2.4.2). Then, using the exponential curve fit (2.5.60) for
Ee (the Poisson’s ratio is regarded as constant) one obtains the following analytical
expression for κe:

κe(ξh) =
1

3(1− 2νe)
Ee(ξh) =

1
3(1− 2νe)

η0
ξh
E0e

BE(ξh−η0). (A.2.14)

Differentiation of logκe then yields

∂logκe

∂ξh
=

∂

∂ξh
(log

η0
ξh

) +BE = BE − 1
ξh
. (A.2.15)

Inserting Eq.(A.2.15) in Eq.(A.2.13) leads to

tr
4
mβ = tr mβ

(
1− tr ee (ξhBE − 1)

)
. (A.2.16)

As seen in section 2.5.4, for a typical Distaloy AE the adjustable constant BE ≈ 9.
Thus, according to Eq.(A.2.16), the effect of non-linear elasticity (dependence of ce

upon ξh) can be viewed as an alteration of the direction of the plastic flow vector
mβ of order

tr ee (ξhBE − 1) v 10 tr ee, (A.2.17)

i.e., one order of magnitude greater than the elastic strains.
The other difference lies on the fact that the rate of deformation tensor d is

not solely multiplied by ce in Eq.(A.2.10), but an additional fourth order tensor ae

appears. This is a direct consequence of the hyperelastic nature of the free energy
function. In the course of pure elastic deformation, the plastic multipliers vanish
and Eq.(A.2.10) reduces to Lvτ = (ce + ae(ee)) : d. If one discards the term ae,
then a typical hypoelastic correlation is recovered, Lvτ = ce : d. This tensorial
quantity ae stems, as set forth in Eq.(A.1.95), from the objective differentiation of
ce. Taking into account property Eq.(A.1.98) of the operator Is(•), we can write

ce + ae(ee) =
(
(κe − 2

3
µe)1⊗ 1 + 2µeIsym

)

− 2
((
κe − 2

3
µe

)(
1⊗ ee + tr eeI

)
+ 2µeIs(ee)

)

=
(
κe − 2

3
µe)

(
1⊗ (1− 2 ee)− 2tr eeI

)
+ 2µeIs(1− 2 ee).

(A.2.18)

Since ‖ee‖ ¿ 1, it becomes evident from the above expression that the influence of
ae(ee) is not significant in comparison with ce.

On the other hand, substitution of Eq.(A.2.4) in Eq.(A.2.6) yields the following
result for the rate of the stress-like internal variable:

ṙ =
3∑

β=1

λ̇βD · hβ . (A.2.19)
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The desired result of phrasing the constitutive equations into a single rate equation
emerges by, first, performing a pull-back transformation on equation Eq.(A.2.10):

ϕ∗(Lvτ ) =ϕ∗(ce + ae) : ϕ∗(d)− ϕ∗(ce) :
3∑

β=1

λ̇β ϕ∗
(4
mβ

)

⇒ Ṡ = (Ce + Ae) : Ė−Ce :
3∑

β=1

λ̇β
4
Mβ

(A.2.20)

where Ce, Ae and
4
Mβ are the material counterparts of the spatial quantities ce,

ae and
4
mβ , respectively. Then, by defining the generalized stress variable [92] as

Σ = (S, r), Eqs. (A.2.19) and (A.2.20) can be finally cast as:

Σ̇ = A(Σ, Ė) +
3∑

β=1

λ̇βΞβ(Σ), (A.2.21)

where A(Σ, Ė) =
(
(Ce + Ae) : Ė,0

)
and Ξβ(Σ) =

(−Ce :
4
Mβ ,D · hβ

)
.

The above equation, supplemented with the initial conditions Σ(t0) = (S0, r(ξ0)),
constitutes the initial value ODE system which governs the local behavior of the
powder. The components of the generalized stress tensor Σ are the dependent
variables and the rate of the Green-Lagrange strain tensor Ė is the source term.
The evolution of Σ is further restricted by the loading/unloading and consistency
conditions, which in terms of Σ are written as

λ̇β ≥ 0, φβ(Σ) ≤ 0, (A.2.22)

λ̇βφβ(Σ) = 0, (no sum on β), (A.2.23)

λ̇βφ̇β(Σ) = 0, (no sum on β). (A.2.24)

A.3 Continuum elastoplastic tangent moduli

During intervals of plastic loading, the plastic multipliers λ̇µ belonging to the active
set of constraints Jact [93], i.e. λ̇µ > 0, can be obtained from the consistency
condition φ̇µ = 0, µ ∈ Jact:

φ̇µ =
∂φµ

∂τ
: Lvτ +

∂φµ

∂r
· ṙ = 0, µ ∈ Jact. (A.3.1)

Upon rearrangement, substitution of Eq.(A.2.10) and Eq.(A.2.19)into the above
equation gives

φ̇µ =
∂φµ

∂τ
: (ce + ae) : d−

∑

β∈Jact

(
Nµβ︷ ︸︸ ︷

∂φµ

∂τ
: ce :

4
mβ − ∂φµ

∂r
·D · hβ

)
λ̇β

=
∂φµ

∂τ
: (ce + ae) : d−

∑

β∈Jact

Nµβ λ̇
β = 0.

(A.3.2)
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Assuming that the component matrix of Nµβ , defined as

Nµβ =
∂φµ

∂τ
: ce :

4
mβ − ∂φµ

∂r
·D · hβ , (A.3.3)

is invertible, the expression for the plastic multiplier λ̇µ, µ ∈ Jact takes the follow-
ing explicit form:

λ̇µ =
∑

β∈Jact

N−1
µβ

( ∂φβ
∂τ

: (ce + ae)
)

: d, µ ∈ Jact. (A.3.4)

Inserting Eq.(A.3.4) into Eq.(A.2.10) yields a relation between the Lie derivative
of the Kirchhoff stress and the rate of deformation tensor:

Lvτ = cep : d, (A.3.5)

where

cep =
((

ce + ae

)−
∑

β

∑
µ

N−1
µβ ce :

4
mµ ⊗ ∂φβ

∂τ
: (ce + ae)

)
, µ, β ∈ Jact.

(A.3.6)

The fourth order tensor cep denotes is the continuum elastoplastic tangent moduli
in the spatial configuration.

A.4 Derivation of the IMPLEX algorithmic elasto-
plastic tangent moduli

The spatial algorithmic tangent moduli is the fourth-order tensor satisfying:

Lvτ̃n+1 = c̃ep,n+1 : Lven+1 = c̃ep,n+1 : dn+1. (A.4.1)

wherein τ̃n+1 is the stress tensor obtained from the following stress-update formula
Eq.(3.3.20). We begin by defining the IMPLEX plastic strain tensor:

ẽp,n+1 = ĕp,n +
3∑

β=1

∆λ̃
β

n+1m̃
β
n+1. (A.4.2)

Using the definition (3.2.18) of trial stress, Eq.(3.3.20) can be rephrased as

τ̃n+1 = Fn+1 · S0 · FT
n+1 + c̃e,n+1 : (en+1 − ẽp,n+1)

= Fn+1 · S0 · FT
n+1 + c̃e,n+1 : ẽe,n+1.

(A.4.3)

Applying the Lie derivative to the above expression leads to

Lvτ̃n+1 = Fn+1 ·

=0︷ ︸︸ ︷
∂S0

∂tn+1
·FT
n+1 + Lvc̃e,n+1 : ẽe,n+1 + c̃e,n+1 : (dn+1 − Lvẽp,n+1).

(A.4.4)
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An expression for the second term on the right-hand side of the preceding equation
is elaborated in section (A.1.2.1). The result takes the form

Lvce : ẽe,n+1 = ae(ẽe,n+1) : dn+1 +

=0︷ ︸︸ ︷
∂ξ̃hn+1

∂tn+1

∂c̃e,n+1

∂ξh
: ẽe,n+1

= ae(ẽe,n+1) : dn+1,

(A.4.5)

where the fourth order tensor ae is defined through equation Eq.(A.1.99). Note
that the derivative ∂ξ̃hn+1/∂tn+1 vanishes in virtue of the extrapolated character of
ξ̃hn+1, that is, ξ̃hn+1 does not depend on the deformation state at tn+1.

The rightmost term in Eq.(A.4.4) can be expanded using Eq.(A.4.2):

Lvẽp,n+1 = Lvĕp,n +
3∑

β=1

=0︷ ︸︸ ︷
∂∆λ̃

β

n+1

∂tn+1
m̃β
n+1 +

3∑

β=1

∆λ̃
β

n+1Lvm̃β
n+1

= Fn+1 ·

=0︷ ︸︸ ︷
∂Ep,n

∂tn+1
·FT
n+1 +

3∑

β=1

∆λ̃
β

n+1Lvm̃β
n+1

=
3∑

β=1

∆λ̃
β

n+1Lvm̃β
n+1.

(A.4.6)

Hence, the task of obtaining the Lie derivative of ẽp,n+1 reduces to finding the Lie
derivative of the plastic flow vectors associated to each surface, since

∂∆λ̃
β

n+1/∂tn+1 = 0.

The simplicity afforded by the use of the IMPLEX stress-update scheme is again
manifest. In the context of a standard implicit integration procedure, the tightly
coupled character of the governing equations may make the determination of a
closed-form expression for the term ∂∆λβn+1/∂tn+1 prohibitively complicated.

Applying the Lie derivative to the affine transformation Eq.(3.3.15) relating the
plastic flow vector and the Kirchhoff stress tensor yields

Lvm̃β
n+1 = Lv(Ãβ

n+1 : τ̃n+1) + LvB̃β
n+1

= LvÃβ
n+1 : τ̃n+1 + Ãβ

n+1 : Lvτ̃n+1 + LvB̃β
n+1.

(A.4.7)

According to the geometric issues pointed out in section (A.1.2), stress tensors are
regarded as contravariant, whereas strain measures are covariant. The plastic flow
vector m̃β

n+1 has the same tensorial character as the plastic strain tensor, that is,
m̃β
n+1 is also covariant. Therefore, the fourth-order tensor Ãβ

n+1 takes contravariant
quantities to covariant quantities. Then, it follows that Ãβ

n+1 is a fully covariant
tensor (in contrast to the elasticity tensor c̃e,n+1, which is fully contravariant).
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A general expression for the double contraction of a fully covariant fourth order
tensor and a contravariant second order tensor is given in Eq.(A.1.108) of section
A.1.2.2. Specializing this general expression for the case Adev = (Ãβ

n+1)dev = 2
and Avol = (Ãβ

n+1)vol = 1/3ũβn+1 leads to the following result:

LvÃβ
n+1 : τ̃n+1 = aτ (ũ

β
n+1, τ̃n+1) : dn+1 +

∂ũβn+1

∂tn+1

∂Ãβ
n+1

∂ũβn+1

= aτ (ũ
β
n+1, τ̃n+1) : dn+1,

(A.4.8)

where

aτ (ũ
β
n+1, τ̃n+1) = 2

(1
3
(
ũβn+1 − 2

)(
1⊗ τ̃n+1 + tr τ̃n+1I

)
+ 4 Is(τ̃n+1)

)
. (A.4.9)

The remaining term in Eq.(A.4.7) is given by

LvB̃β
n+1 =

∂ṽβn+1

∂tn+1
1 + ṽβn+1Lv1. (A.4.10)

The first term on the right-hand side of the above equation is zero, since ṽβn+1 de-
pends upon ξ̃hn+1 and ξ̃hn+1. The second term involves the Lie derivative of the co-
variant identity tensor, that is, the metric tensor. Then, according to Eq.(A.1.72),
Eq.(A.4.10) can be written as

LvB̃β
n+1 = 2 ṽβn+1dn+1. (A.4.11)

Inserting Eq.(A.4.11) and Eq.(A.4.8) into Eq.(A.4.7) yields

Lvm̃β
n+1 =

(
aτ (ũ

β
n+1, τ̃n+1) + 2 ṽβn+1

)
: dn+1 + Ãβ

n+1 : Lvτ̃n+1. (A.4.12)

The derivative Lvẽp,n+1 is then obtained by using the above in Eq.(A.4.6)

Lvẽp,n+1 =
( 3∑

β=1

∆λ̃
β

n+1

(
aτ (ũ

β
n+1, τ̃n+1) + 2 ṽβn+1

))
: dn+1

+
( 3∑

β=1

∆λ̃
β

n+1Ã
β
n+1

)
: Lvτ̃n+1.

(A.4.13)

After substituting (A.4.13) and (A.4.5) into Eq.(A.4.4), an expression for the spatial
algorithmic tangent tensor is finally achieved by collecting terms involving Lvτ̃n+1

and dn+1:

(
I + c̃e,n+1 :

3∑

β=1

∆λ̃
β

n+1Ã
β
n+1

)
: Lvτ̃n+1

=
(
ae(ẽe,n+1) + c̃e,n+1 :

(
I −

3∑

β=1

∆λ̃
β

n+1

(
aτ (ũ

β
n+1, τ̃n+1) + 2 ṽβn+1I

)))
: dn+1 ⇒

(A.4.14)
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c̃ep,n+1 = R̃−1
n+1 :

(
ae(ẽe,n+1) + c̃e,n+1 :

(
I −

3∑

β=1

∆λ̃
β

n+1z̃
β
n+1(τ̃n+1)

)
, (A.4.15)

where

R̃n+1 = I + c̃e,n+1 :
3∑

β=1

∆λ̃
β

n+1Ã
β
n+1, (A.4.16)

and
z̃βn+1(τ̃n+1) = aτ (ũ

β
n+1, τ̃n+1) + 2 ṽβn+1I. (A.4.17)



Appendix B

Analytical study of the
compaction of a cylindrical
specimen

B.1 Pressing stage

This appendix is intended to provide some insight into the underlying inelastic large
strain theory. It can be skipped by the expert reader, whereas for the uninitiated
reader it may result of great assistance to grasp the theory and to acquire some
familiarity with terms like deformation gradient, rate of deformation tensor or
plastic flow rule, which are not of common usage in the daily engineering practice.

For this purpose, consider a cylindrical reference configuration Ω0 (that may be
identified with the die cavity) of height H and radius R. The body is deformed by
prescribed displacements on its upper and lateral surfaces. The height and radius at
any deformed state (current configuration Ωt) are given by the functions h = h(t)
and r = r(t), respectively. The deformation throughout the domain is assumed
homogeneous, and it is characterized by the following deformation mapping:

x̃1 =
r(t)
R

X̃1 = Λr(t)X̃1

x̃2 =
h(t)
H

X̃2 = Λz(t)X̃2

x̃3 = X̃3,

(B.1.1)

where {x̃a} and {X̃A} denote cylindrical coordinate systems and Λr and Λz are
the stretches. Inasmuch as the metric tensor associated to a cylindrical coordinate
system is not the identity, it is convenient to revert to a cartesian coordinate system
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222 B. Analytical study of the compaction of a cylindrical specimen

by employing the following transformation:

X1 = X̃1

X2 = X̃2

X3 = X̃3X̃1,

(B.1.2)

(the same transformation holds for the coordinate system {x̃a}), with X̃3 = 0. The
deformation mapping in these coordinate systems can be written as

x1 = ϕ1(X, t) = Λr(t)X1

x2 = ϕ2(X, t) = Λz(t)X2

x3 = ϕ3(X, t) =
x1

X1
X3 = Λr(t)X3.

(B.1.3)

1X

2X

3X

1x

2x

3x

( )h t

H

R

( )r t

Figure B.1

The collection of kinematics measures defined in section 2.2 can be straightfor-
wardly derived from the above mapping. The matrix of the deformation gradient
tensor F, defined in (2.2.3), is given by

F =




Λr(t) 0 0

0 Λz(t) 0

0 0 Λr(t)




= diag (Λr,Λz,Λr), (B.1.4)

where diag (•, •, •) is the shorthand notation for a diagonal matrix. The Green-
Lagrange and the Almansi strain tensors have the following expressions:

E =
1
2

(
FT ·F− 1

)
=

1
2
diag (Λ2

r − 1,Λ2
z − 1,Λ2

r − 1), (B.1.5)
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e =
1
2

(
1− F-T ·F-1

)
=

1
2
diag (1− Λ−2

r , 1− Λ−2
z , 1− Λ−2

r ), (B.1.6)

respectively.
The rate of deformation tensor assumes the form:

d = sym(l) = l = Ḟ·F-1 = diag (
Λ̇r
Λr
,
Λ̇z
Λz
,
Λ̇r
Λr

). (B.1.7)

The volumetric and deviatoric parts of d are of crucial importance in the formula-
tion of the constitutive model. They are expressible as

trd = 2
Λ̇r
Λr

+
Λ̇z
Λz
, (B.1.8)

dev d =
1
3
(
Λ̇r
Λr
− Λ̇z

Λz
) diag (1,−2, 1)⇒ ‖dev d‖ =

√
2
3
| Λ̇r
Λr
− Λ̇z

Λz
|. (B.1.9)

Suppose now that the deformation is such that the material is subjected to a
monotonically increasing compressive state, which ensures that the stress remains
on the elliptical cap surface throughout the deformation. In such situation, the
plastic counterpart of the rate of deformation tensor (see section 2.5.3) takes the
form

dp = λ̇e
(

2dev τ +
2
3
s22p1

)
, (B.1.10)

or in volumetric and deviatoric components

trdp = 2λ̇es22p, (B.1.11)

‖dev dp‖ = 2λ̇eq. (B.1.12)

One of the basic assumption listed earlier (section 2.2.1), and in which relies
in some extent the simplicity of the formulation, states that the magnitude of the
recoverable strains are small in comparison with the permanent strain acquired
during the pressing stage (d ≈ dp). Therefore, it may be legitimately written the
following approximation:

trd ≈ trdp ⇒ 2
Λ̇r
Λr

+
Λ̇z
Λz
≈ 2λ̇es22p, (B.1.13)

‖dev d‖ ≈ ‖dev dp‖ ⇒
√

2
3
| Λ̇r
Λr
− Λ̇z

Λz
| ≈ 2λ̇eq. (B.1.14)

Dividing Eq.(B.1.14) by Eq.(B.1.13), the dependence on the plastic multiplier λ̇e

is eliminated: √
2
3
| Λ̇r
Λr
− Λ̇z

Λz
|

2
Λ̇r
Λr

+
Λ̇z
Λz

≈ q

s22p
(B.1.15)
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The usefulness of approximation (B.1.15) lies on the fact that it relates directly
kinematic measures (stretch ratios) with stress states. For an axial die compaction
(with perfectly rigid die), the radial stretch ratio is the unity at any time Λr = 1.
Hence, expression (B.1.15) reads in this case

q ≈ −
√

2
3
s22p. (B.1.16)

Furthermore, a physical meaning can be attached to variable s2 if one takes into
account that

p =
1
3
(τz + 2τr) =

1
3
τz(1 + 2ktr), (B.1.17)

q =

√
2
3
|τz − τr| =

√
2
3
τz(1− ktr), (B.1.18)

where ktr is the pressure transmission coefficient, defined as the ratio between the
radial pressure exerted on the die τr and the axial stress τz. Inserting (B.1.17) and
(B.1.18) in (B.1.16), one gets

s2 ≈
√

3(1− ktr)
1 + 2ktr

, (B.1.19)

an expression which reveals that, ignoring the influence of elastic strains, the ellip-
tic cap parameter s2 depends solely on the pressure transmission coefficient, and,
therefore, it can be easily calibrated in a uniaxial die compaction test by monitoring
axial and radial pressures throughout the test.

The other parameter governing the size of the elliptical cap surface, s1, admits
an immediate interpretation in the context of an isostatic test. In an such test, the
same pressure is applied in the axial and radial direction (τz = τr), hence q = 0.
According to approximation (B.1.14), this hydrostatic condition corresponds in
terms of prescribed displacements to:

Λ̇r
Λr

=
Λ̇z
Λz
, (B.1.20)

and the Jacobian determinant J takes the form

J = det(F) = Λ3
z. (B.1.21)

Since the deviatoric stress magnitude q is zero, and by virtue of plastic consistency,
the stress state is constrained to lie on the interception point of the elliptical cap
surface and the mean stress axis. Hence,

p =
1
3
tr τ =

1
3
(τz + 2τr) = τz = −s1. (B.1.22)

The above expression can be recast in terms of Cauchy, or true, stresses:

s1 = −τz = −Jσz = −Λ3
zσz. (B.1.23)
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Hence, the s1 parameter can be obtained directly in an isostatic test by measuring
the hydrostatic pressure applied to the cell for each level of density. Nevertheless,
if it is not possible to carry out such experiment, s1 can be calibrated indirectly
from an uniaxial die compaction test through the following expression

s1 = −
√

2
3
s22 + 1 p, (B.1.24)

which has been deduced by simply inserting the yield condition φe = 0 in Eq.(B.1.16).

B.2 Assessment of the smallness of elastic strains

The above particular case of isotropic furnishes a suitable framework for the assess-
ment of the hypothesis of elastic small strains. First, the gradient of deformation
(B.1.4) in this case takes the form

F =

Λz=Λr=Λ︷ ︸︸ ︷
diag (Λr,Λz,Λr) = Λdiag (1, 1, 1). (B.2.1)

In virtue of the multiplicative decomposition A.1.21, we may legitimately write

F = Fe · Fp = ΛeΛpdiag (1, 1, 1), (B.2.2)

where the stretches Λe and Λp are associated to the elastic and plastic deformation,
respectively. The elastic Almansi strain tensor, given in Eq.(A.1.29), can be written
as

ee =
Λ2
e − 1
2 Λ2

e

diag (1, 1, 1). (B.2.3)

Taking the trace of the above expression, we obtain

tr ee = 3
Λ2
e − 1
2Λ2

e

. (B.2.4)

Similarly, the elastic counterpart of the rate of deformation tensor reads

de = Ḟe · F-1
e =

Λ̇e
Λe

diag (1, 1, 1), (B.2.5)

and its trace

trde = 3
Λ̇e
Λe
. (B.2.6)

The following results is crucial for the assessment of the hypothesis of small
strain:

Proposition B.2.1. In a monotonic (hydrostatic compressive) loading history the
ratio between relative density and internal hardening variable is bounded by

η

ξh
≤ e

s1
κe . (B.2.7)
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Proof. First, let the definition of ξh be recast in terms of d and de, i.e.

ξh = η0 e
−
∫ t

t0

trdp dt
= η0 e

−
∫ t

t0

trd dt
e

∫ t

t0

trde dt
(B.2.8)

Taking into account that, by definition, the relative density is given by

η = η0 e
−
∫ t

t0

trd dt
, (B.2.9)

then Eq.(B.2.8) can be expressed as

η

ξh
= e

−
∫ t

t0

trde dt
. (B.2.10)

It follows from Eq.(B.2.6) that the integral in Eq.(B.2.10) can be evaluated as:
∫ t

t0

trde dt =
∫ t

t0

3
Λ̇e
Λe

dt = 3 log Λe(t), (B.2.11)

Expanding the above expression around Λe(t0) = 1, we get
∫ t

t0

trde dt = −3 (
∞∑

k=1

(1− Λe)k

k
) ≤ 0, for Λe ≤ 1. (B.2.12)

The concept of expansion is also employed for expressing tr ee as a polynomial:

tr ee = 3
Λ2
e − 1
2Λ2

e

= −3 (
∞∑

k=1

k + 1
2

(1− Λe)k) ≤ 0 for Λe ≤ 1. (B.2.13)

Subtracting Eq.(B.2.12) from Eq.(B.2.13), we get upon rearrangement

tr ee −
∫ t

t0

trde dt = −3 (
∞∑

k=1

(
1− k

2
(1− Λe)k). (B.2.14)

From the above equation, it follows that

|tr ee| ≥ |
∫ t

t0

trde dt|. (B.2.15)

The condition of plastic consistency indicates that p = −s1. Considering the
constitutive relationship p = κetr ee, we finally get

η

ξh
= e

−
∫ t

t0

trde dt
= e

|
∫ t

t0

trde dt|

≤ e|tr ee| = e
s1
κe .

(B.2.16)

¤
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B.3 Release of axial pressure

This appendix is intended to analytically study the stress state on a cylindrical
specimen during the gradual removal of the upper punch. In particular, our interest
lies in deriving an expression whereby the radial pressure exerted by the die on the
compact is related to the upper punch axial pressure.

s

s

z

r

max

max
sr

res

(a) (b)

R

R

2

1

max

Figure B.2 Compaction of a cylindrical specimen. (a) End of pressing stage. (b) Total
removal of the upper punch.

The powder is pressed by the downward motion of the upper punch while the
lower punch and the die remain stationary. Friction effects are neglected by con-
sidering either a cylindrical specimen with a small height to diameter ratio or a
sufficiently efficient lubrication. The stress at the end of the pressing stage is char-
acterized by its radial and axial components1 σmaxr and σmaxz , respectively. During
pressing, the specimen tends to expand radially. The extent of such expansion at
the end of the pressing stage depends upon the maximum radial pressure σmaxr and
the characteristics of the die. As the die is viewed as an isotropic elastic body, with
Young’s modulus Etool and Poisson’s ratio νtool, the magnitude of this expansion
can be expressed2 as

Rmax1 −R0
1

R0
1

= −σ
max
r

Ktool
, (B.3.1)

where R0
1 is the initial inner radius of the die. The constant Ktool is a measure

of the stiffness of the die in the radial direction. In practice, this constant has to
be obtained by undertaking a linear finite element analysis (see figure B.3). In the
absence of such computations, Ktool may be alternatively estimated on the basis
of a stress analysis of a thick walled cylinder submitted to the action of uniformly

1As already pointed out, the hypothesis of small strains can be legitimately used in describing
the deformation state during the post-pressing operations by simply taking as reference configu-
ration the placement of the body at the end of the pressing stage. Consequently, the Kirchhoff
stress tensor τ appearing in the constitutive equations can be directly replaced by the Cauchy or
true stress tensor σ.

2It is further assumed that this expansion is approximately uniform along the axial direction.
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distributed internal pressure (Timoshenko [101]):

1
Ktool

=
R1

Etool

(
R2

1 +R2
2

R2
2 −R2

1

+ νtool

)
. (B.3.2)
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Figure B.3 Stiffness of the die in the radial direction.

Gradual removal of axial pressing force causes radial pressure to decrease and,
as a consequence, the die tends to revert to its initial dimensions. However, the
compact offers some resistance to the contracting tendency of the inner surface of
the die. For a given decrease in axial pressure ∆σz = σz−σmaxz , the corresponding
decrease in radial pressure ∆σr = σr − σmaxr can be easily obtained by presuming
that elastic conditions prevail on the compact during this process. Indeed, accord-
ing to the Hooke’s law (see Eq.(2.4.5) in 2.4 ), the radial component of the strain
tensor can be written as

εr =
R1 −Rmax1

R0
1

=
1
Ee

(∆σr − νe(∆σθ + ∆σz)). (B.3.3)

where R1−Rmax1 symbolizes the contraction of the die . The radial stress is assumed
to be constant along the radial direction. Hence, in virtue of the momentum balance
equation, we have

∂σr
∂r

+
σr − σθ

r
= 0 ⇒ σr = σθ, (B.3.4)

where σθ denotes the circumferential stress. Inserting the above result into Eq.(B.3.3),
we can write

R1 −Rmax1

R0
1

=
1
Ee

((1− νe)∆σr − νe∆σz). (B.3.5)

The contraction of the die is related to the decrease in radial pressure through the
constant Ktool. Therefore,

− ∆σr
Ktool

=
1
Ee

((1− νe)∆σr − νe∆σz). (B.3.6)

Finally, upon rearrangement, it follows from the above that:

∆σr = Mul∆σz, (B.3.7)
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Figure B.4 (a) Radial pressure as a function of the radial expansion of the compact.
The (constant) slope Ktool depends on the elastic properties of the powder and on the
elastic properties and geometry of the die. (b) Radial pressure as a function of the decrease
in axial pressure.

where

Mul =
νe

(1− νe) +
Ee

Ktool

. (B.3.8)

The parameter Mul gives an indication of how the decrease in axial load affects
the magnitude of the pressure exerted on the die. The dependence of Mul on the
value of the Young’s modulus of the compact is depicted in figure B.5.a, for a die
stiffness3 Ktool = 470600MPa. According to this graph, a change in almost one
order of magnitude in Ee, from 20000MPa to 160000MPa, induces a change in
Mul of 0.1. In the limiting case of total release of axial load, the pressure exerted
on the die can be derived from Eq.(B.3.7) by setting ∆σz = −σmaxz :

σresr = σmaxr −Mulσ
max
z . (B.3.9)

In order to gain additional insight into the representation and interpretation of
stress histories in the p− q plane (deviatoric vs. mean stress), it proves instructive
to plot the evolution of the stress state during the gradual release of axial load on
this plane (see figure B.5.b.). The path emanates from point A, which corresponds
to the end of the pressing stage, and, therefore, lies on the elliptical yield surface.
Then the stress state traces a piecewise linear path ABC. A noteworthy feature of
this path is the kink exhibited at point B, which arises because of the positiveness
of the deviatoric stress measure (see Eq.(B.1.18)). At this point, consequently,
σr = σz, whereas at point C we have σz = 0. The equation for the slope Lul can be
obtained by inserting Eq.(B.3.9) in Eqs. Eq.(B.1.17) and Eq.(B.1.18). After some

3This value corresponds to the stiffness computed in the example shown in section 4.3.
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manipulation, we get

Lul =
√

6(1−Mul)
1 + 2Mul

. (B.3.10)
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Figure B.5 (a) Ratio decrease in radial pressure to decrease in axial pressure during
axial load release (Mul) as a function of the Young’s modulus of the green compact. (b)
Representation on the p − q plane (mean-deviatoric stresses) of the path traced by the
stress during axial load release.
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Figure B.6 Radial stress upon total removal of applied axial force versus final density for
Distaloy AE powder. Analytical prediction for a die radial stiffness Ktool = 470600MPa.

By means of Eqs. (B.1.16) to (B.1.19), the axial and radial stresses at the end
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of the pressing stage are expressible in terms of the attained (relative) density η 4:

σmaxz =
η

η0

√
2s22(η) + 3

3
s1(η), (B.3.11)

σmaxr = ktr(η)σmaxz =
3− s22(η)
2s22(η) + 3

σmaxz (η), (B.3.12)

where η0 is the fill relative density. Thus, a relation between radial stress and
final density can be constructed by combining (B.3.11), (B.3.12) and (B.3.9). This
relation is plotted in figure B.6 for the Distaloy AE powder used for calibrating the
model in Chapter 2.

4As customary, we invoke the approximation ξh ≈ η, that is, the internal hardening variable
is practically identified with the relative density.
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Appendix C

Thermodynamic aspects

C.1 Fulfilment of the Clausius-Duhem inequality

In section 2.3, the existence of a Helmholtz free energy function ψ was postulated.
The additive decomposition for this free energy function was also set forth, ψ = ψ0+
ψe +ψp. Thus far, however, only the functional form of its elastic counterpart ψe =
ψe(ξh) has been outlined (see Eq.(2.4.1)). In the establishment of the hardening
and softening laws, we were compelled by mathematical difficulties to disregard this
aspect, and these constitutive laws were presented as simple empirical correlations,
without invoking any thermodynamic potential for their derivation. Thus, it is
natural to inquire at this point whether this view toward pragmatism has not
induced a thermodynamic inconsistency in our formulation or, in other words,
our constitutive model does satisfy the requirement of positive dissipation (see
Eq.(2.3.7)):

D = τ : dp −

ψ̇h︷ ︸︸ ︷
(
∂ψe

∂ξh
+
∂ψp

∂ξh
)ξ̇h−

ψ̇s︷ ︸︸ ︷
∂ψp

∂ξs
ξ̇s ≥ 0. (C.1.1)

The associated character of the plastic flow on the elliptical cap and the Von Mises
surface, together with the remarks made in section 2.5.3 regarding the plastic flow
on the Drucker-Prager surface, ensures the positiveness of the rate of plastic work
per unit reference volume τ : dp. The term ψ̇s accounts for the release of energy

associated with softening. In this case, the thermodynamic conjugate
∂ψp

∂ξs
of the

internal softening variable ξs can be readily identified as the variable cs, defined in
Eq.(2.5.78):

∂ψp

∂ξs
= cs = c0(e

H0(ξs−ξs0)
c0 − 1). (C.1.2)

Since ψ̇s ≤ 0, the worst conceivable circumstances for the satisfaction of inequality

233
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(C.1.1) is when ψ̇s = 0. Therefore, inequality (C.1.1) reduces to

τ : dp ≥ ∂ψe

∂ξh
ξ̇h +

∂ψp

∂ξh
ξ̇h, (C.1.3)

i.e., the rate at which energy is stored in the powder structure cannot exceed the
rate at which plastic work is supplied.

As stated by Eq.(2.5.60), the material becomes stiffer as densification progresses.
This is reflected also in an increase of internal energy, given by the first term of the
right hand side of inequality (C.1.3):

∂ψe

∂ξh
ξ̇h =

1
2
(3
∂κe

∂ξh
tr2 ee + 2

∂µe

∂ξh
dev ee : dev ee)ξ̇h. (C.1.4)

Albeit the increase of the bulk and shear modulus, represented by the derivatives
∂κe

∂ξh
and

∂µe

∂ξh
, is of the same order as the hardening parameter

∂s1
∂ξh

, they have

weighting factors which are quadratic in the elastic strains, a fact that renders the

energetic contribution
∂ψe

∂ξh
negligible in comparison with the other term of ψ̇h.

Therefore, attention is restricted to prove that

D = τ : dp − ∂ψp

∂ξh
ξ̇h ≥ 0. (C.1.5)

The task of verifying (C.1.5) following a rigorous and sound procedure would require
to devise a closed-form analytical expression for ψp, so that the set of hardening
laws ch = ch(ξh), cv = cv(ξh) and s1 = s1(ξh) could be derived by differentiation
of ψp with respect to ξh. In the work of Bier et al.[7], for instance, this task is
accomplished by assuming the additive split of the plastic free energy into several
parts, each one of them accounting for a different hardening mechanism. Their
constitutive model is amenable to such decomposition because they employ an
unique function for describing the yield condition and, hence, any transformation
of the yield surface in stress space can be easily associated with a combination of
simple isotropic (expansion), kinematic (translation) and distortional (change of
shape) hardening mechanism.

In our case, the hardening behavior is not represented by an unique function,
but by three evolving surfaces, a fact that makes rather difficult to define separately
pure expansions, translations and distortions of the yield condition. The derivation
of an analytical form for ψp, hence, could become prohibitively complicated, if not
impossible. It is necessary, thus, to retrace the analysis from a more pragmatic
perspective, appealing to physical insight and intuition.

Note that our primary concern is not to obtain an expression for ψp, but to
prove the validity of inequality (C.1.5). With this in mind, consider an alternative
constitutive model characterized solely by an elliptical yield function (figure C.1,
dashed curve). The flow rule and the equations governing the size of the ellipse
are the same as those of the original model. A loading history is imposed on
both materials, the one representing the powder and the other one replicating
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the behavior of an idealized symmetric material, in such a way that the internal
hardening variable ξh evolves identically in both cases from ξh to ξh+∆ξh. We also
assume the existence of a free energy function per unit reference volume, denoted by
ψ̃, for the idealized symmetric material. Due to interlocking of rough grains, cold
welding of particles and other microscopic events macroscopically correlated with
a strain-hardening tendency, the internal energy in the powder material increases
by an amount

∆ψ = ψ(ξh + ∆ξh)− ψ(ξh), (C.1.6)

and in the idealized material

∆ψ̃ = ψ̃(ξh + ∆ξh)− ψ̃(ξh). (C.1.7)

p

q

Compression Tension

1s

2s

Figure C.1 Yield condition in the p − q plane for the multisurface model (solid line)
and for an idealized symmetrical model (dashed line).

According to the empirical correlations s1 = s1(ξh) and ch = ch(ξh), given in
Eq.(2.5.53) and Eq.(2.5.56), respectively, for a typical iron based Distaloy AE pow-
der, an increase of ξh from, say 0.8 to 0.9, is accompanied by an increase of the
hydrostatic yield stress in compression of approximately 125 MPa, whereas the in-
crease of yield stress encountered on stress reversal is just 10 MPa. This gives a
ratio increase of strength in (hydrostatic) compression to increase of strength in
(hydrostatic) tension of 125/10 = 12.5. By contrast, the raise of strength predicted
by the elliptical model is the same in compression and tension. Concerning the
energy stored in the powder structure, it seems reasonable to expect also a similar
trend, hence

∆ψ̃ > ∆ψ, (C.1.8)

i.e., in the idealized material the increase of the cohesive forces binding the powder
particles are greater than that in the real material, and this is manifested by a
greater amount of stored internal energy.

This line of reasoning can be exploited further by introducing a third idealized
constitutive model, that we shall referr to as model C. The yield condition of this
model is exactly the same as in the idealized model presented above, henceforth
labelled as model B, but no distortional hardening will be considered, i.e., the
eccentricity of the ellipse is independent of ξh, as illustrated in figure C.2.a. From



236 C. Thermodynamic aspects

this peculiarity, and arguing as above, it can be deduced that the yield stress
predicted by model C will be equal or greater than that predicted by model B for
any loading path (figure C.2.b), inasmuch as (s2)C ≥ (s2)B . This implies that

∆ψ̂ > ∆ψ̃, (C.1.9)

where ψ̂ denotes the Helmholtz free energy function per unit reference volume
associated to model C.

An interesting conclusion can be drawn from inequalities (C.1.9) and (C.1.8):
for the same increment ∆ξh in the internal hardening variable, the increase in in-
ternal energy ∆ψ̂ corresponding to model C is an upper bound of the increase in
internal energy ∆ψ corresponding to the original model. The same conclusion can
be couched in terms of dissipation: the dissipation associated to model C is a lower
bound of the dissipation associated to the original model, D̂ ≤ D. Therefore, if we
show that D̂ > 0, where D̂ is the dissipation function for model C, the thermo-
dynamic consistency of the original multisurface model is ensured. The usefulness
of our analysis becomes evident at this point. Only a hardening mechanism, an
expansion characterized by the variable s1, is active in model C, which can be
categorized a simple isotropic hardening model. Therefore, the identification of the
thermodynamic conjugate of ξh in such model is comparatively an easy task, as we
show in the following discussion.

Let us write the dissipation function for model C as

D̂ = τ : dp − ∂ψ̂

∂ξh
ξ̇h. (C.1.10)
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Figure C.2 (a) Eccentricity of the ellipse for idealized models B and C. (B) Yield
condition for models B and C .

In order to avoid a lengthy derivation, we shall recast the definition of the
internal hardening variable in a more suitable format. Recall that ξh was defined
as a function of the length of the trajectory in the plastic strain space through
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expression:

ξh(t) = ξh0 e
−
∫ t

t0

trdp dt
. (C.1.11)

The exponential format of Eq.(C.1.11) was aimed at defining an internal variable
reminiscent of the relative density. For our purpose it is convenient to dispense
with this exponential structure and define the internal hardening variable simply
as

ξ̂h(t) =
∫ t

t0

−trdp dt =⇒ ˙̂
ξh = −trdp = − ξ̇

h

ξh
. (C.1.12)

Note that the physical meaning of the internal hardening variable is not altered by
this transformation. Equation (C.1.10) in terms of ξ̂h becomes

D̂ = τ : dp − ∂ψ̂

∂ξh
ξ̇h = τ : dp − ∂ψ̂

∂ξ̂h
˙̂
ξh. (C.1.13)

It only remains to choose the thermodynamic conjugate of ξ̂h. Taking into account
that trdp, and hence ξ̂h, is directly related with inelastic volumetric changes, a nat-
ural candidate for the conjugate of ξ̂h is the hydrostatic yield stress in compression,
the state variable s1:

∂ψ̂

∂ξ̂h
= s1(ξ̂h). (C.1.14)

To complete the analysis, Eqs. (C.1.14) and (C.1.12) are substituted in Eq.(C.1.13),
and by rearranging terms, we obtain

D̂ = τ : dp + s1trdp = (p+ s1)trdp + dev τ : dev dp. (C.1.15)

By using the flow rule (2.5.25) in Eq.(C.1.14), we get

D̂ = 2λ̇e (s22 p (p+ s1) + q2). (C.1.16)

Finally, to study the sign of Eq.(C.1.16), the norm of the deviatoric stress q is
expressed as a function of p and s1, yielding

D̂ = 2λ̇e (s22 p (p+ s1) + s22(s
2
1 − p2)) = 2λ̇es22s1(p+ s1). (C.1.17)

Since λ̇e ≥ 0 and |p| ≤ s1, it follows from Eq.(C.1.17) that D̂ ≥ 0. Thus, the
requirement of positive dissipation is satisfied by model C and, as we stated above,
this provides the assurance that our multisurface constitutive model is consistent
with the second law of the thermodynamics.
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