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INTRODUCCION

This monograph presents 4 lectures on non linear analysis of concrete
shells by the finite element method. The lectures were prepared by the
author for the course on “Non linear analysis of shells by finite elements”
held at the International Center for Mechanical Sciences in Udine, Ttaly on
June 24th-281h 1991.

The content of the lectures presents an overview of the different aspects
involved in the analysis of concrete shells by finite elements. Thus, lecture
l introduces the basic concepts of the analysis of reinforced concrete
shell structures using flat shell and curved degenerated layered shell finite
elements, Both the geometric and kinematic assumptions are deseribed
in detail together with the respective finite element formulation and the
numerical algorithm for non linear elasto-plastic analysis including the effect
of moderately large displacements.

Lecture 2 presents an overview of the constitutive behaviour of concrete
and steel in a form suitable for numerical computations using the finite
element models described in previous lecture, The reinforcing steel bars
are modelled with a simple elasto-plastic model. Hovewer, two conceptualy
different concrete models are presented. The first model is based on elasto-
plastic theory to describe the compressive behaviour of concrete, whereas
a linear orthotropic elasto-brittle model is used for modelling the cracking
behaviour under tensile conditions. This “elagto-platic-brittle” model has
been extensively used by Owen and Figueiras and most of the concepts
presented emanate from reference (18] of this chapter.

The second model is based on the assumptions that both the tensile
and compressive behaviour of conerete ¢an be treated under the unified
framework of elasto-plasticity theory. This model termed “plastic-damage
madel” has ben proposed by Lubliner, Oller, Oliver and Ofiate in different
publications which main concepts are summarized in the lecture (see refs.
[33-38| of this chapter).

[n lecture 3 the basic finite element formulation for the analysis of
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stiffened concrete shells via the use of eccentric beams is described,

Finally, in lecture 4 some examples of applications of the finite element
formulations presented to the non-linear analysis of different reinforeed
concrete shell structures analyzed by different authors are described,
Examples included range from the analysis of plain and pre-stressed concrete
deep beams, to more sophisticated shell type structures including the
nonlinear behaviour of a composite steel-concrete girder bridge and a
cryogenic concrete liquid gas tank under severe thermal conditions.

This monograph has been written exclusively with didactic purposes.
Most of the ideas included in the text have been exiracted from research
publications by the author and many others. The interested reader will be
able to find details on the different subjects treated in the many references
included at the end of each chapter.



LECTURE 1

CONCRETE SHELLS.
BASIC FINITE ELEMENT
FORMULATION

SUMMARY

This lecture describes the basis of the analysis of reinforced conecrete
shell structures using flat shell and curved degenerated layered shell finite
elements. Both the geometric and kinematic assumptions are described
together with the respective finite element formulations for small and
moderately large displacement analysis.

INTRODUCTION

Concrete shell struetures are very common in civil engineering practice.
Typical examples are reinforced and pre-stressed slabs, bridges, shell roofs,
water tanks, nuclear reactors cylindrical walls and buildings, etc. Some
examples of these structures are shown in Figure 1.1. The importance of all
these structures requires an adequate design based on an aceurate evaluation
of the structural response both at service and ultimate loading levels,

The analysis and design of reinforced and prestressed concrete structures
has been based on simple equilibrium conditions and empirical rules for
almost a century. The traditional methods generally result in safe designs,
but they frecuently contain inherent inconsistencies and often do not reflect a
clear understanding of the actual composite action of the material, Present—
day design codes continue, in many respects, to be based on empirical
approaches and rely heavily on the results of a considerable amount of
experimental data. This situation is largely attributable to the complex
behaviour of reinforced conerete components and structures. Concrete
cracking, tension stiffening, nonlinear multiaxial material properties and
complex interface behaviours were previously ignored or treated in a very
approximate manner, Numerical methods, and particularly the finite element
technique, now permits a more rational analysis of these complexities.
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Figure 1.1 Some concrete shell structures,

The last two decades have witnessed rapid advances in the use of finite
element methods for the analysis of reinforced concrete structures as reported
in geveral comprehensive review articles [1-5]. Some numerical approaches
have been developed to mainly study local behaviours, such as bond effects
craking, interface shear, and dowel action [6-9], while other numerical studies
have been directed ai the analysis and design of components and structures
[10-13]. The primary objectives in the latter case are the accurate prediction
of the overall deformation characteristics and limit loads. A layered approach
is generally employed to simulate steel reinforcement with the crack effects
being assumed to be distributed (smeared) within each conerete layer. Full
bond is assumed at the steel-concrete interfaces.

In this lecture we present the basis of the finite element formulation
for the analysis of reinforced concrete shells using layered shell theory
and two different finite element formulations: (a) Flat shell elements
and (b)Degenerate shell elements. Both small and moderately large
displacements will be considered.

The description of the linear and non linear material models for conerete
and reinforcement steel is not included here and will be treated in detail in
Lecture 2 .
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FORMULATION OF FLAT SHELL ELEMENTS FOR
ANALYSIS OF REINFORCED CONCRETE SHELLS

Basic theory

The simplest approach for deriving finite elements for shell analysis is to
assume that the mid-surface of each shell element is flat. Tt is well known
that in this case membrane and bending kinematics are uncoupled at element
level. We will agsume the standard hypothesis of Reissner-Mindlin thick
plate theory [22], [23], i.e. the normals to the element mid-surface before
deformation remain straight but not necessarly normal {o the mid-surface

after deformation. Therefore the displacement field can be written as (Figure
1.2)

'u"(m‘!y!!'t,) = “:J(m’!y') = 3'9:\:'(3::9,)
u"(:c"y',z') = “::(Tjryr) = zfay'(mfmy,)
w'(2', v, 2) = wi(,y) (1.1)

The local digplacement vector ia then defined as

-
u = [uL,vL,wﬁ,, Hmr,ﬂy;l (%.2)

where u), v}, are the in-plane (membrane) displacements and -u::,, 8, and 8,
are the transverse displacements and local rotations of the normal (flexural
displacements)

Assuming now the standard plane stress hypothesis (ﬂ';* = ) allows to
elliminate the thickness strain in local axes. The loeal strain vector is thus
oblained using (1.1) as
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Sq. (1.3) can be rewritten as
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=/ BE / % 88 / f-?fyi
&, = am, 3 ay, 3 ( ay ) (1.56)
= [(Ge— 0, (G2 - ﬂm] (159

are regpeclively the generalized membrane, bending and shear local strain
vectors,

For linear elastic analysis the local stresses are related to the local strains
in the standard manner by

o Ept
[} 2 &
T?l d‘} D} ‘ ﬂ y;
g = ¢ 2y = {0 o= [0 G | ey r = D'¢ (16)
AL e ' I [ B I N AT
o - ]
Tt st ’ 0 D, Yl z!
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where for orthotropic material

1 B I.J:.ier;: 0
D) = ——— |y B, B 0
f f Vet S Y
Vgl iyt ! 0 0 (1- "’t‘y“f'y'm’)g:r’y*
i QG‘,E!E! 0
D; = 0 ﬂGyr,f (1.7)
and for isotropic material
E
-4 nl
Pm" = f’:y = E H l-'m!yi = Vyat =V Gq,-i'yl = Gt’:’ = Gyrrt = m
(1.8)

In (1.6) and (1.8) (-); and (-); stand for flezural and transverse shear
terms, respectively.
From (1.4) and (1.6) it ean be obtained

ﬂ'} = DJ (&m l"zsb)
al':' —- Dsgs (1.9)

The resultant stress vector is now defined as
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where &), @}, &, are respectively the local membrane, bending and shear
resultant stress vectors, For sign convention see Figure 1.3.
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Figure 1.3 Sign convention for loeal resultant stresses in flat shell

elements,

The relationship between resultant stresses and generalized strains in
local axes can be obtained by combining (1.10) and (1.9) as

o T
&f — tﬂri’ ‘/: ’I‘J'E,
7. o,

D} (&, + 'é})

||||||||||||

#

dz'

'

= D& (1.11)
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where I)' is given by

‘ -
[P Dy 0] By B, o
D' = ['|#D} M, o |ad = DL, D, o (112)
1o 0 D, o o D,
with D!, = f*n}dz' s D, = j*fafn}dz'

mb _i

D = f-; phdd ;D = f: D’ dz! (1.12b)

where D!, D} and D/, are respectively the generalized membrane, bending
and shear constitutive matrices, and D!, is the coupled bending-membrane

constitutive matrix. Note that f.l;nb = 0 in the case of homogeneous material,
or if the material properfies are symmetricaly distributed with respect to
the element mid-surface. However, in the analysis of general reinforced
concrete shells material heterogenity prevails and D], must be appropiately
compulted.

If an elasto-plastic material model is considered eq.(6) is defined in an
incremental form as

do' = D, de' (1.13a)

where Dy, is the tangent elasto-plastic constitutive matrix which will be
defined in a latter section and more specifically in Lecture 2. Integration
of DLP across the element thickness allows to write eq.(1.11) also in an
incremental form as

&' = D}, dé (1.138)

Layered model

In remforced concrete shell problems a convenient representation of
concrete and steel behaviour across the shell thickness is needed. This
is of particular importance if the non linear behaviour of compressive
concrete, concrete cracking and reinforcement response are to be appropiately
modelled. The most popular computational approach is to use a layered
model in which the shell thickness is divided into a series of plain
(unreinforced) concrete layers and of reinforcing steel layers. (Figure 1.4)
Plain concrete layers can be either elastic, (singly or doubly) cracked,
and yielded or crushed. Appropiate stress—strain relations must be unsed
for each of these states of behaviour (see Lecture 2). On the other
hand, the reinforcing steel is replaced by an equivalent smeared uniformly
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distributed steel layer with stiffness only in the direction of the reinforcement.
The equivalent thickness of the steel layer is determined such that the
corresponding area of reinforcement in the layer remains unchanged,
Ordinarly, a concrete shell is reinforced by at least two sets of reinforeing
bars. It is also usualy assumed that the reinforcing steel is arranged in layers
forming grids intersecting each other at arbitrary angles. Any number of
such layers can be accounted for and each layer is to be located exaetly in
space for the purpose of generating its stiffness properties. Perfect bond is
assumed to exist between the reinforcing steel and the surrounding concrete.
However, appropiate bond slip laws can also be incoporated into the analysis.

Layers are numbered sequentially, starting at the bottom surface of the
shell element, and each layer contains stress points on its mid-surface. The
stress components of the layer are computed al these stress points and are
assumed to be constant over the thickness of each layer, so that the actual
stress distribution over the shell thickness is modelled by a piecewise constant
approximation [6] (Figure 1.4).

layers
3 layers

} CONCrele
y'

2
- , —atwel layer

e e {“;LA::.-
= o

-LHC=‘_1

Figure 1.4 Layered discretization of reinforced concrete slab.

Layers of different thickness can be employed, as well as different number
of layers per element. The specification of the layer thickness in terms of a
normalized thickness coordinate ¢ = %z', permits the variation of the layer
thickness as the shell thickness varies [6] [7).
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The stress resultants are obtained from eq.(1.11) by adequately
integrating the constitutive matrices (1.12) across the element layers as

-Ewpg

1*—1

l

. t?

D, = "3‘ 4\: };ACEQ
l.’

(1.14)
ﬁ;=% N
=1
- ) t! :
Dm jl' CtACt
]

2!

where (; = -z-fl-, [ is the number of layers and (-); denotes values in the ith
layer. For the non linear material case the elastic matrices in (1;14_) will be
substituted by the corresponding non linear operators via eq.(1.13b).

Finite element diseretization

We will consider the discretization of the shell mid-surface in a mesh
of isoparametric flat finite elements of n nedes (Figure 1.5). The local
displacement field can be interpolated in the standard form

g
He
[N1;Ng, -+, Ny aa. = Na'l®) (1.15)
fe)

fpn

:)_' N ’(*-)

th.‘-[’ﬂ

{
o I(e)

T
N; = : a, — u::!'.."”gi’w:’iiﬂri-‘ﬂyﬁ (1,16)

ocooo =2

0
0
N,
0
0

ofFocoooc
A0SO

0
0
0 i

are the shape function matrix and the local displacement vector of a node i.
From (1.5) and (1.15) the local generalized strains can be obtained as

i = n'alle) (1.17)

with B' = B}, B}, .-, B,]
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Figure 1.5 Discretization of a shell into flat shell finite elements.

and

B! = ¢ B}, (1.18)

where B) ., By and B, are respectively the local membrane, bending and

shear generalized strain matrices of a node 1, given by
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Moo 000
B, = |0 %%» 00 0 (1.19)
aN;  an;
000 5% o
B, =[000 o - (1.20)
o0 -3 -3
i dN;
0 0 -N; 0
B), = m T (121)
! 00 FH 0 =N
The virtual work principle for a single element can be written as
LAPUSDE 1 He)1T tle) :
[ [ 8875"a4 J [ suean + [sa]" g (1.22)

where t/ and ¢'(¢) are the distributed local vector and nodal point load vector,
respectively.

Substituting eqs.(1.11), (1.15) and (1.17) in (1.22) the standard stiffness
equilibrium equations for a single element can be oblained as

o) = KHe)le) _ ple) (1.23)

where
K = [ [ BIDB)da'ay (120
(O = [ fteeces "

are the element stiffiness matrix and equivalent nodal load vector,
respectively.
Matrix K:g-c} can be rewritten using (1.12) and (1.18) as

) = ) 40 D i (1

Wllﬂl‘f‘:
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ie) IT & )
I{rnl.a. = f[d(n) Bm‘D:nB:njdw dy

e) ITAERE g0 3.0
Ko = [ [ BEDB, de'dy
(1.27)

.!;J'

k' / ./:4 i Bf,’i'ﬁﬂ,B:,jdm’dy'

- T
Ky = [ [ BaDmBh de'dy’ = [ |

mbyy bmy;

are respectively the membrane, bending, shear and membrane-bending
coupling local stiffness mattrices. Note that if D! , is zero (which is the case
for homogeneous material or when there is material symmetry with respect

to the mid-plane) Kiffb) and I{LE:‘) are also zero and the local stiffness matrix
can be directly obtained by simple addition of the membrane, bending and
shear uncoupled contributions.

Note that in (1.23)-(1.27) we have assumed elastic material behaviour,
T'he nen linear case will be treated in a later section.

The global stiffness matrix and the global equivalent nodal load
vector for the whole mesh are obtained by assembly of the individual
element contributions in the standard manner [14]. This involves first a
transformation of local degrees of freedom and forees to a common global
cartesian coordinate system as

a'(®) = Tale) and (&) = pele) (1.28)

where T is the transformation matrix relating local and global nodal degrees
of freedom and forces at element level [14], [15]. The global element stiffness
mabrix is then computed by the well known transformation

k() = T/ (1.29)

If the shell has folds or kinks the transformations (1.28)-(1.29) involve
and additional global rotation #; which plays the role of a sixth degree of
freedom at each non-coplanar node, whereas the standard five d&gruuu of
freedom (three global displacements and two local rotations) can be kept at
the coplanar nodes (Figure 1.6). Details of the treatment of co-planar and
non coplanar nodes can be found in [14], [15].
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42 :
// / & Non coplanar node

/ o (oplanar node

Figure 1,6 Definition of coplanar and non-coplanar nodes.

Numerical integration. Shear locking and element typology

Numerical integration across the thickness is performed via the layered
model as described previously. In the shell plane the normal (full) integration
rule consista of mxm Gauss points where m is the number of nodes along each
element side. Nevertheless when flat shell elements are fully integrated they
exhibit shear locking and over-stiff solutions are obtained in the majority of
applications [14], [15].

The simplest procedure to overcome shear locking behaviour is to use a
reduced integration quadrature for the shear stiffness [14], [15] whereas the
rest of the stiffness terms can be exactly integrated. However it has been
proved that this procedure may occasionally lead to spurious zero-energy
modes appearing in the global equations

An alternative approach for derivation of rebust shell elements is based
on the use of an assumed shear strain field. In this method a shear strain
field is “a priori” assumed over the element in the natural coordinate system.

¢ = Nyg (1.30)

where 7; contains the values of the shear straing al some preseribed points
within the element and Ny are appropiate shear interpolating functions.
The displacement and rotations are interpolated in the standard manner.
However, a dilferent interpolation for each displacement field must sometimes
be used to satisfy the the requirements for the existence of the solution [14],
[18].

By relating -y, with the cartesian shear strains and these with the element
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Figure 1.7 Some quadrilateral and triangular assurmed shear strain
shell elements [19-21], [24].

nodal displacements ale) through eq.(1.17) a final relationship beteween -,

ill'.ll.] u(ﬂ‘) CHn bl-' fﬂund in t.hﬂ fU'I'lT.I
v, =Bjal®) (1.31)

where ﬂ’; is termed subsiitute shear strain matrix (m‘ shear B-bar matrix)‘
Matrix K/ is computed by eq.(1.27) using ﬁ', instead of the original shear
strain matrix B), whereas the rest of the stiffness matrix terms are computed
as shown in (1.27). Full integration is now used for the computation of all
the element matrices,

Figure 1.7 shows some of the most popular rectangular and triangular
flat shell elements based on this approach. The interested reader can found
further information in [14], [19], [20], [24].
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FORMULATION OF CURVED DEGENERATE SHELL
ELEMENTS FOR ANALYSIS OF REINFORCED
CONCRETE SHELLS

General

Figure 1.8 shows a solid three-dimensional element based on a quadratic
displacement field and the corresponding quadratic degenerate shell element.
Two basic assumplions are adopted in this process: Firstly il is assumed
that, even for thick shells, normals to the middle surface remain practically
straight after deformation. Secondly, the strain energy corresponding to
stresses perpendicular to the surface is disregarded, i.e. the stress component
normal to the shell mid-surface is constrained to be zero in the constitutive
equations,

Five degrees of freedom are specified at each point, corresponding to
its three displacements and the two rotations of the noermal at the node.
The definition of independent rotational and displacement degrees of fredom
permits iransverse shear deformation to be taken into account, since rotations
are not tied to the slope of the mid-surface. This approach is equivalent to
using a general shell theory and reduces to the hypotheses of Reissner [22]
and Mindlin (23] when applied to plates, and it has also been used in the the
flat shell theory described in previous sections.

Coordinate systems

1 Global coordinale sel ¢y, z

This is a Cartesian coordinate system freely chosen in relation to which
the geometry of the structure is defined in space. Nodal displacements as well
as the stiffness matrix and applied load vector are referred to this system.

2 Nodal coordinate set ¥y, Vo, U4

A nodal coordinate system is defined at each nodal point with origin at
the reference (mid) surface (Figure 1.8). The vector #y; defines the direction
of the “normal” at node i, and it can be defined from the nodal coordinates
of the top and bottom surfaces at node ¢, go that it is not necessarily
perpendicular to the mid surface at i, The vector ¥; is perpendicular to
vy; and parallel to the global @ — z plane and the vector ¥ is perpendicular
to the plane defined by 1?1" and 1731'. Vectors v, and 9%; define the local
rotations (@1; and #y;) of the corresponding normal.
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Degenernte shell element

“Ppﬂr surface

I
ﬁ..-hh“":rc'_" ([=s1)
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I P | ""\-\.\_“ {L=-1)

i

Figure 1.8 Degenerate shell element (a) Parent quadreatie solid
clement, (b)Degenerate shell element. global, nodal and
curvilinear coordinate systems,

3 Curvilinear coordinate set £,9,¢

In this system £,7 are two curvilinear coordinates in the middle surface
of the shell element and ¢ is a linear coordinate in the thickness direction.
(Figure 1.8). It is assumed that £,% and ¢ vary between —1 41 on the
respective element faces.

4 Local coordinate set 2’3/, 2!

This is a Cartesian coordinate system defined at the samphng points
wherein stresses and strains are to be caleulated. The direction 2’ is taken
perpandlcular to the surface ( =constanl, being obtained by the cross
product 2’ = (gf‘.:') A (35-) The direction x' can be taken tangent to the
£ —direction at the ﬂamphug point, or else defined Bl:mlla.rly as the direction
of i;. Finally y' is obtained as cross product of %' and x'.

Unit wc'l.c:rs I, m and n can now be associated to the local directions x/,
y' and 2’ so that the transformation matrix 8 is defined as
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Surface L=§ E .

=i

Surface = constant

Figure 1.9 Degenerate shell element, Local coordinate system.
5 = [l,m,n| (1.32)

Element geometry

The geometry of the element can be expressed in terms of the coordinates
of the mid surface nodes, ry, = [z“i?yﬂii"'“i]Tr and the unit normal at each
node, vy, as

r=z,y, z]T - f: Ni(¢,n) [I‘n‘- + %C“i] (1.33)

1=1

where £; 15 the shell thickness of node 1.
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Displacement field

laking into account the assumptions of the degeneration process, the
displacement field is described by the five degrees of freedom of a “normal”;
the three global displacements of its mid—point ug, and the two local rotations
tly, and @, (Figure 1.10) as

: () th, = 7 (e) ;

u=3%"N; [ua‘. + 56l=vis —val [93‘ }] =% Nia; (1.34)

=1 g 1=1
with

by i
N, =|I ,*“1-" C; Yoy

= [l 5CCi (€ = { w, (1.35)
C; = [_vl;i _VQ{] al,‘
0,

Definition of strains

In order to more easily deal with the shell assumption of zero normal
stress in the local 2! =direction (o, = 0) the strain components should be
defined in the local system of axes 2',y',z'. The local system of axes ig
also the most convenient system for expressing the stress components (and
their resultants) for shell analysis and design. The five significant strain
components are

! 1
r ‘Emf 4 m,
o f%’a' €7
& = d Ty L2 %ﬁr*l' gl § = f rreeen (1.36)
............... I
€
e ||| e
G 7 5 B &8 ! !
& | B+ |

where v/, o', and w' are the displacement eomponents in the local system
#', ¢, . These local derivatives are obtained from the global derivatives of
the displacements «,» and w by the following operation

b Bom o

F
@& o g8 Bls o

¥
%Ij;z;%f; ﬂsg%%%
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2,W
8,
By
#,U
Retation of normal Rotation in plane V3, — ¥, Rotation in plane V), ~ ¥,

u“:

~

Figure 1.10 Displacement vector.  Definitions of local nodal
rotations,

where 8 is the transformation matrix defined by (1.32). The derivatives of
the displacements with respect the global coordinates are given by
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(1.38)

where J is the jacobian matrix
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iz
a i3
1= g B 2 (1.39)

The local strains can therefore be obtained in the following steps.

1) Computation of derivatives of global displacements with respect to
coordinates &,7,¢. Using eq.(1.34) we obtain

du (Ou v Bw]T %, AN; b ] (e)

g 5] - 55 b ol
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5 = |5 a6 a¢] =m0 50 (140)

2) Computation of J(¢), From (1.39) and (1.33)

ar 0 8y 8x]7
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|

o¢ — |0g Be’ BE| T &~ e
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o = o o] = S ot

or _ [0x 0y 05" _ &4
ac 8¢ 8¢’ o]

(1.41)

3) Compultation of g{f, %, ete. by (1.38).
4) Computation of local strain components by (1.37). The strain
matrix B', relating the local strain components to the element nodal

viriables can then be constructed as

g = B'al®) (1.42a)

!
with B = [E{] (1.42b)

where as always (+); and (+); denotes flexural and transverse shear
contributions. The form of B’ can be found in [30].
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Definition of stresses

Taking into account the assumption of zero normal local stress the five
stress components in the local system are (see Figure 1.11)

o'
¢ = [”’m‘:ﬂ"y’r"m’y‘l"'m*z’!fv':']T = {ﬂjf} (1.43)
3

For elastic analysis a standard constitutive relationship relating stresses
and strains can be written in the form [14]

o = D'(c' - ¢}) =D'B'al®) - D', (1.44)

where g, is an initial strain vector which may represent, for instance, the
expansion due to thermal loading. The elasticity matrix D' is given in
eq.(1.7)

If non linear elastoplastic material models are considered the stress-strain
relationship is obtained in an incremental form as

de’ = D), de' (1.45)

Details of the non linear incremental constitutive matrix D), are given
in a latter section and also in Lecture 2.

Figure 1.11 Definition of local stresses.
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Diseretized equilibrium equation

The virtual work expression for a shell element can be written as

L
[ ) S T d g " (&)
[t dave[[[ ourbav [ [ o td5+§[a‘a§ |"a
(1.46)
where b, t and q represent body force surface load and point load vectors
respectively. Note that the components of all these vectors are now expressed
in global axes,
By adequate substitution of the discretized expressions of displacement

and strains the following equation can be obtained, after assembly of all
element contributions

o= [[[ BTy -t=0 (1.47)

where W is the standard residual force vector, the integral represents the
internal force vector and f is the vector of external loads, which expression
for an individual element is given by

f‘.(“) = / f fv(t) NTbdV f ./; " N'ftdS-f-qE“J (1.48)

For linear elastic analysis eq.(1.47) leads after substituting the
constitutive equation (1.44), to the standard expression

Ka="f (1.49)

where K is the global stiffness matrix obtained by assembly of the individual
element contributions given by

K= [[] BTDBa (1.50)

The element stiffness matrix can be written using (1.6) and (1.42b) as

= T i T _ get(€) | qeile)
K(©) - f [ fwn', DB dV + f fum B D,B,av = K'{ k') (1.61)

where K} and K| account respectively for flexural and shear contributions.
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Numerical integration, shear and membrane locking and element
typology

The computation of the element stiffness matrix involves an integration
over the element volume. In the through thickness direction an integration
across the element layers is used following the lines previously explained for
flat elements.

Shear locking can be eliminated by using an assumed shear strain
formulation, similarly as explained for the flat element case [14], [20]. The
same element typologies shown in Figure 1.7, could be successfully used for
the degenerated shell problem. Amongst those elements the most popular is
the 4 node quadrilateral element with an assumed linear shear strain field
[20].

It is clearly noticed in the flat shell case that both shear and membrane
stiffness are of same order of magnitude. This leads in some curved shell
problems to a tendency of the membrane stiffness to dominate the total
stiffness yielding wrong results. This deficiency, termed membrane locking,
can also be overcome by the same techniques used for the treatement of
shear locking i.e. reduced integration of membrane stiffness terms or the use
of assumed membrane strains, More information can be found in [19], [20].

Computation of resultant stresses

In dcgtnumtc shell elements the stress resultants are abtained “a

posteriori” by integrating the corresponding local stress components with
respect to the thickness coordinate. By assuming a layer discretization we
have

- Normal fm'ce,s
+4/2 b
[Nty Nypy Ny T = i ojds = }_“{ o). AL (1.52)
i=
~ Bending moments
+t/2

(M1, My, My |7 = f

tv! ‘
/2 zf.u-{.,dg;' = 2 a;.ic;&{:,j (1.53)
- =]

- Shear forces

o1
Qe Q)T = di = X LA 1.54
v /—5/3 oydz 2:':}:;&" (1.54)

a F
where [ is the number of layers, o, = [d:!,ﬂyr*Tmiyl]r and

1
ﬂ‘:_ = lerzt,Ty;wfI?.
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THE INCLUSION OF NON LINEAR BEHAVIOUR

Two types of non linear behaviour will be accounted for here. Firstly
material non-linearity of concrete (i.e. tensile cracking, compressive crushing,
ete.) and reinforced steel (elasto-plastic behaviour) is dealt with on the basis
of a general elasto-plastic model. Details of this model are given in next
lecture. The second source of non linearity considered is that brought about
by changes in the geometrical eonfiguration of the structure.

General numerical procedure for nonlinear analysis

During the general stage of the incremental/iterative solution of a finite
element elasto-plastic problem, the equilibrium equations will not be exactly
satisfed and a system of residual forces ¥ will exist such that

9P =pl — = fv BTohdv — €1 £ 0 (1.55)

in which f* and p™ are respectively the external applied force and internal
equivalent force vectores, B' iz the strain/displacement matrix (constant
for infinitesimal deformation problems). '™ is the current (local) stress
field satisfying the yield condition, V denotes the volume of the shell,
the superscript n denotes the load increment number, and subscript ¢ the
iteration eyecle number within that increment.

An iteration sequence must be performed for each load increment in
order to obtain a displacement fiel, a¥, which provides a stress field :r:i“ in
(1.55) such that the residuals ¥}' vanish. In particular, the displacements
are updated at the end of each iteration according to

aj =aiy +Aa} (1.56)

where Aa' denotes the displacement change occuring during the iteration.
Several options exist for the choice of the displacement search directions.
If the tangential stiffness approach is employed the iterative displacement
change is evaluated according to [14], [25]

Aa} = - K5 |7 e, (1.57)

in which I{%‘“1 is the tangential stiffness matrix of the structure evaluated at

the beginning of the ith iteration. The updated displacements al' obtained
from (1.56) are used to evaluate the current stresses o and hence the
residual forces by (1.55). The iteration process is repeated until these residual
forces are deemed Lo be sufliciently close to zero.

It should be noted that assembly and inversion of the full equation system

iz required for each iteraton. A variant on the above algorithm is offered by
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the initial stiffness scheme in which the original structural stiffness matrix
K is employed at cach stage of the iteration process. This reduces the
computational cost per iteration but unfortunately also reduces the rate of
convergence of the process. In practice the optimum algorithm is generally
provided by updating the stiffnesses at selected iterative intervals only. Asan
example we could consider two typical possibilities (a) the structural stiffness
matrix is updated at the beginning of a load increment and maintained
constant during iteration to equilibrium, so that K7, in (1.57) is replaced
by K7.. (b) the stiffnesses are updated after the first iteration of each load
incement only (i.e. K7, is used in (1.57)).

Elasto-plastic stress/strain relations

We will assume here that the behaviour of both concrete and
reinforcement steel can be adequately model using elasto-plasticity {heory.
A discussion on the validity of this assumption is given in Lecture 2.

The yield criterium defines the onset of plasticity and can be written in
the general form

Fla',x) = f(e') = x =0 (1.58)

in which y is a hardening parameter.
The total local strain increment de’ is the sum of the elastic and plastic
components, so that

de' = de'® + de'P (1.59)

The elastic strains increment de'® is given by the incremental form of
(1.6) and the plastic strain increment by the flow rule

de'? = d,\a‘-% (1.60)

where () is termed the plastic potencial and d) is a proportional constant.
Different forms of the yield criterion and of the form of @ for concrete and
reinforcement steel are discussed in next lecture.

The assumption @ = f gives rise to an associated plasticity theory, in
which case expression (1.60) is termed the normality (since 8f/8e is a vector
directed normal to the yield surface in a stress space)

The differential form of (1.58) can be written

alde’ — Ad\ =0 (1.61)

in which the flow vector a defined by
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o OF
a = B_ﬂ", (1-62:1)
and
1 OF
A= e ] 1.
T (1.62b)

Manipulation of (59)-(62) leads to the following elasto—plastic
incremental stress—strain relationship, [14]

de’ = D, de’ (1.63a)

with the elastoplastic constitutive matrix given by [14], [25]

D'aa’D’
DL =D - —m—— —— L.
ep AT alDa (1.63%)
The hardening parameter A can be deduced from uniaxial conditions to
be
_ dé

A=H = &, (1.64)

Thus A is the tangent to the effective stress—plastic strain curve and is a
function of the accumulated effective plastic strain &, [14], [25].

The tangential stiffness matrix of the material for use in (1.57) can be
obtained on use of (1.55) and (1.63a) to be

dp pda’ de'
H-:—:f ! f Tp! B'dV 1.6
P B b —=dV = [ BY D, B'd (1.65)

Further details on the treatment of material non linearity in reinforced

concrete structures are given in next lecture.,

Geometric no nlinearity

Two basically different formulations ¢an be employed for the deseription
of large deformation problems: (a) A total Lagrangian approach in which
the eurrent (2nd Piola Kirchhoff) stress and (Green-Lagrange) strain fields
are referred to the original geometric configuration and the displacement field
gives the current configuration of the system in relation to its initial position,
(b) An updated Lagrangian approach in which the current configuration of
the system is used to define the current (Cauchy) stress and (Almansi) strain
state. The geometry of the structure is successively updated during the
ineremental process and the stress and sirain fields are referred to the last
evaluated configuration. The siress and strain measures employed above are
defined in such a way as to be energy conjugates. Both the Green-Lagrange
and Almasi strains reduce to the usual definition of engineering strains for
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infinitesimal deformation problems. The Cauchy stresses have the usual
meaning (i.e. force/unit area in the deformed configuration) but the physical
meaning of the Piola~Kirchoff stresses may be lost if significant changes in
the original geometry occurs. Transformation of all quantities from a Total
Lagrangian formulation to an Updated Lagrangian formulation, and viee—
versa, can be perfomed by considering the displacement and strectching of
lwo natural systems of axes [25[, [26]. '

The most appropiate formulation for numerical solution depends on
the type of analysis being considered. For the shell elements defined
earlier a specific (and appropiate) total Lagrangian is adopted in which
large deflections and moderate rotations (in the sense of the Von Karman
hypothesis) are accounted for. Reference of the problem variables to the
original configuration is advantageous for quadratic shell elements, since the
computationally expensive transfer of quantities between local and global
axes need then be performed only one. The strain—displacement matrix is
calculated once during the nonlinear process and its nonlinear part is updated
using the current displacements by a simple matrix product. The constitutive
relations defined previously in terms of engineering stresses and strains are
considered valid for the new stress—strain quantities measured in the original
configuration.

‘Taking the variation on (1.55) with respect to a displacement variation
da gives the tangential stiffness matrix for a geometrically nonlinear problem
to be

Kpda = dp = fv BT do'dV + j;, dB'T4' qv (1.66)

The strain-displacements matrix B' may be separated into the usual
infinitesimal part B), and nonlinear contributions B'L so that

B' =B, + B} (1.67)

Consequently dBT = JB’E, Defining the initial stress or geometric
stiffness matrix, Kq, as

Koda= [ dBfo'dv (1.68)
then use of (1.6) and (1.68) in (1.66) results in
Kr=K K, (1.69)
in which K is given by the usual expression

K = fv B'TD'Bav (1.70)
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For elasto plastic problems, use of (1.63) in place on (1.6) results in D’

being replaced by D:,
Introducing the \F

in (1.70).
on Karman assumptions, which imply that derivatives

of ' and v’ with respect to 2', y' and 2’ are small, and noting that variation
of w' with ' may be negleted, the Green-Lagrange strains may be expressed

in local ecordinates as
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The components of the Piola-Kirchhoff stress vector are again given by
relation (1.6) but in which the current strains are now taken to be Green—
Lagrange strains,

From (1.71), the nonlinear contribution to the strain vector can be
written

£y, = %LR (1.72)
where
B'I'.f.l' i
0 0 0
LT = [?55?7 %{3}; ?ﬁf : n] (1.73)
¥
and
a I
R= [gﬁf] = Ga (1.74)
i

The term G is a matrix with two rows and a number of columns equal
to the total number of element nodal variables. The first row contains the
contribution of each nodal variable to the local derivative %1’, (corresponding

shape function derivatives) and the second row contains similar contributions
i
for %r.

Taking the variation of (1.72) gives

!

def, = ZdLR + SLdR = LGda (1.75)

and then by definition we have
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B} = LG (1.76)

In order to determine the tangential stiffness matrix given by (1.69),
for use in the nonlinear solution algorithm, it only now remains to explicitly
evaluate the geometric matrix, Ky, Substituting from (1.76) in (1.68) results
m

Koda = fv GTdrLTo'dv (1.77)

The term dL7o' can be written, with the aid of (1.73) and (1.74), us

L e = [¢|Gda (1.78)
in which
o Cr i Tmlyf]
o] = [T b o (1.79)

Substituting (1.78) into (1.77) gives the geometric stiffness matrix to be
a symmetric matrix of the form

K, = /; G7T(o'|Gdv (1.80)

Matrix G was previously defined in (1.74) and [¢'] is seen from (1.79) to
be composed of components of the enrrent Piola-Kirchhoff stress vector,
Further details of the geometrically non linear solution can be found in

(14}, [16], [17] and [25]

NONLINEAR FINITE ELEMENT SOLUTION

The flat shell and degenerate shell elements described in previous
sections can be effectively employed in the analysis of reinforced concrete
shell structures. A layered approach is employed to represent steel
reinforcement and to discretize the concrete behaviour through the thickness.
Reinforcing steel is represented as a smeared layer of equivalent thickness
with (anisotropic) uniaxial strength and rigidity properties. The progress of
cracked zones, as well as the compressive behaviour of the conerete is analysed
and monitored for each layer and for each element Gauss point. To simplify
the data inpul and also to deal with variable thickness of the structure the
layer thickness is defined in terms of the normalised ¢ coordinate.

Geometric nonlinearities may play an important role in the behaviour
of reinforced concrete beams, plates and shells [27-29]. Even for relatively
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small deflections (0.05+ thickness) the consideration of nonlinear geometric
behaviour may be indispensable for obtaining a correct structural response
and collapse load. Disregard of geometric nonlinearity may result either in
stiffening or softening of the structure, depending on the particular problem.,
In this work the Total Lagrangian approach based on the simplified Von
Karman strain expressions described in previous section has been adopted.

For the numerical solution, the general nonlinear algorithm itemised in
eqs.(55)—(57) is employed. For the present application the essential steps of
the process are detailed below.

At the beginning of the nth load increment the displacements a1 and
the (local) stresses /™! are known, as well as the unbalanced nodal forces
Y™ resulting from the previous load increment. The incremental nodal
forces are calculated according to:

97 — @l A (1.81)

where U1 are the residuals existing at the end of the previous load
increment and Af" is the nth load increment. Subsequently, the iterative
process is performed with the following steps for a generic iteration, i

1. The tangent stiffness matriz Ko is updated or not according to the solution
algorvithm adopied,

2. The incremental displacements An; are evaluated using the equilibrium
equations,

Anj =~ [I‘ET]_'l P 1 (1.82)

where W;_; are the unbalanced nodal forces resulting from the previous
iteration, The total displacements vector a; is then updated,

a; = a; 1+ Aa; (1.83)

3.The incremental local strains .ﬁs& and the lotal e& are evaluated.

Ae} = B'Aa; (1.84)
£; = B'a; (1.85)
where B’ and B' are updated strain matrices depending on a;. Note that

B' and B' are equal to the initial strain matrix B, if nonlinear geometrical
behaviour is not considered.
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4. The incremental local stresses Aa;! and the total local stresses cri; are
calculated,

Adt = D'Ae! (1.86)
op = ai_1 + Ao (1.87)

where D' is the elasticity matrix taken as:

~ either the elastic matrix of uncracked conerete or the corresponding
non linear constitutive matrix of cracked concrete - for concrete
layers.

~ the elastic or elasto-plastic matrix - for steel layers.

5. The stresses are corrected according to the malerial constitutive equationa:

a) Concrete layers
For example for the elasto~plastic-brittle model described in the first part
of next chapter we will have the following steps.

¥ Using the total local stresses ﬂ'.:-, the maximum principal stress oy,
acting in the structural plane, is calculated.

*I o; > f; or, if the concrete is already eracked, the stresses are
updated according to the tensile modelling (see next chapter)

* Using e or the stresses updated in the previous step, the effective
stress o is calculated (according to the yield function).

* If & is greater than the initial yield stress or if the layer has already
yielded, the stresses are corrected according to the elasto-plastic
behaviour.

(b) Steel layers

* Using the total local stresses al, the stresses in the reinforcement
direction o, is obtained.

* I w; is preater than the steel yield stress fy, orif the layer has already
yielded, the stresses are treated elasto-plastically.

6. The equivalent internal nodal forces p; are evalualed using numerieal
integralion, as,

By = /V B'Toldv (1.88)

where o are the total local stress components corrected according to the
constitutive equations.
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7. The oul of balance residual forces W; are calculaled

¥=p;—f (1.89)

where 115 the current external nodal force vector.

8. The convergence nf the process is checked:

* If convergence has been achieved proceed to the next load increment,
* 1f the convergence criterion has not been satisfied restart the iterative
cycle from step 1.
The size of the load increments, the solution algorithms and the
convergence criterion necesary for efficient numerieal solution are now
discussed below,

Load increment size

To establish the entire deformational response of structures up to collapse
load necessitates the use of an ineremental procedure in which a reasonable
number of load increments must be used, since the solutions are generally
path dependent. Comparative analysis have been performed varying the load
increment size. It has been observed thatl the size of the load in¢rements is
not a critical parameter in tracing out the deformational response provided
that an appropriate solution algorithm is employed.

In general, the size of the load increments used ranges from 0.1 to 0.2
of the structure cru,c:king load. Huwevﬂr, values of increment size about 0.5
times the eracking load have produced reasonable results for some cases (1 7]-
In under-reinforced structures refined load increments should be employed
during the first spread of cracking,

To obtain the collapse load within narrow limits the size of load
increments must be refined when the structure is aboul to collapse. Use
of a restart facility is particularly useful in this respect [17].

Solution algorithmn

A detailed reference to the incremental and iterative modified Newton-
Raphson scheme employed in solution has been made in previous section. In
general, the tangential stiffness matrix is recalculated for the second iteration
of each load increment. However, to improve the solution stability, the
stiffness matrix is evaluated al stages within a load increment when the
change of material characteristics implies a local inerease of stiffness. This
recalculation has to be performed more frequently during the first spread of
cracked zones and also near the collapse load.



Concrete shells. Basie finite element formulation 33

Convergence criterion

A convergence criterion is required in order to terminate the iterative
cycle when the solution is considered to be sufficiently accurate. In standard
non linear finite element analysis a criterion based on the unbalanced nodal
forces was adopted. In the analysis of reinforced structures, however, a force
convergence criterion may not be the most suitable as the unbalanced forces
often form equilibrium groups [27] which do not have much influence on the
overall structural response and the solution is not monotonically convergent.
Convergence criteria both in terms of out of balance nodal forces and in terms
of incremental nodal displacements are therefore more appropriate. However
the sole use a displacement convergence criterion, in which displacements and
rotations are separately checked, has been favoured in most of the numerical
examples analysed to date,

Together with the convergence criterion, a convergence tolerance must
be specified to indicate when the results have converged. Higher solution
cost and needless accuracy may result from too tight telerance and on the
other hand inaccurate solutions may result if the tolerance adopted is too
coarse. Convergence tolerance varying from 0.1 to 1.0 percent are typically
employed in practice. Comparative studies performed on some examples
[17] have indicated that a tolerance of 2.5 percent is generally sufficient for
practical purposes,

A maximum nummber of iterations for each increment of load is specified
to stop the nonlinear solution if meanwhile the convergence limit has not
been achieved. [t has been observed that a maximum number of about
15 iterations is generally sufficient to detect the solution divergence or
collapse, provided the most appropriate solution algorithm has been utilized.
Obviously, this maximum number of iterations also depends on the problem
and on the specified tolerance, but a maximum number between 10 an 15 for
a tolerance of 0.5 percent has been found adequate [17].
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LECTURE 2

MATERIAL MODELLING OF CONCRETE
AND STEEL FOR ANALYSIS
OF REINFORCED/PRESTRESSED
CONCRETE SHELLS

SUMMARY

This lecture deseribes the constitutive behaviour of conerete and steel in
a form suitable for numerical computations using the finite element layered
shell models described in Lecture 1.

INTRODUCTION

Extensive experimental studies have been undertaken to characterise
the response and ultimate strength of plain conerete under multiaxial
stress states [1,2]. Considerable scatter of results has been observed and
collaborative studies have been undertaken to identify the principal factors
influencing this variation [3]. Several approaches, based on experimental
data, have been used to represent the constitutive relationszhip of eoncrete
under mulliaxial stress states and these can be categoriszed into the four
following groups: (a) Linear and nonlinear elasticity theories, [4-7] (b)
perfect and workhardening plasticity theories [8-10], (¢) endochronic theory
of plasticity [11] and (d) plastic fracturing theory [12]. Experimental
evidendence indicates that the nonlinear deformation in concrete is basically
inelastic and therefore the stress-strain behaviour may be separated
into recoverable and irrecoverable components. The irrecoverable strain
components may either be treated within the classical theory of plasticity
or by using a time dependent viscoplastic model.

In this lecture two conceptualy different concrete models are presented in
the framework of the layered shell formulations described in previous lecture.
The first model iz based on elasto-plastic theory to model the compressive
behaviour of the conerete whereas a linear orthotropic elasto-brittle model

a7
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is used for modelling the cracking behaviour under tensile conditions [18].
This model will be termed hereafler Elasto-Plastic=Britile-Model.

The second model is based on the assumptions that beth the tensile
and compressive behaviour of concrete can be treated under the unified
framework of elastoplasticity theory. We will refer to this model as Plastic—
Damage-Model.

Both concrete models are described in next sections together with a
simpler elasto-plastic model for the reinforcing steel bars.

ELASTO-PLASTIC-BRITTLE
CONCRETE MODEL

Most of the concepts presented in this section have been taken from the
work of Owen and Figueiras [18].

Basic assumptions

The model is based on the following assumptions:

Compressive behaviour

Conerete is assumed to behave as an standard elasto-plastic material
under compressive situations. High compression strains induce concrete
crushing and this hag to be appropriately taken into account in the model.

Tensile behaviowr

A linear elastic maodel is assumed until the maximum tensile stress
is reached. The stress evolution after cracking is characterised by the
orthotropic versions of eqs.(1.7) of previous lecture.

Both compressive and tensile behaviour models are detailed next.

Compressive behaviour of concrete

The following three conditions have to be considered in establishing the
nonlinear stress-strain relations, based on the flow theory of plasticity: (a)
The yield criterion, (b) the flow and hardening rules and (¢) the crushing
condition. The yield eriterion for concrete under a triaxial stress state
18 generally assumed to be dependent on the three stress invariants [13-
15]. Nevertheless practical formulations have been developed wich employ
either one [16] or twe [9,17] stress invariants only. A dependence of the
yield function on the mean normal stress Iy (or oy ) and the shear stress
invariant Jy (or 7o¢) has proved to be adequate for most situations. The
plastic valume dilatation observed near failure, under pressure conditions,
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can also be modelled by the dependence of the yield [unction on the first
alress invariant.

The yield condition

In the present analysis of thick plates and shells, transverse shear effects
are taken into account and therefore a triaxial yield eriterion must be
employed. This criterion is formulated in terms of the first two stress
invariants and only two material parameters are involved in its definiton.

f(Iy, 7) = [B(3J2) + ay]V/? = o (2.1)

where « and f# are material parameters and o, is the equivalent effective
siress taken as the compressive stress from an uniaxial test. In terms of
principal stresses the expression for yielding can be written

Bl(o] + 3 + 03) = (o103 + o103 + o3a3)] + aloy + o3 + 03) = (00)*  (2.2)

The Huber-Mises yield condition is recovered by assuming « = 0 and
#=1.0.

The stress state in thick plates and shells is usually not far from a biaxial
one, since the stress normal to the middle plate (7,/) is neglected. Therefore,
it is reasonable to obtain the material paramelers by fitting test results. The
uniaxial compression and the biaxial test under equal compression stresses
(e = o4) are used to define these constants. For practical purposes a relation
can be assumed between the equal biaxial yield stress (or strength), f.,, and
the uniaxial yield stress (or Htmngth), ﬂ

fop = 1.16(to 1.20)f. (2.3)

In such cases, the yield condition is a function of only one material
parameler (oo = f1) which is the most reliable constant to characterize
the concrete behaviour and is easily obtainable from experimental fests. If
Kupfer's results [1] are employed, f, = 1.16f;, then use of (2.2) gives

a = 0,3550,
2.4
B = 1.355 (34)
and (2.1) can be written in terms of the stress components* as
F(0) = {1.355[(4:'; -i—cf;, + ayary) + 3(T§y o+ T+ r;#)]-t-
(2.5)

+0.88804(7s + o |} = 7

® Mote: Fram now onwards we will drop the prlime superindex (1)’ to distingulsh loonl streanes. 1t will
therefore ba nusumad thot all sirasnas ars refared to loenl axes of anch alamant layar,
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This expression is compared in Figure 2.1 whith the experimental results
of Kupfer el al [1] in biaxial stress space. In the perfeetly plastic model oy is
taken as the ultimate stress f. obtained from an uniaxial compression test.
An elastic respose is assumed up to the effective stress value o, = f! after
which a perfectly plastic response follows until the crushing surface is reached.
In the strain-hardening model the initial yield surface is attained when the
effective stress reaches 30 percent of the peak stress fl. The subsequent
loading surfaces f(o) = o4(x) are functions of the hardening parameter
x defined by the hardening rule expressed in terins of the effective plastic
strains as shown in a latter section. When the effective stress, defined by the
yield function, reaches the ultimate stress f] a perfectly plastic response is
assumed until the erushing surface is encountered.

Figure 2.2 illustrates the one dimensional representation of both the
perfectly plastic and the strain-hardening model. The tensile behaviour, to
be discussed later, is also represented. The two dimensional representation
in the principal stress space is shown in Figure 2.3. For the strain-hardening
model, once the initial yield surface has been reached, subsequent loading
will produce plastic straining which caracterizes the corresponding level
of effective stress or loading surface. Unloading follows the initial elastic
modulus ki, and an elastic reponse occurs for subsequent loading until the
corresponding loading surface is reached. Further loadig causes an elasto-
elastic response with increasing plastic deformation and a corresponding
expansion of the loading surface according to the hardening rule.

The flow rule

To construct the stress-strain relationship in the plastic range, the
normality ol the plasticity deformation rate vector to the yield surface is
commonly assumed. This associated flow rule is considered for concrete
predominantly for practical reasons, since there is very little supportive
experimental evidence available [19]. The plastic strain increment is then
defined [20,21] as

af(e)

de !’. =
d\——= Py

(2.6)

where dA is a proportionality constant which determines the magnitude of
the plastic strain increment, and the gradient %ﬁ}-, defines its direction to

be perpendicular to the yield surface. The current stress function f(o) is the
yield eondition; or the subsequent loading functions in the strain hardening
model.

Formulation of the elasto-plastic constitutive matrix D follows an
identical procedure to that deseribed in the previous lecture,
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Figure 2.3 Two dimensional stress space representation of the
concrete constitutive model.

The yield function derivatives which define the flow vector a take the
following explicit expressions for the yield surface given by (2.5)

o_lor or of of of
dog ' aa’yl 67—.’:1; : 61'&::’ a'ry:.
of _ [2(c + B)aw + (2 — f)oy]

s el CONST ol Lt
wn = af _ [2(e® + Bloy + (2¢* - B)oy) "
P ey CONST z
af 607sy
= Brey CONST (24)
i = 31’ = ﬁﬂTam
(91"::;- GONST
d af o 6ﬁ"'y:

" @ry;:  CONST

where ¢ = a/(205) (equal to 0.1775 for Kupfer’s results), o and /3 are material
constants previously defined, and
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CONST = 2((c* + B)og + (c* + B)ay + (2¢ — B)owory+

2.9
.= 346('7'::3; 2 Ta:zx + T;z )]!‘ ( )

The hardening rule

The hardening rule defines the motion of the subsequent yield surface
(the loading surfaces) during plastic deformation, It determines the relation
between the loading surfaces f(o,x) (or effective stress) and the accumulated
plastic strain (or effective plastic strain). The concept of effective stress and
effective plastic strain makes it possible to extrapolate from & simple uniaxial
test Lo the multiaxial situation. In the present work the relation between
effective stress and effective plastic strain is extrapolated from the uniaxial
stress—strain relation ship using the conventional “expression”

a=FEpe——-—¢ (2.10)

where
B is the initial elasticity modulus
£ 15 the total strain
£o is the total strain at peak stress fl

Substituting the elastic strain component g, = o/ E, in (2.10) we obtain

o = —Foep+/2B30tp; 03fl <o < ! (2.11)

where = is the plastic sirain component, and £ can be taken equal to EféfEa
for normal concrete. Using the current effective plastic strain in expression
(2.11), gives the effective stress level & = o, defining the current loading
surface position.

‘I'he erushing condition

The erushing type of concrete fracture is a strain controled phenomenon.
The lack of available experimental data on conerete ultimate-deformation
capacity under multiaxial stress states has resulted in the appropriate strain
criterion being developed by simply converting the yield criterion described
in terms of stresses directly into strains, Thus

B(3JY) + all = £ (2.12)

where [} and Jj are strain invariants [17] and ey is an ultimate total strain
extrapolated from uniaxial test results. Using the material parameters & and
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/3 determined from Kupfer’s results [1], the crushing condition is expressed
in terms of the total strain components as

1.355[(e2 + é-';, — eaey) + 0.75(73y + Vs + Vpe)]

2.13

+ 0-355513(55 -} Ey) = E:‘ ( )
when gy reaches the value specified as the ultimate strain, the material is
assumed to lose all its characteristics of strength and rigidity.

Elasto—brittle tensile behaviour of conerate

The reponse of concrete under tensile stresses is nssumed to be linear
elastic until the fracture surface is reached and its behaviour is characterised
by the isotropic versions of relations (1.7) of the previous lecture. The
tensile type of fracture, or cracking, is governed by a maximum tensile
stress criterion (tension cut-off). Cracks are assumed to form in planes
perpendicular to the direction of maximum principal tensile stress as soon
as this stress reaches the specified concrete tensile strength f{. In order
to avoid further complexities, cracks are assumed to form only in planes
perpendicular to the structural plane (2',3' plane). After cracking has
occurred, the elasticity modulus and Poisson’s ratio are reduced to zero in the
direction perpendicular to the eracked plane, and a reduced shear modulus
is employed, Taking 1 and 2 as the two principal directions in the plane
ol the structure, the stress—strain relationship for conerete cracking in the 1
direction, is

iy g 0 0 0 0 €3

s 0 E 0 0 0 Ea

2| =0 0 Gf; 0 0 Y1z (2.14)
Tia 0 0 0 Gf‘a 0 Y13

T3 g 0 0 0 %q* Y23

When the tensile stress in the 2 direction reaches the value fa’ a second cracked
plane perpendicular to the first one is assumed to form, and the stress—strain
1'1.'.!nt.immhi]: becomes:

oy 0 0 0 0 0 £y
Ty 0 0 0 0 0 £y
ra| =10 0 G52 0 0 ||y (2.15)
Tia 0 0 0 G'f_:, 0 Y13
Tua 0 !J 0 0 G%ﬂ Tza

The cracked concrete is anisotropic and these relations must be
transformed to the reference axes 'y,
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In the analysis and design of reinforeed conerete plates and shells we
are not directly interested in the tensile strength of the concrete, which
is relatively small and unreliable, but in the influence of the cracked
conerete zones on the structural behaviour. Therefore a simplified averaging
process more convenient for finite element formulation is used. A smeared
representation for cracked concrete is assumed, which implies that cracks are
not discrete but distributed across a region of the finite element.

Stieszes §
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Figure 2.4 Loading and unloading behaviour of eracked concrete
illustrating tension sttiffening behaviour.

Tension stiffening

Due to bond effects, cracked concrete carries between cracks, a certain
amount of tensile force normal to the cracked plane. The conerete adheres to
the reinforcing bars and contributes to the overall stiffness of the structure
[22]. Several approaches based on experimental results have been employed
ta simulate this tension stiffening behaviour [8,23-25]. A gradual relase of
the concrete stress component normal to the cracked plane (Figure 2.4)
15 adopted in this work. The process of loading and unloading of cracked
concrete is also illustrated in Figure 2.4. Unloading and reloading of cracked
concrete is assumed to follow the linear behaviour shown with a fictitious
clasticity modulus F; given by

()

E; = af] : g < £ < e (2.16)
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where «,e,, are tension stiffening parameters (Figure 2.4) and &; is the
maximum value reached hy the tensile strain at the point considered. If
the erack closes, i.e. if the strain component normal to the erack plane
becomes negalive, the concrete acquires the uncracked behaviour in the
corresponding direction, but the crack direction and the maximum tensile
strain continue to be stored. The value £; can be readily modified to simulate
bond deterioration during reloading. The normal stress oy (and or o3) is
obtained by the following expression (Figure 2.4)

1 —
oy = n'f; ( = E:) 3 £t <ESem (2-17)
m
or by,
P L - TR SN (2.18)
&

where £, is the current tensile strain in material direction 1.

A layered approach is used to discretize the structure through the
thickness and for each layer different material propierties can be specified.
A maedified tension stiffening diagram can be employed for those which are
relatively distant from reinforcing bars. Particularly, the tension stiffening
effect can be negleted (o = 0 for 0 < £ < g£¢) in layers where the steel
cannol supply tensile stresses due to the particular reinforcing arrangement,
The value of f] should be taken as the modulus of rupture of the concrete.
This modulus can be related to the uniaxial compression strength [26] by

fr = 0.62(f1)"/? (2.19)

where fr and f. are expressed in MPa. However experimental tests have
shown large variations in the above coefficient. The tension stiffening
constant o in Figure 2.4 is taken equal to 0.5, 0,6 or 0.7 depending on the
relative percentage of steel in the section. However the change in structural
behaviour wilth this variation is generally small and a constant value of
& = 0.6 could be used. For the tension stiffening constant, £, a fixed
value of 0,002 is employed.

Cracked shear modulus

Experimental results indicate that a considerable amount of shear stress
can be transferred across the rough surfaces of cracked conecrete [27-29].
Also, the dowel action of steel bars contribute to the shear stiffness across
cracks [27]. These tests have shown that the primary variable in the shear
transfer mechanisi is the erack width, although aggregate size, reinforcement
ratio and bar size also have an influence. A common procedure to account
{or aggregnte interlock and dowel action in a smeared u:ra.c‘.king maodel 1z to
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attribute an appropriate value to cracked shear modulus G° [30,31]. We
present here an approach similar to that used in reference [30] is adopted,
where the cracked shear modulus is assumed to be a function of the current
tensile strain. For concrete cracked in the 1 directon

1 =
5 =0250 G (5ot);  Gh=0 i & >0.004

0.04
s = Gy (2.20)
: . 5G
F# 6

where G is the uncracked concrete shear modulus and ¢, is the tensile strain
in the 1 direction. For concrete cracked in both directions,

= 0a8n G (10?){;:) ; G5 =0 if & =0.004 (2.21)
f2 = 05w G?ﬂ‘i or Gf? =4 0,5 ® Gg3 H’ G;g . Gf{,!a

If the crack closes the uncracked shear modulus 7 is again assumed in
the corresponding direction

A PLASTIC DAMAGE MODEL FOR NON LINEAR
ANALYSIS OF CONCRETE

Introduection

Classical models for non-linear analysis of concrete assume elasto-plastic
(or viscoplastic) constitutive equations for compression behaviour, whereas
a conceptually more simple elasto-brittle model is used for defining onset
and progression of cracks al points in tension. Different versions of this
model which has been detailed in previous section have been successfully used
by different authors for non-linear analysis of plain and reinforced conerete
structures [2-31].

The elasto-plastic-brittle model, in spite of its popularity, presents
various controversial features such as the need for defining uncoupled
behaviour along each principal stress (or strain) direction: the use of a shear
retention factor to ensure some shear resistence along the crack; the lack of
equilibrium at the cracking point when more than one crack is formed [33];
the difficulties in defining stress paths following the opening and closing of
cracks under cycling loading conditions and the difficulty for dealing with
the combined effect of cracking an plasticity at the damaged point.
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[t is well known that microcracking in concrete takes place at low load
levels due to physical debonding between aggregate and mortar particles, or
to simple microcracking in the mortar area. Cracking progresses following
a non-homogeneous path which combines the two mentioned mechanisms
with growth and linking between microckacks along different directions.
Eixperiments carried out on mortar specimens shown that the distribution
of microcracking is fairly discontinuos with arbitrary orientations [32]. This
fact is supported by many experiments which shown that cracking can be
considered, at microscopic level, as a non-directional phenomenon and that
the propagation of microcraks at aggregate level follows an erratic path which
depends on the size of the aggregate particles, Thus, the dominant eracking
directions can be interpreled al macroscopic level as the locus of trajectories
of the damage points (Figure 2.5).

The above concepts support the idea that the nonlinear behavior of
concrete can be modelled using concepts of elassical plasticily theory only
provided an adequate yied functions is defined for taking into account the
different response of conerete under tension and compression states. Cracking
can, therefore, be interpreted as n local damage effect, defined by the
evolution of known material parameters and by a single yield funetion which
controls the onset and evolution of damage.

One of the advantages of such a model is the independence of the analysis
with respect to crack directions which can be simply identified a posteriori
from the converged values of the nonlineal solution. This allows to overcome
the problems associated to most elastic—plastic-brittle smeared eracking
models such as the need for an uncoupled constitutive equation along each
cracking direction, the use of an arbitrary defined shear retention factor,
the lack of equilibrium in the damage points when more than one crack is
formed [33], the difficulty of defining stress paths at the crack under complex
loading /unloading conditions and the difficully of combining cracking and
plasticity phenomena at the damage points.

In this work an elastoplastic model developed by the author's group
for nonlinear analysis of concrete based on the concepls of plastic demage
mentioned above is presented [34-35]. The model takes into account all the
important aspects which should be considered in the nonlinear analysis of
concrete, such as the different response under tension and compression, the
effect of stiffness degradation and the problem of objectivity of the results
with respect to the finite element mesh.

The layout of this section is as follows. First, details of the yield function
and the evolution laws of all material parameters are given. Secondly, the
effects of elastic and plastic stiffness degradations are briefly described. Then,
the problem of mesh objectivity and the a pesteriori determination of eracking
is presented. FExamples of applications of this model are given in Lecture 4.
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Figure 2.5 Mechanics of damage and propagation of macroscopic
criack in concrete,

Basic concepts of the “Plastic Damage Model”

The plastic damage model proposed ean be considered as a general form
of classical plasticity in which the standard hardening variable is replaced
by & normalized plastic damage variable &, such that 0 < &P < 1, This
variable is similar to the former in the sense that it never decreases and it
only increases if plastic deformation takes place which is associated to the
existence of microeraking. The limit value of 57 = 1 denotes total damage
at a point with complete loss of cohesion. This can be interpreted as the
formation of a macroscopic crack.
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If stiffness degradation effects are negleted (and this will be separately
treated in a latter section) the basic equations of the model are:

(a) The yield function defined as:
Floyd,c) = f(”r ¢’) —e=10 (2'22)

where ¢ is a cohesion or some constant multiple thereof, and ¢ is an
internal friction angle, f(e,¢) is a function of the stress components that
is first degree homogeneous in the stresses &, given a physical meaning of
scaled stress to the cohesion. The particular form of F used in this work are
presented in next section.

(b)The elasto-plastic strain descomposition as:

de = D, 'do + &” = de® + de? (2.23)

where D, is the elastic constitutive matrix.

(¢) The flow ruleis defined for the general case of non-associated plasticity
FiH

== ag(ﬂ','lﬁ,ﬁ) = :
de? = A== B1% - yp (2.24)

where A iz the plastic loading factor, 3 is a dilataney angle and g is a
plastic flow vector, normal to the plastic potential surface G(a,4,c). From
eqs.(2.22)-(2.24) the standard elastoplastic incremental constitutive equation
can be obtained as:

do = D . de (2.25)

with the elastoplastic constitutive matrix given by:

o _p,. [P () 0 D, (521]
A+ (%o ()]

where A is the hardenening parameter. Note from eq.(2.26) that D®? ig only
symmetric for § = F (associated plasticity). In this case (2.26) coincides
with (1.63b)

(d) The evolution laws for internal variables x” and ¢ of the form:

(2.26)

dr = A [h;,(a*, kP, e) - E}E%M] = hg(o,x;ec) e (2.27)

de = A ‘.-‘r.c(nr,rcp,c)h;f(u',mp,::) : %] = h(o,xP,c) k*F (2.28)
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The forms of funetions hg and ke will be given in next sections. The
cohesion ¢ is a scaled uniaxial stress, so that its initial value ¢, coincides
with the initial yield stres fe, obtained from a uniaxial compression test.
This value can be interpreted as a discontinuity stress, i.e. the stress for
which the volumetric strain reaches a minimum. Therefore, ¢ = ¢, = Je, for
xP = 0, and ¢ = ¢y = 0 for k? = 1. Note, however, that ¢ is not determined
by an explicit fuction of &P, as is the case in simple plasticity models with
isotropic hardening, but is itself an internal variable, depending on the load
process, whose evolution is expressed by eq.(2.28)

DEFINITION OF THE YIELD SURFACE

Recent work has shown that the behaviour of concrete under triaxial
compression states can be adequately modelled by yield criteria of the type
of eq.(2.22) with 7 being a function with straight meridians, that is first
degree homogeneous in the stress components.

In this werk itwo different yield functions that satisfy the above
requirement have been developed. The first one, is based on a simple
modification of the well known Mohr-Coulomb yield surface as shown in
Figure 2.6 [36-38]. The new yield surface is monitored by a reduction
parameter ay which allows to shift the R~ curve (R being the ratio between
the maximum tension and compression stresses) towards a region in which
the related values of R and ¢ are compatible with those of concrete (¢ = 30°
for I = 10). Numerical results obtained with this simple yield function were
good and they can be seen in [36-38),

A more detailed study of the experimental work reported for biaxial and

Lriaxial behaviour of concrele allowed to ‘lefine & new function of the form
(34,35] (Figure 2.6)

F =Fla,¢,¢) = ;‘“)[\f:}.&, tali4+f <™ 5 -y < <a™®F 5)_e=0

(1 -

(2.29)
where Iy is the first invariant of stress, «,4 and ¥ are dimensionless
parameters that can be expressed as functions of the friction angle ¢, o4
is the maximum prineipal stress and < 42 >= %[:r + |z|] is a ramp function.
Note that when ¢™%" = 0 (biaxial compression) F iz just the Drucker-
Prager eriterion, with the exception of parameter &. This can be obtained
comparing the initial equibiaxial compression stress f,  with initial uniaxial
compression stress f. | yielding [34,35]:

(72e1)
il )

05 ==

(2.30)



62 Lectures on non linear finite element analysis of concrote shells

R I Q) com
Iﬁ)-,"

SN

E
{".’J;,
i
R
c?.-ﬁ-%"" :
sy
o m

—
2 &
TR
i
I
i |

Rank of concrete

"l

N

T
R
N

-

5% ﬁi 4o ':5' Glnl
o ¢

Domain of concrete

REBUECTION

Hl-lnn'{r:-tu%}

(o]0
Ve
v (O VR z Ve

Re o o N

Fo Ky 0+ (401K, con 0 Ky HRO N )¢ corna0

uul-@ - -%1—’ wn# ]

: PRRELL SN

o —— e I

S I i wnae

Figure 2.6 R — ¢ ratios for Mohr-Coulomb and modified Maohr-
Coulomb surface.



Material Modelling of conerete 53

Experimental values give 1.10 < fo,/ feo = 1.16 which yields 0.08 < & <
0.1212.

Onece @ is known, A can be determined from the value of B = fc,/.fT,,j
where fr is the initial uninxial tensile yield, as [34,35):

B=(1—-a)h—(1-+a) (2.31)

and for & =~ 10 and & = 0,10 gives 3 ~ 7.50

The parameter v appears only in triaxial compression with #™#* < (.

Considering the equations of the straight tension (TM) and compression

(CM) meridians of the yield surface it can be obtained [34,35]
_ 301 — i)

where

a0t = (\/};)TM/(\/}; oM at a given I (2.33)

Experimental tests show thar #% has a constant mean values of = 0.65
[34,35) which yields a value of A =~ 3.5

Definition of the plastic damage variable x?

Let us consider stress—plastic strain diagrams for uniaxial tension and
compression lests (see Figure 2.7) for each test we define

1 gt — .
kP = P j; y ardel, for uniaxial tension, and
T F—1
(2.34)

1 rt gy A
kP = ?— £ ; agodeg, for uniaxial compression
4 fr —]

where gf and gf are the specific plastic works, defined by the areas under
cach of the curves op — &} and oo — €. (Figure 2.8) obtained from the
tension and compression uniaxial tests, respectively. The eqs.(2.34) allow
the transformation of uniaxial diagrams: & = f(&?) in other: o = J(kP) such
that (Figure 2.8)

tension test: Jr(0) = fr, and fr(1)=0
compression test:  fz(0) = fo, and fe(1) =0

Starting from these concepts, the evolution law for k¥ can be generalized
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Figure 2.7 Proposed yield surface: (a) (o, — oy, oy = 0) plane;
(b) octahedral plane; (c) meridian plane.

for a multiaxial stress state (written in terms of principal stress and plastic
strain), as [3«1,3.,’3] '

3
di? = hy (o, nP,c)de? = 3 (hyode?) (2.35)
i=1
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Figure 2.8 Uniaxial curves (& — £P), (a) Tension; (b) compression.

with:

1 1
gr 9e

T (2.36)
e p‘:’_.«agg] <o > (E*: 192?:1 < - >
r =41 o7 » o = e oo

where subscrits 1" and C denote values obtained from uniaxial tension and
compression lests, respectively. In eq.(2.36) gf and gh' are normalized
values of the uniaxial specific plastic work for tension and compression
processes, accordingly to the yield function chose and also to the uniaxial
tension and compression stresses op and or. For further details see [34,35].

Evolution law for the internal variable of cohesion ¢

The evolution of the cohesion ¢ must satisfy ¢ — 0 for 7 — 1. In
this model the evolution law for the cohesion is given by :q.(Z.EB) with the
evolution function he(e, x¥,c) defined by [6,7,12, 15, 16]:

1(0) dep(x?) | 1= (o) de(n?)
er(kP)  drb co(kP)  drP

he((a, kP e) = (2.37)

where ¢ is the actual value of the cohesion, ep(x?) and ¢g:(#”) are the cohesion
functions obtained from tension and compression uniaxial Lests, reapectively
(see Figure 2.9), and r(e) is a function defining the stress stated, being
0 < r(e) <1 with »(e) = 1if o; = 0 over all i = 1,2,3 and r(e) = 0 if
g1 < 0overalli =1,2,3.

We have Laken

. _E,:L < a; =
o Sl (2.38)

For further details the render is referred to [6,7,15,'1.!3].
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Figure 2.9 Uniaxial curves for tension and compression tosts. (a)
Uniaxial curves (& — &), (b) uniaxial curves (¢ - x).

EVOLUTION LAW FOR THE INTERNAL
FRICTION ANGLE ¢

It has been shown [6,15,17] that the loss of cohesion in concrete due to
increase plastic damage affects the value of angle of internal friction, which
ranges from ¢ = 0 for initial cohesion ¢y until ¢ = #™* for the ultimate
value of cohesion ¢ = ¢, = 0. In this work the following evolution law for ¢
hﬂ.ﬂ ht‘.‘.‘t‘:n L'-ll(}EL‘H

s = { 2&?4-:: sin ™, VP < xl (2.39)
gin ¢™; ViP = gl

where «¥ denotes the limit damage for which the value of ¢ remains conatant
(see Figure 2.10).
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Figure 2.10 BEvolution law for the internal friction angle.

PLASTIC POTENTIAL FUNGTION
AND DILATANCY ANGLE

Granular materials like concrete exhibit dilatancy phenomenon. This can
be modelled introducing an adequate plastic potential funetion @ to mach the
numerical values obtained for the inelastic volume change with experimental
data. In this work we have chosen for G the modified Mohr-Coulomb yvield
function of Figure 2.6 with the angle of dilatancy # substituting the internal
friction angle ¢. The evolution law for 1 has been obtained via & simple
modification of the general expression used by De Borst and Vermeer [39] as

sin ¢(kP) — gin ey
1 — sin (&P) sin ¢ey

$(x¥) = aresin (2.40)

where ghey can be taken as a constant value. For conerete $ev = 13°.

The eq.(2.40) gives for the initial stages of the process a negative
dilatancy, which increase as plastic damage increases, takes a zero value
for ¢ = ¢y and reaches a maximum for = ¢™**  For concrete a negative
value of 9 has not physical meaning and, therefore, it must be taken ¢ = 0
for ¢ < ¢eu (see Figure 2.11),

Generalization of the model to include stiffness degradation

Experimental results show that near and beyond peak strength comented
granular materials exhibit an increacing degradation of sttiffness due to
microcracking (Figure 2.12). The consideration of the phenomenon of
stiffness degradation makes it necessary some modification in the basie
concepts of the theory of plasticity used in previous sections and, in
particular, that of associated plasticity,

Taking into account the stiffness degradation effects implies modifying
the elastic secant constitutive matrix D, in terms of two sets of internal
variables:  the elastic degradation variables and the plastic degradation
variables whose evolutions will be assumed to be governed by rate equations
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Figure 2.11 Evolutions law for the dilatancy angle [17].
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Figure 2.12 Degradation of stiffness module due to microcraking.

of the form: df = ¢; < k; - > and u[p = 1; « €7 [34,35] repectively; where
k; and I; are vecturs in the stresses bPEGE dermt:ng the directions of elastic
and plastic degradation, respectively; and ¢; is a positive scalar factor (for
further details the reader is referred Lo [34,35).

The simplest assumption for elastic degradation based on a simple
izotropic degradation can be variable: 2% such that the secant conatitutive
matrix is modified by:

Dy(d) = (1 — d°)D° (2.41)
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where D? is the initial stiffness. Parameter d® can be interpreted as the ratio
between the area of degradated material and the total area, and it can be
expressed [34,35] as

dF=1—e (2.42)

where 2w® = g° . D - g% i3 the square of the undamaged energy norm of the
strain, £ is the elastic strain and ¢ is a constant given for this particular
case by [34,35]:

2 E
E? is initial Young modulus; E' and €' are the secant Young modulus
and the elastic deformation at the limit stress point of elastic degradation,
respectively. For further details the reader is referred to [34,35].

For the plastic degradation a simple one-parameter model can also be
used [34,35]. This is based on the assumption that plastic degradation takes
place only in the softening branch and that the stiffness is then is then
proportional to the cohesion. The secant constitutive matrix is thus given
by:

D, (dP,d®) = (1 — dP)D,(d") (2.44)

with the plastic degradation parameter d” given by

{ i

=1 =
df =1 cpealk

(2.45)

where e i8 the actual value of cohesion and ¢#** is the maximum cohesion
value reached [34,35].

Problem of objectivity response

It has been made abundantly clear over the past decade that the strain—
goftening branch of the stress—strain curves cannot represent a local physical
property of the material. The argument have been advanced both on physical
grounds and on the basis of the mesh-sensitivity of numerical solutions
obtained by means of the finite~clement method. The mesh-sensitivity can
be largely eliminated if one defines gf = G/l and g = G/l, where L is a
characteristic length related Lo mesh size, and G and ¢ are quantities with
the dimensions of energy/area that are assumed to be material properties.

In problem involving tensile eracking, G4 may be identified with the
specific fracture energy {7y, defined as the energy required for form a unit
area of crack. It has generally been assumed that (¢ is a true property,
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and methods have been developed for determining it. For the characleristic
length [, various approaches have been proposed [40].

Not 0 much attention has been paid to the corresponding compressive
problem. Compressive failure may occur through several mechanisms-—
crushing, shearing and transverse cracking-and consequently G, if indeed
it is a material property, cannot be readily identified with any particular
physical energy. Moreover, it must be kept in mind that it iz only the
descending portion of the stress-strain curve that is mesh-sensitive.

Determination of cracks by postprocessing the numerical results

The amount and directions of ¢racking at a point in the plastic-damage
model is obtained a posteriori, once convergence of the non-linear solution
has been reached, as follows:

(a) Cracking initiates at a point when the effective plastic strain, &P,
15 greater than zero. The direction of cracking is assumed to be
orthogonal to that of the maximum principal strain at the point (see
Figure 2.13).

(b) The inerement of plastic strains along the directions of the crack,
Ae, can be oblained as Ae® = T - AeP, where AeP is the vector of
plastic strain incremenl expressed in global Cartesian axes and T is
a transformation matrix given by:

cos* 0  sin®é@ '—Eh’—e-
T= sin® @ cos’fl — mg_i {2,‘15)
—8in2f sn20 cos28

where £ is the angle which the direction of the maximum principal
strain forms with the global 2 axis (See Figure 2.13).
Vector Ae® is used to accumulate the plastic strain dissipated along
the crack local axes.

(c) The energy dissipated in the structure due to cracking in & load
increment is obtained as:

AWP = fv ol Ag-dV (2.47)

where V is the volume of the structure.
(d) The model also allows to obtain the shear retention factor a crack as
B = r/7° where 7 is the actual shear stress parallel to the direction
of the erack and #° is the value of = obtained from a linear elastie
analysis,
Therefore, the elasto-plastic model proposed here allows the
computations of all the necesary information for fully defining the state of
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Figure 2.13 Direction of cracking at a damaged point.

cracking in the structure. However, the fact that all this information is
obtained a posteriori can be considered a clear advantge with respect to other
discrete or smeared cracking models, which involve detailed transformations
during the non-linear numerical solution stage,

BEHAVIOUR OF REINFORCING STEEL
IN TENSION AND COMPRESSION

The reinforcing bars are considered as steel layers of equivalent thickness
in the present model. Each steel layer has an uniaxial behaviour resisting only
the axial force in the bar direction. A bilinear or a trilinear idelization can
be adopted in order to model the elasto-plastic stress-strain relationship.
The basic relationships for uniaxial elasto -plastic behaviour and the
corresponding numerical formulation ¢an be found in reference [20].
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Lecture 3

STIFFENED SHELLS.
MODELLING OF ECCENTRIC
BEAM STIFFENERS

SUMMARY

This lecture deseribes the basic finite element formulations for the
analysis of stiffened shells via the use of eccentric beams.

INTRODUCTION

Beam stiffened shells are very common in practice. Typical examples of
application are found in slab-beam bridges, edge beams in shell roofs and
beam stiffened ship hulls (Figure 3.1).

The finite element analysis of these structures precises an adequate
modelling of both the beam and the shell structures. For the shell any of the
flat or degenerate shell elements formulations presented in Lecture 1 ean be
used. On the other hand the analysis of the beam can be based on standard
straight two node beam elements, more elaborated curved beam elements
or even more sophisticated beam elements developed from a degeneration of
3D solid elements. Also for each of these element types the hypothesis of
orthogonality of the transverse normal sections after deformation can or can
not be assumed yielding the so called Buler-Bernoulli or Timoshenkos beam
theories, respectively.

In this chapter we will concentrate on the study of beam elements based
on Timoshenke beam theory. Both curved and straight elements will be
considered. Also the study is focused on the analysis of reinforced concrete
beams for use as eccentric stiffners in conerete shells, and also in slab beam
bridges. Therefore, the non linear material behaviour will be treated using
a layered approach, similar to that studied in lecture 1 for shells, Also non
lincar geometrical effects will be negleted in the analysis.

The content of the lecture is the following, Firstly the basic theory of
curved Timoshenko concrete beams is presented. Then, the modelling of
eccentric beam stiffness is considered, Finally examples of application to the
analysis of some conerete structures are presented.

G5
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Figure 3.1 Some beam stiffened structures.

CURVED TIMOSHENEKO BEAM ELEMENTS

Basic theory

Let’s consider a curved beam defined in a global coordinate system zyz
by the center line & and the different transverse sections of area A(5) (Figure
3.2). A loeal coordinate system Yz is defined al the centroid of each section
G 8o thal z is normal to the transverse section and tangent to the center line
in (7 and § and # eoineide with the twe principal directions of the transverse
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section, For simplicity we will assume that the shear center coincides with
.

Y. &1 principal inertja gxes

G cenlrolde

Figure 3.2 Geometric description of a curved beam element,.

The kinematic description is based on Timoshenko beam theory, i.e. the
transverse sections remain plane, but not necessarily normal to the center line
after deformation. This assumption is analogous to that of Reissner-Mindlin
for shells used in Lecture 1.

With this assumption the displacement field can be written as

= Bg — Els (3.1)

where (.)g denotes displacements of the centroid, fg is the torsional rotation
and @y, 0z are the two rotations about § and Z axes, respectively (see Figure
3.2).

The local and displacement vectors of a point are related by

u' = Lu (3.2)
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with (3.3)

u = [ng,ﬂg,wmﬂ,,ﬂmﬂ.]T

T 0O
L= : T = |e;, e3, €4
o T

where ey, e; and e are the cartesian components of the unit vectors in local
directions &,y and Z respectively.
The three non-zero loeal strains are

i dig aty 005

= ;uE = a&ﬂ +;a£ T ”
o o O , 00
Yig = a7 + == T o T (3.4)
o thi g _D8
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The stress—strain constitutive law is for linear-elasticity

% E 0 0 £
g = TE7 = 0 & 0 vEg { = D' (3.5)
T8z 0 0 &G | vas

If a layer approach is used as shown in Figure 3.3 (3.5) will be written for
each individual layer. Also, if material non-linearities of the type explained
in Lecture 2 are considered eq.(3.5) will be expressed in the standard
incremental form as

da’ = D'y de'
where DYy is the non-linear tangent constitutive matrix obtained using any

of the two non-linear material models for concrete explained in Lecture 2.
The virtual work principle is written as

fffv[ﬁzwﬁ b dvysgTeg + dyseraz|dV = ‘/;Euftds + Zﬁufp,- (3.6)
4

where ‘
t = [imﬂy,i;,mm,my,m;]'l

. (3.7)
pi = “?n:npyﬁFSNM“HMV”M“"IT

are the distribuled and point load vectors in global axes, respectively.
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LAYER K

Figure 3.3 Layer discretization of a beam.

If the beam eurvature is small we can take B%‘ = 2 and eq.(3.6) can be
written after some algebra

ﬁ'ﬁa QEE ﬂﬂg
A[J(W)N + 5(88)1149—5(5)@& +
ooy e
+ 8 (% + 99) Qz] ds = /J 5" &' da

where

. [Bic 90; 00 86s (Gve Bivg 5
I = -— — 'z e f
¢ [m’aa‘ Bs’ﬂa'(aa a,,),(m ”ﬂ)] (8:9)

is the local generalized strain vector in which gg%ﬂ is the axial elongation,

&8 , . .
—5-} and %ﬁ are the beam curvatures, %Q:- the gradient of torsional rotation

and Q,{,c'" - 3 and 25”—,”— t @y the shear deformations.
Also in (3.8)

& = [N, My, My, T,Qq,QzT (3.10)
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is the vector of local resultant stresses given by

[N, My, Mz, T, Qg, Qz]" ff [0, Zos, or, (iez — i1ag), Tag, 2] T dA
(3.11)

For the sign convection see Figure 3.4.

Figure 3.4 Sign convention for resultant stresses,

From (3.5) and (3.11), the relationship between resultant stresses and
generalized strains can be written as

& =D& (3.12)

where

=2 B
| i B ; .
: f /A G2+ 0a dA (3.13)
G
0 G |

In a layer furmula.tum the integral in eq.(8.13) must be computed taking
into account the material properties of each concrete or steel layer. For
homogeneous material eq.(3.13) reduces to the well known expression

[ EA 0

(3.14)
0 ﬂ:gGA

azGA |
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where Iy and Iz are the principal moments inertia of the section, J is the
torsional inertia (J = Iy + Iy) and ag and az are the warping coeflicients
(for rectangular sections ey = oz = 5/6)

For non linear material analysis eq.(3.13) is written in an incremental
form and the computation of DYy, involves now integration of the tangent
material operator across the different layers.

Formulation of Timoshenko beam element

We consider a discretization of the beam in one dimensional curved C,
finite element, as the three node element shown in Figure 3.1, The center
line coordinates are interpolated in the standard isoparametric form as

n
x = [zeya,2a)” = 3 Nix; (3.15)

i=1

where N; = N;(£)I3 and Ny(£) is the 1D shape function of node i [1] and n
the number of nodes of the element.
The tangent vector ¢, is given by

1 % 1 nanN;
55108 |xr, Wi 5 08

Vectors ¢; and ey are obtained from the principal inertia directions of
the section defined at each nodal section: Once ey, e; and ey are computed
the transformation matrix I of eq.(3.3) can be obtained for each node,

The local displacements u' are interpolated as

L5

i3
o = MLl &l = (a0, 00, 05,05, (3.17)

From (3.9) and (3.17) we deduce

T nt n
¢ = Y B = S BiLal = 3Bl (3.18)
i=1 i=1 pe=y

where

B; = BiL; (3.19)
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is the local generalized strain matrix of node i.
The element stiffness matrix and the equivalent nodal load vector can be
obtained in the standard manner as

& ¥
K = [ BIO'B;ds (3.21)
g = f:m Nitds + p; (3.22)

The integrals along the element lenght are computed using numerical
integration as

s

K = 3, (BTD'B7 )W,

. (3.23)
i) = pi + SNTLIELW,

p=1

where ny, and Wy are respectively the sampling point and weight of the
1D Gaussian quadrature and J(¢) = 92 is obtained from the isoparametric
geometrial definition of the centroidal axis as

: t
o _ (2t pdyr e [ gy “oane ) g\
Jhel — ‘r,:“ ) - [(_Zl Emﬂ) + Z “Ez.l"yn. + E "a'E!‘;“'

fml 1=l

The derivatives in (3.20) are computed using J(¢) as

ONi _ oNoE 1 0N,

ds 9 Bs gl BF R

Timoshenko beam elements suffer from shear locking behaviour when
nsed for slender beam situations. The simplest approach to avoid locking
in this case is to use reduced integration for the shear terms in the stiffness
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matrix. In fact, it has been proved thatl a uniform reduced integration for all
terms of K(¢) provides excellent results [2]. This simply requires to use one,
fwo and three point quadratures for the linear, quadratic and cubic beam
elements, respectively,

Of particular practical interest is the simple two node linear (straight)
beam element with a single integration point for which the stiffiness matrix
can be explicitely computed as

HE‘:) = E?ﬁ'ﬁjl(') (3.25)

where (7) denotes values al the element mid—point. The form of B; can be

directly obtained form (3.14) and (3.20) by making N; = % | _aé\r? " f!—;l')' )
Also as the element is straight L; = L; = L.

FORMULATION OF ECCENTRIC BEAM
STIFFENER ELEMENTS

Figure 3.5 shows a typical case of a shell element stiffed by an eccentric
beam element. The shell element formulation could be based on any of the
flat or degenerated layered shell elements presented in Lecture 1 and will not
be repeated here. We will also assume for simplicity that the stiffner is based
on the Timoshenko beam theory studied in previous section.

. Seckidn A,

A : - H X zn
uppi:'.f ﬁ“"fﬂ.ﬂﬂ N ;
: lower surface

;
i ?n

Figure 3.6 Eceentric beams element.
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A further assumption will be that the beam stiffener is rigidly connected
to one of the two shell surfaces along a nodal line, Therefare displacement
compalibility conditions along that line require that the order of the beam
and shell elements be the same. Also if both elements are rigidly connected
fhe beam transverse section A; has the same global rotations as the ith shell
node to which it is connected. Finally we will assume that the normal nodal
axe of the shell element o3, crosses the centroid of the beam section. Note,
however, thal it is not necessary that the directions of the nodal veetors in
the shell coineide with the local axes of the beam section.

With these assumptions we can express the global displacements of the
beam centroid ; in terms of the displacements of the shell ith node as

g, = i + 0 wagiy, O = 6 (3.26)
or
ug, = u; + Al ; 8g = 0 (8.27)
with
ug; = [ug;,ve;,we]"
0 wf —vf
up = fwpvpwi]” Ay = g [l 0w o
v%‘; —y, 0 (3.28)
g, = 0; = lﬂt‘,ﬁ?y;,ﬂg]r
and
t-
(:'31 o+ hl,) if the beam stiffner lays on the
) upper surface of the shell
g =
2 A
- (El 4 h.gﬂ) if the beam stiffner lays on the
lower surface of the shell

\

where t; is the thickness of ith shell node and hy, and hy, are the distances of
the beam centroid to the upper and lower shell surfaces, as shown in Figure
3.5, From 3.17 we deduce that the global displacements vector of the beam
centroid Gy ean be expressed in terms of the global displacements of node 1
in the shell element as

S P R [ WO

where super-indexes B y 5§ denote beam and shell displacements,
respectively.
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Eq.(3.29) allows to express the local generalized strains in the beam
stiffner in terms of the nodal displacements of the shell element as

n 7l 1
¢ = YBia! = 5 Bihaf = 3 Bjaf (3.30)
=1 =1 i=1

The stiffness matrix of the ecceniric beam stiffner in global axes is
computed by eq.(3.21) substituting simply matrix B; of (3.19) by B; = B;A,.

The final step is the assembly of the beam and shell stiffness equations.
This may require in some cases to transform the stifiness equations on the
shell element so that the nodal rotations at the connecting nodes are also
expressed in global axes, This poses no additional difficulty even for coplanar
nodes since the beam stiffner introduces the necessary rotational stiffness to
avoid singularity of the global stiffness matrix [2].

In some cases the beam stiffner may have an arbitrary orientation with
respect the shell mid-surface as shown in Figure 3.6. The only difference
with the formulation described above is that now the relative position of each
centroidal node in the beam with respect to the connecting ith shell node
has to be precisely defined. Then the distance h¢, between these two points
and the unit vector &, linking the two points must be computed. These two
values replace now in 3.28) the distance o; and the normal nodal vector U3,
respectively. The rest of the formulation is identical to that presented above.

Figure 3.6 Beam stiffner arbitrary oriented with respect the shell
mid surface.

Analysis of slab-beam bridges

Slab-beam bridges are a particular cage of applications of the eccentric
beam stiffener formulation described. For simplicity we will consider the
bridge shown in Figure 3,7, formed by an assembly of a rectangular slab
and straight beams of rectangular cross section. However, the case of inertia
varying beams poses no greater dificulty.

In the more general case the slab will behave as a flat shell element and
the beam element will require the 3D formulation as described earlier in this
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lecture. Again, for simplicity we will assume the same basic (' finite element
formulation for both type of elements (Reissner-Mindlin shell elements for
the slab and Timoshenko bheam elements for the br.u.m}.

Figure 3.7 Slab-beam bridge.
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Following the arguments given in previous section the displacement field
of the beam nodal centroids can be written in terms of the slab nodal
displacements as

1 1
g, = U+ i(t; +hi)0y, , ve, = v — E(t; + b))l

(3.31)
Wg, = w4 , eﬂlc‘ = 0:; ’ eya' = By,- : e.:al. = 63;
Therefore, matrix A; of (3.28) can now simply be written as
0 Fti+h) 0
| = ) 0 0
A; ; b 0 (3.32)

‘The beam stiffness matrix is transformed for direct assembly with that of
the slab as

KY = ATKYLA, (3.33)

where Hi’j is the standard beam stiffness matrix given by eq.(3.21) and A;
is deduced from (3.29),

A simpler alternative to analyse slab beam bridges is to neglect the
beam eccentricity effect. In this case the slab is modeled with simpler plate
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elements and the beams with standard 1D beam elements including torsional
cffects. In the next section we present an example where the different options
to analyse a slab-beam bridge are compared.

Example of linear analysis of a slab-beam bridge

Figure 3.8 shows the geometry of a slab beam bridge simply supported in
four points of each end section analyzed under unformly distributed loading
of ¢ = I0KN/m? A quarter of the structure has been analyzed due to
symmetry as shown in Figure 3.8, For the slab and beams E = 107K N/m?
and v = 0.3. The analysis has been carried out with three different elements.

a) 4 node quadrilateral flat shell elements 5] for modelling both the slab
and beams (Figure 3.8a),

b) 4 node quadrilateral flat shell elements [5] for the slab and 2 node 3D
Timoshenko beam element (Figure 3.8b),

a) 4 node quadrilateral plate elements [5] for the slab and simple 1D
Timoshenko beams including torsional effects (Figure 3.8¢).

Figure 3.9 shows the results for the normal stresses at the central seetion
obtained with each of the three formulations. It ean be noted that errors in
the values computed with the simpler (¢) formulation do not exceed 20% of
those obtained with the more precise (a) and (b) assumptions.

NON LINEAR ANALYSIS OF SHELLS WITH
ECCENTRIC BEAM STIFFNESS

The non linear analysis of concrete beam-shell assemblies follows
precisely the lines explained in Lecture 1 for the shell case.Material non
linearities in the beam and shell elements are modelled using a layered
approach together with an adequate constitutive model for concrete and
reinforeing steel as described in Lecture 2. The layered model allows to
monitor onset and evolution of damage (i.e. cracking in conerete or plasticity
in steel) at each individual layer in both the shell and beam stiffeners.

Geometric non linear effects can also be properly taken inte account
following the lines described in Lecture 1. Details of the adequate
geometrically non linear formulations for the beam stiffeners can be found in
[3,4].

Some examples of the non linear behaviour of beam-shell assemblies are
given in Lecture 4,
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Figure 3.8 Slab~beam bridge under uniformly distributed loading. (a)
Discretization of slab and beams in flat shell elements (b)
Discretization in flat elements (slab) and 2 node 3D Timoshenko
beams, (c) Discretization in plate elements (slab) and 2 node 1D
Timoshenko beams. 1/4 of the structure analized for symmetry.
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Figure 3.9 Slab-beam bridge under uniformly distributed loading. Normal

stresses in central section for the formulations (a), (b) and (¢) as
described in Figure 3.8.
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Lecture 4

SOME EXAMPLES OF FINITE
ELEMENT NON LINEAR
ANALYSIS OF CONCRETE SHELLS

SUMMARY

This lecture presents some practical applications of the finite element
formulations for non linear analysis of reinforced concrete shells studied
in previous lectures. Examples presented range from the analysis of plain
and pre-stressed concrete beams to more sophisticated shell type structures,
including the non linear behaviour of a composite steel-concrete girder bridge
and a cryogenic concrete liquid gas tank under severe theral actions,

EXAMPLE 1. BENDING TEST OF A SIMPLY
SUPPORTED NOTCHED BEAM UNDER CENTRAL
POINT LOAD (FRACTURE MODE I)

Figure 4.1 shows the geometry and material properties of the beam and
the finite element mesh of isoparametric 8 node Serendipity elements, used
[1]. The non linear behaviour of concrete has been modelled with the plastic—
damage model described in Lecture 2.

Experimental results for the load-displacement eurve for this example
are shown in Figure 4.2 (2] together with the numerical results obtained in
the analysis.

Figure 4.1 shows an amplification of the notched zone for the final state
(point ' in the load-displacement curve of Figure 4.2). Note the strain
localization in a band of elements modelling the progression of the crack
towards the upper part of the beam.

Figure 4.3 shows the distribution of cracks for the maximum and final
loads (points B and C in Figure 4.2), The length of each crack line represents
the amount of plastie deformation in the corresponding ortogonal direction
thus providing an indicator of the opening of the crack. The damaged
elements zone has been amplified in Figure 4.4 showing the typical fracture
mode [ as expecied.

81
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Figure 4.1 Simple supported notched beam under point load,
Geometry, mesh and material properties.
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Figure 4.2 Simple supported notched beam. Load-displacement
curve. Point A: onset of eracking; Point B: maximum
load; Point €': Final state.



Finite element analysis of concrate shella. By

Finally in Figure 4.5 the distribution of principal stresses for load points
AB, and C of Figure 4.2 is also shown. Note the relaxation of tensible
stresses as eracking develops and the intensity of compressive siresses in the
upper part ot the beam for the final state which requires adequate modelling
of non linear compressive behaviour of concrete in these zones. For further
information see (5],

EXAMPLE 2 ANALYSIS OF A NOTCHED
BEAM (MIXED FRACTURE MODE)

This example is a reproduction of the experimental test performed by
Arrea and Ingraffes [3]. The geometry of the notched beam, material data
and loading conditions used to induce a mixed fracture mode (modes I and II)
are shown in Figure 4.6. Az it ean be seen the steel beams, used to transmit
the loads to the concrete beam, have also been considered in the analysis
(assuming a linear behaviour) in order to take in account its rigidity, The
numerical analysis was performed using eight-noded two dimensional finite
elements, and the mesh used is shown in Figure 4.6. The crack mounth sliding
displacenent (CMSD) at the noteh tip (see Figure 4.6) was controlled using
a spherical path technique [4]. Again the plastic-damage model for concrete
deseribed in Lecture 2 hag been used.

Nurmerical results for the load—-CMSD showing the points of onsetiing of
cracking (point A), instability (point B) and ultimate state analized (point
') have been plotted in Figure 4.7, Good agreement with experimental
results [3] also plotted in the same figure, is obtained.

In Figure 4.8 the crm:king pattern at the peak (pﬂint B of Figure 4.7)
and ultimate load (point C' of Figure 4.7) are shown.ll is interesting to
note that cracking localizes in a narrow curved band after the peak load,
for which all cracks are distributed almost vertically and form an angle of
approximately 60% with the horizonial axis (sce Figure 4.8a). Excellent
agreement between the localized cracking band obtained numerically and
experimentaly is achieved, as it ean be seen in Figure 4.84.

The principal siress distributions at the onsel of cracking (point A of
Figure 4.7) and the ultimate state (point ¢ of Figure 4.7) are shown in
Figure 4.9. It is worth noting the stress relaxation in the zone where cracking
localizes (see Figure 4.9b). This localization can also be clearly seen in Figure
4.10, where the deformed shape of the beam (amplified 300 times) at the end
of the test is shown. Further details can be found in [6).
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Figure 4.4 Straim localization in the notched region.
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EXAMPLE 3. PRESTRESSED CANTILEVER BEAM

The beam shown in Figure 4.11 has been analized under the following
loading conditions [T]: (a) prestressing in a direction parallel to the neutral
axis, and (b) subsequent transversal loading as shown in Figure 4.11. This
corresponds Lo an experimental test numerically studied by Rots ef al. in [2].

The material parameters and finite element mesh used are also shown
in Figure 4.11a. Four node cuadrilateral elements have been employed in
the narrow band shown, whereas eight node cuadrilateral elements are used
in the rest of the beam. 2 x 2 Gaussian quadrature has been used for all
clements. The plastic damage model for concrete described in Lecture 2 has
been used.

The load-displacement curve obtained is plotted in Figure 4.11b,
Comparison of the results obtained with those presented in [2] is good. It can
be seen that the applied load does not reach a zero value. This is due to the
vertical comnponent of the presiressing load, which oposes the opening of the
two beam edges, The dissipated energy is shown in Figure 4.11¢ where it can
be seen that the solution estabilizes to the correct value. In Figure 4.11d the
stress changes in the point under more severe damage are presented. Finally
Figure 4.12 clearly shows the localization of deformation and the evolution
of cracks and stresses in the damaged zone, Again it is worth noting that the
cracked elements simulate the effect of a single erack ocurring in practice.
Further details of this analysis can be found in [7].

EXAMPLE 4. SIMPLY SUPPORTED MIXED
BEAM-SLADR BRIDGE

We consider here the analysis of a simply supported mixed steel
beams-reinforced concrete slab bridge using the elasto-plastic-brittle maodel
presented en Lecture 2, The geometry of the bridge is shown in Figure 4.13.
Details of the eross section diseretization in layers are shown in Figure 4.14.

Some typical results of the analysis displaying the load-strain and load-
deflection curves for twa lnutling cases (:Drrcspnndiug to two and four point
loads acting on the midspan section are shown in Figures 4.15-4.16. Very
good agreement of the measured midspan deflections with the numerical
results obtained are alse shown in Figurc 4.16. For more information on this
example see [8],
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EXAMPLE b. CYLINDRICAL CONCRETE SHELL
WITH EDGE BEAMS

We present next the analysis of two reinforced and prestressed cylindrical
shells studied by Roca [9]. The first analysis considers the shell and beam
composed of reinforeced concrete with gcnmctricaﬂ and material properties
given in Figure 4.17. The elasto-plastic-brittle model of Lecture 2 has again
been used. The loading is the following: Shell: normal uniform pressure of 7
KPa, Edge beams: normal uniform loading of 1.41 KN/m.

Six degenerate shell elements and six Timoshenko beam elements have
been used as shown in Figure 4.18. The load-deflection curve obtained is
shown in Figure 4.19.

Figure 4.20 shows the erack distributions in the shell and beam with and
without taking into account the effect of prestressing in the beam.

Finally, Figures 4.21 and 4.22 show resulis for a similar problem
r,nnsidmring now the prestressing of both the shell and edge beams. Further
information can be obtained from [9]

EXAMPLE 6. PARABOLIC CYLINDRICAL REINFORCED
CONCRETE SHELL

A parabaolic eylindrical reinforced concrete shell with variable thickness,
subjected to uniformly distributed pressure, which was tested by Hedgren
[12], was analysed by Owen and Figueiras [13] using degenerate layered shell
elements and the elasto-plastic-britile conerete model described in the first
part of Lecture 2. The shell was tested with end support diaphragms and free
edges. The shell geometry, finite element mesh, and the zones with different
layer patterns are shown in Figure 4.23a. Thirty six degenerate shell elements
are used to model one quarter of the shell, each of which is divided into 8
equal conerele layers.

The boundary conditions assumed lo represent the effects of the end
support diaphragms are free displacements in the x-direction and free
rotations normal to the shell p-la.nc. The steel and conerete properties and the
reinforcement characteristics for each layer pattern can be found in [13]. In
Figure 4.23b the experimental load-vertical deflection curve at midspan of the
free edge is compared with the present results using a linear and a nonlinear
geometrical model. Geometric nonlinear analysis has an important effect in
this shell problem as noted by Hedgren [12]. An increase of the shell stiffness
and its load carrying capacity, due to the vertical uplift of the shell crown
and the downward displacement of the free edges, is observed. An increase
of the lever arm of the internal forces is consequently obtained, when the
deformed geometry is taken into account.

The verfical deflections of the transverse section at midspan of the shell
are presented in Figure 4.24 for load [aclors of 0.8 and 2.4. In all cases
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Figure 4,18 Cylindrical conerete shell, Finite element mesh of shell
and edge beam elements,
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the numerical and experimental resulis are seen to be in good agreement
provided that geometric nonlinear effects are included in the computations,

The plastic strains in the cirenmferential reinforcement are represented
as conlour plots in Figure 4.25 for a load level, F' = 4.35, which is close to
ultimate load. Positive values correspond to the top layer and negative values
refer to the bottom circumferential layer. The negative yield line (positive
plastic strains) is completely formed, whereas the two positive yield lines are
not yet completely developed along the edges.

EXAMPLE 7. CYLINDRICAL CRYOGENIC REINFORCED
CONCRETE TANK

The last example is the analysis of a cylindrical cryogenic reinforced
conerete tank with an spherical dome for liquid gas slorage [14]. The tank
has been assumed to be fully clamped at the base, for simplicity. The
geometry of the tank, material properties and the meshes of axisymetric
solid and degenerate shell finite elements used for the thermal and structural
problems can be seen in Figure 4,26, The tank has been analyzed for two
different thermal conditions. The first one corresponds to the case of the
tank filled with liguid gas at —160°C (due to the breakage of an internal
container). This problem has been studied in two steps. In the first step
the non linear structural response of the tank for external loads such as
vertical and circumferential presstressing and self weight has been analyzed.
Then the non linear thermal struetural behaviour for various temperature
distributions ebiained al different times has been studied. Resulis for the
temperature contours and for radial and circumferential cracking zones in
the tank at various times have been plotted in Figure 4.27. It can be seen
that the initial external loads give place to very localized cracking zones only.
The thermal loads, on the other hand, have an special effect on the amount
of cracking in the upper part of the dome. The rest of the tank is not severely
alterad.

The second thermal condition corresponds to the case of an internal fire
in the liquid gas partially filling the tank., Temperature of the air over the
gas is assumed from a value of 1300°C at the gas surface to a value of 1000°C
al the top of the dome. The liquid gas is assumed to be at —160°C, This
is a severe loading condition for which the part of the structure in contact
with the fire is almost instantaneously completely colapsed, as it can be seen
in the numerical results plotted in Figure 4.28. (Again, external loads have
been assumed o ael prior Lo the fire). However, it is noticeable that the part
of the structure in contact with the liquid gas, is not severely damaged and
the tank can still be considered “safe”, with regard to avoiding the spilling
of the liquid gas. Further details can be found in [M].
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