


obtained operating with the energy estimates. Most of these tools provide asymp-
totic bounds that is with respect to a much finer reference discretization. Other
approaches focus on guarantying exact bounds, that is bounds guaranteed with re-
spect to the exact solution, independently of any underlying reference mesh. The
motivation to develop these numerical tools is to certify the accuracy of the solu-
tions of boundary value and/or evolution problems, see [17,18,14,22].

This paper and its associated first part [15] provide a methodology to obtain com-
putable strict bounds for quantities of interest in the context of parabolic problems.
In this context, the list of previous references is much shorter [1,3,19,10,5]. The
strategy presented here uses ideas from [10,18,7] and produces exact bounds for
linear-functional outputs accounting both for the error arising from the space and
time discretization. Note that in the first part [15] the effect of the time discretiza-
tion is neglected. The error information and the bounds are used in an adaptive
procedure where both h and ∆t (space mesh size and time step) are adapted.

The methodology presented here takes as input two continuous (both in space and
time) approximate solutions of both the direct advection-reaction-diffusion prob-
lem and the adjoint problem associated with the selected output. In the application
examples, these approximations are obtained post-processing the approximations
given by the discontinuous Galerkin method in time, that is smoothing out the time
discontinuities. Actually, any other method providing a piecewise continuous poly-
nomial function both in space and time may be used. The methodology presented
here works out the space-time residual error equations and reduces the problem
of finding bounds of the output of interest to properly combine the solutions of a
number of steady (time-independent) problems where the standard methods are ap-
plicable. Thus, computable bounds are derived using a strategy based on the ideas
given in [18], which allows producing bounds for steady problems, to a series of
steady reaction-diffusion problems.

2 Problem statement

2.1 Model problem

The transient convection-reaction-diffusion equation is considered in Ω ⊂ Rnsd ,
where nsd is the number of spatial dimensions and Ω is polygonal for nsd = 2 and
polyhedric for nsd = 3. The time interval of interest is I =]0, T ]. For the sake of a
simple presentation, it is assumed that all the boundary conditions are of Dirichlet
type and homogeneous. Thus, the weak solution u is such that for each t ∈ I ,
u(t) ∈ H1

0(Ω) := V , whereH1
0(Ω) denotes the standard Sobolev space of functions
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vanishing on ∂Ω. More specifically, the weak solution u belongs to the space

W := {v ∈ L2(I;V) such that v̇ ∈ L2(I;V ′)},

where L2(I;V) (resp. L2(I;V ′)) denotes the Bochner space associated to V of
square-integrable functions from I into V (resp. V ′)

L2(I;V) := {v : I → V , v(t) is V-measurable and
∫ T

0
‖v(t)‖2

V dt < +∞},

‖·‖V being the norm associated with V , ‖·‖V = ‖·‖1.

The weak (both in space and time) variational form of the problem is: find u ∈ W
such that

A(u, v) = L(v) ∀v ∈ L2(I;V), (1)
for

A(w, v) :=
∫ T

0

[
〈ẇ, v〉+ a(t; w, v)

]
dt + (w(0), v(0)),

and
L(v) :=

∫ T

0
`(t; v) dt + (u0, v(0)),

where 〈·, ·〉 denotes the duality pairing between V ′ and V , (·, ·) denotes the L2(Ω)
inner product and u0 is the initial condition weakly imposed.

Here, u0 ∈ V and the forms a(t; ·, ·) and `(t; ·) are

a(t; w, v) :=
∫

Ω

[
ν(t)∇w ·∇v + α(t) ·∇w v + σ(t)w v

]
dΩ,

and
`(t; v) := 〈f(t), v〉 =

∫

Ω
f(t) v dΩ,

where f ∈ L2(I;V ′) and for each t ∈ I , ν(t) ∈ L∞(Ω) is a strictly positive real
coefficient, σ(t) ∈ L∞(Ω) is a nonnegative real coefficient and α(t) ∈ H(div; Ω)
is a prescribed vector field which is assumed for simplicity to be divergence-free,
∇ ·α(t) = 0, that is α is a velocity field of an incompressible flow. Moreover ν, σ
and α are assumed to be sufficiently smooth in time.

2.2 Continuous approximation

The exact solution of the boundary value problem (1) has to be approximated. In
the following, the approximation of u, usm

τ,h, is assumed to be continuous both in
space and time. Note that if the method provides a discontinuous approximation, it
has to be smoothed out in order to fulfill this assumption.

The approximation usm
τ,h is associated with a spatial mesh of the domain Ω and

to a time-grid discretization of I . The characteristic element size of the mesh is
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denoted by h and the characteristic time step is denoted by τ . The space mesh
generates a discrete space Vh ⊂ V . The points of the time grid are denoted by
0 = t0 < t1 < . . . < tn < . . . < tN = T and the corresponding time slabs are
denoted by In = (tn−1, tn].

The approximation usm
τ,h is piecewise polynomial in time; that is, usm

τ,h is polynomial
of degree q inside each time slab In and globally continuous. In every time t ∈ I ,
the spatial dependence is such that usm

τ,h(t) ∈ Vh. That is,

usm
τ,h ∈ Wτ,h := {v ∈ C0(Ī;V), v|In

∈ Pq(In;Vh), n = 1, . . . , N}.

The time-polynomial space Pq(In;Vh) is defined in terms of the one dimensional
Lagrangian shape functions of degree q in the interval In, Nnj(·), j = 0, . . . , q

Pq(In;Vh) := {v : In → Vh, v(t) =
q∑

j=0

vjNnj(t), vj ∈ Vh}. (2)

It is important to note that equation (1) only imposes the initial condition weakly;
however, the smoothed approximation usm

τ,h must verifiy the initial condition exactly,
namely usm

τ,h(0) = u0. This is only possible if u0 ∈ Vh ⊂ V and therefore this has
to be also included as an assumption.

In this work, the approximation usm
τ,h is obtained postprocessing the approxima-

tion of u provided by the discontinuous Galerkin method in time, cG(p)dG(q). The
cG(p)dG(q) approximation of u is a standard continuous Galerkin finite element
approximation of degree p in space (where p denotes the degree of the complete
polynomials used in the interpolation of Vh) and it is a piecewise polynomial glob-
ally discontinuous Galerkin approximation of degree q in time [20,6,21]. Thus, the
continuous space-time approximation required here, usm

τ,h, is recovered by a simple
post-processing, smoothing out the time-discontinuities at t = tn, n = 1 . . . N − 1.
It is worth noting, however, that the method presented here is valid for any approx-
imation of u in Wτ,h such that usm

τ,h(0) = u0.

In order to simplify the notation, in the remainder of the paper the dependence on
the time discretization is omitted and, consequently, the continuous approximation
usm

τ,h and the associated interpolation spaceWτ,h are denoted by uh andWh respec-
tively.

2.3 Error equation

The equation for the error associated with uh, e = u − uh ∈ W , is obtained
replacing u = e + uh in equation (1) and using the linearity of the first argument of
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A(·, ·). Thus, e ∈ W is such that

A(e, v) = L(v)− A(uh, v) =: RP(v) ∀v ∈ L2(I;V), (3)

where RP(·) is the residual associated with the approximation uh. It is worth noting
that, since uh is not a Galerkin approximation of u, then, the Galerkin orthogonality
condition of the residual does not hold in general, that is

RP(v) is not necessarily 0 ∀v ∈ Wh. (4)

3 Outputs of interest and adjoint problem

As previously said, this paper aims at providing upper and lower bounds for quan-
tities of interest depending on the exact solution u. Here, the quantities of interest
are restricted to be linear functions and therefore they take the form

LO(u) =
∫ T

0
`O(t; u) dt + (uOT , u(T )), (5)

where uOT ∈ Vh and the linear functional `O(t; ·) reads

`O(t; v) := 〈fO(t), v〉 =
∫

Ω
fO(t)v dΩ,

for fO ∈ L2(I;V ′). Note however, that the linear restriction may be relaxed in
some problems, see [22].

The quantity of interest depends on the solution at the final time (via uOT ) and ac-
counts for the behavior of the solution along the complete time evolution (via the
weight function fO).

Due to the linearity of LO(·), assessing the value or obtaining bounds for LO(u) is
equivalent to evaluate or bound LO(e). In other words, introducing s := LO(u) −
LO(uh) = LO(e) and computing bounds for s,

slb ≤ s ≤ sub,

is perfectly equivalent to compute bounds for LO(u):

LO(uh) + slb ≤ LO(u) ≤ LO(uh) + sub.

An adjoint (or dual) problem with respect to the selected output is introduced in
order to derive upper and lower bounds for s. The adjoint problem reads: find ψ ∈ V
such that

A(v, ψ) = LO(v) ∀v ∈ W . (6)
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Note that following the definition in (5) the initial condition for ψ is now uOT at
t = T .

Analogous to the direct (or primal) problem, the adjoint problem is solved numer-
ically. Similarly to the primal problem, the smoothed approximation to the dual
problem, ψh, is continuous both in space an time, belongs to Wh and verifies ex-
actly the “initial” condition ψh(T ) = uOT .

The error associated with the adjoint approximation ψh is ε := ψ − ψh ∈ W , and
it is such that

A(v, ε) = LO(v)− A(v, ψh) =: RD(v) ∀v ∈ W , (7)

where RD(·) is the weak adjoint residual associated with ψh. Also here, the adjoint
residual does not fulfill, in general, the Galerkin orthogonality condition

RD(v) is not necessarily 0 ∀v ∈ Wh. (8)

4 Bounding the output by a space-time norm

This section introduces bounds of the output of interest s in terms of a space-time
norm denoted by |||·|||. The choice of the norm is the same as in [10]. This choice is
not unique. In fact other authors [1,3] use different measures.

For every time t, the inner spatial product associated with the symmetric counter-
part of the bilinear form a(t; ·, ·) is introduced

as(t; w, v) :=
1

2
(a(t; w, v) + a(t; v, w)) =

∫

Ω

[
ν(t)∇w ·∇v + σ(t)wv

]
dΩ.

Note that the advection term (related to α(t)) is purely skew-symmetric because
α(t) is divergence-free ∀t ∈ I and the boundary conditions are of Dirichlet type.
This inner product induces the norm denoted by ‖·‖, ‖v‖2 := as(t; v, v) = a(t; v, v).
The space-time norm |||·||| is readily defined as

|||v|||2 :=
∫ T

0
‖v‖2 dt.

The bilinear form A(·, ·) and the space-time norm |||·||| are related by the follow-
ing lemma. The proof is straightforward from the definition of A(·, ·). See also
the particularization of lemma 1 in Part I of this work [15] to continuous-in-time
functions.
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Lemma 1 For any v ∈ W

A(v, v) = |||v|||2 +
1

2
(v(0), v(0)) +

1

2
(v(T ), v(T )) ≥ |||v|||2 .

The following result shows that bounding s is equivalent to obtain upper bounds
for the errors measured in the space-time norm |||·|||.

Theorem 1 Let es and εs ∈ Ŵ be such that for any v ∈ W
∫ T

0
as(t; es, v) dt = RP(v) and

∫ T

0
as(t; εs, v) dt = RD(v), (9)

where

Ŵ := {v ∈ L2(I;V), v|In
∈ L2(In;V) and v̇|In

∈ L2(In;V ′)}.
Then,

RP(ψh)− 1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣κes − 1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ s ≤ RP(ψh) +
1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣κes +

1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

,

for any nonzero parameter κ ∈ R.

Proof. Combining equation (7) for v = e and equation (3) for v = ψh yields the
following error representation

s = LO(e) = LO(e)− A(e, ψh) + A(e, ψh) = RD(e) + RP(ψh), (10)

where the term RP(ψh) is not zero, in general, since the Galerkin orthogonality
property of the primal residual does not hold, see equation (4).

Also, taking v = e ∈ W in equation (3) and using the relation between the bilinear
form A(·, ·) and |||·||| given in lemma 1 it follows that

RP(e) = A(e, e) ≥ |||e|||2 . (11)

The proof now follows from a simple algebraic manipulation. Indeed, let κ be a
nonzero real parameter and consider the inequality

∣∣∣∣
∣∣∣∣
∣∣∣∣
1

2
(κes ± 1

κ
εs)− κe

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≥ 0. (12)

Expansion of the l.h.s. yields

∣∣∣∣
∣∣∣∣
∣∣∣∣
1

2
(κes ± 1

κ
εs)− κe

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

=
1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣κes ± 1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

+ κ2 |||e|||2 − κ
∫ T

0
as(t; κes ± 1

κ
εs, e) dt. (13)
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Moreover, using v = e ∈ W in equations (9), the last term in the r.h.s. of (13) is
rewritten as

κ
∫ T

0
as(t; κes ± 1

κ
εs

h, e) dt = κ2
∫ T

0
as(t; es, e) dt±

∫ T

0
as(t; εs, e) dt

= κ2RP(e)±RD(e) ≥ κ2 |||e|||2 ± (s−RP(ψh)),

where equations (10) and (11) are used to derive the inequality.

Considering equations (12) and (13) yields

0 ≤
∣∣∣∣
∣∣∣∣
∣∣∣∣
1

2
(κes ± 1

κ
εs)− κe

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ ∓s±RP(ψh) +
1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣κes ± 1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

,

that is,

±s ≤ ±RP(ψh) +
1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣κes ± 1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

.

The proof is concluded by noting that the + sign in the previous equation yields the
expression for the upper bound of s, whereas the − sign yields the expression for
the lower bound of s. ¤

Theorem 1 reveals that bounds for s are obtained if the space-time norms of the
linear combinations of es and εs are available. It follows also that it is sufficient to
obtain upper bounds of these norms, namely

RP(ψh)− 1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣κes − 1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

UB

≤ s ≤ RP(ψh) +
1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣κes +

1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

UB

, (14)

where the subscript UB denotes upper bound.

Remark 1 The space Ŵ is obtained from W allowing time discontinuities at each
time stage tn, n = 1, . . . , N−1. Therefore, the primal and dual symmetric errors es

and εs are in general discontinuous at these points in time. Moreover, the conditions
given by equation (9) do not uniquely determine es and εs because W ( Ŵ .

Remark 2 For any v ∈ W , the primal and adjoint residuals, defined in equations
(3) and (7), may be rewritten as

RP(v) =
∫ T

0

[
〈f − u̇h, v〉 − a(t; uh, v)

]
dt =: R̂P(v),

and
RD(v) =

∫ T

0

[
〈fO + ψ̇h, v〉 − a(t; v, ψh)

]
dt =: R̂D(v).

by simply integrating by parts the term with the time derivative. This rearrangement
of the residuals requires v to be continuous and therefore it does not hold for v ∈
Ŵ . That is, in general, for v ∈ Ŵ , RP(v) 6= R̂P(v) and RD(v) 6= R̂D(v), see
appendix A.
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In practice, es and εs are chosen as the unique solution of the following residual
equations: find es and εs ∈ Ŵ such for any v ∈ Ŵ

∫ T

0
as(t; es, v) dt = R̂P(v) and

∫ T

0
as(t; εs, v) dt = R̂D(v). (15)

Note that, according to remarks 1 and 2, the solutions of (15) fulfill the assumptions
of theorem 1 and, in particular, equations (9).

The symmetrized errors es and εs are non-computable because the problems (15)
are posed in infinite-dimensional spaces. With respect to the original error equa-
tions (3) and (7), equations (15) are discontinuous-in-time and symmetric (both in
space and time).

Next section is devoted to obtain computable upper bounds for the space-time norm
|||·||| of the symmetrized errors es and εs.

5 Upper bounds for the space-time norm

Consider the auxiliary function z ∈ Ŵ solution of
∫ T

0
as(t; z, v) dt = R̂∗(v) ∀v ∈ Ŵ , (16)

where R̂∗(v) = αR̂P(v) + βR̂D(v) for α, β ∈ R. Note that for α = 1 and β = 0,
then R̂∗(v) = R̂P(v) and problem (16) is the residual problem for es. Therefore
in this case z = es. Analogously, the choice of α = 0 and β = 1, produces
R̂∗(v) = R̂D(v) and the residual problem for εs is recovered yielding z = εs. In
particular, α = κ and β = ±1/κ will be used later to obtain the required upper
bounds for |||κes ± 1/κ εs|||2.

The purpose of this section is to establish a procedure to compute upper bounds
on |||z|||2. It is worth noting that the model problem under consideration, equation
(16), is symmetric both in space and time and that it does not contain derivatives
with respect to time.

In order to come up with a computable upper bound of |||z|||2 the following four
steps are considered. First, it is shown that z ∈ Ŵ may be computed solving q + 1
independent steady diffusion-reaction problems in each slab In. Second, for ev-
ery infinitely dimensional steady diffusion-reaction problem (q + 1 in every time
slab), the solution is decomposed in its projection into the finite element mesh Vh

(which is computable) and the orthogonal complement (which is assessed with a
standard error estimation technique). The problems characterizing the orthogonal
complement are posed in the whole spatial domain Ω. In the third step, a domain de-
composition strategy is used to decompose the global problem into nel independent
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(infinite dimensional) local problems defined in the elements of the mesh (trian-
gles in our case), nel being the number of elements of the spatial mesh. Finally, the
fourth step uses a duality method to transform each local steady problem (posed
over an infinite dimensional space) into a computable discrete problem yielding
upper bounds of the solution.

5.1 Time decomposition

The first step to derive a computable expression for an upper bound of |||z|||2 is to
decompose the global-in-time problem given by equation (16) into q + 1 steady
diffusion-reaction problems in each slab In.

Using remark 2, for all v ∈ Ŵ ,

R̂∗(v) =
∫ T

0

[
〈f ∗, v〉 − a(t; αuh, v)− a(t; v, βψh)

]
dt,

where f ∗ = α(f − u̇h) + β(fO + ψ̇h). Therefore, using the broken-in-time nature
of the space Ŵ , equation (16) decomposes into: find zn ∈ W(In) such that
∫

In

as(t; zn, v) dt =
∫

In

[
〈f ∗, v〉 − a(t; αuh, v)− a(t; v, βψh)

]
dt ∀v ∈ W(In),

(17)
where

W(In) := {v ∈ L2(In;V) such that v̇ ∈ L2(In;V ′)}.

Now, assume that ν(t), α(t) and σ(t) are piecewise constant-in-time functions in-
side each time slab, that is

ν(t)|In
= νn, α(t)|In

= αn and σ(t)|In
= σn,

for νn, σn ∈ L∞(Ω), αn ∈ H(div; Ω) and ∇ · αn = 0. Working with piecewise
constant-in-time parameters has the advantage of avoiding the notational complex-
ity introduced by more complex time dependencies. The proposed methodology is
however more general in the sense that it is valid also for piecewise polynomial
parameters ν(t), α(t) and σ(t). In this case, however, computing zn ∈ W(In) re-
quires solving a larger number of steady diffusion-reaction problems in each slab
In (larger than q + 1).

Under the assumption of piecewise constant-in-time parameters, the bilinear forms
a(t; ·, ·) and as(t; ·, ·) are also piecewise constant-in-time inside the time slabs, that
is

a(t; w, v)|In
=: an(w, v) =

∫

Ω

[
νn∇w ·∇v + αn ·∇w v + σnwv

]
dΩ,
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Thus, the solution of equation (16), z ∈ Ŵ , is computed solving q + 1 independent
steady diffusion-reaction problems in each time slab In. Once the functions zni ∈ V
are obtained solving (21), the time-dependent function zn(t) ∈ Pq(In;V) is directly
recovered using equation (20). The assembly of these solutions associated with ev-
ery time slab makes z ∈ Ŵ a piecewise polynomial function in time, discontinuous
at t = tn for n = 1, . . . , N − 1 (recall that z|In

= zn).

Remark 3 As already mentioned, the assumption that ν(t), α(t) and σ(t) are piece-
wise constant-in-time functions inside each time slab, and also that f ∗|In

∈ Pq(In;V ′)
may be relaxed. In fact, if ν|In

, α|In
, σ|In

and f ∗|In
are polynomial functions in-

side In, then a larger degree of the polynomials representing the time dependence
of the solution zn, say q̃, can be selected such that zn belongs to Pq̃(In;V). Then,
zn must be computed solving q̃+1 independent steady diffusion-reaction problems.

5.2 Enforcing orthogonality

The solution zni of the steady diffusion-reaction (21) and therefore the norm |||z|||2
to be used in the bounds are not computable because V is infinite-dimensional. It
is however possible to derive a computable upper bound for |||z|||2 using a domain
decomposition technique and, in every local problem, a complementary energy ap-
proach. The idea is to use the error estimation strategy proposed in [18] to each
steady reaction-diffusion problem (21) as in [15]. However, these techniques may
only be applied if the r.h.s. of the residual equation, in this case equation (21), van-
ishes for every v ∈ Vh (this is referred as the orthogonality property) [2,8,11,16].
This orthogonality condition is needed to properly produce the domain decompo-
sition strategies and the equilibration of the local problems.

As already noted, recall (4) and (8), the orthogonality is not fulfilled. That is, in
general for v ∈ Vh

〈f ∗(tni), v〉 − an(αuh(tni), v)− an(v, βψh(tni)) 6= 0.

This problem may be circumvented decomposing zni into

zni = zh
ni + z⊥ni,

where zh
ni ∈ Vh is such that

as
n(zh

ni, v) = 〈f ∗(tni), v〉 − an(αuh(tni), v)− an(v, βψh(tni)) ∀v ∈ Vh. (22)

Note that the zh
ni is the projection of zni into Vh. Thus, from (21) the orthogonal

complement z⊥ni ∈ V is the solution of the residual equation

as
n(z⊥ni, v) = 〈f ∗(tni), v〉−an(αuh(tni), v)−an(v, βψh(tni))−as

n(zh
ni, v) ∀v ∈ V .

(23)
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This decomposition precludes the problem associated with the lack of orthogonal-
ity because zh

ni is computable and equation (23) for z⊥ni, is such that the r.h.s. fulfills
the orthogonality condition. That is, the r.h.s. of (23) vanishes for every v ∈ Vh.
Therefore, a computable bound for the norm of z⊥ni is obtained after a domain de-
composition technique.

This orthogonalization strategy is used in [7,16] in a different context (assessment
of the pollution). A similar approach is used also in [19] to recover strict bounds
for the energy.

Summarizing, the upper bound for |||z|||2 requires computing first zh
ni ∈ Vh and

then applying the error estimation technique proposed in [18] to approximate z⊥ni.
This has to be performed for every time tni (q + 1 times in each time slab In).

5.3 Domain decomposition and complementary energy approach

Now, the standard complementary energy approach is applied to obtain estimates
for z⊥ni given by equation (23) following the ideas introduced in [17,18,15]. Note
that this is possible because orthogonality has been enforced as described in the
previous section.

The basic idea is to relax the problem of finding z⊥ni ∈ V fulfilling equation (23).
The relaxed problem consists in obtaining a pair of dual estimates p̂ni ∈ [L2(Ω)]nsd

and r̂ni ∈ L2(Ω) such that
∫

Ω

[
νnp̂ni ·∇v + σnr̂niv

]
dΩ = as

n(z⊥ni, v) ∀v ∈ V . (24)

The estimates for p̂ni and r̂ni are taken in an elementwise-polynomial space of
degree r, namely

P̂r(Ω) := {v ∈ L2(Ω), v|Ωk
∈ Pr(Ωk)},

i.e. r̂ni ∈ P̂r(Ω) and p̂ni ∈ [P̂r(Ω)]2, where Ωk for k = 1, 2, . . . , nel are the elements
of the mesh. The fact that the data fields u0, uOT , f(t) and fO(t) are assumed to be
piecewise polynomials both in space (element by element) and time (in each time
slab) guarantees that for r large enough a pair of dual estimates fulfilling equation
(24) may be found in P̂r(Ω). This results in a discrete solvable problem, see [17,18].

Remark 4 The dual estimates p̂ni and r̂ni are defined over the whole domain Ω.
Nevertheless, their computation can be decoupled locally by selecting appropriate
parameterizations. In practice, the equilibration procedure yielding equilibrated
fluxes is local and the a priori global problem (24) is split into local dual problems
in the elements of the mesh.
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5.4 Computation of an upper bound

Finally, the estimates obtained from (24) are combined with the projections com-
puted from (22) to build up an upper bound for |||z|||. This is stated in the following
theorem.

Theorem 2 Let p̂ni ∈ [P̂r(Ω)]nsd and r̂ni ∈ P̂r(Ω) be the dual estimates fulfilling
equation (24) for every tni, n = 1, 2, . . . , N , i = 0, 1, . . . , q. The time-dependent
estimates are readily recovered in every time slab In:

p̂n =
q∑

i=0

p̂niNni(t) and r̂n =
q∑

i=0

r̂niNni(t). (25)

Analogously, let zh
ni ∈ Vh be the solutions of (22) and

zh
n =

q∑

i=0

zh
niNni(t).

Then, an upper bound for the space-time norm of the solution z of (16) is computed
as

|||z|||2 ≤
N∑

n=1

∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) · (p̂n + ∇zh
n) + σn(r̂n + zh

n)2
]

dΩ dt. (26)

Proof. Let z⊥n =
q∑

i=0
z⊥niNni(t), where z⊥ni are the solutions of (23). Then, from

equation (24) and using equation (23), the dual estimates p̂n and rn verify for i =
0, . . . , q

∫

Ω

[
νnp̂n(tni) ·∇v + σnr̂n(tni)v

]
dΩ

= 〈f ∗(tni), v〉 − an(αuh(tni), v)− an(v, βψh(tni))− as
n(zh

n(tni), v) ∀v ∈ V ,

since p̂ni = p̂n(tni), rni = r̂n(tni) and zh
n(tni) = zh

ni. Moreover, since all the time-
dependent functions appearing in the previous equation are polynomials of degree
q, the previous equation is verified for every t ∈ In, that is,

∫

Ω

[
νnp̂n(t) ·∇v + σnr̂n(t)v

]
dΩ + as

n(zh
n(t), v)

= 〈f ∗(t), v〉 − an(αuh(t), v)− an(v, βψh(t)) ∀v ∈ V ∀t ∈ In.
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Integrating from t = tn−1 = tn0 to t = tn = tnq, and expanding the term
as

n(zh
n(t), v) using equation (18) yields

∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) ·∇v + σn(r̂n + zh
n)v

]
dΩ dt

=
∫

In

[
〈f ∗, v〉 − an(αuh, v)− an(v, βψh)

]
dt =

∫

In

as
n(zn, v) dt ∀v ∈ W(In),

where in the last equality, equation (19) has been used. In particular, taking v =
zn ∈ W(In) in the previous equation yields:

∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) ·∇zn + σn(r̂n + zh
n)zn

]
dΩ dt =

∫

In

as
n(zn, zn) dt. (27)

At this point, the previous equality along with an elementary algebraic manipula-
tions reveal that
∫

In

as
n(zn, zn) dt ≤

∫

In

∫

Ω

[
νn(p̂n+∇zh

n)·(p̂n+∇zh
n)+σn(r̂n+zh

n)2
]
dΩ dt. (28)

Indeed, the result is obtained using the obvious inequality
∫

In

∫

Ω

[
νn(p̂n +∇zh

n−∇zn) · (p̂n +∇zh
n−∇zn)+σn(r̂n + zh

n− zn)2
]

dΩ dt ≥ 0

along with the algebraic manipulation

∫

In

∫

Ω

[
νn(p̂n + ∇zh

n −∇zn) · (p̂n + ∇zh
n −∇zn) + σn(r̂n + zh

n − zn)2
]

dΩ dt

=
∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) · (p̂n + ∇zh
n) + σn(r̂n + zh

n)2
]

dΩ dt

+
∫

In

∫

Ω

[
νn∇zn ·∇zn + σn(zn)2

]
dΩ dt

− 2
∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) ·∇zn + σn(r̂n + zh
n)zn

]
dΩ dt

=
∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) · (p̂n + ∇zh
n) + σn(r̂n + zh

n)2
]

dΩ dt

+
∫

In

as
n(zn, zn) dt− 2

∫

In

as
n(zn, zn) dt

=
∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) · (p̂n + ∇zh
n) + σn(r̂n + zh

n)2
]

dΩ dt−
∫

In

as
n(zn, zn) dt,

where both equations (27) and (18) have been used.

15



Finally, using the inequality given by equation (28)

|||z|||2 =
∫ T

0
‖z‖2 dt =

∫ T

0
as(t; z, z) dt

=
N∑

n=1

∫

In

as(t; z, z) dt =
N∑

n=1

∫

In

as
n(zn, zn) dt

≤
N∑

n=1

∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) · (p̂n + ∇zh
n) + σn(r̂n + zh

n)2
]

dΩ dt,

concluding the proof. ¤

6 Bounds for the output of interest LO(u): an algorithmic summary

According to theorem 1 the upper and lower bounds of s, and hence of LO(u), are
available once the upper bounds of the energy norm |||z||| are obtained for the two
combinations (α, β) = (κ, 1/κ) and (α, β) = (κ,−1/κ). The general strategy to
obtain these upper bounds is devised in the previous section. As already mentioned,
due to the linearity of the problem, obtaining the estimates for these two values of
|||z||| is equivalent to obtain the estimates for z = es and z = εs, that is for the two
combinations (α, β) = (1, 0) and (α, β) = (0, 1).

The following description of the bound algorithm differs from the description given
in part I of this work [15] because here the algorithm is designed to parallelize the
computation of the estimates in each time slab. However, if memory requirements
are critical, the same strategy proposed in [15] can be implemented. That is, only
the primal solution must be stored. The adjoint one is computed (but not stored)
step by step in each time slab.

The main steps of the procedure to compute bounds for LO(u) are the following:

1. Compute and store the continuous primal and dual solutions uh and ψh respec-
tively (for instance, computing the cG(p)dG(q) approximations and smoothing
out the time discontinuities).

2. For each time slab In do (this step is independent for each slab and can be
easily parallelized):
2.2. For each subtime tni, i = 0, . . . , q do:

2.2.1. Compute the primal and adjoint projections es,h
ni and εs,h

ni ∈ Vh solu-
tion of:

as
n(es,h

ni , v) = 〈f(tni)− u̇h(tni), v〉 − an(uh(tni), v) ∀v ∈ Vh,

as
n(εs,h

ni , v) = 〈fO(tni) + ψ̇h(tni), v〉 − an(v, ψh(tni)) ∀v ∈ Vh.
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2.2.2. Compute the primal and adjoint dual estimates p̂P
ni, p̂

D
ni ∈ [P̂r(Ω)]nsd

and r̂P
ni, r̂D

ni ∈ P̂r(Ω) such that for all v ∈ V:
∫

Ω

[
νnp̂P

ni ·∇v + σnr̂P
niv

]
dΩ

= 〈f(tni)− u̇h(tni), v〉 − an(uh(tni), v)− as
n(es,h

ni , v),

∫

Ω

[
νnp̂D

ni ·∇v + σnr̂
D
niv

]
dΩ

= 〈fO(tni) + ψ̇h(tni), v〉 − an(v, ψh(tni))− as
n(εs,h

ni , v).

2.3 For each element, recover the time-dependent projections in the time slab
In

es,h
nk (t) =

q∑

i=0

es,h
ni

∣∣∣
Ωk

Nni(t) and εs,h
nk (t) =

q∑

i=0

εs,h
ni

∣∣∣
Ωk

Nni(t),

and the dual time-dependent estimates

p̂P
nk(t) =

q∑

i=0

p̂P
ni

∣∣∣
Ωk

Nni(t) and r̂P
nk(t) =

q∑

i=0

r̂P
ni

∣∣∣
Ωk

Nni(t),

p̂D
nk(t) =

q∑

i=0

p̂D
ni

∣∣∣
Ωk

Nni(t) and r̂D
nk(t) =

q∑

i=0

r̂D
ni

∣∣∣
Ωk

Nni(t).

2.4 Compute and store the three scalar quantities

ηP
n :=

nel∑

k=1

ηP
nk =

nel∑

k=1

∫

In

∫

Ωk

[
νn(p̂P

nk + ∇es,h
nk )2 + σn(r̂P

nk + es,h
nk )2

]
dΩ dt,

ηD
n :=

nel∑

k=1

ηD
nk =

nel∑

k=1

∫

In

∫

Ωk

[
νn(p̂D

nk + ∇εs,h
nk )2 + σn(r̂D

nk + εs,h
nk )2

]
dΩ dt,

ηPD
n :=

nel∑

k=1

ηPD
nk =

nel∑

k=1

∫

In

∫

Ωk

[
νn(p̂P

nk + ∇es,h
nk ) · (p̂D

nk + ∇εs,h
nk )

+ σn(r̂P
nk + es,h

nk )(r̂D
nk + εs,h

nk )
]

dΩ dt.

3. Compute the global quantities

ηP =
( N∑

n=1

ηP
n

) 1
2

, ηD =
( N∑

n=1

ηD
n

) 1
2

, ηPD =
N∑

n=1

ηPD
n ,

and recover the bounds for the output s− ≤ LO(u) ≤ s+ where

s− := LO(uh) + RP(ψh)− 1

2
ηP ηD +

1

2
ηPD

and
s+ = LO(uh) + RP(ψh) +

1

2
ηP ηD +

1

2
ηPD.

17



Remark 5 The final expression for the bounds of the output LO(u) are recovered
by means of the following considerations. First theorem 1 states that in order to
obtain bounds for the error in the output s it is sufficient to obtain upper bounds
for the quantities

∣∣∣
∣∣∣
∣∣∣κes ± 1

κ
εs

∣∣∣
∣∣∣
∣∣∣
2

UB
, see equation (14). In order to compute the upper

bounds for the space-time norm, the procedure detailed in section 5 is considered
for z = κes± 1

κ
εs. Then, from theorem 2, the following upper bounds are obtained:

∣∣∣∣
∣∣∣∣
∣∣∣∣κes ± 1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

UB

=
N∑

n=1

∫

In

∫

Ω

[
νn

(
κ(p̂P

n + ∇es,h
n )± 1

κ
(p̂D

n + ∇εs,h
n )

)2

+ σn

(
κ(r̂P

n + es,h
n )± 1

κ
(r̂D

n + εs,h
n )

)2]
dΩ dt.

Finally the given expressions for the bounds are obtained taking κ2 = ηD/ηP and
rearranging terms.

7 Adaptive refinement

The dual estimates p̂P
nk, r̂P

nk, p̂D
nk and r̂D

nk and more precisely the scalar quantities
ηP

nk, ηD
nk and ηPD

nk provide information localized in space and time. This information
can be used as an indicator for mesh adaptivity. In this work, the meshes are adapted
aiming to reduce the half bound gap ∆ := (s+ − s−)/2. Note that using the bound
average save := (s+ + s−)/2 as a new approximation of the quantity of interest, ∆
is an upper bound of the absolute error of the approximation save with respect to
the exact value LO(u), that is

|LO(u)− save| ≤ ∆.

In the examples a simple adaptive strategy is used based on the decomposition of
∆ into local positive contributions from the elements:

∆ =
nel∑

k=1

∆k

where the element contribution to the bound gap ∆k is

∆k :=
N∑

n=1

[
1

4
κ2ηP

nk +
1

4κ2
ηD

nk

]
.

The validity of this decomposition is discussed in [15].

Here, the space mesh and the time step are kept constant all along the time evo-
lution. Thus, the errors are accumulated in time to design a new spatial mesh and
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restart the computation. The local contributions of the half bound gap, ∆k, which
contain all the contributions of the time slabs In to the element Ωk, are used as
indicators on whether to refine the specific element or not.

Note that the presented strategy assess the entire error (including the time error).
That is, adapting the space mesh may not suffice to control the half bound gap
∆ due to the influence of the time-error. Using only h-adaptivity does no longer
suffice to control the error and the time step ∆t has to be also reduced in the next
step of the adaptive procedure (although in the present implementation the same
∆t is used along the time). The criterion used to decide if ∆t has to be reduced
is based on comparing the error estimated with two different adapted meshes and
the same ∆t. The time discretization is considered enough accurate if the error is
reduced according to the rate of convergence expected for the spatial discretization.
If the error does not decrease as indicated by the a priori spatial estimates, the time
error plays a significant role in the entire error and therefore ∆t is reduced in the
next step of the adaptive loop.

Summarizing, space adaptivity is performed subdividing the elements with large
values of ∆k. Then, a new simulation is carried out with the new spatial mesh and
the same ∆t. The new error assessment allows deciding if ∆t has to be reduced in
the next adaptive step. This strategy is used in some of the examples presented in
next section. In other examples the time step is kept proportional to some power of
h in order to reduce the error uniformly according to the a priori estimates.

Setting up a fully adaptive strategy is beyond the scope of this paper. It is worth
noting, however, that the local quantities ηP

n , ηD
n and ηPD

n could also be used as
indicators for more flexible mesh adaptation in terms of time-varying space-meshes
and non-constant time steps. Moreover, the half bound gap is also decomposed into
positive local contributions

∆ =
N∑

n=1

∆n

where the contribution from the time slab In, ∆n is

∆n :=
1

4
κ2ηP

n +
1

4κ2
ηD

n =
nel∑

k=1

[
1

4
κ2ηP

nk +
1

4κ2
ηD

nk

]
. (29)

This information could be used to decide the new time step for the next time slab.
For instance, time adptivity could consist in either decreasing the time step after
the time slabs with larger values of ∆n or to restart the computation of the last time
slab with a reduced time step.

Moreover, the terms in the r.h.s. of (29) provide information on the error contribu-
tion associated with element k at the time slab n. This can be used as an indicator to
adapt the mesh along the time integration. Obviously, adapting the mesh along the
time evolution makes the implementation more involved. Changing the mesh along
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time is simple if the approximations of the primal and adjoint problem are discon-
tinuous in time as proposed in [15]. However, the strategy presented here yielding
strict bounds for the error requires time-continuous approximations. The spatial
meshes of two consecutive slabs cannot be completely independent. It is worth not-
ing, though, that this strategy can be easily applied if the meshes are nested, derived
from the same pattern of triangle generation. In this case the projection of the initial
or final conditions from one mesh to another is straightforward and, consequently,
the proposed approach is valid.

8 Numerical examples

The numerical tests presented in this section are the same as in the first part of the
paper [15] but with the numerical tools introduced in this second part. These exam-
ples are used to demonstrate the ability of the presented approach to account also
for the error associated with the time discretization and to point out the difficulties
in recovering the predicted a priori convergence rates. The notation used here is
therefore the same as in [15] and it is briefly recalled. The upper and lower bounds
for LO(u) introduced above are denoted by s− and s+. The bound average, save is
taken as a new approximation of the quantity of interest and the half bound gap, ∆,
is seen as an error indicator. Since the exact solution of the problems is not known,
the relative counterpart of the half bound gap, ∆rel = ∆/save, is also used in the
presentation.

8.1 Example 1: uniformly forced square domain

The transient pure diffusion equation (ν = 1, σ = 0, α = 0) is solved in the
squared domain Ω = [0, 1]× [0, 1] and for a final time T = 0.1. A constant source
term f(t) =

√
10 and homogeneous Dirichlet boundary conditions and initial con-

dition (u0 = 0) are considered.

The quantity of interest is an average of the space-time solution

LO(u) =
∫ T

0

∫

Ω

√
10 u(x, y, t) dΩ dt,

that is fO =
√

10 and uOT = 0 in equation (5). The solution ψ of the adjoint problem
is in this case such that u(t) = ψ(T − t).

Two spatial discretizations are used in this test: linear and quadratic triangular ele-
ments in space, p = 1 and p = 2. In the computation of the hybrid fluxes, the equi-
librated normal fluxes along the edges of the elements are linear, both for p = 1 and
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A Proof of remark 2

For any v ∈ W , using the definitions of the bilinear form A(·, ·) and of the linear
functional L(·), the primal residual can be rewritten as:

RP(v) = L(v)− A(uh, v)

=
∫ T

0
`(t; v) dt + (u0, v(0))−

∫ T

0

[
〈u̇h, v〉+ a(t; uh, v)

]
dt− (uh(0), v(0))

=
∫ T

0

[
〈f − u̇h, v〉 − a(t; uh, v)

]
dt,

since the approximation uh verifies the initial condition uh(0) = u0.

Similarly, for any v ∈ W , using the definitions of the bilinear form A(·, ·), of the
linear functional LO(·), and with the help of the following equality

∫ T

0
〈v̇, ψh〉 dt = −

∫ T

0
〈ψ̇h, v〉 dt + (v(T ), ψh(T ))− (v(0), ψh(0)),

the adjoint residual can be rewritten as:

RD(v) = LO(v)− A(v, ψh)

=
∫ T

0
`O(t; v) dt + (uOT , v(T ))−

∫ T

0

[
〈v̇, ψh〉+ a(t; v, ψh)

]
dt− (v(0), ψh(0))

=
∫ T

0

[
〈fO, v〉 − a(t; v, ψh)

]
dt + (uOT , v(T ))− (v(0), ψh(0))

−
[
−

∫ T

0
〈ψ̇h, v〉 dt + (v(T ), ψh(T ))− (v(0), ψh(0))

]

=
∫ T

0

[
〈fO, v〉+ 〈ψ̇h, v〉 − a(t; v, ψh)

]
dt + (uOT , v(T ))− (v(T ), ψh(T ))

=
∫ T

0

[
〈fO + ψ̇h, v〉 − a(t; v, ψh)

]
dt,

since the approximation ψh verifies the final condition ψh(T ) = uOT .
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[1] S. Adjerid, J.E. Flaherty, and I. Babuška. A posteriori error estimation for the finite
element method-of-lines solution of parabolic problems. Math. Models Methods Appl.
Sci., 9(2):261–286, 1999.

35



[2] M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element analysis.
John Wiley & Sons, Chichester, 2000.
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