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Abstract

This work describes the formulation adopted for the numerical
simulation of the Friction Stir Welding (FSW) process. FSW is a
solid-state joining process (the metal is not melted during the process)
devised for applications where the original metallurgical characteris-
tics must be retained. This process is primarily used on aluminium
alloys, and most often on large pieces which cannot be easily heat
treated to recover temper characteristics.

Heat is either induced by the friction between the tool shoulder
and the work pieces or generated by the mechanical mixing (stirring
and forging) process without reaching the melting point (solid-state
process).

To simulate this kind of welding process, a fully coupled thermo-
mechanical solution is adopted. A sliding mesh, rotating together
with the pin (ALE formulation), is used to avoid the extremely large
distortions of the mesh around the tool in the so called stirring zone
while the rest of the mesh of the sheet is fixed (Eulerian formulation).
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The Orthogonal Subgrid Scale (OSS) technique is used to stabilize
the mixed velocity-pressure formulation adopted to solve the Stokes
problem. This stabilized formulation can deal with the incompressible
behavior of the material allowing for equal linear interpolation for both
the velocity and the pressure fields.

The material behavior is characterized either by Norton-Hoff or
Sheppard-Wright rigid thermo-visco-plastic constitutive models.

Both the frictional heating due to the contact interaction between
the surface of the tool and the sheet, and the heat induced by the
visco-plastic dissipation of the stirring material have been taken into
account. Heat convection and heat radiation models are used to dis-
sipate the heat through the boundaries.

Both the Streamline-Upwind/Petrov–Galerkin (SUPG) formula-
tion and OSS stabilization technique have been implemented to sta-
bilize the convective term in the balance of energy equation.

The numerical simulations proposed are intended to show the ac-
curacy of the proposed methodology and its capability to study real
FSW processes where a non-circular pin is often used.

1 Introduction

Friction stir welding (FSW) is a solid-state joining process meaning that the
metal is not melted during the welding process. In FSW, a shouldered pin
is rotated at a constant speed and plunged into the joint line between the
two metal sheets butted together (see Fig. 1 (a) in [57]). Once the tool has
been completely inserted, it is moved at constant advancing velocity along
the welding line while rotating. During the process operations, a clamping
system must keep the work-pieces rigidly fixed onto a backing bar to prevent
the abutting joint faces from being forced apart. Due to the rotation and
the advancing motion of the pin, the material close to the tool, in the so
called stir-zone, is softened by the heat generated by the plastic dissipation
(stirring effect) and the heat induced by the contact friction between the
probe shoulders and the sheet. As a consequence, the material is stretched
and forged around the rotating probe flowing from the advancing side to the
retreating side of the weld, where it can rapidly cool down and consolidate,
to create a high quality solid-state weld.

The FSW process was patented at The Welding Institute (UK) in De-
cember 1991 [78] and it has proven to be a very successful joining technology
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(a) FSW process technology

(b) Work-piece (grey),
stir-zone (blue) and pin

(green).

Figure 1: FSW technology and computational domains.

for aluminium alloy, nickel alloys and, more recently, for steels [79], [29].
The solid-state nature of FSW has several advantages over fusion welding
methods since any problems associated with cooling from the liquid phase
are avoided. Porosity defects, solidification cracking and liquation cracking
do not occur during FSW. Nevertheless, as in the traditional fusion welds, a
softened heat affected zone and a tensile residual stress parallel to the weld do
appear. Furthermore, FSW process can suffer for a different class of defects;
for instance, due to insufficient welding temperature (low rotational speeds
or high traverse speeds) or caused when the weld material, in the stir-zone, is
unable to accommodate the extensive deformation during the stirring action.
The material flow is very sensitive to the different welding process param-
eters, (rotation speed, advancing speed, shoulder pressure, pin shape, sheet
thickness, among others), which must be carefully calibrated according to
the welding process and the selected material. The strong coupling between
the temperature field and the mechanical behavior is the key-point in FSW
and its highly non-linear relationship makes the process setup complex. The
operative range for most of the welding process parameters is rather narrow,
requiring a tedious characterization and sensitivity analysis. This is why,
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despite the apparent simplicity of this novel welding procedure, computa-
tional modelling is considered a very helpful tool to understand the leading
mechanisms that govern the material behavior.

To date, most of the research interest devoted to the topic was focused on
the heat transfer and thermal analysis in FSW. In [44] the authors proposed
a simple heat transfer model to predict the temperature distribution in the
work-piece. A moving heat source model for a finite element analysis is de-
veloped in [18] and [19], and the transient evolution of the temperature field,
the induced residual stresses and distortions induced by the FSW process
are simulated. Three-dimensional heat flow models for the prediction of the
temperature field is developed in [25] and [40]. The effect of tool shoulder
of the pin tool on the heat generation during the FSW operation is inves-
tigated in [55] and [68]. Coupled thermo-mechanical modelling of the FSW
process is analyzed in [81], [52], [31] and [30]. An interesting comparison
between the heat energy generated by the FSW using numerical methods
and experimental data is presented in [37] and [20]. From the experimental
point of view, different measurements of temperature field of the work-piece
can be found in [76] while measured residual stresses in FSW for 2024-T3
and 6013-T6 aluminium are presented in [38]. The experimental evidence of
the material flow around the tool by using copper sheets placed transversally
and longitudinally to the weld line is shown in [32] and [45]. In these works
the flow pattern is characterized by using metallography, 2D X-rays analysis
and X-rays tomography, showing that copper sheets embedded into the alu-
minium work-pieces could be successfully used as marker material. Finally,
a demonstration of the tremendous potential and successful applications of
the FSW process for aluminium airframe structures is presented in [75].

The effort devoted to understand the leading mechanisms within the FSW
process making use of the numerical simulation often presents some limita-
tions in terms of complexity of the pin geometry, non-linearity of the mate-
rial behavior or ad-hoc boundary conditions. In this work, a fully coupled
thermo-mechanical framework for the numerical simulation of the FSW pro-
cess is presented. The strategy adopted to deal with a generic pin shape (not
necessarily cylindrical) together with an accurate definition of the bound-
ary conditions is presented in Section 2. The local (strong) form of the
momentum, mass and energy balance equations, which govern the thermo-
mechanical problem, is presented in Section 3. In this Section, two alternative
rigid-visco-plastic models are introduced to deal with the extremely large de-
formation rates occurring in a FSW process. Both models have been coupled
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with the temperature field to consider the thermal softening behavior of the
material during the stirring process. Section 4 presents the staggered so-
lution adopted to solve the coupled problem within the framework of the
classical fractional step method. The resulting time integration scheme is
based on the isothermal operator split of the governing equations. The weak
(integral) form of the thermo-mechanical governing equations is presented in
Section 5. On one hand, the mechanical problem is solved by the balance of
momentum equation together with the mass continuity equation to force the
incompressibility constraint. This mechanical constraint is necessary when
the deformation experimented by the material is mainly (or exclusively) de-
viatoric, that is, preserving the original volume. To this end, an ad-hoc
stabilization technique based on the Orthogonal Sub-grid Scale (OSS) meth-
ods is introduced to overcome the Inf-Sup condition (on the choice of the
interpolation spaces) allowing the use of linear-linear interpolations for both
velocities and pressure fields. On the other hand, the weak form of the ther-
mal problem is also manipulated to introduce the necessary stabilization for
the convective term. Also in this case, the stabilization technique is based
on the OSS technique. In Section 6, the frictional contact between the pin
and the stir zone as well as the interaction between the work-piece and the
stir-zone is detailed. Both the classical Coulomb’s law and the Norton’s fric-
tion law are presented together with the corresponding heat flux generated
by the friction dissipation. Finally, two numerical benchmarks are presented
in Section 7 to assess the present formulation and to show its performance.

2 Numerical strategy to simulate the FSW

process

In this section, the strategy adopted for the numerical simulation of the
FSW process is presented. Firstly, it is important to distinguish between two
different kinds of analyses carried out at local or global level, respectively.

On one hand, we refer to local level analysis when the focus of the simula-
tion is the stirring zone. This class of simulation is intended to compute the
heat power generated either by the visco-plastic dissipation induced by the
stirring process or by the friction at the contact interface between the probe
shoulder and the metal sheet. At this level, different phenomena directly
related to the FSW technology can be studied: the relationship between ro-
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tation and advancing speed, the contact mechanisms in terms of applied nor-
mal pressure and friction coefficient, the pin shape, the material flow within
the heat affected zone (HAZ), the size of the HAZ and the corresponding
consequences on the microstructure evolution, etc.

On the other hand, a simulation carried out at global level studies the
entire structure to be welded. A moving heat power source is applied to
a control volume representing the actual size of the heat affected zone at
each time-step of the analysis. The effects induced by the FSW process on
the structural behavior are the target of this kind of study. These effects
can develop in term of distortions, residual stresses or weaknesses along the
welding line, among others.

In this work, a novel numerical strategy to model the FSW process at
local level is presented. Figure 1 (b) shows three different zones used to
distinguish among pin (green), stir-zone (blue) and the rest of the work-
piece (grey). Taking into account that, during the welding process, the pin is
rotating at a very high speed (e.g. 50-1500 rpm, depending on the work-piece
material), a fully Lagrangian approach (which follows the material particles of
the continuum in their motion) is unaffordable. The material in the stirring
zone suffers very large deformations at high strain-rates. Consequently, a
continuous re-meshing is required to avoid excessive mesh distortions. This
would lead to very high computational costs, as well as to a general loss of
solution accuracy due to the interpolation process necessary to move both
nodal and Gaussian variables from mesh to mesh.

The alternative is the Eulerian approach (which looks at spatial positions
instead of material points). Velocities are used as nodal variables (rather than
displacements) and the constitutive laws are typically formulated in terms
of strain-rate rather than strains. Hence, instead of a thermo-elasto-visco-
plastic model (generally adopted for metals in Lagrangian formulation), a
thermo-rigid-visco-plastic behavior is usually introduced within an Eulerian
framework.

A further complexity to be taken into account when modelling a FSW
process is the shape of the pin. Within an Eulerian framework, when the
pin is not cylindrical, the boundaries of the model are continuously changing
according to the current position/rotation of the pin. As a consequence, the
integration domain must be re-defined at each time-step of the simulation.
In this work, an Arbitrary-Lagrangian-Eulerian formulation (ALE) is used
(see recent survey by Donéa et al. [36]). The reference system is rigidly
rotated following the pin movement (convective frame) independently of the
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material points. Using this procedure re-meshing is avoided in the stir-zone,
but a convective term must be added to the balance equations.

The first papers introducing the Arbitrary-Lagrangian-Eulerian formula-
tion date back to 1964 with the original name of coupled Eulerian–Lagrangian
[58] and mixed Eulerian–Lagrangian [39], respectively. They implemented
their formulations in a finite difference code. More recently, the ALE formu-
lation has been introduced in the FE community for fluid-structure interac-
tion analysis by Donéa [33], [34], [35], Belytschko [10], [11], [12] and Hughes
[50] among others. The method has been further extended to solid mechanics
[63], [48], [64], [67] and [13]. Finally, within the context of FSW process the
ALE formulation has been used by [30], [31], [69] and [70] among others.

The description of motion and the corresponding simulation strategy
adopted for the work-piece (the stir-zone excluded), the stir-zone and the
pin is quite different.

To this end, let us distinguish between:

• x: the coordinates of a point in space (referred to as a spatial point),
defined by the Cartesian reference system, Rx. This reference system
does not move (inertial system) and it is referred to as the Eulerian
system. If a body is moving in Rx, then its absolute velocity is v = dx

dt
;

• X: the location of a particle (referred to as a material point) of the
body. This is the Lagrangian viewpoint used to identify the material
domain, RX, and to follow its motion. The reference system RX moves
and deforms together with the body;

• χ: the convected points within the convective frame Rχ. In the most
general case, this reference system moves with a velocity, vmesh, inde-
pendently of the body motion: this is also referred to as the Arbitrary-
Lagrangian-Eulerian (ALE) framework. In Rχ the velocity, vχ = dχ

dt
,

is relative to the convective frame Rχ. Observe that, once introduced
the FE discretization, the mesh is defined in Rχ and the mesh nodes
are neither material points nor spatial points.

This given, let us introduce the definition of motion and deformation
within the three different FSW zones.
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2.1 Work-piece

The movement of the pin is split into advancing speed (assigned to the work-
piece in the opposite direction) and rotation (assigned to the pin). Therefore,
the work-piece can be solved within an Eulerian framework where the ve-
locity field, v (x, t), is the unknown at a spatial position, x. The boundary
conditions of the problem are given in term of a (prescribed) advancing ve-
locity at the inflow, v = v̄.

The integration domain, Rχ (the FE mesh), is defined in the Eulerian
reference system, Rx, so that the nodes of the grid are spatial points: χ = x,
and the velocity of this mesh, vmesh = 0. A particle, X, of the work-piece
moves with respect to the mesh and to know its current position, x (X, t),
at time t, it is necessary to integrate the velocity field as:

x (X, t) = X +

t∫
0

v (X, t) dt (1)

where X = x (t = 0) is the reference position of the particle at time t =
0. This integration is necessary to compare the numerical results with the
position of the markers introduced in the experimental setting to follow the
material stirring during the FSW process.

The balance equations that govern the thermo-mechanical problem re-
quire the evaluation of the material time derivatives of both momentum and
energy (spatial) fields, ρv and ρe respectively, as well as the (spatial) density,
ρ. For the sake of simplicity, let us denote as φ (χ, t) a generic state variable
of the problem, defined at a node of the mesh χ at time t. The material time
derivative of φ is computed as:

Dφ

Dt

∣∣∣∣
χ=X

=
∂φ

∂t

∣∣∣∣
χ=x

+
∂φ

∂χ
· ∂χ
∂t

(2)

=
∂φ

∂t

∣∣∣∣
χ=x

+
∂φ

∂x
· ∂x

∂t
(3)

=
∂φ

∂t

∣∣∣∣
χ=x

+ v (x,t) · ∇x (φ) (4)

where v (x, t) := ∂x(X, t)
∂t

is the (spatial) velocity, while ∂(◦)
∂t

∣∣∣
χ=x

and∇x (◦) =

∂(◦)
∂x

are the spatial time derivative and the spatial gradient, respectively. The
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second term in (4) is the so called convective term which accounts for the
movement of the particle with respect to a fixed grid defined in the reference
system, Rx. The gradient,∇χ (◦) = ∇x (◦), needs to be computed only once
according to the mesh coordinates defined for the work-piece.

2.2 Pin

A different strategy is adopted for the numerical simulation of the pin. In this
case, it is helpful to follow the body movement with the integration domain:
at each time-step of the analysis the mesh moves according to the rotation of
the pin. Hence, the pin movement is described in a Lagrangian framework.
In this case, the integration domain, Rχ (the finite element mesh), is kept
solidary with the tool and it deforms with it. The material particles X, in
RX, are permanently connected to the nodes of the grid: χ = X.

The body motion, referred to the inertial system, is defined by the current
position, x (X, t) of a particle X, at time, t, as:

x (X, t) = X + u (X, t) (5)

where u (X, t) is the (material) displacement field, which is the variable for
the mechanical problem.

The material time derivative of a (material) variable, φ (X, t), is:

Dφ

Dt

∣∣∣∣
χ=X

=
∂φ

∂t

∣∣∣∣
χ=X

(6)

Since in the Lagrangian framework the material points coincide with the
grid points all along the whole motion, there are no convective effects and
the material derivative reduces to a simple time derivative.

The spatial gradient is computed as:

∇x (◦) =
∂ (◦)
∂x

=
∂ (◦)
∂X

· ∂X

∂x
= F−T · ∇X (◦) (7)

where F = ∂x(X,t)
∂X

is the deformation gradient accounting for the deformation
of the grid, while ∇X (◦) is the material gradient computed at the original
position of the mesh, X = x (X, t = 0).

Finally, from Eq. (5), the material velocity is computed from the dis-
placement field as:

v (X, t) :=
dx (X, t)

dt
=
du (X, t)

dt
(8)
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2.3 Stir-zone

The stir-zone is part of the work-piece. It is the so called processing zone or
heat affected zone (HAZ), where most of the plastic deformations and heat
generation occur. The size of this area strongly depends on the viscosity
and thermal diffusivity of the material. In a FSW process, particularly after
reaching the steady-state conditions, the process zone is restricted to a very
close area around the pin. From the numerical simulation point of view, the
radius of influence could be taken as 2-3 times the size of the (shouldered)
pin.

A more complex description is necessary to study the stir-zone. To avoid
continuous remeshing, the grid used to analyze this process zone is (rigidly)
rotated following the pin movement. This means that neither the mesh is
fixed (as in the Eulerian formulation used for the work-piece), nor it is de-
forming with the continuum body (as in the Lagrangian framework used
for the pin). The integration domain, Rχ, moves to keep its boundary con-
nected to the contour surface of the pin. In this case, neither the nodes of
the mesh represent material particles nor the velocity of the mesh is equal
to the material velocity. This convective framework corresponds to the so
called Arbitrary-Lagrangian-Eulerian (ALE) setting.

The material derivative of a generic state variable, φ (χ, t) is defined as:

Dφ

Dt

∣∣∣∣
χ=X

=
∂φ

∂t

∣∣∣∣
χ

+
∂φ

∂χ
· ∂χ
∂t

=
∂φ

∂t

∣∣∣∣
χ

+ vχ · ∇χ (φ) (9)

On one hand, the time derivative, ∂φ
∂t

∣∣
χ

, is computed at the nodes, χ,

of the mesh. On the other hand, both the gradient, ∇χ (◦) = ∂(◦)
∂χ

and the

velocity vχ = ∂χ(X, t)
∂t

, are referred to the (non-inertial) reference system, Rχ.
In this ALE framework the convective gradient is expressed by:

∇χ (◦) =
∂ (◦)
∂χ

=
∂ (◦)
∂x

∂x

∂χ
= FT

χ · ∇x (◦) (10)

where ∇x (◦) is the spatial gradient (referred to the Cartesian system, Rx)
and Fχ = ∂x

∂χ
is the convective deformation gradient, which measures the

mesh distortion.
Defining the convective velocity as:

c (χ, t) = Fχ · vχ = v (χ, t)− vmesh (11)
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so that the material derivative within the ALE framework results in:

Dφ

Dt

∣∣∣∣
χ=X

=
∂φ

∂t

∣∣∣∣
χ

+ c (χ, t) · ∇x (φ) (12)

Observe that c (χ, t) can be interpreted as the relative velocity of a par-
ticle with respect to the convective reference system, Rχ, which is moving
with velocity, vmesh.

The spatial gradient in Eq. (12) is computed as ∇x (◦) = F−T · ∇X (◦),
where ∇X (◦) is the material gradient at the original configuration and F =
∂x(X, t)
∂X

is the deformation gradient referred to the current position of the
nodes of the mesh. This usually constitutes an added complexity in the ALE
method because it is necessary to compute the movement of the mesh at each
time-step (independently from the body motion). In many applications (e.g.
forging analysis, CFD with moving free-surface, etc...) an ad-hoc methodol-
ogy is required to compute the position of the mesh at each time-step of the
analysis.

When studying a FSW process, the mesh velocity can be prescribed ac-
cording to the pin rotation as:

vmesh (χ, t) = $ × r (χ, t) (13)

where $ is the angular velocity of the pin and r (χ, t) = χ (t) − Xo is the
position of any grid point respect to the rotation axis, Xo.

Therefore, it is possible to integrate Eq. (13) to compute the deformation

gradient as: Fχ = ∂x(χ, t)
∂χ

= R where R ($, t) is a constant rotation tensor

(we are assuming that x (χ, t) = R · χ (X, t) +const).

3 Governing equations

In this section, the governing equations which define the thermo-mechanical
problem are presented. The ALE framework is used as the most general one,
including both the Lagrangian and the Eulerian formulations as particular
cases. Observe that this is very convenient from the programming point of
view, leading to a unique format of all the balance equations. Table (1) sum-
marizes the computational framework together with the solution hypotheses
for the pin, the work-piece and the stir-zone.
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Pin Work-Piece Stir-Zone

Lagrangian Eulerian ALE
χ = X χ = x χ 6= X 6= x

vmesh = v vmesh = 0 vmesh = $ × r
c = 0 c = v c = v − vmesh

D(◦)
Dt

∣∣∣
χ=X

= ∂(◦)
∂t

∣∣∣
X

D(◦)
Dt

∣∣∣
χ=X

= ∂(◦)
∂t

∣∣∣
x

+ v · ∇x (◦) D(◦)
Dt

∣∣∣
χ=X

= ∂(◦)
∂t

∣∣∣
χ

+ c · ∇x (◦)
∇x (◦) = F−T · ∇X (◦) ∇x (◦) = ∇X (◦) ∇x (◦) = F−T · ∇X (◦)

Table 1: Convective velocity, material derivative and spatial gradient in La-
grangian (pin), Eulerian (work-piece) and ALE (stir-zone) formulations.

3.1 Mechanical problem

The mechanical problem is defined by the momentum and mass conservation
equations. The strong form of these balance equations in the ALE framework
is:

Dρ

Dt

∣∣∣∣
χ=X

=
∂ρ

∂t

∣∣∣∣
χ

+ c · ∇x (ρ) = −ρ ∇x · v (14)

ρ
Dv

Dt

∣∣∣∣
χ=X

= ρ

[
∂v

∂t

∣∣∣∣
χ

+ c · ∇x (v)

]
= ∇x · σ + ρ b (15)

where σ (χ, t) is the Cauchy stress tensor, b is the body force per unit of
mass and ∇x · (◦) is the spatial divergence operator.

Modelling FSW process both Eqs. (14) and (15) can be simplified ac-
cording to the following hypotheses:

• Strains are mainly deviatoric so that the volumetric deformations, in-
cluding thermal effects, are neglected: material behavior is incompress-
ible, ρ = ρo;

• The Reynolds number is very low, meaning that the inertia term can
be neglected if compared to the viscous term;

The stress tensor can be split into volumetric and deviatoric parts as:

σ = p I + s (16)
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where p = 1
3
trace (σ) is the pressure field and, s, is the deviatoric stress

tensor.
As a result the mechanical problem can be solved using the mixed (v/p)

quasi-static format of the balance of momentum equation together with the
incompressibility (continuity) equation as:

∇ · s +∇p+ ρob = 0 (17)

∇ · v = 0 (18)

where for the sake of simplicity, the spatial divergence operator ∇x · (◦) is
denoted (to the end of this work) simply by ∇ · (◦).

3.2 Thermal problem

The strong form of the balance of energy equation in the ALE framework is:

ρo
De

Dt

∣∣∣∣
χ=X

= ρo

(
∂e

∂t

∣∣∣∣
χ

+ c · ∇e

)
= σ : ε̇+ ρo ṙ −∇ · q (19)

where e (χ, t) is the specific internal energy, ṙ is the rate of heat source per
unit of mass and q = −k∇T is the heat flux, per unit of surface, computed
in terms of the temperature gradient, ∇T , and the thermal conductivity, k.
The stress power, σ : ε̇, is expressed in terms of the strain rate, ε̇. Assuming
the additive decomposition of the strain rate as:

ε̇ = ε̇e + ε̇vp (20)

where ε̇e and ε̇vp are the elastic and visco-plastic parts, respectively, it is
possible to rewrite Eq. (19) as:

ρo

(
∂h

∂t

∣∣∣∣
χ

+ c · ∇h

)
= Ḋmech + ρo ṙ −∇ · q (21)

where h (χ, t) and Dmech are the specific enthalpy function and the mechan-
ical dissipation, defined in rate format as:

ρo ḣ = ρo ė− σ : ε̇e (22a)

Ḋmech = σ : ε̇vp ≥ 0 (22b)
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It is common to express the enthalpy rate in terms of the temperature
rate as:

ρo ḣ = ρo cṪ (23)

where c is the specific heat capacity. This given, the balance of energy
equation can be rewritten as:

ρoc

(
∂T

∂t

∣∣∣∣
χ

+ c · ∇T

)
= Ḋmech + ρoṙ −∇ · q (24)

which is the heat transfer equation for a continuum body in the ALE format.

3.3 Local form of the FSW problem

The FSW problem is stated by coupling the quasi-static mechanical governing
Eqs. (17)- (18) with the transient heat transfer equation in (24):

∇ · s +∇p+ ρo b = 0
∇ · v = 0

ρoc
(
∂T
∂t

∣∣
χ

+ c · ∇T
)

= Ḋmech −∇ · q
(25)

as the volumetric heat source, ρo ṙ, is generally neglected in FSW analysis.
Equations (25) state the equilibrium for both the mechanical and the

thermal problems in local form, that is, at each point, χ (t), of the integration
domains defined in Rχ. Therefore, it is interesting to observe that in the pin
domain, all the state variables v, p and T , as well as any derived variable,
such as s (v, T ) or q (T ), are referred to a material particle, X, while in the
work-piece, they are referred to a spatial point, x in the Cartesian domain
Rx.

3.4 Mechanical constitutive laws

The FSW process is characterized by very high strain rates as well as by a
wide temperature range from the environment temperature to the melting
point. Hence, the constitutive laws, to be adopted for the work-piece and,
particularly, in the stir-zone, should be dependent on both variables. The pin
needs not be included in the following discussion because its corresponding
constitutive equations (in Lagrangian format) are usually defined by a simple
thermo-elastic or thermo-rigid law.
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Pin Work-Piece Stir-Zone

Lagrangian Eulerian ALE
χ = X χ = x χ 6= X 6= x
v (X,t) v (x,t) v (χ,t)
T (X,t) T (x,t) T (χ,t)
σ (X,t) σ (x,t) σ (χ,t)
q (X,t) q (x,t) q (χ,t)

Table 2: Velocity, temperature, heat flux and stress fields in Lagrangian
(pin), Eulerian (work-piece) and ALE (stir-zone) formulations.

According to the split of the stress tensor introduced in (16), it is common
([69], [70], [80]) to adopt a rigid visco-plastic behavior, using a rate-dependent
constitutive law expressed as:

s = 2µeff ė (26)

where µeff is the effective viscosity of the material and ė =dev(ε̇) is the
deviatoric part of the the total strain rate, ε̇ which is computed as:

ε̇ = ∇sv (27)

where ∇sv (◦) denotes the symmetric spatial gradient operator. In FSW, the
elastic part of the strain tensor, ε̇e, in (20) is negligible if compared with the
visco-plastic component, ε̇vp, so that:

ε̇ ≡ ε̇vp (28)

and all the deformation is assumed to be visco-plastic. Furthermore, it is
also common to neglect the volumetric deformation, so that the total strain
rate is purely deviatoric:

ε̇ ≡ dev (ε̇) = ė (29)

This incompressible behavior of the material requires a special treatment
from the computational point of view.

With regard to the definition of the effective viscosity, µeff , different
constitutive characterizations can be adopted. A first choice is the classical
Norton-Hoff model [61], [49], which assumes that the effective viscosity is
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a function of the temperature and the equivalent plastic strain-rate, ε̇eq =√
2
3
‖ε̇‖ =

√
2
3

(ε̇ : ε̇), in the form:

µeff (ε̇eq, T ) = µ
(√

3ε̇eq

)m−1

(30)

where µ (T ) and 0 ≤ m (T ) ≤ 1 are the (temperature dependent) viscosity
and the (temperature dependent) rate-sensitivity parameters, respectively.
The linear case m = 1 recovers the Newtonian behavior:

s = 2µ ė (31)

with a linear relationship between stresses and strain-rates. Rigid perfect-
plastic behavior corresponds to m = 0:

s =
√

2µ n (32)

where n = ε̇
‖ε̇‖ = s

‖s‖ defines the plastic-flow direction.
In FSW, the rate-sensitivity parameter is usually in the range 0.1 ≤ m ≤

0.3 with a very non-linear (non-Newtonian) behavior.
An alternative to the Norton-Hoff model is the Sheppard-Wright model

[71]. In this case, the effective viscosity, µeff (ε̇eq, T ) is a function of the
equivalent plastic strain-rate and the temperature field in the following form:

µeff (ε̇eq, T ) =
1

3

σeff
ε̇eq

(33)

where the effective stress σeff (ε̇eq, T ) is defined as [80]:

σeff (ε̇eq, T ) =
1

α
sinh−1

[(
Z

A

) 1
n

]
=

1

α
ln

(Z
A

) 1
n

+

√
1 +

(
Z

A

) 2
n

 (34)

being α, A and n material constants. The Zener-Hollomon parameter, Z =

ε̇eq exp
(

Q
RTk

)
takes into account the temperature dependency (Tk = T +

273.16 is the absolute temperature), Q is the activation energy and finally,
R is the universal gas constant.

The final step required to the constitutive model is to compute the plastic
(stirring) dissipation, which is one of the key mechanisms of heat generation
during the welding process together with the friction dissipation. The plastic
dissipation rate, Ḋmech, is computed for both constitutive models as:

Ḋmech = σ : ε̇vp= s : ė =2µeff ‖ε̇‖2 =σeff ε̇eq (35)
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• Remark-1 : the advantage of the Sheppard-Wright model is the pos-
sibility of a better calibration of the material behavior in the entire
temperature range from the environment temperature to the melting
point while in Norton-Hoff model the temperature dependency must be
introduced by means of a tabulated (temperature dependent) viscosity.

• Remark-2 : neither Sheppard-Wright nor Norton-Hoff model takes into
account the thermo-elastic strains. This means that the proposed con-
stitutive laws are not able to predict the residual stresses after joining
and cooling back to room temperature. In the opinion of the authors,
the study of the residual stresses is more appropriate at global level
simulation where the full part/structure is studied using a more conve-
nient Lagrangian formulation and a moving heat source computed in
a locally based FSW simulation (scope of the present paper). In this
work, the final purpose is the study of the material flow around the
pin and the computation of the plastic dissipation to be used for the
thermal analysis.

• Remark-3 : The proposed formulation could incorporate a more sophis-
ticated strain-based mechanical model able to account for the thermal
softening as proposed in [46], [65] and [9]. The counterpart is a much
higher computational cost requiring the integration of the strain vari-
ables along the stream-lines.

4 Time Integration

The numerical solution of the coupled thermo-mechanical problem (25) in-
volves the transformation of an infinite dimensional transient system into a
sequence of discrete non-linear algebraic problems. This can be achieved by
means of a time-marching scheme for the advancement of the primary nodal
variables, velocities, pressure and temperatures, together with a return map-
ping algorithm to update the internal variables.

With regard to the time stepping scheme different strategies are possi-
ble, but they can be grouped in two categories: simultaneous (monolithic)
solutions and staggered (block-iterative or fractional-step) time-stepping al-
gorithms. In this work, a staggered solution is adopted. A product formula
algorithm is introduced, leading to a time-integration scheme in which the

17



two sub-problems (thermal and mechanical) are solved sequentially, within
the framework of the classical fractional step methods (see [3] and [15]).

Let us consider the following (homogeneous) first order constrained dis-
sipative local problem of evolution [24]:

Ż = A (Z) in Ωχ × [0, t]
Z (to) = Zo in Ωχ

(36)

where Z = [ρ,v, h]T is the set of primary independent variables and A (Z) is
a non-linear operator defined as:

A (Z) =


−ρ∇ · v
1
ρ

(∇ · s +∇p+ ρb)
1
ρ

(
Ḋmech −∇ · q

) (37)

For quasi-static incompressible problems, Ż =
[
0,0, ḣ

]T
, and the general

operator (37) can be replaced by:

A (Z) =


∇ · v
1
ρo

(∇ · s +∇p+ ρob)
1
ρo

(
Ḋmech −∇ · q

) (38)

The fractional step method is based on an additive isothermal operator
split of the differential operator A (Z) of the form [6], [7]:

A (·) = A
(1)
mech (Z) +A

(2)
ther (Z) (39)

where the operators A
(1)
mech (Z) and A

(2)
ther (Z) are defined as

A
(1)
mech (Z) =


∇ · v
1
ρo

(∇ · s +∇p+ ρob)

0

(40)

A
(2)
ther (Z) =


0
0

1
ρo

(
Ḋmech −∇ · q

) (41)

The solution Zn+1 at time tn+1 is obtained in two steps: firstly, the me-

chanical sub-problem defined by A
(1)
mech (Z) is solved starting from the solution
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Zn at time tn. The result is an intermediate solution Z̄n+1, used as starting

point for the thermal sub-problem A
(2)
ther (Z):

Sub-problem 1

Zn → Ż = A
(1)

mech (Z) → Z̄n+1 (42a)

Sub-problem 2

Z̄n+1 → A
(2)
ther (Z) → Zn+1 (42b)

It is worth to point out that this split is formulated for the continuum
operator A and not for the discrete operator, say Ah, arising from a spatial
discretization of the initial-boundary value problem. Sub-problem 1 defines a
mechanical phase at fixed enthalpy (temperature) and Sub-Problem 2 defines
a thermal phase at fixed configuration. As a result, the original coupled
problem is split into two smaller partitions, allowing the use of any integration
technique originally developed for the uncoupled sub-problems.

The algorithm presented above is first order accurate, and it does not
require an iteration loop over the two problems within the same time-step.
The critical restriction to guarantee stability when using the operator split
is that each one of the sub-problems must preserve the dissipative structure
of the original problem, that is:∫

Ωχ

Ḋ
(α)
int

(
Z(α)

)
dV =

∫
Ωχ

[
Ḋ

(α)
mech

(
Z(α)

)
+ Ḋ

(α)
cond

(
Z(α)

)]
dV ≥ 0 (43)

α = 1, 2

where Z(α) denotes the solution obtained by each operator A(α)
(
Z(α)

)
, α =

1, 2. Restriction (43) is directly related to the satisfaction of the Second
Principle of the Thermodynamics, where the internal dissipation Ḋint is split
into mechanical dissipation and dissipation by conduction, Ḋmech and Ḋcond,
respectively. In this work, due to the particular form of the constitutive
equations adopted for the FSW process, Ḋmech and Ḋcond are always non-
negative in both sub-problems:

Ḋmech = σ : ε̇vp = 2µeff ‖ε̇‖2 ≥ 0 ← µeff > 0 (44)

Ḋcond = −q · ∇T
T

=
k ‖∇T‖2

T
≥ 0 ← k > 0 (45)
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The final result is an accurate, efficient and robust numerical strategy for
the numerical simulation of coupled thermo-mechanical problems such as the
FSW processes.

5 Weak form of the coupled problem

Let us denote by Ωχ an open and bounded domain in Rndim where ndim is the
number of dimensions of the space, and ∂Ωχ its boundary. Let us assume that
the boundary ∂Ωχ can be split into ∂Ωσ and ∂Ωv, being ∂Ωχ = ∂Ωσ ∪ ∂Ωv

such that tractions are prescribed on ∂Ωσwhile velocities are specified on
∂Ωv, respectively. In similar way, boundary ∂Ωχ can be also split into ∂Ωq

and ∂Ωθ such that ∂Ωχ = ∂Ωq∪∂Ωθ, where fluxes (on ∂Ωq) and temperatures
(on ∂Ωθ) are prescribed for the heat transfer analysis.

In the FSW problem, the integration domain Ωχ = Ω (χ (t)) is subdivided
into three different regions corresponding to the pin, the work-piece and the
stir-zone, as previously discussed. Let us recall that when studying the work-
piece, Ωχ = Ω (x), so that this integration domain does not move: it is defined
in the Cartesian (Eulerian) space. At the pin, Ωχ (t) = Ω (X, t), the integra-
tion domain is moving according to the displacement field of the material par-
ticles, u (X, t). Finally, the mesh defined for the stir-zone Ωχ (t) = Ω (χ (t))
is moving but with a mesh velocity vmesh (χ (t)), which is different from the
material velocity, v (X,t).

The weak form of the mechanical sub-problem defined in (42a) is:
∫

Ωχ

[(∇ · s) · δv] dV+
∫

Ωχ

(∇p · δv) dV +
∫

Ωχ

(ρob · δv) dV = 0 ∀δv∫
Ωχ

[(∇ · v) δp] dV = 0 ∀δp

(46)
and the thermal sub-problem defined in (42b) results in:∫

Ωχ

[
ρoc
(
∂T
∂t

∣∣
χ

+ c · ∇T
)
δT
]
dV +

∫
Ωχ

[(∇ · q) δT ] dV −∫
Ωχ

(
Ḋmech δT

)
dV = 0 ∀δT

(47)

where δv, δp and δT are the variations compatible with the Dirichlet bound-
ary conditions (test functions) of velocity, pressure and temperature fields,
respectively.
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Integrating by parts, the following expressions are obtained:∫
Ωχ

[(∇ · s) · δv] dV = −
∫
Ωχ

(s : ∇sδv) dV +

∫
∂Ωσ

(̄t · δv) dS (48)

∫
Ωχ

(∇p · δv) dV = −
∫
Ωχ

(p ∇ · δv) dV (49)

∫
Ωχ

[(∇ · q) δT ] dV = −
∫
Ωχ

q · ∇ (δT ) dV −
∫
∂Ωq

(q̄ δT ) dS (50)

where t̄ = σ · n are prescribed tractions on ∂Ωσ, while q̄ = −q · n are pre-
scribed heat fluxes on ∂Ωq.

Substituting (48) and (49) in (46), the mixed (v/p) variational form of
the quasi-static incompressible mechanical problem yields:

∫
Ωχ

(s : ∇sδv) dV +
∫

Ωχ

(p ∇ · δv) dV = W ext
mech ∀δv∫

Ωχ

[(∇ · v) δp] dV = 0 ∀δp (51)

and, in similar way, substituting (50) in (47), the variational form of the
transient thermal problem results in:∫

Ωχ

[
ρc
(
∂T
∂t

∣∣
χ

+ c · ∇T
)
δT
]
dV −

∫
Ωχ

q · ∇ (δT ) dV = W ext
ther ∀δT

(52)
where W ext

mech and W ext
ther denote the mechanical and thermal external work of

the external loads, respectively, defined as:

W ext
mech (δv) =

∫
Ωχ

(ρob · δv) dV +

∫
∂Ωσ

(̄t · δv) dS (53)

W ext
ther (δT ) =

∫
Ωχ

(
Ḋmech δT

)
dV +

∫
∂Ωq

(q̄ δT ) dS (54)

The coupled problem defined by the variational forms in (51) and (52)
is subjected to appropriate Dirichlet boundary conditions in terms of pre-
scribed velocity and temperature field, v = v̄ and T = T̄ in ∂Ωv and ∂Ωθ,
respectively, and the initial conditions for the transient thermal problem in
terms of initial temperature field: T (t = 0) = To.
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5.1 Discrete and stabilized weak form of the mechan-
ical problem

In the framework of the standard Galerkin finite element method, the discrete
counterpart of the weak form for the mechanical problem (51) can be written
as:

∫
Ωχ

(sh : ∇sδvh) dV +
∫

Ωχ

(ph ∇ · δvh) dV = W ext
mech (δvh) ∀δvh∫

Ωχ

[(∇ · vh) δph] dV = 0 ∀δph
(55)

where vh, δvh ∈ Sh and ph, δph ∈ Ph are the finite element approximations
and the corresponding variations of the velocity and pressure fields, respec-
tively, within the finite element spaces: Sh ⊂ H1 (Ωχ) and Ph ⊂ L2 (Ωχ).
The well-known Ladyzhenskaya-Babuška–Brezzi (LBB) compatibility condi-
tion [14] restricts the choice of the finite element spaces Sh and Ph to guar-
antee the stability of the solution. For instance, standard Galerkin mixed
(P1P1) elements with continuous equal order linear v/p interpolation vio-
late the LBB condition; this produces instabilities in the pressure field and
poor numerical performance. Stability can be achieved either choosing v/p
interpolation spaces that satisfy the LBB condition (e.g. P2P1 elements)
or, alternatively, circumventing the condition using a stabilization technique
[51]. In this work, the Orthogonal Subgrid Scale (OSS) stabilization tech-
nique is adopted to stabilize P1P1 mixed v/p elements with continuous
equal order linear interpolation. This technique, originally developed to ful-
fil the incompressibility condition in CFD problems (see [26], [28], [27]), has
been exploited in the solid mechanics context to deal with elastic incom-
pressibility and J2-plasticity (isochoric) problems (see. [5], [17], [21], [22]).
The resulting discrete OSS stabilized weak form of the mechanical problem
results in:

∫
Ωχ

(sh : ∇sδvh) dV +
∫

Ωχ

(ph ∇ · δvh) dV = W ext
mech (δvh) ∀δvh∫

Ωχ

[(∇ · vh) δph] dV +
∫

Ωχ

τe [∇δph · (∇ph −Πh)] dV = 0 ∀δph∫
Ωχ

(∇ph · δΠh) dV −
∫

Ωχ

(Πh · δΠh) dV = 0 ∀δΠh

(56)
where Πh and δΠh are the smooth projection of the pressure gradient onto
the finite element space and its variation.
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The stabilization term introduced in the second Eq. of (56) is computed
as a function of the orthogonal projection of the residual of the momentum
balance equation (see first Eq. in (25)) as:

P⊥ (∇ph) = ∇ph −Πh

where the orthogonal projection of ∇·s vanishes when using linear triangles
or tetrahedral elements. The stabilization parameter, τe, is computed at
element by element as:

τe = cu
h2
e

2µeff
(57)

where he is the element size, cu is a constant and µeff is the effective viscos-
ity. Observe that the effective viscosity µeff (T ) is (usually) a temperature
dependent parameter leading to a temperature dependent definition of the
stabilization parameter, τe (T ).

The result is an accurate, stable and consistent (the stabilization term
reduces on mesh refinement) formulation to solve the mechanical problem
when subjected to the incompressibility constraint.

5.2 Discrete and stabilized weak form of the thermal
problem

The discrete counterpart of the weak form for the thermal problem (54) is
written as:∫

Ωχ

[
ρoc
(
∂Th
∂t

∣∣
χ

+ ch · ∇Th
)
δTh

]
dV −

∫
Ωχ

qh · ∇ (δTh) dV = W ext
ther (δTh) ∀δTh

(58)
where (Th, δTh) ∈ Θh are the finite element approximations and the corre-
sponding variations of the temperature field within the finite element space
Θh ⊂ H1 (Ωχ). Here, the stability problems may arise due to the convective
term. Also in this case, it is possible to stabilize the formulation adding a
residual-based OSS stabilization term of the form:

Stab (δTh) =

∫
Ωχ

τ θe ρoc
[
ch · ∇ (δTh)

(
ch · ∇Th − Πθ

h

)]
dV (59)

23



where τ θe = cθ
he

2‖ch‖
is the stabilization parameter for the thermal (convective)

problem, cθ is a constant and Πθ
h is the smooth projection of the convective

term given by:

∫
Ωχ

[
(ch · ∇Th) δΠθ

h

]
dV −

∫
Ωχ

(
Πθ
h · δΠθ

h

)
dV = 0 ∀δΠθ

h (60)

The resulting discrete OSS stabilized weak form of the thermal problem
is: ∫

Ωχ

[
ρoc
(
∂Th
∂t

∣∣
χ

+ ch · ∇Th
)
δTh

]
dV −

∫
Ωχ

qh · ∇ (δTh) dV +∫
Ωχ

τ θe ρoc
[
ch · ∇ (δTh)

(
ch · ∇Th − Πθ

h

)]
dV = W ext

ther (δTh) ∀δTh∫
Ωχ

[
(ch · ∇Th) δΠθ

h

]
dV −

∫
Ωχ

(
Πθ
h · δΠθ

h

)
dV = 0 ∀δΠθ

h

(61)

6 FSW zones interaction

According to the domain subdivision introduced to deal with the kinematics
of the FSW process, there exist two different kind of domain interactions to
be discussed: on one side, the link between the mesh of the work-piece (fixed)
and the mesh used for the stir-zone, which is rotating according to the pin
motion. On the other side, the thermo-mechanical contact behavior between
the stir-zone and the pin.

6.1 Modelling the work-piece/stir-zone interaction

When modelling the interface between the work-piece and the stir-zone, the
objective is to get continuous fields for all the state variables v, p and T
crossing the interface between the two domains. Work-piece and stir-zone
are parts of the same metal sheet even if there exists a relative movement of
the two computational sub-domains.

In this work, two different solutions to deal with the interaction at the
contact interface between the stir-zone and the work-piece are considered.

The simplest solution consists of assuming both coincident and equi-
spaced meshes at the interface. This means that for each boundary node
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of the stir-zone there exists a corresponding node on the surface of the work-
piece. This connection must be kept at each time-step of the simulation that
is after any mesh sliding (rotation). This is easy to achieve for 2D analyses
but it is much more demanding for an automatic 3D mesh generator, which
usually supports unstructured tetrahedral meshes.

When considering coincident surface meshes, it is easy to connect the
integration domains by prescribing all the state variables v, p and T on
one side (work-piece surface) to the corresponding values on the other side
(stir-zone surface). From the computational point of view, this procedure
consists of two steps. Firstly, it is necessary to set a time-step which ensures
a perfect surface matching after each mesh sliding. Then, using a search-
algorithm (restricted to the interface nodes), it is necessary to identify all the
node-to-node (master/slave) connections at the contact interface. Secondly,
during the assembling procedure the contributions (elemental residuals and
tangent matrices) of the slave nodes are assembled with to the corresponding
contributions of the master nodes.

The solution is more complex when there is no perfect match between the
master (a coarser mesh is usually defined for the work-piece) and the slave
(finer mesh for the stir-zone) surfaces. In this case the strategy adopted
consists of projecting each slave node on the master surface to build-up the
contact elements all over the contact interface. Once the slave/master contact
elements have been generated, one of following three approaches is commonly
pursued: the Lagrange multiplier method, the augmented Lagrange method,
or the penalty method. The easiest approach is the penalty method [1], where
very large values (penalty parameters) of both stiffness and thermal resistiv-
ity are assigned to the contact elements to ensure the most rigid/conductive
behavior between the two domains in both the mechanical and the ther-
mal problems. Also in this case, at each time-step the contact elements
must be re-constructed according to a (rather time-consuming) closest-point-
projection algorithm.

6.2 Modelling the pin/stir-zone interaction

When modelling the interaction between the pin and the stir-zone the two
sub-domains are rotating together but this does not mean that the material
moves with the same velocity at the two sides of the contact interface (same
concept for temperature and pressure fields). Here, the thermo-mechanical
contact between the two surfaces is the driving mechanism to be studied and
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the most critical part of the numerical model [74].
Two different situations may occur between the material particles (pin

and stir-zone particles) at each side of the contact interface: sticking or
sliding. One or the other may happen.

We refer to as sticking condition when the metal sheet surface at the
stir-zone sticks to the moving tool (pin) surface. In conventional Coulomb’s
friction law, the friction shear stress, tT , does not exceed the admissible shear
stress, τmax:

Sticking vpin = vsz ‖tT‖ < τmax (62)

where vpin is the velocity of the pin at any point of the contact interface
while vsz is the velocity of the stir-zone material at the same position.

The sliding condition is achieved in the limit case when the friction shear
stress rises up to the limit shear stress and a relative slip occurs between the
contacting surfaces:

Sliding ‖vpin‖ > ‖vsz‖ ‖tT‖ = τmax (63)

In FSW the admissible shear stress, τmax, strongly depends on several
parameters such as the normal pressure, tN , the temperature field, T and
the relative slip velocity, ∆vc, defined as:

∆vc = vpin − vsz (64)

As a consequence, in the heat affected zone, the boundary between the
sticking and the sliding condition changes continuously according to the cur-
rent value of the admissible shear stress, τmax (tN , T,∆vc). When the pin is
plunged into the metal sheet, the slip velocity, ∆vc, is maximum and the
material at the stir-zone surface accelerates to fulfil the stationary sticking
condition (∆vc = 0), with the stir-zone surface moving with the tool veloc-
ity (vsz = vpin). During the transition, the admissible shear stress reduces
according to the temperature increase due to the heat generated by friction
and plastic dissipation processes.

6.2.1 Coulomb’s friction law

Adopting the classical friction model based on Coulomb’s law, it is possible
to define the so called slip function as [2]:

φ (tN , tT ) = ‖tT‖ − η ‖tN‖ ≤ 0 (65)
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where η is the friction coefficient and tN and tT are the normal (pressure)
and tangential (shear) components of the traction vector, tc = σ · n, at the
contact interface, respectively:

tN = (n⊗ n) · tc = (tc · n) n (66)

tT = (I− n⊗ n) · tc = tc − tN (67)

where n is the unit vector normal to the contact interface.
The split of the slip velocity, ∆vc, into normal and tangential components,

∆vN and ∆vT , respectively, yields:

∆vN = (n⊗ n) ·∆vc = (∆vc · n) n (68)

∆vT = (I− n⊗ n) ·∆vc = ∆vc −∆vN (69)

This given, it is possible to recover both the stick and the slip mechanisms
using the unified format:

‖tT‖ = εT

(
‖∆vT‖ −

.
γ

∂φ

∂ ‖tT‖

)
= εT (‖∆vT‖ −

.
γ) (70)

together with the Kuhn-Tucker conditions defined in terms of the slip func-
tion, φ, and the slip multiplier,

.
γ, as:

φ ≤ 0
.
γ ≥ 0 (71)

φ
.
γ = 0

Eq. (70) is a regularization (penalty method) of the Heaviside (step)
function typical of the frictional contact behavior, and εT is the corresponding
penalty parameter.

• The sliding condition is achieved for φ = 0. In this case, the tangential
component of the traction vector, tT , is given by:

tT = τmax uT (72)

where τmax is obtained from Eq. (65) as:

τmax = η ‖tN‖ (73)
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while the tangential unit vector, uT , can be computed as:

uT =
∆vT
‖∆vT‖

(74)

The normal component of the traction vector is obtained with a further
penalization as:

tN = εN ∆vN (75)

where εN is the normal penalty parameter, which is enforcing the stick
condition in the normal direction.

• The stick condition is achieved for
.
γ = 0. The tangential component

of the traction vector is obtained from Eqs. (70) and (74) as:

tT = εT ∆vT

while the normal component of the traction vector is given by Eq. (75):

Remark-1 : Eqs. (70) and (71) have the same format as in classical J2
plasticity (see [2]): in that case, φ, is representing the yield surface and,

.
γ,

the plastic multiplier.
Remark-2 : The penalty method, introduced to regularize the contact

problem, is an elegant format to circumvent the numerical difficulties of the
discontinuous solution. However, the choice of the penalty parameters re-
mains a difficult task: on one side, high values approximate better the Heav-
iside (step) function but at the same time they lead to ill-conditioning of the
solution matrix. On the other side, the use of lower values for the penaliza-
tion retains the stick condition for too long.

Remark-3 : The friction coefficient, η (T,∆vc), is a highly non-linear func-
tion of both the surface temperature, T , and the relative slip velocity, ∆vc,
making the calibration of the Coulomb’s law in the transient phase of the
FSW process difficult [8].

6.2.2 Norton’s friction law

In most of the FSW processes the sliding condition is predominant, so that
even if the sheet material at the pin surface is accelerated, in practice, it never
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reaches the tool velocity (sticking condition). For the sliding condition, the
Coulomb’s law only depends on the admissible shear stress, which is a poor
representation of the frictional phenomena. Norton’s friction law shows a
more realistic behavior, taking into account both the surface temperature
and the relative sliding velocity [8]. This frictional law can be written in a
compact form as:

tT = ηeq uT (76)

and the equivalent friction coefficient, ηeq (T,∆vT ), is expressed as:

ηeq = a (T ) ‖∆vT‖q (77)

where a (T ) is the (temperature dependent) material consistency and 0 ≤
q ≤ 1 is the strain rate sensitivity. For q = 0, the Coulomb’s law is recovered
and a (T ) represents the (temperature dependent) admissible shear stress,
τmax.

It is interesting to observe that two alternative implementation strategies
are possible depending on the mesh generated at the contact interface.

On one hand, if the surface meshes of pin (master) and stir-zone (slave)
are non-coincident, the first step consists of generating the contact elements:
all slave nodes are projected onto the best matching master facet (discretized
counterpart of the master surface) according to a classical closest-point pro-
jection algorithm. Each contact element is built up using the slave node and
the nodes belonging to the selected master facet. Both the elemental resid-
ual and stiffness matrix are split into normal and tangential contributions.
Hence, the thermo-mechanical contact interaction is guaranteed by enforc-
ing the continuity of both normal and tangential components of the traction
vector:

tpinN = −tszN (78)

tpinT = −tszT (79)

In similar way, the heat flux crossing the surface must satisfy:

qpin = −qsz (80)

where q is computed using Newton’s law [23], defined in terms of the tem-
perature gap and the heat transfer coefficient, hc, as:
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qpin = hc
(
T pin − T sz

)
(81)

qsz = hc
(
T sz − T pin

)
(82)

On the other hand, it may be considered the case of coincident surface
discretization at the contact interface. In this case, there is a node-to-node
correspondence and it is not necessary to generate contact elements. Fur-
thermore, the rotation of slave and master surfaces is synchronized so that a
searching operation at each time-step is not necessary. The main advantage
of using coincident meshes consists of avoiding the use of penalty parameters
for the stick condition. Slave and master nodes can be linked together using
the same (master) nodal variables:

vpin = vsz (83)

T pin = T sz (84)

For the slip condition, it is necessary to split the velocity field at the interface
into normal and tangential components: the normal component is treated as
for the stick condition while in the tangential direction is necessary to enforce
the continuity of the tangential traction vector as:

vpinN = vszN (85)

tpinT = −tszT (86)

T pin = T sz (87)

Finally, in the numerical simulation of the FSW process, it is important to
account for the heat flux induced by the friction dissipation, as this is the key
mechanisms of heat generation during the welding process. When the sliding
condition is satisfied, the heat flux generated by the friction dissipation in
both Norton and Coulomb (as a particular case when the rate sensitivity
parameter q = 0) friction laws is computed as:

qpinfrict = ϑpin [tT ·∆vT ] = ϑpin a (T ) ‖∆vT‖q+1 (88a)

qszfrict = ϑsz [tT ·∆vT ] = ϑsz a (T ) ‖∆vT‖q+1 (88b)

so that the total amount of heat generated during the friction dissipation is
split into the fraction absorbed by the pin ϑpin and the fraction absorbed by
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the work-piece in the stir-zone ϑsz = 1− ϑpin, computed respectively as:

ϑpin =
αpin

αpin + αsz
(89a)

ϑsz =
αsz

αpin + αsz
(89b)

where α = k
ρoc

is the thermal diffusivity of the material. The more diffusive

is the material (compared to the other one) the more heat is absorbed (e.g.
welding aluminium with a steel pin: ϑpin ≈ 0.8 and ϑsz ≈ 0.2).

7 Numerical simulations

The formulation presented in the previous sections is illustrated here with a
number of numerical simulations. The goals are twofold: firstly, to demon-
strate the accuracy of the proposed ALE kinematic formulation comparing
the results with a reference solution; secondly, to show the FSW simulation
capabilities accounting for both stirring and frictional effects when using a
non-cylindrical pin.

Computations are performed using the in-house finite element code COMET
[16] developed by the authors at the International Center for Numerical
Method in Engineering (CIMNE) in Barcelona, Spain. The post-processing
of the results has been carried out using the pre and postprocessor GiD also
developed at CIMNE [43].

7.1 ALE formulation benchmark

Figure 2(a) represents a square domain of 80 × 80 [mm2]. This compu-
tational domain is divided in two different areas (grey and blue) where the
circular section has a diameter of 40 [mm].

An inflow velocity of 0.01 [m/s] is imposed at the left side of the do-
main, representing the body movement from right to left. Vertical velocity
is prescribed to zero at the top and bottom side of the domain. The initial
temperature field consists of a linear distribution varying from the top side
(50oC) to the bottom side (−50oC), defining a constant temperature gradi-
ent along the vertical direction. For the sake of simplicity, for the numerical
benchmark constant thermo-physical properties have been used to character-
ize the material (aluminium alloy): ρo = 2600

[
kg/m3], c = 900 [J/ (kg ·K)]
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(a) Geometry: Eulerian
domain (grey) and ALE

domain (blue). (b) FE mesh.

Figure 2: ALE formulation benchmarking: geometry and FE mesh.

and k = 150 [W/ (m ·K)], corresponding to the density, the specific heat
and the thermal conductivity, respectively.

The FE discretization of the computational domain is presented in Figure
2(b). It consists of 12, 453 nodes and 24, 744 triangular elements with an
average size of 0.5 [mm] in the blue area and 1.0 [mm] in the grey zone.

Using an Eulerian approach, the solution of this problem is simple: it is
a rigid movement defined by a constant velocity field (the inflow velocity)
and a null pressure field. The Eulerian formulation also solves the thermal
problem exactly because the convective term is null by construction: the
velocity is orthogonal to the temperature gradient everywhere. Hence, the
initial temperature field is also the steady-state solution of the problem as
shown in Figure 3(a).

The purpose of this numerical example is to show the accuracy of the
proposed ALE formulation solving the same problem when the mesh in the
blue area is rotating (anti-clockwise) with an angular velocity of 40, 80 and
120 [rpm], respectively. This problem presents the same kind of difficulties of
a FSW simulation where the grey zone represents the work-piece, while the
blue area stands for the stir-zone which is rotating together with the pin.
The selected values for the angular velocity are in the range commonly used
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rpm Period [s] ∆t [s]
40 1.50 5.791× 10−3

80 0.75 2.988× 10−3

120 0.50 1.992× 10−3

Table 3: Time-step used in the numerical simulations according to the dif-
ferent angular velocities.

for industrial aluminium FSW process.
In this case, the thermal solution is not exact because the convective term

due to the mesh movement must be solved: c · ∇T = −vmesh · ∇T 6= 0. The
Courant number, defined as: Cu = ‖vmesh‖ ∆t

he
, is useful to check the accuracy

of the solution in terms of selected mesh size he, and the time-increment, ∆t
chosen.

Forcing node-to-node mesh synchronization at the interface between the
grey and the blue domains, then Cu ≤ 1 in all the blue domain and null
in the grey area. At the sliding interface Cu = 1: this is maximum value
achieved in all the computational area preserving the accuracy of the solution.
A fixed number of 251 time-steps are necessary to complete one revolution,
which corresponds to the number of elements at the sliding interface. Table
3 shows the time-increment, ∆t, used in the simulations.

Figures 3(b), 3(c) and 3(d) show the temperature contour-fill after one full
rotation of the blue domain. It is possible to notice a very small perturbation
of the temperature gradient proportional to the angular velocity. However,
the error introduced in the ALE domain by the convective term does not
compromise the accuracy of the analysis. Higher rotation velocities could re-
quire finer mesh discretization and the corresponding reduced time-stepping
to keep the Courant number, Cu ≤ 1.

7.2 Triflute pin FSW analysis

The next example demonstrates the performance of the proposed formulation
when simulating a real-case FSW process. Using the same square domain
presented in the previous example a triflute pin (green area) is added in the
middle of the stir-zone (blue domain), as shown in Figure 4 (b).

The pin shape is obtained starting from an original circular section (green
area) with a diameter of 10 [mm] where three circular segments have been
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(a) Eulerian formulation.
(b) ALE formulation: 40

[rpm].

(c) ALE formulation: 80
[rpm].

(d) ALE formulation: 120
[rpm].

Figure 3: ALE formulation bechmarking: temperature field after one revo-
lution.

34



removed as detailed in Figure 4 (a). The white circles have the same diam-
eter (10 [mm] ) than the green one and the distance between the center of
each white circle and the center of the green one is 8.66 [mm] leading to a
subdivision of the circumference of the green circle in 6 equal parts.

The corresponding mesh is shown in figure 4 (c) and a detail of the FE
discretization close to the pin is presented in Figure 4 (d). This mesh is
exactly the same (12, 453 nodes and 24, 744 triangular elements) used in
the ALE benchmark but, in this case, the green area represents the triflute
pin. This FE discretization has proved to guarantee sufficient accuracy when
solving the thermo-mechanical problem (a finer mesh does not significantly
modify neither the temperature nor the velocity field).

For the sake of simplicity, the simulations have been carried out consider-
ing a Norton-Hoff model with constant effective viscosity, µeff = 100 [MPa/s]
and a constant exponent, m = 0.2, for both the work-piece and the stir-zone.
The pin is assumed to be rigid. The thermo-physical properties (density, spe-
cific heat and thermal conductivity) used to characterize the aluminium sheet
are the same an in the previous benchmark while the pin has been charac-
terized by typical thermo-physical properties of a steel: ρo = 7800

[
kg/m3],

c = 500 [J/ (kg ·K)] and k = 25 [W/ (m ·K)], respectively.
The welding parameters are given in terms of constant advancing velocity

0.010 [m/s] and different constant rotational (anti-clockwise) angular veloc-
ity: 40, 80 and 120 [rpm], respectively. In the simulations the pin is rotating
around a fixed axis while the metal-sheet moves towards the pin from the
left to right (which corresponds to the pin advancing movement from right
to left). The initial (uniform) temperature for all the welding tools is 20oC.

Perfect stick (infinite frictional coefficient) is prescribed at the interface
between the pin (green) and the stir-zone (blue). This hypothesis is realistic
when welding aluminium with steel tools. The interface between the stir-
zone (blue) and the rest of the work-piece (grey) is treated as for the ALE
benchmark: a sliding motion enforces node-to-node mesh synchronization to
keep the Courant number, Cu ≤ 1 in all the domain, preserving the accuracy
of the solution. The time increments used are those in Table 3.

Figures 5 (a) and 5 (b) show the velocity and pressure contour-fill, re-
spectively, for the angular velocity of 40 [rpm]. It is interesting to note the
quality of the pressure field, free of any spurious oscillation thanks to the OSS
stabilization technique adopted to deal with the incompressibility condition.

Figure 5 (c) shows the velocity vectors in the stir-zone close to the pin.
Here, the triflute shape seems not to be so relevant for the material stirring
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(a) Triflute pin design.

(b) Work-piece (grey),
stir-zone (blue) and pin

(green).

(c) FE mesh. (d) Detail of the FE mesh.

Figure 4: Triflute pin FSW analysis: geometry and FE mesh.
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and the pin effectively acts as a circular FSW tool. The material entrapped
in the circular segments is transported following the pin motion as clearly
manifested by the stream-lines in Figure 5 (d).

Figure 6 shows the temperature field after 1, 4, 7 and 10 revolutions,
respectively. The initially uniform temperature field is affected by the heat
generated either by the plastic dissipation due to the material stirring or by
the frictional mechanism at the pin/stir-zone interface.

Figure 7 (a) defines the position of the midsection line and the location
of three virtual-thermocouples (at the centre of the pin, in the stir-zone close
to the pin and at the border between the stir-zone and the rest of the work-
piece) where the temperature evolution is recorded. Figure 7 (b) shows the
temperature variation along the midsection after 1, 4, 7 and 10 revolutions,
respectively. On one hand, the lower thermal diffusivity of the pin (steel-
made) causes the two picks in all the curves. On the other hand, after 10
revolutions the temperature field is very close to the steady-state value and
the numerical simulation can be terminated. Figure 7 (c) shows the temper-
ature evolution at the location of three virtual-thermocouples: in all cases
the temperature is close to the steady-state condition and reaches the max-
imum value at the pin/stir-zone interface. Finally, Figure 7 (d) shows the
maximum temperature attained at the pin/stir-zone interface for different
pin-rotation velocities: 40 [rpm], 80 [rpm] and 120 [rpm], respectively. The
relationship between angular velocity and maximum temperature achieved is
mostly linear and the optimal pin-rotation velocity which guarantees a work-
ing temperature close to the mushy-zone range is in the range of 90 [rpm].

8 Conclusions

This work presents the strategy adopted for the numerical simulation of the
FSW process. A coupled thermo-mechanical solution of both the momen-
tum and energy balance equations is presented. A very general kinematic
framework has been used to deal with the specific description of motion in
the FSW problem. More in detail, the ALE formulation of the balance equa-
tions has been introduced to describe the relationship between the material
and the mesh movement in the stir-zone. This formulation also includes, as
limit cases, either the Eulerian framework for the rest of the metal sheet while
moving toward the pin or the Lagrangian description used to follow the pin
rotation. The two different mechanisms of heat generation coming from stir-
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(a) Velocity contour-fill. (b) Pressure contour-fill.

(c) Graphical representation of
the velocity vectors.

(d) Stream-lines of the velocity
field.

Figure 5: FSW analysis using a triflute pin.
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(a) After 1 revolution. (b) After 4 revolutions.

(c) After 7 revolutions. (d) After 10 revolutions.

Figure 6: FSW analysis using a triflute pin: temperature evolution [C].
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(a) Locations of various
virtual-thermocouples and

midsection line.

(b) Line-graph along the midsection of the
temperature after 1, 4, 7 and 10

revolutions.

(c) Temperature evolution during the first
10 revolutions at three different locations:
center of the pin, in the stir-zone close to

the pin and at the border between the
stir-zone and the rest of the work-piece.

(d) Maximum welding temperature at the
stir-zone close to the pin as a function of

the pin-rotation velocity.

Figure 7: Triflute pin FSW analysis: temperature evolution at different ther-
mocouple locations.
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ring and friction have been described, coupling the mechanical and thermal
models. In the hypothesis of incompressible material behavior the stabilized
mixed v/p formulation has been used due to the good performance of this
technology, especially for industrial simulations when triangular/tetrahedral
meshes must be used for the domain discretization. Following the same strat-
egy, the convective term in the thermal partition has been stabilized using
the same OSS stabilization, leading to a very accurate treatment of this phe-
nomenon. The numerical benchmarks have shown the accuracy of both the
thermal and the mechanical responses when a FSW process is simulated.
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