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On stabilized �nite element methods for linear

systems of convection-di�usion-reaction equations

Ramon Codina

ETS d'Enginyers de Camins, Canals i Ports

Universitat Polit�ecnica de Catalunya

Gran Capit�a s/n, Edi�ci C1, 08034 Barcelona, Spain

Abstract

A stabilized �nite element method for solving systems of convection-di�usion-reaction

equations is studied in this paper. The method is based on the subgrid scale approach

and an algebraic approximation to the subscales. After presenting the formulation of the

method, it is analyzed how it behaves under changes of variables, showing that it relies on

the law of change of the matrix of stabilization parameters associated to the method. An

expression for this matrix is proposed for the case of general coupled systems of equations

that is an extension of the expression proposed for a 1D model problem. Applications

of the stabilization technique to the Stokes problem with convection and to the bending

of Reissner-Mindlin plates are discussed next. The design of the matrix of stabilization

parameters is based on the identi�cation of the stability de�ciencies of the standard

Galerkin method applied to these two problems.

1 Introduction

The purpose of this paper is to study the application of a certain type of stabilized �nite

element methods to systems of convection-di�usion-reaction equations of the form

L(U) :=
@

@xi
(AiU)�

@

@xi

 
Kij

@U

@xj

!
+ SU = F in 
; (1)

U = 0 on @
; (2)

where 
 is the computational domain, U and F are vectors of nunk unknowns and Ai, Kij

and S are nunk�nunk matrices (i; j = 1; :::; nsd). The usual summation convention is implied

in (1), with indices running from 1 to the number of space dimensions nsd. We shall refer to

the terms of the left-hand-side (LHS) of this equation as the convective, the di�usive and the

reactive term. The algebraic bilinear form associated to Kij, i; j = 1; :::; nsd, is assumed to

be positive-de�nite.

Let W := (H1
0 (
))

n
unk . The weak form of the problem consists in �nding U 2 W such

that

a(U ;V )� l(V ) = 0 8V 2 W; (3)
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where the bilinear form a and the linear form l are de�ned as

a(U ;V ) :=

Z



V
t @

@xi
(AiU) d
 +

Z



@V t

@xi
Kij

@U

@xj
d
 +

Z



V
t
SU d
; (4)

l(V ) :=

Z



V
t
F d
: (5)

The Galerkin �nite element approximation of this problem is standard. If Wh is a �nite

element space to approximateW, the discrete problem consists in �nding Uh 2 Wh such that

a(Uh;V h)� l(V h) = 0 8V h 2 Wh: (6)

It is well known that this formulation lacks stability when the di�usive terms are small,

compared either to the convective or to the reactive terms. The purpose of this paper is to

analyze certain aspects related to the application of some stabilized �nite element techniques

to problem (1)-(2). These techniques are described in the following section. They consist

in the addition of a residual based stabilizing term to the basic Galerkin formulation. In

particular, we shall concentrate on the subgrid scale method with an algebraic approximation

to the subscales, an approach introduced in [1, 2]. We present in Section 2 a description of

the subgrid scale method in the most general case and also the approximations that lead

to the stabilized formulation that will be used in the following, to which we shall refer as

the algebraic subgrid scale (ASGS) method. We will also discuss the behavior of the well

known SUPG and Galerkin/least-squares (GLS) methods as described for example in [3, 4],

comparing them with the ASGS formulation.

In Section 3 we study the behavior of the stabilized methods considered under linear

changes of variables. It is shown that this simple exercise puts severe restrictions to these

methods and to the stabilization parameters on which they depend. In Section 4 a cer-

tain expression for these parameters is proposed for di�erent problems. A one-dimensional

convection-di�usion-reaction problem is considered �rst, obtaining the conditions that the

stabilization parameter must verify from the analysis of the discrete maximum principle. The

straightforward extension of the expression obtained is then proposed for a general system

of equations. Since the resulting stabilization matrix is a matrix function of the coe�cients

of the di�erential equation, this approach produces the stabilization parameters of the scalar

problem when all the coe�cient matrices diagonalize in the same basis, that is, when the

problem itself is diagonalizable. However, this general strategy does not work properly for

the two problems analyzed next, namely, the Stokes problem with convection and the bend-

ing of Reissner-Mindlin plates. The design of the stabilization parameters in these two cases

is based on a simple analysis of the lack of stability of the standard Galerkin method when

applied to these problems.

In Section 5 a numerical example is presented to check the numerical performance of

the stabilized method for Reissner-Mindlin plates and a test is introduced for the general

expression of the stabilization matrix. It is shown that the ASGS model, using the numerical

parameters proposed in this paper, gives good numerical results for these two problems.
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2 Stabilized �nite element methods

2.1 The subgrid scale approach

In this section we present the subgrid scale method in a (slightly) more general version than

in the original references [1, 2]. Let us split the continuous space W as W =Wh� ~W, where
~W can be in principle any space to complete Wh in W. To �x ideas, we may think of ~W

as the orthogonal complement of Wh with respect to the L2 inner product in W. Since ~W

represents the component of W which is not reproduced by the �nite element space, we call

it the space of subscales or subgrid scales. The continuous equation (3) can now be written

as the system

a(Uh;V h) + a( ~U ;V h) = l(V h) 8V h 2 Wh; (7)

a(Uh; ~V ) + a( ~U ; ~V ) = l( ~V ) 8 ~V 2 ~W; (8)

where U = Uh + ~U and Uh 2 Wh, ~U 2 ~W.

Let nel be the number of elements of the �nite element partition of the domain 
 and let


e be the region ocuppied by the e-th element. It is useful for the following to introduce the

notation Z

0

:=

n
elX

e=1

Z

e

;

Z
@
0

:=

n
elX

e=1

Z
@
e

: (9)

Let us assume that the solution of the continuous problem U is smooth. Integrating by

parts within each element domain it is found that problem (7)-(8) can be written as

a(Uh;V h) +

Z
@
0

~U
t
niKij

@V h

@xj
d� +

Z

0

~U
t
L�(V h) d
 = l(V h); (10)

Z
@
0

~V
t
niKij

@

@xj
(Uh + ~U) d� +

Z

0

~V
t
L( ~U) d
 =

Z

0

~V
t
[F �L(Uh)] d
; (11)

where ni is the i-th component of the exterior normal to @
 and L� is the adjoint operator

of L with homogeneous Dirichlet conditions, given below in (20).

Equation (11) is equivalent to �nding ~U 2 ~W such that

L( ~U) = F �L(Uh) + V h;ort in 
e; (12)

~U = ~U ske on @
e; (13)

for e = 1; :::; nel, where V h;ort is obtained from the condition that ~U must belong to ~W (and

not to the whole space W) and ~U ske is a function de�ned on the element boundaries and

such that

qn := niKij
@

@xj
(Uh + ~U) (14)

is continuous across interelement boundaries, that is to say, the normal component of the


uxes of U is continuous across these boundaries. Observe that due to this fact the �rst term

in the LHS of (11) vanishes. We call ~U ske the skeleton of ~U .

Problem (7)-(8) is exactly equivalent to (10)-(12)-(13). The approximate problem is

de�ned by the way in which problem (12)-(13) is solved as well as by the way in which the

functions V h;ort and ~U ske are taken. A particular case is described next.
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2.2 Algebraic approximation to the subscales

The simplest way to approximate problem (12)-(13) is to take

~U � � [F �L(Uh)] (15)

as the solution of this problem, where � is a nunk � nunk matrix de�ned within each element

domain that has to be determined. We shall refer to it as the matrix of stabilization pa-

rameters. The approximation given by (15) has an implicit assumption on the function ~U ske

and the space ~W, and therefore on the function V h;ort. In general, ~U will be discontinous

across interelement boundaries, so that the 
uxes given by (14) will not even be well de�ned.

However, from (10) it is observed that, except for the boundary integral, only the component

of ~U in L(Wh) is needed, where L(Wh) is the space of functions of the form L(V h), with

V h 2 Wh. We may think of (15) as the approximation to this component.

To close the approximation, we neglect the interelement boundary terms in (10), so that

the problem that has to be solved is �nally

a(Uh;V h) +

Z

0

~U
t
L�(V h) d
 = l(V h); (16)

with ~U given by (15). With all these assumptions we have arrived to the method proposed

in [2] using di�erent arguments. In particular, (15) was derived from an approximation to

the Green's function of the problem. This method was also considered in [5] and derived for

the scalar di�usion-reaction equation in [6] by using bubble functions.

2.3 The SUPG, GLS and ASGS methods

Let us consider the Galerkin �nite element approximation of the problem given by (6). Con-

sider also a stabilized �nite element method consisting in adding to the LHS of this equation

a term of the form

r(Uh;V h) =

Z

0

P(V h)
t
�R(Uh) d
; (17)

where P(V h) is a certain operator applied to the test functions, � is a matrix of stabilization

parameters and R(Uh) is the residual of the di�erential equation, that is to say, L(V h)�F .

It is understood that all these terms are computed for each element domain 
e.

Most classical stabilization methods for problem (1)-(2) fall within the previous frame-

work, as shown in [7]. For example, for the stationary problem considered in this work, the

SUPG, the GLS and the ASGS methods are de�ned by taking

SUPG : P(V h) = Ai
@V h

@xi
; (18)

GLS : P(V h) = L(V h) =
@

@xi
(AiV h)�

@

@xi

 
Kij

@V h

@xj

!
+ SV h; (19)

ASGS : P(V h) = �L�(V h) = A
t

i

@V h

@xi
+

@

@xi

 
K

t

ij

@V h

@xj

!
� S t

V h; (20)

where L� is the adjoint of the operator L.
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It is important to make some remarks concerning the de�nition of the SUPG and the GLS

methods in (18) and (19). We have taken here the straight extension of these techniques for

scalar equations to the vector case. For the SUPG method, the basic idea is to take P as the

convective operator in L, so as to have control on the convective term of the residual, whereas

for the GLS method taking P = L leads to a least-squares control of the whole residual.

However, it will be shown that these methods do not behave properly when variables are

changed. Obviously, this is also true when these methods are applied to the compressible

Euler and Navier-Stokes equations as systems of (nonlinear) convection-di�usion equations.

In the �rst attempts to apply stabilization techniques to this problem, the misbehavior under

changes of variables was overcome by using the transposed coe�cient matrices in P, that is,

by taking

SUPG : P(V h) = A
t

i

@V h

@xi
: (21)

This was done for example for the Euler equations using conservation variables and the SUPG

method in [8], and later in other works such as [9, 10, 11], where the use of (21) was taken for

granted. In [12], the use of (21) instead of (18) was justi�ed by the fact that it gave `superior

behavior in nonlinear problems of interest'. A later justi�cation was to de�ne the method

for the so called entropy variables [13, 14], and then transform to the conservation variables.

This change of variables leads again to (21), or to

P(V ) = L t(V ) := A t

i

@V

@xi
�

@

@xi

 
K

t

ij

@V

@xj

!
+ S t

V

in the case of the GLS method [15].

3 Change of variables

Symbolically, let us write the stabilized methods asZ



V
tL(U) d
 +

Z

0

P(V ) t�L(U) d
 =

Z



V
t
F d
 +

Z

0

P(V ) t�F d
: (22)

Subscript h has been omitted. It is understood in this equation that the di�usive terms are

integrated by parts and the integral of the stabilizing term is evaluated element by element.

We discuss now the conditions under which the stabilized method given by (22) is invariant

under changes of variables. Two cases can be distinguished. The �rst is a `true' change of

variables, that is to say, a change of unknowns and force vectors, and the second a change of

unknowns only, which is equivalent to a change of variables plus a scaling of the equations.

3.1 Change of unknowns and force vectors

Suppose that

Û = TU ; F̂ = TF ; (23)

with T a non-singular matrix of constant coe�cients. If we call

L̂(V ) =
@

@xi

�
TAiT

�1

V
�
�

@

@xi

 
TKijT

�1
@V

@xj

!
+ TST �1

V (24)
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then

L(U ) = L(T �1

Û) = T �1L̂(Û): (25)

The Galerkin contribution to the LHS of (22) can be written asZ



V
tL(U) d
 =

Z



V
t
T
�1L̂(Û ) d
 =

Z



�
T
�t
V

� t

L̂(Û) d
;

from where it follows that the new test function that has to be taken is

V̂ = T �t
V :

The stabilizing term in the LHS of (22) can be written now as

ST :=

Z

0

P(V ) t�L(U) d
 =

Z

0

P(T t
V̂ )

t

�T
�1L̂(Û ) d
: (26)

Let us distinguish between the GLS and the ASGS methods. The conclusions obtained below

for the GLS method are exactly the same as for the SUPG method, in which case P is the

convective part of L instead of the whole operator.

� GLS method: P = L

In this case we have that

ST =

Z



h
T
�1

TL
�
T
�1

TT
t
V̂

�i t
�T

�1L̂(Û) d


=

Z



L̂
�
TT

t
V̂

� t

T
�t
�T

�1L̂(Û ) d
:

From this expression it may be concluded that the GLS method is invariant with respect to

changes of variables only if

TT
t = I ; (27)

i.e., is invariant to orthogonal changes of variables. But condition (27) is not enough, it is

also necessary that � behaves as

�̂ = T�T t; (28)

i.e., � must be a matrix function of the matrix coe�cients of the di�erential equation. If

either (27) or (28) do not hold, `the' GLS method with the U variables will be di�erent to

`the' GLS method with the Û variables.

� ASGS method: P = �L�

From (24) it follows that

L̂�(V ) = �T �t
A

t

i T
t
@V

@xi
�

@

@xi

 
T
�t
K

t

ijT
t
@V

@xj

!
+ T �t

S
t
T

t
V ;
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and therefore the stabilizing term becomes

ST = �

Z



h
T

t
T
�tL�

�
T

t
V̂

�i t
�T

�1L̂(Û) d


= �

Z



L̂�(V̂ )
t

T�T
�1L̂(Û) d
:

From this expression it can be concluded that the ASGS method is invariant to any change

of variables, provided � behaves as

�̂ = T�T �1; (29)

i.e., � is a matrix function of the matrix coe�cients.

The situation identi�ed so far can be represented by the following diagram:

Strong form with U
Û = TU
���������! Strong form with Û????y

????y Discretization

Discrete form with Uh ���������! Discrete form with Ûh

For the GLS method the diagram commutes only if T is orthogonal. For the ASGS

method it commutes for all T . In both cases, the matrix of stabilizing coe�cients � must be

a matrix function of the matrix coe�cients.

3.2 Change of unknowns only

Suppose now that

Û = BU ; F̂ = F ; (30)

with B a non-singular matrix of constant coe�cients. Let

L̂(V ) =
@

@xi

�
AiB

�1

V
�
�

@

@xi

 
KijB

�1
@V

@xj

!
+ SB�1

V : (31)

The Galerkin contribution to the LHS of (22) isZ



V
tL(U) d
 =

Z



V
tL̂(Û) d
;

that is, V̂ = V : Since the test function does not change, the stabilizing term in the LHS of

(22) can be written as

ST =

Z



P(V̂ )
t

� L̂(Û ) d
: (32)

Let us distinguish again between the GLS and the ASGS method:
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� GLS method: P = L

From (32) we have now that

ST =

Z



L(B�1

BV̂ )
t

� L̂(Û ) d
 =

Z



L̂(BV̂ )
t

� L̂(Û ) d
:

From this equation it follows that for general matrices B, di�erent sets of variables yield

di�erent `GLS' methods.

� ASGS method: P = �L�

Now we have that

L̂�(V ) = �B�t
A

t

i

@V

@xi
�

@

@xi

 
B

�t
K

t

ij

@V

@xj

!
+B�t

S
t
V ;

and therefore

ST = �

Z



h
B

tL̂�(V̂ )
i t
� L̂(Û ) d
 = �

Z



L̂�(V̂ )
t

B� L̂(Û ) d
;

whereby � must verify

�̂ = B� : (33)

If (33) does not hold, di�erent variables lead to di�erent methods. Nevertheless, there

is the possibility of de�ning the stabilized method for a particular set of variables U ref and

then to de�ne � as � = Bref� ref , where U = BrefU ref .

Changing only the unknowns and not the force vector may be interesting for example if

AiB
�1 are symmetric. This happens for the compressible Navier-Stokes equations (although

in this case B is not a matrix of constant coe�cients and the problem in nonlinear). The

reference unknowns U ref may be taken as the entropy variables and U as the conservation

variables [14].

If B is symmetric and positive-de�nite and AiB
�1 are symmetric, we may change both

unknowns and force vectors and still have symmetric matrices as coe�cients for the convective

term. To do this, let B = LL t be the Choleski decomposition of B. Then

L
�1

AiBL
�t = L�1

AiL

is symmetric, so we may take T = L�1 in the case of a change of unknowns and force vectors.

A scaling of the di�erential equation is equivalent to a change of unknowns and force

vectors followed by a change of unknowns alone. If T is the scaling matrix, we may �rst

make a change of unknowns as indicated in (23) with the given scaling matrix and then take

B = T �1 in (30) as matrix for a change of unknowns only. Therefore, the conclusions drawn

for the behavior of the GLS and ASGS methods also apply to the scaling of the equations.

4 Applications

In this section we apply the stabilized �nite element method for systems of equations discussed

above to three di�erent problems of interest. In all the cases, only the matrix of stabilization
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parameters � needs to be de�ned. The �rst case corresponds to a general convection-di�usion-

reaction system in which the stabilization matrix can be computed from a straightforward

extension of the expression for the scalar case derived below. This is possible in particular

when all the coe�cient matrices of the di�erential equation diagonalize in the same basis, and

therefore the original vector equation can be transformed into a system of uncoupled scalar

equations through a change of variables. However, the general expression for � obtained

from this extension does not work for all the problems of interest. Two examples of this

fact are analyzed next, namely, the Stokes problem with convection and the bending of

Reissner-Mindlin plates. The design of � for these two problems is carried out by looking

at the stability problems of the Galerkin method and trying to improve them. Thus, no

general methodology aplicable to any convection-di�usion-reaction system of equations will

be presented in what follows.

Before considering the three problems mentioned above, it is interesting to analyze what

happens when the method is applied to scalar 1D equations. Conditions on � (now a scalar)

can be derived by requiring that the matrix of the �nal algebraic system be of non-negative

type in some limit cases. This leads to an expression of the stabilization parameter that will

be used to motivate its counterpart in the problems analyzed next.

4.1 Conditions on � for the scalar 1D case

Let us consider the one-dimensional problem

�k
d2u

dx2
+ a

du

dx
+ su = f; 0 < x < 1;

u(0) = u(1) = 0:

If the domain is discretized using linear elements of equal length h and the standard Galerkin

method is used, the element matrices coming from the di�usive, convective and reactive term

are, respectively,

A
(e)
d =

k

h

�
1 �1

�1 1

�
; A(e)

c =
a

2

�
�1 1

�1 1

�
; A(e)

r =
sh

6

�
2 1

1 2

�
: (34)

As in [7], we may obtain a condition for the stability parameter � by requiring that

the matrix of the �nal algebraic system be of non-negative type, that is, the o�-diagonal

terms non-positive and the addition of all the coe�cients in a row non-negative. This would

ensure that the scheme is positive and satis�es the discrete maximum principle. A su�cient

condition for this to hold is that the element matrices be of non-negative type. From (34) it

follows that this condition is equivalent to

�
k

h
�
a

2
+
sh

6
� 0: (35)

When either the SUPG, the GLS or the ASGS methods are used, the �nal element

matrices have the same form as (34) but with modi�ed di�usion, convection and reaction

coe�cients. The e�ective parameters using these stabilized methods are

�k = k + �a2;

�a = a� (� + 1)�as;

�s = s� ��s2;

11



where � = 0 for the SUPG method, � = �1 for the GLS method and � = 1 for the ASGS

method. The modi�ed condition (35) now becomes

�
k

h
�
a

2
+
sh

6
� �

"
a2

h
�
� + 1

2
as+ �

s2h

6

#
� 0: (36)

This condition is impossible to ful�ll in general, although it provides information about how

the di�erent methods behave.

Let us consider the case s = 0 �rst. Condition (36) reduces now to

� �
h

2a

�
1�

1

Pe

�
; Pe :=

ah

2k
(37)

for all the methods.

In the case a = 0 condition (36) can be veri�ed only using the ASGS method and provided

� veri�es

� �
1

s

�
1�

3

Ab

�
; Ab :=

sh2

2k
: (38)

Since

h

2a

�
1�

1

Pe

�
�

h

2a

Pe

Pe + 1
=

�
4k

h2
+

2a

h

�
�1

;

1

s

�
1�

3

Ab

�
�

1

s

Ab

Ab + 2
=

�
4k

h2
+ s

�
�1

;

we can take

� =

�
4k

h2
+

2a

h
+ s

�
�1

; (39)

since this expression veri�es the two limiting conditions (37) and (38). Also, it is readily

checked that Z

e

�
Ni + �

�
a
dNi

dx
� sNi

��
dx � 0;

which is needed to keep the sign of f in the components of the discrete force vector.

4.2 Extension to systems

We have found from numerical experiments that the previous expression for � in (39) yields

very good results when extended to scalar equations in multi-dimensional problems, taking

in this case a as the Euclidean norm of the velocity a and h a characteristic length of the

element under consideration [7].

Suppose now that the system of equations (1) is diagonalizable, that is, there exists a

matrix T such that all the coe�cient matrices in (24) are diagonal. Let

K
0
= (KijKij)

1=2 ; A
0
= (AiAi)

1=2 ; S
0
= (SS)1=2 : (40)
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Then, the matrix

� =

�
c1
h2
K

0
+
c2
h
A

0
+ c3S0

�
�1

(41)

is a matrix function of the coe�cient matrices that provides the optimal stabilization param-

eters for each scalar equation when the system is diagonalized. For linear elements we have

found that the constants c1 and c2 in (41) may be taken as c1 = 4 and c2 = 2, as for the

one-dimensional case. The constant c3 is taken as 1 in all the cases. For scalar equations it is

easy to see that this is mandatory if the instabilities due to dominant reaction terms are to

be corrected. A particular example of this fact for systems is the bending of Reissner-Mindlin

plates discussed below.

The general expression (41) can not be applied to an arbitrary system of convection-

di�usion-reaction equations. It is obviously e�ective in the case of diagonalizable systems,

and in a numerical example we shall see that it is also useful for systems obtained from the

scaling of a diagonal one. However, it does not work for the two very important examples

considered in what follows.

4.3 Stokes problem with convection

The �rst example of the failure of (41) is the generalized Stokes problem

���u+ a � ru+rp = f ; (42)

r � u = 0; (43)

where u is the velocity �eld, p the pressure, f the vector of body forces, � the kinematic

viscosity and a a given advection velocity, that we assume divergence free to simplify the

exposition.

For the sake of simplicity, let us consider the 2D case. Equations (42)-(43) can be written

as a system of the type (1), the only di�erence being that the form associated to the di�usion

matrices is only positive semi-de�nite because there is no di�usion for the pressure, and

therefore no boundary conditions can be applied to it. Let u = 0 be the boundary condition

for the velocity. The coe�cient matrices are now given by

K11 =K22 =

2
4 � 0 0

0 � 0

0 0 0

3
5 ; A1 =

2
4 a1 0 1

0 a1 0

1 0 0

3
5 ; A2 =

2
4 a2 0 0

0 a2 1

0 1 0

3
5 ; (44)

and K12 =K21 = S = 0.

Numerical experiments indicate that expression (41) to compute the matrix of stabiliza-

tion parameters does not work properly for this problem. Clearly, this formula for � does

not satisfy condition (33) and therefore the de�nition of a stabilization method based on it

depends on the reference variables chosen and the scaling of the system. If we take p̂ = p=�

and multiply equation (43) by �, the unit coe�cients in the Ai matrices in (44) become �,

and the velocity does not change. In other words, if the unit coe�cients in the Ai matrices

are multiplied by �, the velocity solution is exactly the same. This suggests neglecting these

coe�cients at the moment of computing � .
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Let us examine which is the lack of stability of the Galerkin method applied to problem

(42)-(43). Let Uh = [u1;h; u2;h; ph]
t and V h = [v1;h; v2;h; qh]

t. The bilinear form associated

to the problem given by (4) is now

a(Uh;V h) = �

Z



ruh : rvh d
 +

Z



(a � ruh) � vh d
�

Z



phr � vh d
 +

Z



qhr � uh d
:

Taking vh = uh and ph = qh and denoting by k � k the L2 norm we get

a(Uh;Uh) = �kruhk
2; (45)

which determines the stability provided by the Galerkin method. It is observed that the

pressure and the convective term are out of control. The stability for the pressure has to

be explicitly required by imposing that the �nite element spaces to interpolate the velocity

and the pressure satisfy the classical inf-sup or Babu�ska-Brezzi stability condition. To have

control on the convective term a sort of streamline di�usion has to be introduced in one way

or another.

In this case, the adjoint of the operator L associated to (42)-(43) is

L�(V h) =

�
���vh � a � rvh �rqh

�r � vh

�
; (46)

and if we take � as

� = diag(�1; �1; �2) (47)

the terms to be added to (45) when the ASGS is used are

�

Z

0

L�(Uh)
t
�L(Uh) d
 =

Z

0

�
�1ja � ruh +rphj

2 � �1�
2j�uhj

2 + �2jr � uhj
2
�
d
: (48)

The previous analysis of the 1D model problem and the comments on the extension to multi-

dimensional scalar equations suggest to take

�1 =

�
c1�

h2
+
c2jaj

h

�
�1

; (49)

where c1 and c2 are constants. For the same pressure scaling argument as before, we have

not considered the pressure in the design of �1. Concerning �2, it helps to improve the control

on the divergence of the velocity and is found to be e�ective in practice [16, 17], but for our

purposes we can take �2 = 0.

The negative sign in the velocity Laplacian term in (48) can be compensated by the

control on the velocity gradient given by (45) and using the standard inverse estimate (see

e.g. [18]):

k�uhk
e � Cinv

1

h
kruhk
e : (50)

From this and the expression for �1 given in (49) we have that

��1�
2k�uhk

2


e � �
�

c1
C2

invkruhk
2


e :

We may take c1 = 2C2
inv

in the de�nition of �1 (in fact, any value c1 � C2
inv

su�ces when

jaj 6= 0). Obviously, Cinv has to be estimated in a general situation. As in the previous cases,

we have found that c1 = 4 and c2 = 2 are e�ective choices for linear elements.
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4.4 Reissner-Mindlin plates

The general stabilization method described in the previous sections is applied here to the

problem of bending of Reissner-Mindlin plates. In this case, the lack of stability of the

standard Galerkin method is demonstrated by the locking e�ect when the thickness of the

plate becomes small.

Stability of Reissner-Mindlin plate elements is only known in few cases and after an

important analitical e�ort (see [19, 20, 21] for the analysis of some linear elements). It is

shown here that the ASGS method yields a stabilized �nite element method for which a

simple stability estimate can be obtained. Moreover, this stability analysis dictates how the

stability parameter must behave.

Let w be the transverse de
ection of the plate and � = [�1; �2]
t the rotation vector.

Suppose that the plate is clamped. Then, the problem to be solved is

� [k1�� + k2r(r � �)] +
1

"
(� �rw) = 0 in 
; (51)

1

"
r � (� �rw) = q in 
; (52)

and � = 0; w = 0 on @
. In Eqs. (51)-(52) q is a properly scaled load and

k1 =
E

24(1 + �)
; k2 =

E

24(1 � �)
; " =

2(1 + �)

E�
t2; (53)

and E is the Young modulus, � the Poisson ratio, � the shear correction factor and t the

plate thickness. We shall write the shear strain as


 := rw � �: (54)

When " ! 0 (that is, when t ! 0), the solution w of problem (51)-(52) should converge

to the solution of the Lagrange equation of the Kirchho� plate theory

(k1 + k2)��w = q:

However, this does not occur when the Galerkin method is used and instead it is found that

w tends to zero (or to a wrongly small function) due to the spurious dominance of the shear

terms in (51)-(52).

This problem can be recast in the previous framework of systems of convection-di�usion-

reaction equations, now with

K11 =

2
4 k1 + k2 0 0

0 k1 0

0 0 1

"

3
5 ; K22 =

2
4 k1 0 0

0 k1 + k2 0

0 0 1

"

3
5 ; K12 =K21 =

2
4 0 k2

2
0

k2
2

0 0

0 0 0

3
5 ;

A1 =

2
4 0 0 �1

"

0 0 0
1

"
0 0

3
5 ; A2 =

2
4 0 0 0

0 0 �1

"

0 1

"
0

3
5 ; S =

2
4

1

"
0 0

0 1

" 0

0 0 0

3
5 :

Let Uh = [�1;h; �2;h; wh]
t and V h = [ 1;h;  2;h; vh]

t be the trial solution and the test

function, respectively, for the �nite element approximation of problem (51)-(52) using equal

interpolation for rotations and de
ection. We assume that this interpolation is made using
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continuous piecewise polynomials for both �elds. The bilinear form associated to the �nite

element problem can be written as

a(Uh;V h) :=

Z



[k1r�h : r h + k2(r � �h)(r � h)] d


+
1

"

Z



(�h �rwh) � ( h �rvh) d
: (55)

Taking V h = Uh a simple stability estimate in the L2 norm is found for the gradients and

the divergence of the rotation. However, the coe�cients that multiply their norms are k1 and

k2, which are negligible compared to the L2 norm of the shear strain multiplied by 1=" when

"! 0. Thus, rotations are out of control and the shear term dominates the solution.

Let us formulate now the stabilized method. First, observe that if the coe�cient matrices

A1 and A2 are multiplied by a given parameter � and the coe�cients (K11)33 and (K22)33 by

�2, then the solution in rotations does not change (the new transverse de
ection is ŵ = w=�).

Thus, these terms do not need to be included in the design of the matrix of stabilization

parameters � . Also, based on the analysis of the 1D problem in the case in which di�usion

and reaction exists, we take

� = diag(�; �; 0); � =

�
c1k

h2
+ c3

1

"

�
�1

; (56)

where k := k1 + k2.

Since in this case the operator associated to problem (51)-(52) is self-adjoint, the stabi-

lization term is given by

�

Z

0

L�(V h)
t
�L(Uh) d
 =

Z

0

�

�
k1� h + k2r(r � h)�

1

"
( h �rvh)

�

�

�
�k1��h � k2r(r � �h) +

1

"
(�h �rwh)

�
d
: (57)

Let us obtain now a stability estimate for the solution of the stabilized problem. Taking

V h = Uh in (55) and (57), adding these two equations up and using Schwarz inequality we

get

a(Uh;Uh) �

Z

0

L�(Uh)
t
�L(Uh) d


�

n
elX

e=1

�
k1kr�hk

2


e + k2kr � �hk
2


e +
1

"
k
hk

2


e

� �k21k��hk
2


e � �k22kr(r � �h)k
2


e � �
1

"2
k
hk

2


e � 2�
k1

"
k��hk
ek
hk
e

� 2�
k2

"
kr(r � �h)k
ek
hk
e � 2�k1k2k��hk
ekr(r � �h)k
e

�
: (58)

Using now the inverse estimate (50) and the fact that for any x and y and for any � > 0

�2xy � ��x2 �
1

�
y2;
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it follows that

a(Uh;Uh) �

Z

0

L�(Uh)
t
�L(Uh) d


�

n
elX

e=1

�
k1kr�hk

2


e + k2kr � �hk
2


e +
1

"
k
hk

2


e

� �k21
C2
inv

h2
kr�hk

2


e � �k22
C2
inv

h2
kr � �hk

2


e � �
1

"2
k
hk

2


e

� �
k1
"

 
�kr�hk

2


e +
1

�

C2
inv

h2
k
hk

2


e

!
� �

k2
"

 
�kr � �hk

2


e +
1

�

C2
inv

h2
k
hk

2


e

!

� �

 
k21
C2
inv

h2
kr�hk

2


e + k22
C2
inv

h2
kr � �hk

2


e

!#

=

n
elX

e=1

h
�1kr�hk

2


e + �2kr � �hk
2


e + �3k
hk
2


e

i
; (59)

where

�1 = �

"
c1
k1k2
h2

+ c1
k2
1

h2
+ c3

k1
"
� 2

C2
inv

h2
k21 � �

k1
"

#
;

�2 = �

"
c1
k1k2

h2
+ c1

k22
h2

+ c3
k2

"
� 2

C2
inv

h2
k22 � �

k2

"

#
;

�3 = �

"
c1
k

h2
1

"
+ c3

1

"2
�

1

"2
�

1

�

C2
inv

h2
k

"

#
:

From the expression of �3 it turns out that the only way to kill the dominance of the shear

in the stability estimate (59) is to take c3 = 1, that is, c3 must be 1. Numerical experiments

con�rm this fact: if c3 > 1 locking still occurs, whereas if c3 < 1 locking may also occur but

since in this case c3 � 1 < 0 the solution may even have the wrong sign!

Taking for example � = 1=2 and c1 > 2C2
inv

it follows that there exists a positive constant

C, independent of the physical properties and the thickness of the plate, for which

�i � Cki; i = 1; 2; and �3 � C�
k

h2"
:

Using this in (59) we �nally get the stability estimate

a(Uh;Uh) �

Z

0

L�(Uh)
t
�L(Uh) d


� C

n
elX

e=1

�
k1kr�hk

2


e + k2kr � �hk
2


e + �
k

h2
1

"
k
hk

2


e

�
; (60)

for a certain constant C.

The important point is the behavior of the coe�cient that multiplies the norm of the

shear strain. When � = 0 (Galerkin method) it is 1=", and thus it tends to in�nity as "! 0,

whereas now it tends to k=h2.
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It has been shown that the constant c3 in (56) must be 1. It remains to de�ne c1, which

must satisfy the theoretical condition c1 > 2C2
inv
. As for the previous problems, we could take

c1 = 4 for linear elements. However, the numerical solution is sensitive to this parameter and

therefore further analysis is needed in order to determine the optimal value of this constant.

An example to quantify this is presented in the following section.

It is interesting to consider the particular case of linear elements or rectangular bilinear

elements. The second derivatives within each element are zero and only the shear component

in the stabilizing term in (57) remains. Adding this with the original bilinear form in (55) it

is found that

a(Uh;V h)�

Z

0

L�(V h)
t
�L(Uh) d
 =

Z



[k1r�h : r h + k2(r � �h)(r � h)] d


+

Z

0

�
1

"
� �

1

"2

�
(�h �rwh) � ( h �rvh) d
:

From the expression (56) of � it turns out that

1

"
� �

1

"2
=

 
"+

h2

c1k

!
�1

; (61)

and therefore the stabilized method to which we have arrived consists simply in replacing

the factor 1=" of the shear term by (61), that is, we have recovered the common strategy of

using a modi�ed shear correction factor or residual bending 
exibility (see for example [22]

and references therein). It is important to remark that now we have a variational formulation

that justi�es this technique and from which its consistency and stability can be established.

5 Numerical examples

In this section we present two numerical examples, one corresponding to the scaling of a

diagonal system and the other to a Reissner-Mindlin plate. The behavior of the stabilized

formulation presented for the Stokes problem with convection is already well known (except

for the design of the stability parameter given in (49), see for example [16]).

5.1 Scaling of a diagonal system

Consider the scalar equation

�k�u+ a � ru+ su = f in 
 = [0; 1]2;

with a = A(0:4; 0:7); f = 1 and the boundary condition u = 0 on @
. Let " = 10�5 and

consider also the following situations:

a) k = 1, A = ", s = ". Solution dominated by di�usion.

b) k = ", A = 1, s = ". Solution dominated by convection.

c) k = ", A = ", s = 1. Solution dominated by reaction.

d) k = ", A = 1, s = 1. Solution dominated by a combination of convection and reaction.
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Figure 1: Results for system 1. ASGS method, � scalar.

The idea of the following 2D test with 2 unknowns is to combine these uncoupled basic

solutions by adding up their equations, except for the di�usion term, which is always taken

as K11 =K22 = diag(k1; k2), K12 =K21 = 0. The following two systems are considered:

1) First equation obtained from the addition of the equations of cases a) and b), second

equation that of case b).

2) First equation obtained from the addition of the equations of cases c) and d), second

equation that of case d).

For system 1), the numerical solution should be that of cases a) and b) for the �rst and

second components, respectively, whereas for system 2) it should be that of cases c) and d).

The system of equations to be solved is the original diagonal system composed of two

scalar equations scaled by the matrix

T =

�
1 1

0 1

�
:

This scaling may be split into a change of unknowns and force vectors as indicated in (23)

followed by a change of unknowns only as in (30) with B = T
�1. Since matrix � given by

19



0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0.02

0.03

0.04

0.05

0.06

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

Figure 2: Results for system 1. ASGS method, � matrix.

(41) does not satisfy condition (33), the ASGS model is variable dependent. Therefore, this

example serves to test the performance of formula (41) to compute � for a general coupled

system.

Numerical results for this example using a uniform mesh of 20� 20 bilinear elements are

shown in �g. 1 to �g. 6 (�rst and second components of the vector of unknowns). Results

of �g. 1 have been obtained by computing � as � = �I, where the scalar � is the minimum

of the values obtained for each scalar equation considering only the diagonal terms. This

stabilization parameter is not enough for the second unknown and oscillations occur. The

solution obtained using � given by (41) is almost the same as that of the original uncoupled

system (�g. 2), with only small overshoots near the boundary layers. Observe that for this

example without reaction terms and using linear elements the ASGS and the GLS methods

coincide.

Results of �g. 3 correspond to system 2 using the GLS method and � = �I, with �

computed as indicated before. For the �rst component of the unknown, the oscillations of the

standard Galerkin method, that in this case only appear in the neighborhood of the boundary

layers, are magni�ed. However, the second component has been stabilized. Suprisingly, the

solution obtained using the matrix form of � given by (41) is completely oscillatory (�g.
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Figure 3: Results for system 2. GLS method, � scalar.

4). The results obtained using the ASGS method show an improvement with respect to

the GLS method when � = �I (�g. 5). In this case, the best solution is obtained with �

computed from (41), in which case only small oscillations for the �rst unknown are found in

the boundary layer where also the second component has overshoots. This is the best one can

hope for if the method is not able to recognize that the equations can be in fact uncoupled,

that is, if condition (33) is not ful�lled.

In conclusion, results obtained using (41) for this example are very good when using the

ASGS method, but not for the GLS method.

5.2 A Reissner-Mindlin plate example

In this example we have solved problem (51)-(52) with E = 1; � = 0:2; � = 5=6; q = 10 and

di�erent values of the plate thickness t. The expression for � employed is (56), with c3 = 1.

The computational domain is again the unit square, discretized now with 200 linear triangles

as shown in �g. 7.

The central de
ection in terms of the plate thickness computed using the standard

Galerkin method and the ASGS method with c1 = 4 is shown in �g. 8. It is observed

there how the locking e�ect occurs using the former, whereas the solution obtained using
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Figure 4: Results for system 2. GLS method, � matrix.

the latter converges to a non-zero value. The de
ection and the second component of the

rotation corresponding to this limit case are shown in �g. 9 (the diagonals of the triangles

are not plotted in these �gures). As it was mentioned before, this solution is sensitive to the

parameter c1 in (56). The value of the central de
ection in terms of c1 for t = 10�4 in plotted

in �g. 10. In this particular problem, the exact result obtained using the Kirchho� theory

is 1.46, which is obtained for a value of c1 close to 2.55. For c1 = 4 the central de
ection

is 1.22. This 16% error is clearly too high for this very simple problem and shows the need

for deriving appropriate methods to determine the algorithmic constants of the formulation

or, as it has been shown, the residual bending 
exibility. Nevertheless, the method has good

stability for all values of h, a feature that the standard Galerkin method lacks.

6 Conclusions

In this paper several aspects related to the application of a stabilized �nite formulation

for systems of convection-di�usion-reaction equations have been discussed. First, a general

version of the subgrid scales approach has been presented, and particularized next to what

has been called algebraic approximation of the subscales. This leads to the ASGS method,
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Figure 5: Results for system 2. ASGS method, � scalar.

which is the stabilized formulation that has been used throughout the paper.

After presenting the relationship between the ASGS and the SUPG and GLS methods, we

have discussed the behavior of these methods under changes of variables. This simple exercise

has shown that only the ASGS method is invariant under changes of variables, provided that

the stabilization matrix � is a matrix function of the coe�cients of the di�erential equation.

The SUPG and the GLS methods are only invariant to orthogonal changes of variables. Also,

under changes of variables of the form U = BrefU ref , keeping constant the force vectors, only

the ASGS method allows to design a variable-based method by taking � = Bref� ref .

The most important part of this work is related to the applications of the stabilized

formulation to three di�erent problems of interest. Only the matrix of stabilizing parameters

needs to be de�ned for each case. The �rst conclusion that can be drawn from the analysis

of the three problems considered is that no general expression for � is to be expected. Each

problem has its own stability de�ciencies that have to be corrected by a proper design of

this matrix. The strategy followed here is to identify the terms of the di�erential equations

leading to instability by looking at the coe�cients that can be scaled without a�ecting the

numerical results.

Once the terms causing instability have been identi�ed, the design of the stability matrix
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Figure 6: Results for system 2. ASGS method, � matrix.

Figure 7: Mesh for the Reissner-Mindlin plate example.

is based on a simple analysis of what happens for a 1D model problem involving di�usion,

convection and reaction. For this case, an expression for the stabilization parameter has

been proposed based on the requirement that the matrix of the �nal algebraic system be of

non-negative type in some limit cases, namely, zero reaction and zero convection.
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Figure 8: Results for the Reissner-Mindlin plate. Central de
ection vs thickness.
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component of the rotation.

The �rst problem analyzed is a general system of diagonalizable convection-di�usion-

reaction equations. For this problem we have proposed an expression for � that is the

straight extension of what has been found for the 1D case. Since the expression proposed is
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Figure 10: Results for the Reissner-Mindlin plate. Central de
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a matrix function of the matrix coe�cients, it provides the stabilization e�ect of the scalar

case for each component of the vector of unknowns. A numerical test introduced here, based

on coupling di�erent scalar equations by using linear combinations of them, has shown that

the general formula proposed for � is e�ective not only for diagonalizable systems, but also

when these are scaled.

The next problem analyzed is the Stokes problem with convection, that is, what can be

considered as the linear version of the incompressible Navier-Stokes equations. The ASGS

method applied to this problem leads to a method similar to the GLS formulation, the only

relevant di�erence being the sign of the viscous term. Also, we have used for this problem an

expression for the stabilization parameter motivated by the 1D model problem. It is much

simpler than what is commonly used and very e�ective, both for the numerical analysis and

because of the numerical results that it provides (although none of these two aspects has

been pursued in this paper).

The �nal application considered, and perhaps the most innovative of this work, is the

bending of Reissner-Mindlin plates using equal interpolation for rotations and normal de-


ection. For this problem, the ASGS method leads to a non-standard stabilized formulation

that is free of locking. We have given here a stability estimate using an expression of the

stabilization parameter that, once again, is based on the analysis of the 1D model problem.

This estimate is the basic ingredient in the numerical analysis of the method proposed. For

linear elements, the stabilized method reduces to the use of a certain shear correction factor

or residual bending 
exibility, whose use is now justi�ed from a variational standpoint. A

numerical example has been presented demonstrating the e�ectiveness of this method.

Besides the individual conclusions drawn for each problem treated, we want to emphasize

that all the methods proposed have been based on the ASGS as a general methodology to de-

rive stabilized formulations when the standard Galerkin method lacks stability. Nevertheless,

further improvements may be achieved by better approximating the subscales as solutions of

problem (12)-(13), that is to say, by using other subgrid scale models.
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