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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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effort by the World Bank to provide open access to its research and make a contribution to development policy discussions 
around the world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org. The authors 
may be contacted at akraay@worldbank.org and rvanderweide@worldbank.org.   

This paper proposes a methodology to approximate indi-
vidual income distribution dynamics using only time series 
data on aggregate moments of the income distribution. 
Under the assumption that individual incomes follow a 
lognormal autoregressive process, this paper shows that 
the evolution over time of the mean and standard devi-
ation of log income across individuals provides sufficient 
information to place upper and lower bounds on the 
degree of mobility in the income distribution. The paper 
demonstrates that these bounds are reasonably informative, 
using the U.S. Panel Study of Income Dynamics where the 
panel structure of the data allows us to compare measures 

of mobility directly estimated from the micro data with 
approximations based only on aggregate data. Bounds on 
mobility are estimated for a large cross-section of coun-
tries, using data on aggregate moments of the income 
distribution available in the World Wealth and Income 
Database and the World Bank’s PovcalNet database. The 
estimated bounds on mobility imply that conventional 
anonymous growth rates of the bottom 40 percent (top 
10 percent) that do not account for mobility substantially 
understate (overstate) the expected growth performance of 
those initially in the bottom 40 percent (top 10 percent).
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1.  Introduction 

 Understanding the extent of mobility – defined here as changes in individuals’ relative incomes – 

is crucial to interpreting movements over time in average incomes in different parts of the income 

distribution.  For example, the policy implications, and even the political acceptability, of a given change 

in average income in the top 1 percent of the income distribution depends crucially on whether the 

identity of those in the top income group is stable over time, or instead whether some of the initially rich 

fall out of the top group and are replaced with those who were initially poorer.  This distinction also 

matters at the lower end of the income distribution. Consider for example the World Bank’s declared goal 

of promoting “shared prosperity”, defined as growth in the bottom 40 percent of a country’s income 

distribution.1 This emphasis on the bottom 40 percent sits well with the World Bank’s focus on the 

conditions of the poorest in a country.  However, to the extent that the role of such a goal is to evaluate 

the efficacy of interventions targeted towards the initially-poor members of the bottom 40 percent, it is 

necessary to know whether membership in this group is stable over time, or whether the initially-poor 

beneficiaries of these interventions become richer and move out of the bottom 40 percent and are 

replaced by those who started out richer and became relatively poorer. 

 The ability to document and analyze income distribution dynamics at the individual or household 

level is severely constrained by the scarcity of panel data sets that track individual or household incomes 

over time.2 In advanced economies such as the United States, long and high-quality panel data on 

household incomes is available in the Panel Study on Income Dynamics (PSID).  However, such high-quality 

long panel data sets in developing countries are rare.  Instead, it is much more common for survey data 

to be available in the form of repeated cross-sections, with different samples of individuals appearing in 

each round of the survey. In cases where researchers have access to record-level survey data, it is possible 

to deploy a variety of pseudo-panel estimation techniques to obtain approximations to income 

distribution dynamics at the individual level.3  In many cases, however, access to record-level data from 

                                                            
1 See for example Basu (2013). 
2 The different datasets we work with in this paper have different units of observation at the micro level, including 
individuals, households, and tax units.  They also differ in whether they measure consumption or income.  For 
terminological convenience we will refer to income distribution dynamics at the individual level wherever it is 
possible to do so without confusion.  
3 See for example Dang, Lanjouw, Luoto and McKenzie (2014) for a recent application of such techniques to 
transitions into and out of poverty. Another approach is to move away from measures of income mobility and instead 
focus on measures of occupational and/or educational mobility, based on comparison of occupations and/or 
education levels of parents and children, using individual surveys in which information on the occupations and/or 
education of multiple generations in the same family can be obtained at a single point in time.  See for example Long 
and Ferrie (2013) for a comparison of the US and Great Britain, and Sinha (2017) for evidence from India. 
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the survey is restricted, making it difficult to deploy pseudo-panel techniques that rely on micro data from 

repeated cross sections.  In yet other cases, particular for older datasets such as historical income tax 

records, the micro data may simply no longer exist, and therefore cannot be analyzed to measure mobility 

directly.  In these cases, researchers may only have access to summary statistics on the distribution of 

income such as the mean and the Gini coefficient, or alternatively grouped data on the proportion of 

individuals in different income brackets, but not the record-level data from the entire micro dataset itself. 

 This paper proposes and implements a method for approximating individual-level income 

distribution dynamics in these situations where only aggregate summary statistics on the distribution of 

income are available.  Specifically, we consider a situation in which the researcher only has access to time 

series data on the mean of the income distribution, as well as some measure of dispersion of income 

across individuals, such as the Gini coefficient or the income share of a particular subgroup.  We assume 

that the underlying surveys are sufficiently comparable that the observed aggregate moments 

characterize the same population across the successive surveys.   

 Our key identifying assumption is that individual incomes follow an autoregressive lognormal 

process with individual fixed effects. Under this data generating process, the joint distribution of individual 

incomes in any two periods is fully characterized by the mean and standard deviation of log incomes in 

the two periods (which can be inferred from the observed aggregate moments of the income distribution), 

and a mobility parameter characterizing the covariance of individual incomes between the two periods 

(that we cannot observe directly in the aggregate data).  This mobility parameter depends on two 

underlying parameters of the data generating process:  the autoregressive coefficient on log income, and 

the cross-sectional variance of the individual effects.  We show that the limited information embodied in 

the evolution over time of the observed aggregate moments is sufficient to allow us to estimate the 

autoregressive coefficient on log income as well as to place bounds on the variance of the individual 

effects.   This in turn permits us to place bounds on the extent of mobility in the income distribution, even 

though we do not observe income dynamics at the individual level. 

 In order to assess the usefulness of these bounds, we use record-level data from the PSID that 

permits us to directly measure mobility using micro-level panel data. We then discard all of the 

information in the record-level data, and use only the two time-series on the mean and standard deviation 

of log income to retrieve bounds on mobility based on aggregate data.  We show that these bounds 

contain the point estimates obtained using the record-level data, and moreover are reasonably tight.  

Encouraged by these findings, we apply our methodology to two large cross-country datasets.  The first 
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of these is the World Wealth and Income Database (WID), constructed by Thomas Piketty and his 

collaborators4, which reports summary statistics on average income and top income shares compiled from 

tabulated data on tax records.  From this database, we retrieve time-series data on mean income and the 

bottom 90% income share for 19 countries with reasonably complete annual time series data during the 

post-World War II period.  For the median country in this sample, we have 60 years of annual data on 

aggregate moments on which to base our estimates of mobility.  The second data source is the 

compendium of household survey data for a large set of mostly developing countries in the World Bank’s 

PovcalNet database.  This dataset provides summary statistics on the distribution of income (or 

consumption, depending on the survey) for over 1400 household surveys in a large cross-section of 

developing countries, in some cases extending back to the 1980s.  We retrieve data on mean income (or 

consumption) and the Gini coefficient for these surveys, and restrict attention to the set of 28 countries 

for which we have at least 10 surveys.  The median country in this sample has 16 household surveys 

spanning a period of 17 years.  

 We apply our methodology to find bounds on mobility for the countries in these two datasets. 

Our estimates confirm that among the high income countries in the WID database, the US ranks as the 

country with the lowest income persistence, while countries with high income persistence include all of 

the Scandinavian countries. Interestingly, when we correlate our estimates with GDP per capita, we find 

that lower income persistence is associated with higher income. This observation applies both to the WID 

and the PovcalNet estimates.  As we discuss in more detail below, this observation is not an obvious 

consequence of our assumptions, and suggests that countries with greater persistence must have other 

characteristics conducive to more rapid growth.  

 We use these estimated bounds on mobility to generate bounds on the difference between 

“anonymous” growth rates of group average incomes (that do not require membership in the group to be 

stable over time) with corresponding “non-anonymous” growth rates (that track the performance of the 

same initial group of individuals over time).  When we compare estimates of anonymous income growth 

rates among the bottom 40% (the World Bank’s measure of Shared Prosperity) to their non-anonymous 

counterparts, the difference is substantial:  on average, non-anonymous growth rates exceed anonymous 

ones by four percentage points in the WID and three percentage points in PovcalNet in annual terms. This 

means that by tracking shared prosperity anonymously, policy makers could inadvertently overlook the 

                                                            
4 The full team behind the WID database includes Facundo Alvaredo, Lucas Chancel, Thomas Piketty, Emmanuel 
Saez, and Gabriel Zucman. 
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successes with which originally poor households have been able to increase their incomes. This ordering 

is reversed when we examine growth of average incomes at the top of the income distribution – 

anonymous top incomes grow faster than non-anonymous top incomes do.  Also here the magnitude of 

the differences we observe is considerable, at over 10 percentage points in the WID and 8 percentage 

points in PovcalNet. This suggest that anonymous top income growth rates, while a good indicator of 

changes in inequality in society, are not well-suited for estimating the expected income success of those 

who occupy the top of the income distribution at any given point in time. 

 Our paper provides an alternative approach to the large literature on estimating income 

distribution dynamics using pseudo-panel data techniques that track the evolution of cohorts over time.5 

This literature circumvents the need for true panel data that tracks individuals over time, but it does 

assume that the researcher has access to microdata from repeated series of cross-sectional household 

surveys.  In contrast, our approach does not require access to any record level data, but instead shows 

how the parameters governing individual income distribution dynamics can be retrieved from time series 

data on aggregate moments only.6  The obvious advantage of this is that by reducing the data 

requirements to a minimum, it significantly expands the number of countries where this approach can be 

applied. It also makes it possible to obtain estimates for historic periods for which aggregate moments 

have been preserved, but record level data will be hard if not impossible to come by.  The price we pay 

for working with time series rather than pseudo-panel data is that we have to work with a much smaller 

number of observations. We make the most of the data that we have by relying on finite sample 

estimation methods (Andrews, 1993), and optimizing the trade-off between bias and precision.  Finally, 

while we are by no means the first to notice that anonymous and non-anonymous growth rates can in 

principle diverge widely in the presence of mobility, we are – to our knowledge – the first to be able to 

provide estimates of the gap between the two for a large cross-section of countries.7 

 The rest of this paper proceeds as follows.  In Section 2 we state our main assumptions regarding 

the lognormal data generating process for individual incomes, and show how mobility is fully 

                                                            
5 See for example Deaton (1985), Moffitt (1993), Collado (1997), Verbeek and Vella (2005), Antman and McKenzie 
(2007), Inoue (2008), and Dang, Lanjouw, Luoto and McKenzie (2014). 
6 In this respect, our work is similar in spirit to Caselli and Ventura (2000), study a series of growth models with 
heterogenous agents and show that under fairly general heterogeneity, (1) the aggregate economy behaves as if 
aggregate variables represent the decisions of a representative agent; and (2) the evolution of the aggregate 
variables characterizing the decisions of the representative are informative about the individual-level dynamics of 
income, consumption, and wealth. 
7 See Jenkins and Van Kerm (2006), Grimm (2007), Van Kerm (2009), and Bourguignon (2011) for discussions of the 
difference between anonymous growth incidence curves and their non-anonymous counterparts. 
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characterized by the observed aggregate moments of the income distribution, together with a single key 

unobserved mobility parameter.  In Section 3, we show how to obtain bounds on this mobility parameter 

using only information embedded in the evolution over time of the aggregate moments of the income 

distribution.  Section 4 validates our methodology in the PSID data, and Section 5 provides estimates of 

mobility for a large cross-section of countries based only on the aggregate summary statistics on the 

distribution of income available in the WID and PovcalNet databases.  In Section 6 we apply the 

lognormality assumption and the estimates of mobility from the previous sections to document the 

differences between anonymous and non-anonymous growth rates of group average incomes.  Section 7 

concludes.  

 

2.  Lognormal Income Distribution Dynamics 

 

 Throughout the paper, we rely on the following assumption regarding the process generating 

individual incomes: 

Assumption A1:  The logarithm of income of individual ݅ at time ݕ ,ݐ௜௧, is generated by the following 

autoregressive process: 

௜௧ݕ (1) = ௜௧ିଵݕߩ + ௧ߜ + ௜ߣ +  ,௜௧ߝ
 

where ߩ  is an autoregressive parameter satisfying  0 ≤ ߩ <  ௜ߣ ௧ is a common factor; the innovationsߜ ;1
and ߝ௜௧ are independent and normally distributed with zero mean and variances ߪఒଶ and ߪఌ௧ଶ ; and initial 

income is  ݕ௜଴ = ఒ೔ଵିఘ + ଴ߜ +  .௜଴ߝ

 Although very simple, this data generating process gives rise to non-trivial income distribution 

dynamics through the interplay of two forces.  On the one hand, realizations of the idiosyncratic shock ߝ௜௧ 
generate changes in individuals’ relative incomes over time.  On the other hand, there are two sources of 

persistence over time in relative incomes: the autoregressive term ݕߩ௜௧ିଵ, and the individual effect ߣ௜.  
Overall income distribution dynamics will reflect the balance of these sources of changes and persistence 

in relative incomes.  Note also that we allow the common factor, ߜ௧, and the variance of the idiosyncratic 

errors, ߪఌ௧ଶ , to vary over time, but we require the autoregressive parameter ߩ and the variance of the 

individual effect ߪఒଶ to be stable over time. 
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 Since the innovations in log income, as well as initial log income, are assumed to be normally 

distributed, log incomes are normally distributed in every period, as summarized in the following 

proposition: 

Proposition 1:  Assumption A1 implies that log individual incomes ݕ௜௧  and ݕ௜௧ିଵ are jointly normally 

distributed: 

(2) ቀ ܰ~௜௧ିଵቁݕ௜௧ݕ ൭ቀ ௧ିଵቁߤ௧ߤ , ቆ ௧ଶߪ ௧ିଵଶߪ௧ିଵߚ௧ିଵଶߪ௧ିଵߚ ௧ିଵଶߪ ቇ൱, 
 

where ߤ௧ and ߪ௧ଶ denote the cross-sectional mean and variance of log income at time ݐ, and  0 ≤ ௧ିଵߚ ߩ≡ + ఙഊమఙ೟షభమ ଵଵିఘ ≤ 1.     

Proof:  See Appendix A 

 Proposition 1 states that log incomes in any two consecutive periods are normally distributed.8  

The proof in the appendix generalizes this to the case of any two non-consecutive periods, which will be 

useful when applying our methodology to irregularly-spaced survey data.  In addition to establishing 

lognormality of income at all points in time, Proposition 1 introduces a key composite parameter ߚ௧ିଵ 

which summarizes the comovement of individual incomes over time.  This composite parameter can be 

interpreted as the OLS estimator of the slope of a regression of individual income on lagged individual 

income, i.e. ߚ௧ିଵ = ஼ை௏(௬೔೟,௬೔೟షభ)ఙ೟షభమ .    This regression coefficient captures two distinct sources of persistence 

in individual incomes.  First, higher values of the autoregressive parameter ߩ naturally imply greater 

persistence in individual incomes.  Second, higher values of ఙഊమఙ೟షభమ  imply that a greater share of the 

dispersion across individuals in ݕ௜௧ିଵ is generated by dispersion in the individual effect, ߣ௜.  This implies 

greater persistence, since by definition individuals receive the same individual effect in each period.  Note 

that since ߚ௧ିଵ summarizes persistence in individual incomes, it is closely negatively related with mobility.  

In fact, one of the most common empirical summary statistics of mobility in panel datasets where 

                                                            
8 See Lopez and Serven (2006) for cross-country evidence that the lognormal distribution matches well the reported 
data on quintile shares for a large compilation of household surveys across countries and over time.  Battistin, 
Blundell and Lewbel (2009) focus on US microdata  and show that the distribution of income is close to, but not 
exactly, lognormal, and that the distributions of permanent income and consumption are very close to lognormal.  
See also Cowell and Flachaire (2015), Section 6.3.1.2. 
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individual incomes are tracked over time is 1 −  ௧ିଵ.  For this reason, we will refer to the compositeߚ

parameter ߚ௧ିଵ as a “mobility parameter”, as it is the workhorse empirical measure of relative mobility. 

 Let Φ(. ) denote the cumulative normal distribution function, and define the quantile function ݕ௧(݌) = ௧ߤ	 +  of the ݌ which returns the log income level associated with each percentile ,(݌)௧Φିଵߪ

income distribution.  Define the random variable ݕ௧|௧ିଵ(݌) as log income at time ݐ of an individual who 

was at the ݌௧௛ percentile of the income distribution at time ݐ − 1.  The probability distribution of ݕ௧|௧ିଵ(݌) 
fully characterizes the mobility prospects of an individual who starts out at the ݌௧௛ percentile of the 

income distribution, and is summarized in Proposition 2. 

Proposition 2:  Given Assumption A1, ݕ௧|௧ିଵ(݌) is distributed normally with the following mean and 

variance: 

(݌)௧|௧ିଵߤ (3) ≡ ൧(݌)௧|௧ିଵݕൣܧ = ௧ߤ +  (݌)௧ିଵΦିଵߪ௧ିଵߚ
௧|௧ିଵଶߪ (4) ≡ ܧ ൤ቀݕ௧|௧ିଵ(݌) − ቁଶ൨(݌)௧|௧ିଵߤ = ௧ଶߪ − ௧ିଵଶߚ ௧ିଵଶߪ , 

Proof:  See Appendix A. 

Proposition 2, which follows immediately from applying the properties of conditional mean and variance 

of the bivariate normal distribution to Equation (2), shows a key feature of the lognormal data generating 

process in Assumption A1 -- the distribution of ݕ௧|௧ିଵ(݌)  depends only on aggregate moments (the mean 

and variance of log income), and a single mobility parameter ߚ௧ିଵ.  In the following section, we show that 

it is possible to retrieve empirical bounds on ߚ௧ିଵ using only information in the evolution over time of the 

aggregate moments of the income distribution.  This in turn implies that we can empirically characterize 

income mobility using only data on aggregate moments of the income distribution, i.e. using only the time 

series data on ߤ௧ and  ߪ௧ଶ.     

 Proposition 2 also helps to clarify the relative mobility interpretation of ߚ௧ିଵ.  To see this, subtract ݕ௧ିଵ(݌) = ௧ିଵߤ +  :from both sides of Equation (3) to obtain (݌)௧ିଵΦିଵߪ

 

(݌)௧|௧ିଵߤ (5) − (݌)௧ିଵݕ = ௧ߤ) − (௧ିଵߤ + ௧ିଵߚ) −  (݌)௧ିଵΦିଵߪ(1
 

This expression decomposes the expected change in log income of an individual starting at the ݌௧௛ 

percentile of the income distribution at time ݐ − 1 into two components.  The first term ߤ௧ −  ௧ିଵߤ
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corresponds to the change in the mean of log income, which by definition contributes equally to 

everyone’s income growth, and thus leaves relative incomes unchanged.  This term can be thought of as 

capturing absolute mobility.  The second term (ߚ௧ିଵ −  corresponds to the expected (݌)௧ିଵΦିଵߪ(1

change in relative income, and thus captures relative mobility.  In the benchmark case of  ߚ௧ିଵ = 1, the 

expected change in relative income is zero, i.e. there is no relative mobility in expectation.  The lower is ߚ௧ିଵ, the greater is relative mobility since the expected change in relative incomes becomes larger in 

absolute value.  In particular, when ߚ௧ିଵ < 1, individuals starting out in the bottom half of the income 

distribution at time ݐ − 1 will expect to see faster-than-average income growth (since when  ݌ < 0.5 we 

have Φିଵ(݌) < 0 and (ߚ௧ିଵ − (݌)௧ିଵΦିଵߪ(1 > 0).   That is, the initially poor (in expectation) get richer 

in relative terms.  Conversely, an individual starting in the top half of the income distribution with ݌ > 0.5  

can expect to have income growth below the average.  That is, the initially rich (in expectation) get poorer 

in relative terms. 

 The mobility parameter ߚ௧ିଵ also governs uncertainty about changes in relative incomes.  From 

Equation (4) it is clear that for a given initial dispersion in incomes ߪ௧ିଵଶ , higher values of ߚ௧ିଵ imply less 

uncertainty about changes in relative incomes.   The intuition for this is straightforward.  Given an initial 

dispersion in incomes, higher values of ߚ௧ିଵ are due to higher values of the autoregressive parameter ߩ, 

and higher values of the variance of the individual effect, ߪఒଶ, both of which are sources of greater 

persistence in individual incomes.  This in turn means a smaller role for idiosyncratic shocks to income, ߝ௜௧, and therefore less uncertainty about relative incomes.  

 

3.  Estimating Upper and Lower Bounds on Mobility Using Aggregate Data 

 A key feature of the data generating process in Assumption A1 is that it implies a simple 

autoregressive processes for the evolution over time of the aggregate moments of the income 

distribution, as summarized in the following proposition: 

Proposition 3:  Assumption A1 implies that the mean and variance of log income follow: 

௧ߤ (6) = ௧ିଵߤߩ +  ௧ߜ
 

௧ଶߪ (7) = ௧ିଵଶߪଶߩ + ൬1 + 1ߩ − ఒଶߪ൰ߩ + ఌ௧ଶߪ  
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Proof:  See Appendix A 

Proposition 3 shows how the evolution over time of aggregate moments of the income distribution 

reflects the parameters of the underlying data generating process.  In this section we show that, given 

time series data on the aggregate moments ߤ௧ and ߪ௧ଶ, we can use Proposition 3 to recover estimates of 

the autoregressive parameter, ߩ, as well as bounds on the variance of the individual effect, ߪఒଶ.  This in 

turn means that we can recover bounds on the key mobility parameter  ߚ௧ିଵ, and thereby obtain 

approximate income distribution dynamics using only aggregate data. 

 We consider situations in which time series data on mean income and a summary statistic on 

dispersion, such as the Gini coefficient or a group income share, are available for a series of surveys of the 

same population. We assume that the unobserved movements over time in the common component of 

income, ߜ௧, can be approximated with a linear function of time plus an i.i.d. zero-mean error term, i.e.  ߜ௧ = ଴ߜ + ݐଵߜ +  ௧.  Similarly, we assume that we can approximate the unobserved movements over timeݑ

in the variance of the idiosyncratic shock to income,  ߪఌ௧ଶ  with a linear function of time plus an i.i.d. zero-

mean error term.  Since the variance of the individual effect, ߪఒଶ, is constant over time, this means that 

we can write the second and third terms in Equation (7) as   ቀଵାఘଵିఘቁ	ߪఒଶ + ఌ௧ଶߪ = ଴ߟ + ݐଵߟ +  .௧ݒ
 Inserting these approximations into Equations (6) and (7) results in the following system of two 

equations:    

௧ߤ (8) = ௧ିଵߤߩ + ଴ߜ + ݐଵߜ +  ௧ݑ
 

௧ଶߪ (9) = ௧ିଵଶߪଶߩ + ଴ߟ + ݐଵߟ +  ௧ݒ
 

Given time series data on the mean and variance of log income, we can obtain an estimate of ߩ by simply 

regressing ߤ௧ on its lag and a time trend (i.e.  from Equation (8)), or we can obtain an estimate of ߩଶ by 

regressing  ߪ௧ଶ on its lag and a time trend (i.e. from Equation (9)).  In some of our empirical applications, 

notably the PSID and the PovcalNet data, the available time series are quite short, rarely longer than 20 

years, and frequently shorter.  This has two implications for our estimation strategy.  First, the short time 

series raises concerns about small-sample bias in the estimation of ߩ.  Specifically, Andrews (1993) shows 

that the OLS estimator of the autoregressive coefficient in a linear AR(1) process around a deterministic 
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trend is biased downwards in finite samples, and that this bias can be substantial.  Andrews (1993) 

proposes a bias-corrected estimator that addresses this problem, though at the cost that the bias-

corrected estimator has higher variance than the OLS estimator.  We balance this tradeoff between bias 

and precision by taking a linear combination of the OLS estimator and the bias-corrected estimator that 

minimizes mean squared error.  We apply this procedure to obtain an estimator of ߩ from Equation (8), 

and an estimator of ߩଶ from Equation (9).  Second, the scarcity of time series data on aggregate moments 

suggests that it is important to combine information from the dynamics of ߤ௧ and ߪ௧ଶ into a single estimate 

of ߩ.  We do this by taking a mean squared error-minimizing linear combination of the estimators based 

on Equation (8) and Equation (9), to arrive at a single estimate of ߩ reflecting the dynamics of both the 

mean and the variance of log income.  Further details on the estimation strategy are in Appendix B. 

 Given this estimate of ߩ, which we denote ߩො, we next obtain bounds on the mobility parameter ߚ௧ିଵ = ߩ + ఙഊమఙ೟షభమ ଵଵିఘ.   Note that ߚ௧ିଵ is an increasing function of the variance of the individual effect ߪఒଶ.  

Thus, a lower bound on ߚ௧ିଵ can be obtained by setting ߪఒଶ = 0, i.e. ߚ௧ିଵ௅ைௐாோ =  ො.  This lower boundߩ

corresponds to the benchmark of the highest degree of mobility consistent with our estimate of ߩො based 

on aggregate data, since we have turned off any additional persistence coming from the individual effect.      

 We obtain an upper bound ߚ௧ିଵ, i.e. a lower bound on mobility, by finding a corresponding upper 

bound on the variance of the individual effect.  To do this, note that the variance of the idiosyncratic 

component of the error term in Equation (7) must be weakly positive, i.e.  ߪఌ௧ଶ ≥ 0.  Using Equation (7) 

and the estimate of ߩ, this implies that ߪఒଶ ≤ ቀଵିఘෝଵାఘෝቁ ௧ଶߪ) − ௧ିଵଶߪොଶߩ ).  Given our assumption that ߩ and ߪఒଶ 

are stable over the estimation sample, this upper bound must hold for every period ݐ ∈ ܶ, where ܶ 

represents the time periods that comprise the estimation sample.  This means that the tightest possible 

upper bound for the variance of the individual effect is  ߪఒଶ ≤ min௧∈் ቆቀଵିఘෝଵାఘෝቁ ௧ଶߪ) − ௧ିଵଶߪොଶߩ )ቇ ≡   .ఒଶതതതതߪ
Inserting this into the expression for ߚ௧ିଵ, and recalling that our data generating process implies that ߚ௧ିଵ ≤ 1, we have ߚ௧ିଵ௎௉௉ாோ = min ൬1, ොߩ + ఙഊమതതതതఙ೟షభమ ଵଵିఘෝ൰.   

 Note that the bounds ߚ௧ିଵ௅ைௐாோ  and ߚ௧ିଵ௎௉௉ாோ  depend only on the aggregate moments of the income 

distribution, ߪ௧ଶ and ߪ௧ିଵଶ , as well as the estimate ߩො, which as discussed above can also be obtained using 

only aggregate moments.  This means that we can obtain bounds on the mobility parameter ߚ௧ିଵ and in 

turn approximate individual-level income distribution dynamics using only aggregate data.  Whether these 
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bounds are useful, in the sense of delineating a reasonably narrow range of values for  ߚ௧ିଵ, is an empirical 

question to which we turn in the remainder of the paper. 

  

4.  Comparing Actual and Approximate Mobility in the PSID 

 In this section, we verify that our methodology for placing bounds on the mobility parameter ߚ௧ିଵ 

provides reasonably informative bounds on true mobility, using data from the US Panel Study of Income 

Dynamics (PSID).  We first estimate bounds on ߚ௧ିଵ by applying the approach described in the previous 

sections to the time-series of the cross-sectional mean and standard deviation of log income in the PSID.  

We then take advantage of the panel structure of the PSID micro data to estimate the mobility parameter ߚ௧ିଵ directly, and compare these micro estimates with the bounds obtained using only aggregate data.   

 We work with annual rounds of the PSID between 1977 and 1997.9  The unit of observation in the 

PSID is the household, and we take nominal family income per capita deflated by the national consumer 

price index as our measure of real income per capita.  Since measures of inequality are sensitive to 

extreme observations, we discard a small number of household-year observations corresponding to 

implausibly low and implausibly high per capita incomes.10  We then compute the mean and variance of 

log per capita income, using the sampling weights provided in the PSID, and apply our methodology for 

estimating ߩ and obtaining bounds on ߚ௧ିଵ to the resulting two time-series of aggregate moments. 

 Table 1 summarizes our results.  Panel A reports the estimates and standard errors of the 

autoregressive parameter ߩ.  We first report estimates based on the dynamics of the mean of log income 

(Equation (8)) and the variance of log income (Equation (9)).   The three columns correspond to the OLS 

estimates, the small sample bias-corrected OLS estimates, and the MSE-minimizing linear combination of 

the two.  Comparing the first two columns suggests that the bias correction is important – the bias 

corrected estimates of ߩ are substantially larger than the OLS estimates, increasing from 0.65 to 1 (based 

in the dynamics of ߤ௧), and increasing from 0.76 to 0.96 (based on the dynamics of ߪ௧ଶ).  However, the 

                                                            
9 After 1997, the PSID switches to biannual frequency.  We also considered working with a biannual version of the 
PSID from 1977 to the present.  However, over this longer time series, there is clear evidence of a structural break 
in the time series for the standard deviation of log income. Accommodating this trend break in a series of only 17 
biannual observations led to estimates of ߩ based on Equations (8) and (9) that were highly imprecise.  For this 
reason, we work with the shorter 1977-1997 time period with annual data.  In the following subsection, we allow 
for structural breaks when estimating Equation (8) and (9) using longer time series on aggregate moments available 
in the World Wealth and Income Database.   
10 Specifically, we drop households log per capita income below $400 or above $440,000, corresponding to the 
bottom 0.8 percent and top 0.04 percent of the household-year observations in the raw data. 
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comparison also reveals that the bias-corrected estimates are much less precise than the OLS estimates.  

Recognizing this bias versus precision tradeoff, we calculate a MSE-minimizing combination of the OLS 

and bias corrected-OLS estimates, reported in the third column.  The last column reports the MSE-

minimizing weight on the OLS estimator, which is 1.07 for the first equation, and 0.80 for the second.11  

This results in MSE-minimizing estimates closer to the OLS estimates, at 0.63 and 0.80 in the two 

equations.  These are our preferred estimates of ߩ based on the observed dynamics of the mean and 

variance of log income.   

 Despite the short time series, these estimates are reasonably precise, with standard errors of 0.07 

and 0.17 respectively.12  However, since these combined estimates minimize MSE, they remain 

downward-biased.  Comparing the MSE-minimizing estimates in the third column with the bias-corrected 

OLS estimates in the second column suggests this downward bias is non-trivial, at 0.37 for the estimate 

based on the dynamics of the mean of log income, and at 0.20 for the estimate based on the dynamics of 

the variance of log income.  To further improve the precision of our estimates, we combine the two single-

equation MSE-minimizing estimates into a single estimate by taking an MSE-minimizing linear 

combination of the two, which is reported in the last row of Table A.  This results in our final estimate, 

which is ߩො = 0.81 with a standard error of 0.18.  

 In the bottom panel of Table 1 we report our upper-bound estimate of the variance of the 

individual effect given our preferred estimate of ߩො = 0.81, which is ߪఒଶതതതത = 0.021.  To put this estimate in 

perspective, it is useful to consider a benchmark version of Equation (7) in which the variance of the 

idiosyncratic shock to income is constant, i.e. ߪఌ௧ଶ =  ఌଶ.  In this case, the cross-sectional variance of logߪ

income converges to a steady-state value ߪ∗ଶ = ఙഊమ(ଵିఘ)మ + ఙഄమ(ଵିఘమ), and ఙഊమ(ଵିఘ)మ  ଶ can be interpreted as∗ߪ/

the share of steady-state inequality due to the variation in the individual effect.  In our sample, the average 

over time of the variance of log income is 0.73, and using this as an estimate of ߪ∗ଶ together with our 

preferred estimate of ߩ results in an upper bound of 83 percent of steady state inequality is due to the 

variance of the individual effect.   

                                                            
11 As discussed in Appendix B, the MSE-minimizing weights need not be between zero and one. 
12 A somewhat surprising feature of the estimates in the first row of Table 2 is that the standard error of the preferred 
estimator (which denotes the MSE-minimizing combination of the OLS and BC estimators) is notably smaller than 
the standard errors of both the OLS and the BC estimator. To interpret this, it is important to recall that we are 
minimizing MSE, and so the standard error of the combined estimator is not a good summary of the desirability of 
the estimator since it does not reflect the bias that also is present. 
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 In the next two columns of the bottom panel of Table 1, we report the lower bound and the 

average over time of the upper bound on the mobility parameter, ߚ௧ିଵ, which are 0.81 and 0.97, 

respectively.    In Figure 1, we display the time-evolution of our estimated bounds on mobility based on 

the aggregate moments.  Recall that the lower bound is ߩො, which is constant over time, while the upper 

bound is equal to ߚ௧ିଵ௎௉௉ாோ = min ൬1, ොߩ + ఙഊమതതതതఙ೟షభమ ଵଵିఘෝ൰ and varies over time with the observed data on ߪ௧ିଵଶ .    

Purely for visual reference, the dashed line indicates the midpoint of the range between the lower and 

upper bound estimates. 

 The key question of interest is how these bounds on the mobility parameter ߚ௧ିଵ compare with 

actual mobility as measured at the household level.  To answer this question, recall that ߚ௧ିଵ is simply the 

slope coefficient from an OLS regression of household-level log per capita income on its lagged value.  

Given the panel structure of the PSID, we can immediately retrieve a time series of estimates of ߚ௧ିଵ by 

regressing income on lagged income at the household level in successive rounds of the PSID.  In our 

baseline specification, we estimate this series of OLS regressions in each period using all households with 

the requisite per capita income data in the current and previous period.  These baseline estimates are 

superimposed on the macro estimates based on aggregate data in the top panel of Figure 1.  These 

baseline micro estimates of ߚ௧ିଵ fall within the bounds estimated using the macro data for all but the last 

four years of the sample.  Over the entire time period, the micro estimates of ߚ௧ିଵ average to 0.83, falling 

within the range of the average lower and upper bounds of 0.80 and 0.97.  However, as is apparent from 

Figure 1, these baseline micro estimates fall closer to the bottom of the range based on the macro 

estimates. 

 There are two features of the PSID microdata that suggest relevant variants on these baseline 

micro estimates of mobility.  The first is that the PSID is a rotating panel, and only around a quarter of the 

household-year observations correspond to households that appear in all 21 rounds between 1977 and 

1997, while the median household is observed for 16 of the 21 PSID rounds.  In our baseline specification, 

the number of households in each cross-sectional regression ranges from 5,570 to 7,587.   This raises the 

possibility that at least some of the fluctuations over time in the micro estimates of ߚ௧ିଵ reflect changes 

in the composition of households in the PSID from year to year.    To investigate the possible role of 

changing sample composition, we generate an alternative set of micro estimates of ߚ௧ିଵ by estimating 

the same series of cross-sectional regressions of household per capita income on lagged income, but 

restricting attention to the much-reduced sample of 1,637 households that appear in all 21 rounds of the 

PSID.   
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 The second issue concerns the interpretation of year-to-year fluctuations in household per capita 

income.  These fluctuations in part reflect changes in household size, as well as changes in the number of 

income earners in the household, which may not be well-captured by our simple lognormal data 

generating process.  While it is possible to directly observe household size, it is not possible to cleanly 

identify fluctuations in household income per capita due to changes in the number of income earners in 

the household.13  Beyond these concerns, there are also perennial thorny questions concerning the effects 

of measurement error in family income on the estimates of ߚ௧ିଵ, which could lead to different biases 

depending on its correlation with income and over time.14   One crude way of partially addressing both 

these concerns simultaneously is to filter our estimation sample for influential observations.  We do this 

using a Cook’s distance criterion, and drop all household-year observations in our pooled baseline 

regression sample corresponding to the top one percent of observations on the Cook’s distance statistic. 

 The bottom panel of Figure 1 superimposes these two alternative micro estimates of ߚ௧ିଵ on the 

same grey shaded region corresponding to the bounds on mobility based on aggregate data.  Both variants 

result in slightly higher micro estimates of ߚ௧ିଵ , with both averaging to 0.86, as opposed to 0.83 in the 

baseline.  These alternative micro estimates of  ߚ௧ିଵ now fall closer to the center of the range based on 

the macro data, and particularly so in the middle decade of our 20-year sample.  Overall, the picture that 

emerges from Figure 1 is that the bounds on mobility we can estimate using only data on the evolution of 

aggregate moments of the income distribution are reasonably narrow, and for the most part include 

estimates of mobility estimated from the micro panel data. 

 

5.  Cross-Country Estimates of Mobility Using Only Aggregate Data 

 Encouraged by the results of the previous section, which show that our approach delivers 

reasonable bounds on mobility in the PSID where mobility can be directly observed in the record-level 

panel data, in this section we obtain bounds on the mobility parameter ߚ௧ିଵ in two multi-country datasets 

where we have data only on aggregate moments of the income distribution.  We work with two such 

datasets.  The first is the World Wealth and Income Database (WID), which assembles estimates of top 

                                                            
13 This is because the PSID collects information on family income and income of the household head, but does not 
collect data separately on incomes of other household members. 
14 The limited available information based on linking survey incomes with administrative data in the US suggests that 
the overall effect of measurement error on mobility measures is small (see Jantti and Jenkins (2015), Section 10.4.1), 
although these authors caution that this evidence is best interpreted as a reflection of how little is known about this 
issue.    
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income shares based on tabulations of income tax records for a large number of countries, based on the 

work of Anthony Atkinson, Thomas Piketty, and their collaborators.15 We retrieve time series data on 

mean income and the income share of the bottom 90 or 99 percent of income earners (depending on data 

availability), for a set of 19 countries with long annual time series data on these aggregate moments in 

the post World War II period.16  We convert these two summary statistics into the mean and variance of 

log income using our maintained assumption of lognormality.17 The WID predominantly contains data 

from advanced economies, and our set of 19 countries from this source includes only three developing 

countries:  China, India, and Mauritius.  

 Our task of estimating ߩ based on the evolution over time of these aggregate moments is 

complicated by the fact that the time period covered for many of these countries is long, and likely spans 

some structural breaks.  Most of the countries in our sample have data beginning shortly after World War 

II, and visual inspection of trends in the mean and variance of log income suggest a trend break in these 

series around the 1970s for many countries (see Figure 2).  Three countries in our sample (United States, 

France, and Germany) also have fairly long time series data prior to World War II, where again it seems 

plausible that income dynamics may have been different relative to the post-war period.  We therefore 

divide the data into sub-periods, and allow for different time trends by sub-period.  For the three countries 

with pre-World War II data, we consider the available data up to 1939 as one distinct period.  For the post-

World War II period, we allow the data to select a single structural break in the time trends.  Figure 2 

illustrates this process of identifying trend breaks for different time periods for the three countries in our 

sample with pre-World War II data.  The left and right panels of the figure report the time series of the 

mean and standard deviation of log income, with the trend lines for different sub-periods superimposed.   

 We impose the restriction that ߩ is the same over the entire time-series available for each country, 

but we allow the intercept and time trend in Equations (8) and (9) to differ across the sub-periods for each 

                                                            
15 See for example Atkinson and Piketty (2007, 2010), Atkinson et al. (2011), Banerjee and Piketty (2005), and Roine 
and Waldenstrom (2008). 
16 Our default is to use the bottom 90 percent share when available.  We use data on bottom 99 percent for 5 
countries (United Kingdom, India, Japan, Mauritius, and Singapore), for which data on bottom 90 percent is either 
limited or not available in the WID database. 
17 While the top incomes data in the WID is based on tabulated tax records, mean income is an estimate of income 
of all individuals including those who do not file tax returns, often based on national accounts measures of household 
income (see e.g. Atkinson et al. (2011) for details).  The WID report data for income shares higher than the top 10% 
that we use here, and the very top income shares are based on fitting a Pareto distribution to the highest observed 
income groups.  We use the top 10% share since it is least likely to reflect the Pareto imputation of the top tail of 
the income distribution, and therefore is more likely to be consistent with our lognormality assumption. 
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country.18 We compute OLS and bias-corrected OLS estimates of ߩ based on the evolution over time of 

the mean of log income, and based on the evolution over time of the variance of log income, for each 

country.  We also compute the MSE-minimizing weighted average of the two for each equation separately, 

and the MSE-minimizing weighted average of these across the two equations to arrive at our preferred 

estimate of ߩ for each country.   

 Our second application of this approach draws on the PovcalNet database maintained by the 

World Bank.  This database is a large compendium of household survey data for developing countries, and 

is the basis for the World Bank’s global poverty estimates.  The database, as accessed in September 2016, 

contains records corresponding to 1,411 household surveys covering virtually the entire developing world, 

and for some countries extends back to the 1980s.  For each survey, the PovcalNet database reports the 

mean of either per capita income or per capita consumption, depending on the welfare measure used in 

the survey, as well a number of summary measures of poverty and inequality.  We extract time series data 

on mean income and the Gini coefficient for 28 countries with at least 10 household surveys.  Two 

countries in our sample, China and Indonesia, have separate surveys for rural and urban populations, 

resulting in a total of 30 time-series of household surveys to which to apply our methodology.19  Again 

relying on the assumption of lognormality, we convert these series into series for the mean and variance 

of log income, and then we implement the procedure described in Section 3 to obtain estimates of ߩ and 

upper and lower bounds on mobility.  Because the available time series in PovcalNet is much shorter than 

in the WID, we do not allow for trend breaks when estimating Equations (8) and (9). A visual inspection of 

the time-series of the mean and variance of log income for these countries shows no obvious signs of 

structural breaks in the data.  As with the WID dataset, we generate OLS and bias-corrected OLS estimates 

of ߩ, as well as an MSE-minimizing combination of the two, for each of the 30 surveys.  

 We report the results of these two empirical applications of our methodology in Tables 2 and 3.  

In the first column of both tables we present our preferred estimate of ߩ for each country.  The underlying 

OLS and bias-corrected OLS estimates from the equations for the evolution of the mean and variance of 

log income, and the corresponding MSE-minimizing weighted averages, are reported in Appendix Tables 

                                                            
18 To minimize the influence of a small number of observations corresponding to large swings in the mean and 
variance of log income, we eliminate from our estimation sample observations for which Cook’s Distance exceeds 
0.2 and/or the Studentized residuals exceed 3.5.   
19 Most of the countries we selected from the PovcalNet database have annual household surveys, but a few have 
regularly surveys once every two or three years.  We annualize our estimates of ߩ and ߚ௧ିଵ for these countries to 
make them comparable to those based on annual data.  Expressions for the irregularly-spaced versions of our main 
results are detailed in Appendix A.    
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B1 and B2, together with details on the estimation sample and the MSE-minimizing weights.  The next two 

columns of Tables 2 and 3 report our upper-bound estimate of the variance of the individual effect, ߪఒଶതതതത 
and its contribution to steady-state inequality, and the final two columns report the lower bound and the 

average over time of the upper bound on the mobility parameter, ߚ௧ିଵ௅ைௐாோ  and ߚ௧ିଵ௎௉௉ாோ. 

 Figure 3 provides a useful visual summary of our estimates.  In the top panel, we plot our preferred 

estimate of ߩ (on the vertical axis) against log real GDP per capita (on the horizontal axis).  The red circles 

correspond to our estimates for developing countries, while the blue squares correspond to advanced 

economies.  The bottom panel plots the over-time average of the mid-point of our range for ߚ௧ିଵ, i.e. ൫ߚ௧ିଵ௎௉௉ாோ −  ௧ିଵ௅ைௐாோ൯/2 (on the vertical axis) against log real GDP per capita (on the horizontal axis).  Ourߚ

estimates of persistence ߩ tend to be higher in the WID data than those based on the PovcalNet data – 

the mean estimate across countries of ߩ is 0.86 in the WID sample, while it is only 0.63 within the 

PovcalNet sample.  It is difficult to say whether this reflects an actual tendency for persistence to be lower 

in the developing countries covered in PovcalNet when compared with the largely OECD countries in the 

WID sample.  An alternative interpretation is that our OLS estimates of ߩ, as well as the MSE-minimizing 

combination of the OLS and bias-corrected OLS estimates, have greater small-sample downward bias in 

the PovcalNet sample where the available time series is much shorter than in the WID sample.  However, 

within each group, there is a tendency for persistence to be lower in richer countries, and this correlation 

is significant at the 10 percent level within the WID sample of countries.  The bottom panel of Figure 3, 

which plots the mobility parameter ߚ௧ିଵ against log real GDP per capita, looks broadly similar to the top 

panel, with the exception that the negative relationship with per capita income is less pronounced in the 

PovcalNet sample for  ߚ௧ିଵ as it is for ߩ in the top panel.  Recall that ߚ௧ିଵ is a function of ߩ and the share 

of the variance of the individual effect in overall inequality, ఙഊమఙ೟షభమ .  The similarity between the top and 

bottom panels of Figure 3 suggests that cross-country differences in ఙഊమఙ೟షభమ  is much smaller than cross-

country differences in ߩ. 

 Figure 4 plots the evolution over time of the bounds on ߚ௧ିଵ for the United States derived from 

the WID data.  The bounds are displayed as a grey-shaded region.  The lower bound of this range is the 

point estimate of ߩො = 0.66, while the upper bound varies over time with ߪ௧ିଵଶ .   As in Figure 1, we also 

plot the mid-point of the range as a dashed line.  Finally, we superimpose on this graph the mobility 

estimates based on the PSID micro data, for the 1997-1997 period.  Although the bounds on mobility 

displayed in Figure 4 are based on very different data than the PSID (tabulated tax records versus a 
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household panel survey), it is interesting to note that the micro estimates of mobility fall mostly within 

the bounds based on macro data (although more towards the upper half of the range).  It is also useful to 

interpret the movements over time in the upper bound on the mobility parameter.  Recall that this upper 

bound is ߚ௧ିଵ௎௉௉ாோ = ොߩ + ఙഊమതതതതఙ೟షభమ ଵଵିఘෝ and moves inversely with the variance of log income, ߪ௧ିଵଶ .  For example, 

the decline in ߚ௧ିଵ௎௉௉ாோ  since 1980, i.e. the increase in our upper-bound estimate of mobility, is driven 

entirely by the increase in overall inequality during this period, i.e. the increase in ߪ௧ିଵଶ .  The rationale for 

this is straightforward.  Given our identifying assumption that ߩ and ߪఒଶ are constant over time, we 

interpret the increase in overall inequality as reflecting an increase over time in the variance of the 

idiosyncratic shock, ߪఌ௧ଶ .  Since these shocks are independent over time, they have only transitory effects 

on income, and as a result mobility is higher. 

 

6.  Application:  Anonymous and Non-Anonymous Growth in a Cross-Section of Countries 

 Popular discussions of trends in inequality frequently refer to income growth rates of “the rich” 

(defined as the top X% of the income distribution) and income growth rates of “the poor” (defined as the 

bottom Y% of the income distribution).  One prominent example is the World Bank’s declared goal of 

promoting “shared prosperity”, defined as growth in the bottom 40 percent of the income distribution.  

Similarly, a body of work by Thomas Piketty and his collaborators has drawn widespread attention to 

trends in “top incomes”, defined as average incomes in the upper percentiles of the income distribution. 

 Measuring and interpreting the income growth rates of such population subgroups is complicated 

by the basic data problem that motivates this paper:  true panel data tracking individuals over time is 

rarely available.  Absent such panel data, group-average growth rates typically are calculated based on 

repeated cross sections.  For example, the growth rate of “the poor” would be calculated by comparing 

average incomes in the bottom Y% at two points in time.  Since growth rates calculated in this way do not 

track individuals over time, they are referred to as “anonymous” growth rates.  In contrast, “non-

anonymous” growth rates track the same individuals in an initial reference group over time, and can be 

very different from their “anonymous” counterparts when there is mobility in the income distribution.20 

                                                            
20 We are by no means the first to notice this distinction -- see Jenkins and Van Kerm (2006), Grimm (2007), Van 
Kerm (2009), and Bourguignon (2011) for discussions of the difference between anonymous growth incidence curves 
and their non-anonymous counterparts. The novelty in this section of our paper is that we are able to compute 
estimates of the difference between anonymous and non-anonymous growth rates for a large sample of countries, 
using our estimates of mobility based only on aggregate moments of the income distribution. 
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However, given the scarcity of true panel data, these non-anonymous growth rates are rarely observed 

directly. 

 This distinction can have significant policy implications as well, precisely because it reflects the 

underlying degree of mobility in the income distribution.  For example, rapid growth in top incomes might 

be more politically acceptable if it were accompanied by significant mobility of individuals into and out of 

the top income bracket.  Similarly, if the policy objective is to track the effectiveness of an intervention 

aimed at raising incomes in the poorest Y% of the population, conclusions could be quite different using 

the anonymous and non-anonymous growth rates, since the latter track the performance of the initial 

beneficiaries of the intervention while the former does not.  

 In this section we obtain analytical expressions for the difference between anonymous and non-

anonymous growth rates implied by the lognormal data generating process described in Assumption A1.  

These expressions depend only on aggregate moments and the mobility parameter ߚ௧ିଵ.  We then use 

our bounds on ߚ௧ିଵ from the previous section to obtain bounds on the difference between anonymous 

and non-anonymous growth rates in a cross-section of countries, even though the true panel data 

required to track individuals over time is not available for most of these countries. 

 We begin by defining the anonymous and non-anonymous versions of the growth incidence curve.   

The anonymous growth incidence curve, as defined in Ravallion and Chen (2003), returns the proportional 

change in income at every percentile ݌ of the income distribution: 

(10) ݃௧஺(݌) ≡ (݌)௧ݕ − (݌)௧ିଵݕ = ௧ߤ − ௧ିଵߤ + ௧ߪ) −  (݌)௧ିଵ)Φିଵߪ
 

This growth incidence curve is termed “anonymous” since the individual at the ݌௧௛ percentile at time ݐ 
will generally be different from the individual at the same percentile in the previous period ݐ − 1.   Note 

that the curve is increasing in ݌ if inequality increases, i.e. if  ߪ௧ >  if inequality ݌ ௧ିଵ, and is decreasing inߪ

falls.  Because the anonymous growth incidence curve does not track individuals over time, a given curve 

could be consistent with low mobility (if the same individuals occupy the same percentiles of the income 

distribution at two points in time) or high mobility (if the identity of individuals at a given percentile 

changes over time).   

 In contrast, the non-anonymous growth incidence curve tracks the expected growth rate of 

individuals at each percentile ݌ of the initial income distribution, i.e.  
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(11) ݃௧ே஺(݌) = ൧(݌)௧|௧ିଵݕൣܧ − (݌)௧ିଵݕ 	= ௧ߤ − ௧ିଵߤ + ௧ିଵߚ) −  (݌)௧ିଵΦିଵߪ(1
 

This expression is the same as Equation (5), as is the intuition.  The second term measures the extent of 

mobility in the income distribution.   In the benchmark case of no mobility (in expectation), i.e. ߚ௧ିଵ = 1, 

the non-anonymous growth incidence curve is flat, and expected income growth is the same at every 

point in the initial income distribution.  When the mobility parameter ߚ௧ିଵ < 1, individuals starting out 

below the mean of log income expect higher-than-average growth, while those starting out above the 

mean expect lower-than-average growth. 

 The difference between the two growth incidence curves is:   

(12) ݃௧஺(݌) − ݃௧ே஺(݌) = (݌)௧ݕ − (݌)௧|௧ିଵߤ = ௧ߪ) −  (݌)௧ିଵ)Φିଵߪ௧ିଵߚ
 

It is straightforward to verify that our data generating process implies ߪ௧ − ௧ିଵߪ௧ିଵߚ ≥ 0,  and so the 

anonymous growth incidence curve will fall below the non-anonymous growth incidence curve for the 

bottom half of the income distribution (since Φିଵ(݌) < 0 when ݌ < 0.5).21  That is, the anonymous 

growth incidence curve understates the actual growth rate of any individual starting out in the bottom 

half of the income distribution.  Symmetrically, the anonymous growth incidence curve overstates the 

actual growth rate of any individual starting out in the top half of the income distribution.  Note that the 

difference between the two growth incidence curves is monotonic in ߚ௧ିଵ at every percentile ݌.  

Therefore, the upper and lower bounds for ߚ௧ିଵ obtained in the previous section will map into upper and 

lower bounds on the difference between the two growth incidence curves. 

 Figure 5 illustrates the difference between anonymous and non-anonymous growth incidence 

curves using the PSID microdata and our estimates of mobility based on the aggregate moments of this 

dataset from Section 4.  The left and right panels of the graph show the 10-year average annual growth 

incidence curves over the periods 1977-1987 and 1987-1997.  In each panel, the dashed line shows the 

anonymous growth incidence curve.  In both periods, the anonymous growth incidence curve is weakly 

upward-sloping, reflecting the increase in overall inequality over this time.  The two solid lines show the 

non-anonymous growth incidence curves based on the actual micro data, calculated in two different ways.  

The thin line is a kernel-weighted local polynomial smoothed average of the actual growth rates of all 

                                                            
21 This is because the positive semi-definiteness of the covariance matrix in Equation (2) requires ߪ௧ଶ ≥ ௧ିଵଶߚ ௧ିଵଶߪ . 
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individuals at each percentile of the initial income distribution.  The bold line is the lognormal version of 

this curve, i.e. Equation (11), but using the estimate of ߚ௧ିଵ based on the PSID micro data.  Interestingly, 

this lognormal version of the growth incidence curve tracks the non-parametric smoothed estimate of the 

growth incidence curve fairly closely, suggesting that our assumption of lognormality provides a 

reasonable approximation to the true income distribution dynamics in this particular setting.  As expected, 

the non-anonymous growth incidence curves indicate much higher (lower) growth for those initially in the 

bottom (top) half of the income distribution.  Finally, we plot the lower and upper bounds on the growth 

incidence curve based on our bounds on ߚ௧ିଵ  calculated using only aggregate data.  These bounds include 

the two versions of the actual non-anonymous growth incidence curve based on micro data almost 

everywhere.  It is also useful to note that they exclude the anonymous growth incidence curve everywhere 

except for very close to the middle of the income distribution where the anonymous and non-anonymous 

growth incidence curves are very close to each other. 

 We next consider growth rates of group average incomes, such as the bottom 40 or the top 10 

percent of the income distribution.  The anonymous and non-anonymous growth rates of group average 

incomes are simply weighted averages of the corresponding anonymous and non-anonymous growth 

incidence curves, as summarized in the following proposition: 

Proposition 4:  Let 0 ≤ ݌ < ݍ ≤ 1 denote percentiles of the income distribution. The anonymous and non-

anonymous growth rate of group average incomes of those between the ݌௧௛ and ݍ௧௛ percentiles of the 

income distribution are: 

(13) ݃௧௜(݌, (ݍ ≈ න ݃௧௜(ݏ)ݓ௧ିଵ(ݏ)݀ݏ௤
௣ , ݅ =  ܣܰ,ܣ

where ݓ௧ିଵ(ݏ) is the share of percentile ݏ in total income of those between the ݌௧௛ and ݍ௧௛ percentiles of 

the income distribution at time ݐ − 1. ݃௧௜(݌, ,݌)may also be represented as: ݃௧௜ (ݍ (ݍ = ݃௧௜(݌)ݖ, ,ݍ  ,((௧ିଵߪ
where ݌)ݖ, ,ݍ ݌ :satisfies (ߪ ≤ ,݌)ݖ ,ݍ (ߪ ≤  .ݍ

Proof:  See Appendix A.   

 It follows immediately from Proposition 4 and Equations (10) and (11) that the difference between 

the anonymous and non-anonymous growth incidence curves for group average incomes is: 

 

(14) 
݃௧஺(݌, (ݍ − ݃௧ே஺(݌, (ݍ ≈ ௧ߪ) − ௧ିଵ)නߪ௧ିଵߚ Φିଵ(ݏ)ݓ௧ିଵ(ݏ)݀ݏ௤

௣  
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That is, the difference between the two growth rates of group average incomes is also a weighted average 

of the difference between the anonymous and non-anonymous growth incidence curve.  As before, the 

difference between the anonymous and non-anonymous growth incidence curves depends on ߪ௧ ௧ିଵߪ௧ିଵߚ− ≥ 0.  Whether the anonymous growth rate exceeds or is smaller than the non-anonymous rate 

now depends on the sign of the integral ׬ Φିଵ(ݏ)ݓ௧ିଵ(ݏ)݀ݏ௤௣ .  While a closed-form solution for this 

integral exists and is given in the proof of Proposition 4 in Appendix A, this term cannot be signed in 

general.  However, for the particular case where 0 ≤ ݌ < ݍ ≤ 0.5, it is clear that ׬ Φିଵ(ݏ)ݓ௧ିଵ(ݏ)݀ݏ௤௣ ≤0 since Φିଵ(ݏ) ≤ 0 for 0 ≤ ݏ ≤ 0.5.  This means that for any subgroup in the bottom half of the income 

distribution, the anonymous group average growth rate is lower than the corresponding non-anonymous 

growth rate.  Naturally, this argument is symmetric:  when 0.5 ≤ ݌ < ݍ ≤ 1, the anonymous growth rate 

of group average incomes for any subgroup in the top half of the income distribution exceeds the 

corresponding non-anonymous growth rate.  

 We can quantify the difference between anonymous and non-anonymous growth rates using our 

estimates of the mobility parameter ߚ௧ିଵ based on aggregate data from the WID and PovcalNet 

databases.  We begin by calculating the average annual anonymous growth rate of the bottom 40 and top 

10 percent over the most-recent 10-year period available for each country. These anonymous growth 

rates would be the ones typically reported when true panel data are not available.  We then compute the 

lower and upper bounds on the corresponding annual average non-anonymous growth rates, using the 

bounds on ߚ௧ିଵ reported in Tables 2 and 3.  The results of this calculation are summarized in Figure 6.  

The top and bottom panels report results from the WID and PovcalNet samples, respectively.  In each 

panel, we plot the anonymous growth rate on the horizontal axis, the non-anonymous growth rate on the 

vertical axis, and the diagonal line corresponds to the 45-degree line.  The points above the 45-degree line 

correspond to growth rates of the bottom 40 percent, reflecting our result that non-anonymous growth 

rates exceed their anonymous counterparts for group averages within the bottom half of the income 

distribution.  Conversely, the points below the 45-degree line correspond to growth rates of the top 10 

percent, for which the non-anonymous growth rate is smaller than the anonymous growth rate.  The 

triangles (for the bottom 40 percent) and squares (for the top 10 percent) indicate the midpoint of our 

range for the non-anonymous growth rate, and the vertical lines display the range between the lower- 

and upper-bound estimates of the non-anonymous growth rates.   The anonymous growth rates and the 

bounds on the anonymous growth rates are reported by country in Tables 4 and 5. 



24 
 

 The most striking feature of Figure 6 and Table 4 is the magnitude of the gap between the non-

anonymous and anonymous growth rates.  For example, in the WID database, the mean difference 

between the midpoint of our estimated range for the non-anonymous growth rate, and the corresponding 

anonymous growth rate of the bottom 40 percent is 4.1 percent per year, while for the top 10 percent it 

is -10.7 percent per year.  These differences are very large when compared with the standard deviation 

of anonymous growth rates across countries, which is only 2.8 percent per year for the bottom 40 percent, 

and 2.1 percent per year for the top 10 percent.  Similar gaps are observed for the PovcalNet sample, 

where the mean difference between the non-anonymous and anonymous growth rate of the bottom 40 

percent is 3.1 percent per year, and for the top 10 percent the gap is 8.1 percent per year.  Equivalently, 

given the extent of mobility that we have inferred from the aggregate data, we can conclude that the 

anonymous growth rate of the bottom 40 percent understates the actual growth rate of those initially in 

the bottom 40 percent by 3.1 percent per year on average.  And conversely, anonymous growth in average 

incomes of the top 10 percent overstates the average growth rate of those initially in the top 10 percent 

by 8.1 percent per year on average. 

  

7.  Conclusions 

 This paper demonstrates the feasibility of approximating individual-level income distribution 

dynamics when the researcher only has access to time-series data on aggregate moments of the income 

distribution such as the mean and the Gini coefficient or top income shares. Our key identifying 

assumption is that individual incomes follow an autoregressive lognormal process with individual fixed 

effects. We show that the limited information embodied in the time-series of these aggregate moments 

is sufficient to place bounds on the extent of mobility in the income distribution, even though we do not 

observe income dynamics at the individual level. An empirical application using data from the PSID 

confirms that these bounds generally contain the point estimates that are obtained using the record-level 

panel data, and moreover are reasonably tight. Encouraged by these findings, we apply our methodology 

to two large cross-country datasets, namely the WID (including mostly high income countries) and the 

World Bank’s PovcalNet (including mostly developing countries).  Some of the cross-country patterns we 

observe in estimates of mobility seem quite plausible given our priors. For example, among the high 

income countries, the Scandinavian countries and much of Europe show relatively high levels of income 

persistence, while the United States, Singapore and Taiwan rank among the countries with low levels of 

income persistence.  When comparing estimates between the WID and PovcalNet, our estimates suggest 
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that income persistence is lower in the developing world. However, this comparison is difficult to interpret 

given the differences between the two databases.  Specifically, a possible interpretation is that our OLS 

estimates of ߩ, as well as the MSE-minimizing combination of the OLS and bias-corrected OLS estimates, 

have greater small-sample downward bias in the PovcalNet sample where the available time series is 

much shorter than in the WID sample. 

 When we correlate our estimates of income persistence with per capita GDP across countries, we 

find a negative correlation within the WID and PovcalNet samples – higher persistence is associated with 

lower incomes. The reason for this is not obvious, and it is unlikely to be mechanical. Note that if countries 

were identical in all parameters but the income persistence parameter, then lower persistence would be 

associated with lower average income (since lower persistence implies both a lower mean and lower 

cross-sectional variance of log income in the steady state, and therefore lower mean income given our 

lognormality assumption). This seems to suggest that countries with lower income persistence differ from 

countries with higher persistence in other ways that benefit their income growth. 

 Our approach to approximating individual-level distribution dynamics with aggregate data makes 

it possible for the first time to compare anonymous and non-anonymous growth rates in a wide cross 

section of countries.  We show that the anonymous growth rate of the bottom 40 percent (corresponding 

to the World Bank’s definition of ”shared prosperity”) understates the growth rate of those initially in the 

bottom 40 percent by 3 to 4 percentage points per year.  This implies that the anonymous growth rate is 

a poor approximation to the success of those initially in the bottom of the income distribution, and is not 

a good tool for tracking the effects of policy interventions that were targeted to the initially-poor. The 

exact opposite holds true when tracking growth at the top end of the income distribution. Growth of top 

incomes will be larger when measured anonymously. Our estimates suggest that for the top 10% the 

difference is as large as 10 percentage points in annual terms. Thus, tracking anonymous top income 

shares substantially overstates the expected income growth rates realized by the average individual in the 

top end of the distribution. 

 Approximating income distribution dynamics, under the assumption that individual incomes 

follow a lognormal autoregressive process, can also be applied to an inter-generational context. The 

advantage of working with analytical approximations in this case is that it provides a means of rationalizing 

some of the empirical regularities that have been reported in recent studies on inter-generational 

mobility. One prominent example of such a regularity is that higher levels of inter-generational mobility 

are more likely to be observed in countries with lower levels of income inequality (see e.g. Corak, 2013; 
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Chetty et al., 2014). In an ongoing companion study, we verify analytically how growth and inequality 

jointly determine mobility. This in turn allows us to verify how much growth it would take to offset a rise 

in inequality, and use this framework to interpret the results of a recent study by Chetty et al. (2017) 

which reports a dramatic decline in absolute mobility in the United States over the last 60 years. In a 

separate study we also use our lognormal framework and empirical bounds on mobility to investigate the 

welfare consequences of cross-country differences in mobility, using the welfare metrics suggested by 

Atkinson and Bourguignon (1982) and Gottschalk and Spolaore (2002). 
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Table 1:  Estimates of Mobility from the PSID 

 
Panel A:  Estimates of ࣋ Based on Aggregate Data 

 
Panel B:  Estimates of Mobility Parameter ି࢚ࢼ૚ 

Notes:  The first two rows of panel A reports estimates of ߩ based on the dynamics of the mean of log income (Equation (8)) 
and the variance of log income (Equation (9)).   OLS refers to ordinary least squares and BC-OLS refers to small-sample bias-
corrected estimates using the procedure in Andrews (1993).  Min-MSE refers to the mean-squared-error-minimizing linear 
combination of the OLS and BC-OLS estimates described in Appendix B.  The final column reports the MSE-minimizing weight 
on the OLS estimator.  The third row of panel A the MSE-minimizing linear combination of the estimates in Panel A, together 
with the MSE-minimizing weight on the estimator based on the dynamics of the mean of log income.   Standard errors are 
reported below point estimates.  The first two columns of Panel B report the upper bound on the variance of the individual 
effect (ߪఒଶ), and its share in the the steady-state variance of log income.  The remaining columns of Panel B report the lower 
bound on ߚ௧ିଵ (i.e. the preferred estimate of ߩ from Panel A), the average over time of the upper bound on ߚ௧ିଵ, and the 
average over time of three alternative estimates of ߚ௧ିଵ based on the micro data.  The “Baseline” estimates use data for all 
households in each year.  The “Balanced Panel” estimates use only the subset of households available in all 21 years.  The 
“Cook’s-D” estimates drop households in the top 1 percent of the distribution of Cook’s Distance statistic (a measure of 
influence) in the baseline OLS estimates. 

 

  

  

MSE-Minimizing
OLS BC-OLS Min-MSE Weight 

Estimates based on:

Equation for Mean 0.652 1.000 0.628 1.070
 of Log Income 0.196 1.964 0.073

Equation for Variance 0.760 0.956 0.802 0.802
 of Log Income 0.136 0.282 0.170

MSE-Minimizing 0.812 -0.058
Combination of Both 0.180

Estimate of ρ:

Estimate Average Share of Lower Upper
Variance of log y Bound Bound Baseline Balanced Cook's D

0.021 0.826 0.812 0.968 0.826 0.857 0.863

Upper Bound on
Variance of Individual Effect

Micro Estimates

Mobility Parameter β
Average 1977-1997
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Table 2:  Estimates of Mobility from the World Wealth and Income Database 

 

Notes:  The first two columns report our preferred estimate of ߩ and its standard error.  This estimate is an MSE-minimizing 
weighted average of the estimates based on the evolution over time of the mean and variance of log income.  The underlying 
estimates and MSE-minimizing weights are reported in Appendix Table B1.  The third and fourth columns report the upper 
bound on the variance of the individual effect (ߪఒଶ), and its share in the the steady-state variance of log income.  The remaining 
columns report the lower bound on ߚ௧ିଵ (i.e. the preferred estimate of ߩ from Column 1), and the average over time of the 
upper bound on ߚ௧ିଵ. 

 

  

Average
Estimate Standard Error Estimate Average Share of Lower Upper

Variance of log y Bound Bound

Australia 0.756 0.090 0.019 0.685 0.756 0.928
Canada 0.808 0.075 0.025 0.704 0.808 0.944
China 0.978 0.038 0.000 0.000 0.978 0.978
Denmark 0.889 0.054 0.003 0.558 0.889 0.955
France 0.824 0.054 0.011 0.432 0.824 0.909
Germany 0.769 0.062 0.031 0.712 0.769 0.940
Great Britain 0.837 0.100 0.013 0.457 0.837 0.919
India 0.768 0.079 0.015 0.280 0.768 0.841
Ireland 0.784 0.040 0.019 0.585 0.784 0.915
Italy 0.950 0.067 0.000 0.165 0.950 0.959
Japan 0.996 0.013 0.000 0.000 0.996 0.996
Mauritius 0.880 0.051 0.000 0.000 0.880 0.880
New Zealand 0.900 0.079 0.001 0.175 0.900 0.918
Norway 0.893 0.087 0.000 0.000 0.893 0.893
Singapore 0.780 0.060 0.040 0.643 0.780 0.924
Spain 0.960 0.076 0.000 0.000 0.960 0.960
Sweden 0.929 0.055 0.000 0.000 0.929 0.929
Taiwan 0.701 0.127 0.025 0.484 0.701 0.860
United States 0.655 0.057 0.068 0.565 0.655 0.869

Upper Bound on Mobility Parameter
Variance of Individual EffectPreferred Estimate of ρ
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Table 3:  Estimates of Mobility from the PovcalNet Database 

 

Notes:  The first two columns report our preferred estimate of ߩ and its standard error.  This estimate is an MSE-minimizing 
weighted average of the estimates based on the evolution over time of the mean and variance of log income.  The underlying 
estimates and MSE-minimizing weights are reported in Appendix Table B2.  The third and fourth columns report the upper 
bound on the variance of the individual effect (ߪఒଶ), and its share in the the steady-state variance of log income.  The remaining 
columns report the lower bound on ߚ௧ିଵ (i.e. the preferred estimate of ߩ from Column 1), and the average over time of the 
upper bound on ߚ௧ିଵ. 

 

  

Average
Estimate Standard Error Estimate Average Share of Lower Upper

Variance of log y Bound Bound

Argentina 0.581 0.178 0.107 0.733 0.581 0.896
Armenia 0.673 0.138 0.026 0.668 0.673 0.900
Belarus 0.405 0.278 0.077 0.812 0.405 0.895
Bolivia 0.171 0.316 0.521 0.681 0.171 0.764
Brazil 0.576 0.093 0.184 0.823 0.576 0.929
Chile 0.907 0.127 0.007 0.758 0.907 0.983
China (Rural) 0.680 0.152 0.035 0.769 0.680 0.917
China (Urban) 0.999 0.004 0.000 0.000 0.999 0.999
Colombia 0.485 0.218 0.278 0.859 0.485 0.931
Costa Rica 0.661 0.127 0.079 0.829 0.661 0.944
Ecuador 0.467 0.323 0.206 0.758 0.467 0.880
El Salvador 0.455 0.240 0.179 0.719 0.455 0.866
Georgia 0.745 0.080 0.033 0.878 0.745 0.969
Honduras 0.698 0.127 0.067 0.618 0.698 0.886
Indonesia (Rural) 0.531 0.124 0.040 0.704 0.531 0.876
Indonesia (Urban) 0.725 0.063 0.018 0.517 0.725 0.872
Kazakhstan 0.604 0.116 0.034 0.718 0.604 0.898
Kyrgyzstan 0.609 0.167 0.029 0.491 0.609 0.827
Moldova 0.524 0.263 0.059 0.631 0.524 0.839
Mexico 0.626 0.225 0.102 0.833 0.626 0.939
Panama 0.490 0.220 0.254 0.891 0.490 0.949
Peru 0.504 0.325 0.172 0.740 0.504 0.882
Philippines 0.969 0.066 0.000 0.471 0.969 0.984
Poland 0.932 0.040 0.001 0.638 0.932 0.976
Paraguay 0.508 0.231 0.186 0.722 0.508 0.875
Romania 0.891 0.167 0.003 0.927 0.891 0.992
Russia 0.563 0.244 0.084 0.790 0.563 0.911
Thailand 0.676 0.181 0.055 0.830 0.676 0.949
Turkey 0.677 0.077 0.050 0.857 0.677 0.955
Ukraine 0.884 0.143 0.001 0.424 0.884 0.934

Upper Bound on Mobility Parameter
Variance of Individual EffectPreferred Estimate of ρ
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Table 4:  Anonymous and Non-Anonymous Growth Rates of the Bottom 40 and Top 10 Percent 

from the World Income and Wealth Database 
 

Notes:  This table reports anonymous growth rates and bounds on non-anonymous growth rates for the bottom 40 percent 
(left panel) and top 10 percent (right panel).  Growth rates are calculated as annual averages over the most recently-available 
ten years of data for each country.  For details on the time period covered by the available data see Appendix Table B1.  Within 
each panel, the first column reports the anonymous growth rate, and the second and third columns report the lower and 
upper bounds on the non-anonymous growth rate.  The fourth column in each panel reports the difference between the 
midpoint of the bounds on the non-anonymous growth rate and the anonymous growth rate. 

 

  

Average Annual Growth During Most Recent 10 Years of:

Anonymous Difference Anonymous Difference
Lower Upper (Using β-Mid) Lower Upper (Using β-Mid

Australia -0.001 0.059 0.026 0.043 0.021 -0.124 -0.045 -0.105
Canada 0.004 0.072 0.031 0.047 0.003 -0.185 -0.072 -0.132
China 0.098 0.108 0.108 0.009 0.079 0.053 0.053 -0.026
Denmark 0.005 0.042 0.018 0.026 0.015 -0.074 -0.016 -0.060
France -0.001 0.049 0.017 0.034 -0.005 -0.128 -0.049 -0.084
Germany -0.003 0.067 0.024 0.048 0.017 -0.166 -0.053 -0.127
Great Britain 0.014 0.083 0.060 0.057 0.010 -0.191 -0.124 -0.168
India 0.013 0.081 0.061 0.058 0.026 -0.154 -0.099 -0.153
Ireland -0.023 0.041 0.009 0.048 -0.014 -0.180 -0.097 -0.124
Italy -0.010 0.018 0.015 0.027 0.001 -0.071 -0.062 -0.067
Japan -0.012 -0.003 -0.003 0.009 0.010 -0.014 -0.014 -0.024
Mauritius -0.012 0.041 0.041 0.053 0.039 -0.088 -0.088 -0.127
New Zealand 0.016 0.053 0.047 0.034 0.005 -0.089 -0.073 -0.086
Norway 0.024 0.063 0.063 0.039 0.036 -0.057 -0.057 -0.093
Singapore 0.050 0.127 0.086 0.056 0.032 -0.201 -0.079 -0.172
Spain 0.008 0.026 0.026 0.018 -0.005 -0.052 -0.052 -0.046
Sweden 0.004 0.039 0.039 0.035 0.026 -0.058 -0.058 -0.085
Taiwan 0.000 0.071 0.044 0.057 0.040 -0.135 -0.069 -0.142
United States -0.022 0.068 0.034 0.073 0.011 -0.250 -0.152 -0.212

Mean 0.008 0.058 0.039 0.041 0.018 -0.114 -0.064 -0.107
Std. Dev. 0.028 0.030 0.027 0.017 0.021 0.074 0.043 0.051

Bottom 40% Top 10%
Non-Anonymous Non-Anonymous
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Table 5:  Anonymous and Non-Anonymous Growth Rates of the Bottom 40 and Top 10 Percent 

from the PovcalNet Database 
 

Notes:  This table reports anonymous growth rates and bounds on non-anonymous growth rates for the bottom 40 percent 
(left panel) and top 10 percent (right panel).  Growth rates are calculated as annual averages over the most recently-available 
ten years of data for each country.  For details on the time period covered by the available data see Appendix Table B2.  Within 
each panel, the first column reports the anonymous growth rate, and the second and third columns report the lower and 
upper bounds on the non-anonymous growth rate.  The fourth column in each panel reports the difference between the 
midpoint of the bounds on the non-anonymous growth rate and the anonymous growth rate. 

 

 

  

Average Annual Growth During Most Recent 10 Years of:

Anonymous Difference Anonymous Difference
Lower Upper (Using β-Mid) Lower Upper (Using β-Mid

Argentina 0.089 0.146 0.103 0.036 0.022 -0.135 -0.018 -0.098
Armenia 0.041 0.087 0.055 0.029 0.034 -0.072 0.003 -0.068
Belarus 0.109 0.147 0.115 0.022 0.088 0.000 0.075 -0.050
Boliva 0.082 0.147 0.099 0.041 0.021 -0.163 -0.028 -0.117
Brazil 0.066 0.138 0.075 0.040 0.033 -0.173 0.007 -0.116
Chile 0.049 0.090 0.054 0.023 0.022 -0.090 0.008 -0.064
China (Rural) 0.066 0.122 0.085 0.038 0.074 -0.063 0.027 -0.091
China (Urban) 0.063 0.066 0.066 0.003 0.073 0.065 0.065 -0.008
Colombia 0.046 0.121 0.049 0.039 0.040 -0.166 0.033 -0.107
Costa Rica 0.042 0.110 0.058 0.042 0.037 -0.144 -0.004 -0.112
Ecuador 0.068 0.132 0.084 0.040 0.021 -0.159 -0.022 -0.111
El Salvador 0.045 0.105 0.059 0.037 0.002 -0.158 -0.036 -0.100
Georgia 0.022 0.077 0.026 0.030 0.025 -0.110 0.014 -0.073
Honduras 0.027 0.098 0.055 0.049 -0.006 -0.210 -0.085 -0.142
Indonesia (Rural) 0.026 0.075 0.041 0.032 0.060 -0.048 0.026 -0.071
Indonesia (Urban) 0.013 0.075 0.046 0.048 0.062 -0.085 -0.017 -0.113
Kazakhstan 0.086 0.124 0.095 0.024 0.051 -0.038 0.028 -0.055
Kyrgyzstan 0.068 0.109 0.081 0.026 0.053 -0.038 0.025 -0.060
Moldova 0.076 0.117 0.085 0.025 0.041 -0.056 0.020 -0.059
Mexico 0.036 0.103 0.047 0.039 0.028 -0.150 0.000 -0.103
Panama 0.061 0.131 0.068 0.039 0.031 -0.169 0.010 -0.110
Peru 0.073 0.134 0.085 0.036 0.019 -0.149 -0.014 -0.100
Philippines 0.007 0.022 0.014 0.012 0.001 -0.038 -0.018 -0.029
Poland 0.027 0.050 0.034 0.015 0.019 -0.035 0.002 -0.035
Paraguay 0.064 0.130 0.079 0.040 0.019 -0.165 -0.022 -0.113
Romania 0.066 0.098 0.068 0.017 0.066 -0.005 0.062 -0.037
Russia 0.064 0.125 0.075 0.036 0.088 -0.059 0.063 -0.086
Thailand 0.053 0.107 0.057 0.029 0.038 -0.099 0.028 -0.073
Turkey 0.048 0.105 0.058 0.033 0.041 -0.099 0.017 -0.082
Ukraine 0.067 0.091 0.080 0.018 0.046 -0.008 0.018 -0.041

Mean 0.055 0.106 0.067 0.031 0.038 -0.094 0.009 -0.081
Std. Dev. 0.024 0.030 0.023 0.011 0.024 0.066 0.034 0.032

Bottom 40% Top 10%
Non-Anonymous Non-Anonymous
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Figure 1:  Estimates of Mobility from the PSID Based on Micro and Aggregate Data 

 

  
 

 
Notes:  This figure reports estimates of the mobility parameter ߚ௧ିଵ based on aggregate moments and true panel micro data, 
using annual rounds of the Panel Study of Income Dynamics (PSID) over the period 1977-1997.  In both panels, the grey-shaded 
area is the range between the lower and upper-bound estimates of ߚ௧ିଵ based on the evolution over time of the cross-
sectional mean and variance of log income, and the dashed line marks the mid-point of the grey-shaded range.  The solid lines 
report three alternative estimates of mobility based on micro panel data.  All three are based on a series of cross-sectional 
OLS regressions of log income on lagged log income at the household level.  The “Baseline” estimates use data for all 
households in each year.  The “Balanced Panel” estimates use only the subset of households available in all 21 years.  The 
“Cook’s-D” estimates drop households in the top 1 percent of the distribution of Cook’s Distance statistic (a measure of 
influence) in the baseline OLS estimates.  
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Figure 2:  Evolution of Mean and Variance of Log Income, Selected WID Countries 

 
Mean of Log Income Variance of Log Income 

  

  

 
 

Notes:  This figure plots the evolution over time of the mean (left column) and standard deviation (right column) of log income 
for selected countries in our WID sample.  The vertical red lines delineate the subperiods corresponding to trend breaks, and 
the fitted lines show the estimated linear trends by subperiod.  The first period for each country corresponds to all available 
pre-World War II data.  The year of the post-war trend break is selected country-by-country and separately for the mean and 
variance of log income, based on the supremum of the Wald statistics for the null hypothesis that the pre- and post-break 
trends are the same.    
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Figure 3:  Cross-Country Differences in Estimated Mobility 

 
 

Autoregressive Parameter ߩ 
 

 
 

Mid-Point of Range for ߚ௧ିଵ 
 

 
Notes:  This figure plots the point estimate of ߩ (top panel) and the average over time of the mid-point between the upper 
and lower bounds on ߚ௧ିଵ (bottom panel) on the vertical axis, against the logarithm of real GDP per capita in 2000 on the 
horizontal axis.  In each panel, the red circles correspond to developing countries, and consist of the countries in our PovcalNet 
sample, as well as China, Mauritius, and India from the WID sample.  The blue squres correspond to advanced economies in 
the WID sample. 
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Figure 4:  Estimated Mobility Trends in the United States 

 

 
Notes:  This figure reports the evolution over time of the estimated bounds on the mobility parameter ߚ௧ିଵ for the United 
States.  The grey-shaded region contains the range between the lower and upper bounds on ߚ௧ିଵ, and the dashed line indicates 
the midpoint of the range.  The two shorter superimposed time series are the estimates of actual mobility based on the PSID 
microdata, as described in Section 4. 
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Figure 5:  Anonymous and Non-Anonymous Growth Incidence Curves, PSID 

 
 

 
Notes:  This figure plots growth incidence curves for the US, based on the PSID microdata and using the bounds on mobility 
based on aggregate data.  The horizontal axis corresponds to percentiles of the income distribution and the vertical axis plots 
the average annual growth rate over the period 1987-1997 at each percentile.  The dashed line reports the anonymous growth 
incidence curve.  The two solid lines report two versions of the actual non-anonymous growth incidence curve based on the 
PSID micro data.  The thin line is a local polynomial smoothed average of the growth rates of households at each percentile of 
the initial income distribution.  The bold line is a lognormal approximation to the non-anonymous growth incidence curve, i.e. 
Equation (11), using the estimate of ߚ௧ି௞	obtained using the PSID microdata.  The shaded region corresponds to the region 
between the lower and upper bounds on the non-anonymous growth incidence curve based only on aggregate data. 

 

 

  



40 
 

 
Figure 6:  Anonymous and Non-Anonymous Growth Rates of Bottom 40 and Top 20 Percent 

 
Estimates Based on WID Data 

 
Estimates Based on PovcalNet Data 

 
Notes:  This figure plots average annual anonymous growth rates (on the horizontal axis) against average annual non-
anonymous growth rates (on the vertical axis).  The solid diagonal line represents the 45-degree line.  The top panel reports 
results from the WID sample, while the bottom panel reports results from the PovcalNet sample.  The blue triangles above 
(below the 45-degree line represent the mid-point estimate of the non-anonymous growth rate of the bottom 40 percent (top 
10 percent), over the most recent 10-year period available for each country.  The vertical lines represent the range from the 
lower to the upper-bound estimates of the non-anonymous growth rate. 
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Appendix A: Proofs 

 In the main text we assumed for notational convenience that survey data are available in 
consecutive periods ݐ and ݐ − 1.  In reality however, survey data often are available at irregular 
frequencies that differ over time and across countries, and in the empirical part of the paper we work 
with such irregularly-spaced data.  In this appendix we provide proofs for the case of irregularly-spaced 
data, i.e. for two surveys available in periods ݐ and ݐ − ݇.  The propositions as stated in the main text 
obtain for the special case of ݇ = 1. 

Preliminaries 

 Iterating the data generating process in Equation (1) backwards for ݇ periods results in: 

 

௜௧ݕ (15) = ௜௧ି௞ݕ௞ߩ + ቆ1 − ௞1ߩ − ߩ ቇߣ௜ + ሚ௧ߜ  ௜̃௧ߝ	+
 

where ߜሚ௧ ≡ ∑ ௧ି௦௞ିଵ௦ୀ଴ߜ௦ߩ  and  ߝ௜̃௧ ≡ ∑ ௜௧ି௦௞ିଵ௦ୀ଴ߝ௦ߩ .   For the case ݐ = ݐ − ݇ and ݇ = ݐ − ݇, and using the 
assumption on initial income in Assumption A1, Equation (15) becomes: 

 

(16) 
௜௧ି௞ݕ = ௧ି௞ߩ ൬ ௜1ߣ − ߩ + ଴ߜ + ௜଴൰ߝ + ቆ1 − ௧ି௞1ߩ − ߩ ቇ ௜ߣ + ሚ௧ି௞ߜ + = ௜̃௧ି௞ߝ ௜1ߣ − ߩ + ଴ߜ)௧ି௞ߩ + (௜଴ߝ + ሚ௧ି௞ߜ +  ௜̃௧ି௞ߝ

 

Proof of Proposition 1: 

Given Equation (16) which states that ݕ௜௧ି௞ is a linear combination of ߝ௜଴, … ,  ௜, and Assumptionߣ  and	௜௧ି௞ߝ
A1 that these shocks are jointly normally distributed, it follows that ݕ௜௧ି௞ is normally distributed for all ݐ − ݇ ≥ 0.  Equation (16) also implies that ݕ]ܸܱܥ௜௧ି௞, [௜ߣ = ఙഊమଵିఘ.  To complete the proof of Proposition 1 

we need to find ݕ]ܸܱܥ௜௧,   :௜௧ି௞].  Using Equation (15) we haveݕ

 

(17) 

,௜௧ݕ]ܸܱܥ [௜௧ି௞ݕ = ௧ି௞ଶߪ௞ߩ + ቆ1 − ௞1ߩ − ߩ ቇݕ]ܸܱܥ௜௧ି௞,  [௜ߣ
 = ቆߩ௞ + 1 − ௞(1ߩ − ଶ(ߩ ௧ି௞ଶߪఒଶߪ ቇ ௧ି௞ଶߪ  

 = ௧ି௞ଶߪ௧ି௞,௞ߚ  
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Setting  ݇ = 1 and adopting the more compact notational convention that ߚ௧ିଵ,ଵ = ௧ିଵߚ ௧ିଵ givesߚ ߩ= + ఙഊమଵିఘ ଵఙ೟షభమ  as in the main text. 

 

Proof of Proposition 2 

From the irregularly-spaced version of Proposition 1 we have: 

(18) ቀ ܰ~௜௧ି௞ቁݕ௜௧ݕ ൭ቀ ௧ି௞ቁߤ௧ߤ , ቆ ௧ଶߪ ௧ି௞ଶߪ௧ି௞,௞ߚ௧ି௞ଶߪ௧ି௞,௞ߚ ௧ି௞ଶߪ ቇ൱ 

 

Using the standard properties of the conditional mean and variance of the bivariate normal distribution, 
as well as the definition of the quantile function ݕ௧ି௞(݌) = ௧ି௞ߤ +  :we have  (݌)௧ି௞Φିଵߪ

 

(݌)௧|௧ି௞ߤ (19) ≡ ൧(݌)௧|௧ି௞ݕൣܧ = ௜௧ି௞ݕ|௜௧ݕ]ܧ = [(݌)௧ି௞ݕ = ௧ߤ +  (݌)௧ି௞Φିଵߪ௧ି௞,௞ߚ
  

௧|௧ି௞ଶߪ (20) ≡ ܧ ൤ቀݕ௧|௧ି௞(݌) − ቁଶ൨(݌)௧|௧ି௞ߤ = ௜௧ି௞ݕ|௜௧ݕ]ܸ = [(݌)௧ି௞ݕ = ௧ଶߪ − ௧ି௞,௞ଶߚ ௧ି௞ଶߪ  

 

Setting ݇ = 1 retrieves the result in the main text. 

 

Proof of Proposition 3 

 Taking unconditional expectations of both sides of Equation (15) gives the following irregularly-
spaced analog of Equation (6). 

 

௧ߤ (21) = ௧ି௞ߤ௞ߩ +  ሚ௧ߜ
 

Taking unconditional variances of both sides of Equation (15) gives the following irregularly-spaced analog 
of Equation (7): 

    
(22) 

௧ଶߪ = ௧ି௞ଶߪଶ௞ߩ + ቆ1 − ௞1ߩ − ߩ ቇଶ ఒଶߪ + ௞ߩ2 ቆ1 − ௞1ߩ − ߩ ቇݕ)ܸܱܥ௜௧ି௞, (௜ߣ +෍ߩଶ௦ߪఌ௧ି௦ଶ௞ିଵ
௦ୀ଴  

= ௧ି௞ଶߪଶ௞ߩ + ቆ1 − ௞1ߩ − ߩ ቇଶ ఒଶߪ + ௞ߩ2 ቆ1 − ௞1ߩ − ߩ ቇ ఒଶ1ߪ − ߩ +෍ߩଶ௦ߪఌ௧ି௦ଶ௞ିଵ
௦ୀ଴  

= ௧ି௞ଶߪଶ௞ߩ + 1 − ଶ௞(1ߩ − ଶ(ߩ ఒଶߪ + ෤ఌ௧ଶߪ  
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where ߪ෤ఌ௧ଶ ≡ ∑ ఌ௧ି௦ଶ௞ିଵ௦ୀ଴ߪ௦ߩ .  Setting ݇ = 1 retrieves the result in the main text. 

 

Proof of Proposition 4 

To prove Proposition 4 we first show that the anonymous growth rate of group average incomes is a 
weighted average of the anonymous growth incidence curve: 

(23) 

݃௧,௧ି௞஺ ,݌) (ݍ ≡ ௧ܻ(݌, (ݍ − ௧ܻି௞(݌, ,݌)௧ܻିଵ(ݍ (ݍ  = ݍ1 − න݌ ௧ܻ(ݏ) − ௧ܻି௞(ݏ)௧ܻି௞(ݏ)௤
௣ ௧ܻି௞(ݏ)௧ܻି௞(݌, (ݍ ≈ ݏ݀ න ൫ݕ௧(ݏ) − ൯௤(ݏ)௧ି௞ݕ

௣ = ݏ݀(ݏ)௧ି௞ݓ න ݃௧,௧ି௞஺ ௤ݏ݀(ݏ)௧ି௞ݓ(ݏ)
௣  

 

where ݓ௧ି௞(ݏ) ≡ ଵ௤ି௣ ௒೟షೖ(௦)௒೟షೖ(௣,௤) is the share of percentile ݏ in the total income of the group at time ݐ − ݇.  

Similarly the non-anonymous growth rate of group average incomes is the same weighted average of the 
non-anonymous growth incidence curve: 

(24) 

݃௧,௧ି௞ே஺ ,݌) (ݍ ≡ ൣܧ ௧ܻ|௧ି௞(݌, ൧(ݍ − ௧ܻି௞(݌, ,݌)௧ܻି௞(ݍ (ݍ  = ݍ1 − න݌ ܧ ቈ݁௬೟|೟షೖ(௦) − ݁௬೟షೖ(௦)݁௬೟షೖ(௦) ቉௤
௣ 		 ݁௬೟షೖ(௦)௧ܻି௞(݌, (ݍ ≈ ݏ݀ න ቀݕൣܧ௧|௧ି௞(ݏ)൧ − ቁ௤(ݏ)௧ି௞ݕ

௣ = ݏ݀(ݏ)௧ି௞ݓ න ݃௧,௧ି௞ே஺ ௤ݏ݀(ݏ)௧ି௞ݓ(ݏ)
௣  

The expression for the difference between the anonymous and non-anonymous group average growth 
rates in Equation (14) follows from subtracting Equations (23) and (24).   

To complete the proof we need to evaluate the integral 

(25) න Φିଵ(ݏ)ݓ௧ି௞(ݏ)݀ݏ௤
௣ = 1௧ܻି௞(݌, (ݍ ݍ1 − න݌ Φିଵ(ݏ)݁ఓ೟షೖାఙ೟షೖ஍షభ(௦)݀ݏ௤

௣  

 

To evaluate this remaining integral, recall that ௧ܻି௞(݌, (ݍ ≡ ଵ௤ି௣ ׬ ݁௬೟షೖ(௦)݀ݏ௤௣ =ଵ௤ି௣ ׬ ݁ఓ೟షೖାఙ೟షೖ஍షభ(௦)݀ݏ௤௣ .  Differentiating ௧ܻି௞(݌,  :௧ି௞ yieldsߪ with respect to (ݍ

(26) 
߲ ௧ܻି௞(݌, ௧ି௞ߪ߲(ݍ = ݍ1 − න݌ Φିଵ(ݏ)݁ఓ೟షೖାఙ೟షೖ஍షభ(௦)݀ݏ௤

௣  

This means that we can find the integral we need simply by differentiating group average income with 
respect to ߪ௧ି௞.  Combining Equations (25) and (26) and using the property of the truncated lognormal 
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distribution that ௧ܻି௞(݌, (ݍ = ݁ఓ೟షೖା഑೟షೖమమ ൫Φ(Φିଵ(ݍ) − (௧ି௞ߪ − Φ(Φିଵ(݌) − ݍ)/௧ି௞)൯ߪ −  we ,(݌
obtain: 

(27) 

න Φିଵ(ݏ)ݓ௧ି௞(ݏ)݀ݏ௤
௣ = ߲ ௧ܻି௞(݌, ௧ି௞ߪ߲(ݍ 1௧ܻି௞(݌, = (ݍ ௧ି௞ߪ߲߲ ቌ݁ఓ೟షೖାఙ೟షೖమଶ ൫Φ(Φିଵ(ݍ) − (௧ି௞ߪ − Φ(Φିଵ(݌) − ௧ି௞)൯ቍߪ 1௧ܻି௞(݌, = (ݍ ቆߪ௧ି௞ − ߶(Φିଵ(ݍ) − (௧ି௞ߪ − ߶(Φିଵ(݌) − (ݍ)௧ି௞)Φ(Φିଵߪ − (௧ି௞ߪ − Φ(Φିଵ(݌) −  ௧ି௞)ቇߪ

 

For the particular case of average incomes in the bottom ݍ percent this expression simplifies to  

(28) න Φିଵ(ݏ)ݓ௧ି௞(ݏ)݀ݏ௤
଴ = ቆߪ௧ି௞ − ߶(Φିଵ(ݍ) − (ݍ)௧ି௞)Φ(Φିଵߪ −  ௧ି௞)ቇߪ

 

while for the particular case of average incomes in the top ݌ percent this expression simplifies to  

(29) න Φିଵ(ݏ)ݓ௧ି௞(ݏ)݀ݏଵ
௣ = ቆߪ௧ି௞ + ߶(Φିଵ(݌) − ௧ି௞)1ߪ − Φ(Φିଵ(݌) −  .௧ି௞)ቇߪ

Finally, the fact that ݃௧௜(݌, ,݌)can also be represented as: ݃௧௜ (ݍ (ݍ = ݃௧௜(݌)ݖ, ,ݍ ,݌)ݖ ௧ିଵ)), whereߪ ,ݍ  (ߪ
satisfies: ݌ ≤ ,݌)ݖ ,ݍ (ߪ ≤  .is a monotonic function of z (ݖ)follows directly from the fact that ݃௧௜ ,ݍ

 

Appendix B:  Details of OLS, Bias-Corrected, and MSE-Minimizing Estimates of ࣋ 

 This appendix described our approach to estimating the autoregressive coefficient in log 
individual incomes using aggregate data.  Let ߩොఓ,ை௅ௌ denote the OLS estimator of ߩ based on Equation (8), 
and let ߩଶ෢ఙ,ை௅ௌ denote the OLS estimator of ߩଶ based on Equation (9).  Given that the available time series 
is short, these estimators will exhibit downwards finite-sample bias.  We therefore also generate 
corresponding bias-corrected estimators ߩොఓ,஻஼  and ߩଶ෢ఙ,஻஼  using the procedure suggested in Andrews 
(1993). At the core of this procedure is the fact that the distribution of the OLS estimator is exclusively a 
function of the true autoregressive parameter and the sample size, and thus is independent of the 
parameters that describe the distribution of the error term and the time-trend. We refer the interested 
reader to Andrews (1993) for a proof. We take advantage of this result, as suggested by Andrews (1993), 
by computing the median bias of the OLS estimator as a function of ߩ for each sample size separately 
(using numerical simulations), and then inverting this function to obtain a median-unbiased estimator for ߩ. 

 Comparing the OLS and bias-corrected estimators highlights a tradeoff between bias and 
variance: while the OLS estimator is substantially downward biased, the bias-corrected estimator is much 
less precisely estimated. We address this tradeoff by defining the following two weighted averages of the 
OLS and bias-corrected estimators: 

ොఓߩ (30) = ఓ߱ߩොఓ,ை௅ௌ + ൫1 − ఓ߱൯ߩොఓ,஻஼  
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ଶ෢ఙߩ (31) = ߱ఙߩଶ෢ఙ,ை௅ௌ + (1 − ߱ఙ)ߩଶ෢ఙ,஻஼  
 

with the weights ఓ߱ and ߱ఙ  chosen to minimize the mean squared error of the corresponding linear 
combination of estimators.  Finally, we combine the two estimators in Equation (30) into a single preferred 
estimator of ߩ as follows: 

ොߩ (32) = ොఓߩ߱ + (1 − ߱)൫ߩଶ෢ఙ൯ଵଶ 
 

with a weight ߱ again chosen to minimize mean squared error. 

 To derive the specific expressions for the MSE-minimizing weights ఓ߱, ߱ఙ, and ߱, it is convenient 
to work with a generic case of two possibly correlated estimators, ߩොଵ and ߩොଶ, with biases ܾଵ and ܾଶ; 
variances ଵܸ and ଶܸ; and covariance ܥଵଶ.  With this notation, the MSE of a weighted average of the two 
estimators is: 

  

(33) 
ොଵߩݔ]ܧܵܯ + (1 − [ොଶߩ(ݔ ≡ ොଵߩݔ]ݏܽ݅ܤ + (1 − ොଶ]ଶߩ(ݔ 	+ ොଵߩݔ]ܸ + (1 −  [ොଶߩ(ݔ

 = ଵܾݔ) + (1 − ଶ)ଶܾ(ݔ + ଶݔ ଵܸ + 1)ݔ2 − ଵଶܥ(ݔ + (1 − ଶ(ݔ ଶܸ 
 

Setting the derivative of this expression with respect to ݔ equal to zero, followed by some straightforward 
algebra, results in this expression for the MSE-minimizing weight:  

 

∗ݔ (34) = ܾଶ(ܾଶ − ܾଵ) + ଶܸ − ଵଶ(ܾଵܥ − ܾଶ)ଶ + ଵܸ − ଵଶܥ2 + ଶܸ 

 

Using this weight, the MSE-minimizing weighted average of the two estimators is ߩ∗ݔොଵ + (1 −  ොଶ, andߩ(∗ݔ
has bias ݔ∗ܾଵ + (1 − ଶ∗ݔ ଶ and varianceܾ(∗ݔ ଵܸ + 1)∗ݔ2 − ଵଶܥ(∗ݔ + (1 − ଶ(∗ݔ ଶܸ. Note that the weight 
need not lie between 0 and 1. In particular when the two estimators are highly correlated, a weight larger 
than 1 on one of the two estimators, and a corresponding weight less than 0 on the other, will exploit this 
correlation to reduce the variance of the combined estimator. 

 To apply this generic expression to Equation (30) we assume that the bias-corrected estimator 
eliminates the bias in the OLS estimator, so that ܾଶ = 0 and ܾଵ = ොఓ,ை௅ௌߩ − ොఓ,஻஼ߩ .  Let ଵܸ =  ොఓ,ை௅ௌ൧ߩൣܸ
denote the variance of the OLS estimator.  Since the bias-corrected estimator is a function of the OLS 
estimator, we can linearize to obtain ଶܸ = ොఓ,஻஼൧ߩൣܸ ≈ ∇ఓଶܸൣߩොఓ,ை௅ௌ൧ and ܥଵଶ = ,ොఓ,ை௅ௌߩൣܸܱܥ ොఓ,஻஼൧ߩ ≈∇ఓܸൣߩොఓ,ை௅ௌ൧, where ∇ఓ is the gradient of the bias corrected estimator as a function of the OLS estimator 
evaluated at the OLS estimate, that we compute numerically.   Inserting these into Equation (34) results 
in this MSE-minimizing weight: 
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(35) ఓ߱∗ = ොఓ,ை௅ௌ൧∇ఓ(∇ఓߩൣܸ − 1)൫ߩොఓ,ை௅ௌ − ොఓ,஻஼൯ଶߩ + ොఓ,ை௅ௌ൧൫∇ఓߩൣܸ − 1൯ଶ 

 

Applying the same reasoning to Equation (31) gives this corresponding MSE-minimizing weight: 

(36) ߱ఙ∗ = ఙ(∇ఙ∇[ଶ෢ఙ,ை௅ௌߩ]ܸ − 1)ቀߩଶ෢ఙ,ை௅ௌ − ଶ෢ఙ,஻஼ቁଶߩ + ܸ ቂߩଶ෢ఙ,ை௅ௌቃ (∇ఙ − 1)ଶ 

 

Finally, to obtain the MSE-minimizing weight in Equation (32), note that two MSE-minimizing estimators 

from Equations (30) and (31) are both biased with ܾଵ = ොఓߩ − ොఓ,஻஼ߩ  and ܾଶ = ൫ߩଶ෢ఙ൯భమ − ቀߩଶ෢ఙ,஻஼ቁభమ.  In 

addition we have ଵܸ = ොఓ൧ and ଶܸߩൣܸ = ܸ ቈ൫ߩଶ෢ఙ൯భమ቉ 			≈ ଵଶ ൫ߩଶ෢ఙ൯ିభమܸൣ൫ߩଶ෢ఙ൯൧ and we assume ܥଵଶ = 0.  This 

results in 

(37) ߱∗ = ൭൫ߩଶ෢ఙ൯ଵଶ − ቀߩଶ෢ఙ,஻஼ቁଵଶ൱ቌ൫ߩଶ෢ఙ൯ଵଶ − ቀߩଶ෢ఙ,஻஼ቁଵଶ − ൫ߩොఓ − ොఓ,஻஼൯ቍߩ + 12 ൫ߩଶ෢ఙ൯ିଵଶܸൣ൫ߩଶ෢ఙ൯൧
ቌ൫ߩଶ෢ఙ൯ଵଶ − ቀߩଶ෢ఙ,஻஼ቁଵଶ − ൫ߩොఓ − ොఓ,஻஼൯ቍଶߩ + ොఓ൧ߩൣܸ + 12 ൫ߩଶ෢ఙ൯ିଵଶܸൣ൫ߩଶ෢ఙ൯൧  
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Appendix Table B1:  Estimation Details for WID Sample 

 

Notes:  This table reports details of the estimates of ߩ in the WID sample.  The first four columns indicate the first and last 
years of the sample for each country in the post-World War II period, together with the estimated trend break dates for the 
mean and variance of log income.  Note that three countries shown in Figure 2 also have data for a pre-World War II sub-
period.  The next two sets of four columns report the OLS, bias-corrected OLS, the MSE-minimizing weighted average of the 
two, and the MSE-minimizing weight on the OLS equation, for dynamics of the mean and variance of log income, respectively.  
The last two columns report the MSE-minimizing weighted average of the estimates of ߩ from the two equations, together 
with the MSE-minimizing weight on the estimate from the equation for the dynamics of the mean of log income.  Standard 
errors are reported below the coefficient estimates for the OLS, bias-corrected OLS, and MSE-minimizing weighted average 
estimators. 

 

  

Estimate of ρ Based on Equation for: Preferred Estimate of ρ
Weight on

First Last Mean Var- OLS BC-OLS Min-MSE Weight OLS BC-OLS Min-MSE Weight Estimate Estimate Based
Year Year iance on OLS on OLS Mean of log Incom

Australia 1958 2013 1982 1974 0.723 1.000 0.719 1.015 0.667 0.772 0.759 0.131 0.756 0.066
0.100 1.000 0.086 0.096 0.097 0.096 0.090

Canada 1950 2010 1974 1992 0.694 0.896 0.844 0.259 0.714 0.811 0.797 0.151 0.808 0.230
0.094 0.166 0.148 0.083 0.088 0.088 0.075

China 1978 2015 1989 2002 0.928 1.000 0.921 1.089 0.807 1.000 0.805 1.012 0.978 1.493
0.056 0.563 0.011 0.077 0.618 0.068 0.038

Denmark 1950 2010 1966 1974 0.717 0.934 0.870 0.296 0.885 1.000 0.895 0.920 0.889 0.239
0.093 0.183 0.156 0.030 0.263 0.051 0.054

France 1915 2013 1978 1968 0.693 0.868 0.844 0.137 0.741 0.825 0.818 0.092 0.824 0.245
0.072 0.112 0.106 0.060 0.063 0.063 0.054

Germany 1891 2011 1979 1996 0.489 0.658 0.640 0.107 0.888 1.000 0.885 1.025 0.769 0.471
0.103 0.127 0.125 0.046 0.404 0.035 0.062

Great Britain 1950 2012 1968 1996 0.582 0.737 0.713 0.154 1.006 1.000 1.000 0.000 0.837 0.568
0.109 0.137 0.132 0.015 0.154 0.154 0.100

India 1950 1999 1983 1983 0.343 0.492 0.461 0.212 0.738 0.868 0.849 0.155 0.768 0.208
0.148 0.176 0.170 0.077 0.091 0.089 0.079

Ireland 1975 2009 1997 1999 0.796 1.000 0.784 1.059 0.787 1.000 0.783 1.016 0.784 0.726
0.102 1.022 0.048 0.088 0.691 0.075 0.040

Italy 1974 2009 2000 1984 0.724 1.000 0.740 0.944 0.888 1.000 0.879 1.071 0.950 -0.505
0.073 0.729 0.109 0.068 0.607 0.025 0.067

Japan 1945 2010 1974 1974 0.837 1.000 0.831 1.040 0.964 1.000 0.961 1.100 0.996 -0.270
0.069 0.690 0.044 0.041 0.394 0.004 0.013

Mauritius 1952 2011 1974 1976 0.869 1.000 0.858 1.079 0.876 1.000 0.878 0.983 0.880 -0.077
0.085 0.851 0.024 0.041 0.357 0.047 0.051

New Zealand 1950 2013 1967 1990 0.809 1.000 0.803 1.035 0.823 0.933 0.906 0.261 0.900 0.061
0.078 0.782 0.054 0.063 0.090 0.084 0.079

Norway 1950 2011 1986 1993 0.788 1.000 0.782 1.028 0.822 0.932 0.899 0.310 0.893 0.050
0.083 0.826 0.062 0.071 0.100 0.091 0.087

Singapore 1950 2012 1997 1997 0.687 0.874 0.850 0.131 0.668 0.759 0.751 0.097 0.780 0.297
0.070 0.113 0.107 0.070 0.072 0.072 0.060

Spain 1981 2012 1992 2005 0.692 1.000 0.687 1.015 0.871 1.000 0.864 1.049 0.960 -0.543
0.111 1.111 0.096 0.063 0.550 0.036 0.076

Sweden 1945 2013 1990 1975 0.790 1.000 0.802 0.944 0.847 0.944 0.931 0.141 0.929 0.016
0.055 0.554 0.083 0.041 0.058 0.056 0.055

Taiwan 1977 2013 1996 1993 0.449 0.711 0.635 0.290 0.600 0.773 0.729 0.279 0.701 0.301
0.160 0.249 0.223 0.146 0.159 0.155 0.127

United States 1917 2015 1970 1976 0.440 0.559 0.551 0.071 0.642 0.725 0.717 0.100 0.655 0.371
0.084 0.095 0.094 0.072 0.072 0.072 0.057

Estimation Sample
Time Period Break Point for: Mean of log Income Variance of log income
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Appendix Table B2:  Estimation Details for PovcalNet Sample 

 

 
Notes:  Notes:  This table reports details of the estimates of ߩ in the WID sample.  The first three columns indicate the first 
and last years of the sample for each country, and the frequency of the surveys (every 1, 2 or 3 years).    The next two sets of 
four columns report the OLS, bias-corrected OLS, the MSE-minimizing weighted average of the two, and the MSE-minimizing 
weight on the OLS equation, for dynamics of the mean and variance of log income, respectively.  The last two columns report 
the MSE-minimizing weighted average of the estimates of ߩ from the two equations, together with the MSE-minimizing weight 
on the estimate from the equation for the dynamics of the mean of log income.  Standard errors are reported below the 
coefficient estimates for the OLS, bias-corrected OLS, and MSE-minimizing weighted average estimators.  Missing OLS 
estimates for the equation for the variance of log income correspond to cases where the OLS estimates are negative.  In these 
cases the estimates are based on the bias-corrected estimator only.  

Estimate of ρ Based on Equation for: Preferred Estimate of ρ
First Last Freq- Weight on
Year Year uency OLS BC-OLS Min-MSE Weight OLS BC-OLS Min-MSE Weight Estimate Estimate Based

on OLS on OLS Mean of log Income

Argentina 1991 2013 1 0.327 0.816 0.553 0.538 0.319 0.637 0.586 0.208 0.581 0.129
0.204 0.555 0.366 0.259 0.195 0.197 0.178

Armenia 1999 2013 1 0.716 1.000 0.690 1.090 0.564 0.804 0.655 0.663 0.673 0.516
0.232 2.330 0.042 0.268 0.309 0.281 0.138

Belarus 1998 2012 1 0.430 0.872 0.448 0.960 0.270 0.547 0.371 0.714 0.405 0.452
0.264 0.910 0.290 0.556 0.375 0.447 0.278

Bolivia 2000 2013 1 -0.105 0.077 0.077 0.000 0.275 0.566 0.348 0.813 0.171 0.652
0.310 0.403 0.403 0.595 0.411 0.507 0.316

Brazil 1995 2013 1 0.057 0.437 0.230 0.544 0.699 1.000 0.682 1.045 0.576 0.236
0.280 0.490 0.376 0.208 2.830 0.037 0.093

Chile 1987 2013 2 0.730 1.000 0.703 1.082 0.826 1.000 0.816 1.045 0.907 -0.816
0.218 1.595 0.058 0.104 0.587 0.065 0.127

China (Rural) 1990 2012 2 0.715 1.000 0.684 1.088 0.669 0.669 0.000 0.680 0.704
0.258 1.844 0.057 0.495 0.495 0.152

China (Urban) 1990 2012 2 0.829 1.000 0.812 1.089 0.979 1.000 0.976 1.110 0.999 -0.140
0.147 1.220 0.030 0.098 0.914 0.001 0.004

Colombia 1999 2013 1 0.159 0.413 0.245 0.663 0.515 0.752 0.629 0.564 0.485 0.375
0.298 0.424 0.341 0.285 0.291 0.283 0.218

Costa Rica 1989 2013 1 0.341 0.499 0.428 0.454 0.667 0.792 0.753 0.334 0.661 0.281
0.204 0.253 0.230 0.147 0.154 0.152 0.127

Ecuador 2003 2013 1 0.414 1.000 0.379 1.060 0.540 0.540 0.000 0.467 0.451
0.295 2.955 0.137 0.577 0.577 0.323

El Salvador 1997 2013 1 0.308 0.574 0.484 0.338 0.199 0.457 0.255 0.848 0.455 0.873
0.199 0.291 0.260 0.754 0.413 0.610 0.240

Georgia 1997 2013 1 0.467 0.834 0.542 0.795 0.753 1.000 0.741 1.042 0.745 -0.019
0.268 0.589 0.333 0.124 0.932 0.079 0.080

Honduras 1989 2013 1 0.529 0.739 0.664 0.355 0.622 0.751 0.712 0.319 0.698 0.299
0.177 0.247 0.222 0.151 0.155 0.154 0.127

Indonesia (Rural) 1996 2013 1 0.118 0.300 0.210 0.494 0.763 1.000 0.757 1.023 0.531 0.413
0.247 0.306 0.277 0.104 0.792 0.083 0.124

Indonesia (Urban) 1996 2013 1 0.202 0.402 0.306 0.480 0.836 1.000 0.826 1.056 0.725 0.195
0.230 0.301 0.267 0.088 0.732 0.044 0.063

Kazakhstan 2001 2013 1 -0.104 0.103 0.103 0.000 0.774 1.000 0.759 1.058 0.604 0.236
0.328 0.447 0.447 0.128 0.993 0.063 0.116

Kyrgyzstan 1998 2012 1 0.331 0.669 0.525 0.426 0.684 1.000 0.686 0.994 0.609 0.482
0.229 0.382 0.317 0.125 0.862 0.132 0.167

Moldova 1997 2013 1 0.377 0.679 0.573 0.351 0.189 0.189 0.000 0.524 0.873
0.205 0.319 0.279 0.782 0.782 0.263

Mexico 1992 2012 2 0.618 1.000 0.589 1.056 0.673 0.673 0.000 0.626 0.566
0.243 1.500 0.127 0.491 0.491 0.225

Panama 2000 2013 1 0.208 0.514 0.385 0.422 0.600 0.883 0.642 0.875 0.490 0.591
0.235 0.363 0.309 0.280 0.416 0.300 0.220

Peru 1997 2013 1 0.150 0.724 0.261 0.807 0.610 0.610 0.000 0.504 0.303
0.332 0.926 0.447 0.424 0.424 0.325

Philippines 1985 2012 3 0.644 1.000 0.599 1.072 0.883 1.000 0.869 1.083 0.969 -0.368
0.343 1.425 0.139 0.113 0.608 0.030 0.066

Poland 1998 2012 1 0.404 0.801 0.555 0.619 0.905 1.000 0.895 1.095 0.932 -0.108
0.230 0.517 0.339 0.093 0.843 0.013 0.040

Paraguay 1995 2013 1 0.046 0.416 0.237 0.482 0.462 0.865 0.699 0.483 0.508 0.413
0.258 0.444 0.355 0.279 0.337 0.304 0.231

Romania 1999 2008 1 0.250 1.000 0.271 0.972 0.711 1.000 0.680 1.088 0.891 -0.517
0.220 2.201 0.276 0.267 1.895 0.057 0.167

Russia 1999 2012 1 0.295 0.663 0.375 0.784 0.517 0.783 0.628 0.635 0.563 0.254
0.344 0.608 0.401 0.289 0.321 0.298 0.244

Thailand 1988 2012 2 0.681 1.000 0.655 1.066 0.692 0.692 0.000 0.676 0.436
0.212 1.444 0.090 0.313 0.313 0.181

Turkey 2002 2012 1 -0.256 0.000 0.000 0.000 0.812 1.000 0.791 1.099 0.677 0.145
0.360 0.510 0.510 0.220 1.788 0.025 0.077

Ukraine 2002 2013 1 0.674 1.000 0.653 1.066 0.776 1.000 0.755 1.080 0.884 -1.269
0.175 1.751 0.072 0.168 1.306 0.048 0.143

Mean of log Income Variance of log income
Estimation Sample


