
Research Article
Taxi Demand Prediction Based on a Combination Forecasting
Model in Hotspots

Zhizhen Liu,1 Hong Chen ,1 Yan Li,2 and Qi Zhang1

1School of Highway, Chang’an University, Xi’an 710000, China
2Shenzhen Urban Transport Planning Centre, Shenzhen 518000, China

Correspondence should be addressed to Hong Chen; glch@chd.edu.cn

Received 18 November 2019; Revised 22 June 2020; Accepted 29 June 2020; Published 21 July 2020

Academic Editor: Gonçalo Homem de Almeida Correia

Copyright © 2020 Zhizhen Liu et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Accurate taxi demand prediction can solve the congestion problem caused by the supply-demand imbalance. However, most taxi
demand studies are based on historical taxi trajectory data. In this study, we detected hotspots and proposed three methods to
predict the taxi demand in hotspots. Next, we compared the predictive effect of the random forest model (RFM), ridge regression
model (RRM), and combination forecasting model (CFM). *ereafter, we considered environmental and meteorological factors
to predict the taxi demand in hotspots. Finally, the importance of indicators was analyzed, and the essential elements were the
time, temperature, and weather factors. *e results indicate that the prediction effect of CFM is better than those of RFM and
RRM. *e experiment obtains the relationship between taxi demand and environment and is helpful for taxi dispatching by
considering additional factors, such as temperature and weather.

1. Introduction

Taxi is an essential part of urban public transportation, and
taxi demand is different from others because of its stochastic
trajectory and dependence of spatial location [1, 2]. How-
ever, the imbalance between the supply and demand of taxis
is particularly severe due to the uneven information dis-
tribution between drivers and passengers [3]. Taxi drivers’
customer-searching behavior relies on historical experience,
and passengers’ trips are random. *e information asym-
metry of taxis and passengers wastes limited public resources
[4]. *us, the taxi demand in the hotspots should be pre-
dicted [5].

Previous studies on taxi demand prediction are generally
based on historical taxi trajectory data. Previous studies have
shown the feasibility of obtaining predictions from historical
taxi trajectory data [1, 5–23]. Methods of traffic demand
prediction can be classified into three types: linear system
theory (such as the autoregressive moving average model
[24], Kalman filtering model, and time series model),
nonlinear system theory (such as the neural network model,
gray prediction model, and random forest model (RFM)),

and combination forecasting model (CFM). *e first ap-
plication of the time series prediction model in traffic
prediction research was modeling the univariate traffic flow
data as seasonal autoregressive integrated moving average
processes [25]. Shekhar used the Kalman filter model to
study univariate traffic condition predictions [2]. Alvarez-
Garcia et al. proposed a system based on the hidden Markov
model to predict taxi trip destinations [26]. Chang et al.
mined historical taxi trajectory data and predicted the time
and spatial distributions of taxi demand [9]. Moreira-Matias
et al. introduced a new method for using traffic flow data to
predict the spatial distribution of taxi passengers in the
short-term time. A CFM combining three time series pre-
diction methods that can effectively determine the spatio-
temporal distribution of taxi passenger demand was
proposed [17]. Lv et al. proposed a traffic flow prediction
method based on deep learning considering spatiotemporal
correlation and used an autoencoder model to learn traffic
flow characteristics [27]. Zhang et al. proposed an adaptive
prediction method to predict a hotspot location and its heat
[22]. Zhao et al. implemented and compared three pre-
dictors for predictive algorithms that determine maximum
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predictability: Markov, Lempel–Ziv–Welch, and neural
network predictors [13]. Davis used a time series model to
predict taxi travel demand based on mobile app taxi services
[28]. Zhao et al. proposed a new prediction model based on
long short-term memory (LSTM) networks. *e proposed
LSTM network considered the spatiotemporal correlation in
traffic systems [29]. Zhang et al. proposed a Dmodel based
on the hidden Markov chain model for taxi prediction [21].
Yu et al. proposed a spatiotemporal recurrent convolutional
network for traffic volume prediction based on the deep
convolutional neutral network [30]. Ou et al. proposed a
method of combining the bias-corrected random forest
algorithm with the data-driven feature selection strategy for
short-term urban traffic flow prediction to solve the problem
of unreasonable feature selection [31]. Yao et al. proposed a
deep multiview spatiotemporal network framework to
simulate spatiotemporal relationships based on traffic pre-
diction models [32]. Bao et al. considered the interaction
between subways and taxis based on univariate traffic pre-
diction and applied the residual neural network to predict
the taxi demand in different regions [6]. Ishiguro et al.
proposed a taxi demand prediction algorithm using real-
time demographic data generated by cellular networks and
used a stacked denoising autoencoder to assess the impact of
real-time demographic data on taxi demand prediction
accuracy [12]. Markou et al. considered the information
provided by unstructured data while using taxi GPS data and
used machine learning techniques to predict taxi demand
[11]. Xu et al. believed that the occurrence of taxi request
behavior is related to the historical traffic behaviors and
proposed an LSTM model, which can predict taxi requests
for each region of the city based on historical demand and
other relevant information [19]. Past research has mostly
focused on pickup points. Rodrigues et al. considered drop-
off points and combined the time correlation with the spatial
correlation to predict the taxi demand with an LSTM
method [18]. Kuang et al. proposed two deep learning
methods that combine unstructured textual information
with historical taxi trip data for traffic demand prediction
research [15]. Furthermore, Castro et al. conducted a review
of studies on traffic GPS data and proposed a new direction
based on GPS data [33].

Previous works have focused on mining the regularity of
trajectory data to predict the traffic demand, but environ-
mental data have been ignored. Furthermore, the method
that combines linear and nonlinear system theory has been
rarely proposed. *is study aims to explore the prediction
method combining RFM and RRM for predicting taxi de-
mand in hotspots. Moreover, environmental data are con-
sidered. First, the method identifies the taxi demand
hotspots in the city. *en, we predict taxi demand at various
time periods using the RFM and RRM [34]. Next, we
propose a CFM model that combines the RFM and RRM.
*e forecasting method considers environmental and his-
torical taxi trajectory data. *is study is beneficial for traffic
management rebalancing taxis.

*e paper consists of four sections: Section 1 describes
the importance of taxi demand prediction and focuses on
related research about taxi demand prediction; Section 2

describes the data and method we used in this study; Section
3 describes the results of the experiment; discussion and
future research are included in Section 4; and Section 5
describes the conclusion.

2. Data

2.1. GPS Data. GPS data are from the Xi’an Taxi Manage-
ment Office and consist of vehicle location data that are
recorded every 5 s for 30 days. *e dataset consists of 40
million track points.*e GPS data have undergone extensive
cleaning, and only error-free trip strings are used in this
research (Figure 1).

2.2. Environmental Data. *e purpose of this study is to
accurately predict the demand for taxis in hotspots by
constructing a set of affecting factors of the taxi demand.
*erefore, the impacts of air quality, weather, wind speed,
and temperature on demand for taxis are considered. In this
study, the influencing factors of taxi demand are constructed
on the basis of two types of data: air quality and meteo-
rological data.

*e air quality data are derived from the official website
of Green Breathing.*e detection indicators include various
pollutant data, including PM2.5 and PM10, and the air
quality level of the day can be defined according to the AQI.
*e meteorological data are from the National Meteoro-
logical Information Center.*is study selects the hourly data
of Xi’an, including hourly observations of temperature,
pressure, humidity, wind speed, and precipitation. *e air
quality data used in this study have seven dimensions, and
the meteorological data have five dimensions (Table 1).

3. Methods

3.1. Random Forest Model. RFM is an ensemble learning
algorithm and an extension of bagging [35]. At each node of
each decision tree, a subset of k feature attributes is ran-
domly selected from the feature attribute set of the node;
then, the best feature attribute is selected from the subset for
division (Figure 2).

3.2. Ridge Regression Model. RRM is a partial estimation
method designed for collinear data analysis and is an im-
proved least-square estimate method. *e regression coef-
ficient becomes realistic and reliable by abandoning the
unbiasedness of the least-square estimation and losing part
of the information. An RRM fits the ill-conditioned data
more accurately than the least-square estimation.

Given a dataset D � x1, y1, x2, y2, . . . , xm, ym , where
x ∈ Rd andy ∈ R. *e simplest linear regression model
defines the loss function as the square of the residual. *en,
the optimization objective is expressed as follows:

L � ‖Xθ − y‖
2
, (1)

θ � θ1; θ2; . . . ; θm is a regression coefficient. X � x1;

x2; . . . ; xm and y are predicted values. *e abovementioned
formula would easily overfit when the sample has many
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Figure 2: *e flow diagram of an RFM.

Figure 1: GPS data representation.

Table 1: Environmental data structure description.

Indicators Description
AQI Air quality index
CO Concentration of CO (μg/m3)
NO2 Concentration of NO2 (μg/m3)
O3 Concentration of O3 (μg/m3)
PM2.5 Concentration of PM2.5 (μg/m3)
PM10 Concentration of PM10 (μg/m3)
SO2 Concentration of SO2 (μg/m3)
Air quality 1: excellent; 2: good; 3: mild pollution; 4: serious pollution
Weather 1: sunny; 2: cloudy; 3: raining; 4: haze
Wind speed Wind speed (m/s)
TEM Temperature (°C)
RHU Humidity (%)
PRE Precipitation (mm)
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features, and the number of samples is relatively small.
Regularization terms can be used in the aforementioned
formula. *e L2 norm regularization is introduced into the
RRM as follows:

L � ‖Xθ − y‖
2

+‖Γθ‖
2
. (2)

We define Γ � αI, where I is the identity matrix, and is
shown as

L(α) � X
T
X + αI 

−1
X

T
y. (3)

As α increases, the absolute values of the elements in
L(α) tend to decrease, and the deviation of correct value θi

increases. When α tends to infinity, L(α) tends to 0. *e
trajectory of L(α) that changes with α is called the ridge.
When the ridge is stable, α is the optimal value. In
general, the R2 value of the ridge regression equation will be
slightly low, but the significance of the regression coefficient
is usually significantly high.

3.3. Combination Forecasting Model. CFM can solve special
prediction problems in research by combining the character-
istics of different models. *e calculation can be expressed as

yCFM,i � λ1yRRM,i + λ2yRFM,i, (4)

where yCFM,i is the predicted value of the CFM, yRRM,i is the
predicted value of the RRM, yRFM,i is the predicted value of
the RFM, and λ1 and λ2 are the weight coefficients of RRM
and RFM, respectively.

*e core of the CFM is the determination of the weight
coefficients λ1 and λ2. Inverse-variance weighting method is
used to determine the weight coefficient of the CFM. *e
calculation equations are expressed as follows:

λ1 �
eRRM,k(t)−1

eRMM,k(t)−1 + eRFM,k(t)−1, (5)

λ2 � 1 − λ1. (6)

*e squared error sum of the RRM is expressed as
equation (7), and the squared sum of the RFM is expressed as
equation (8):

eRRM(i) � 
276

i�1
yi − yRRM,i 

2
, (7)

eRFM(i) � 
276

i�1
yi − yRFM,i 

2
, (8)

where eRRM(i) represents the sum of squared errors of the
RRM, eRFM(i) represents the sum of squared errors of the
RFM, yi represents the true value, yRRM,i represents the fitted
value of RRM, and yRFM,i represents the fitted value of the
RFM.

4. Data Processing

4.1. GPS Data Processing. *e “STAT” attribute in taxi GPS
data is the record of the taxi driving state, in which “4”

represents the passenger and “5” represents empty driving. A
change from “4” to “5” indicates that the passenger exits the
vehicle. *is record is recorded as point D. A change from
“5” to “4” indicates that the passenger enters the vehicle.*is
record is recorded as point O.

4.2. Feature Selection. Ensuring that the features are in-
dependent of one another is difficult because of their
large number in the experiment. In the modeling process,
two features with a strong correlation tend to exhibit
multiple collinearities in the data. *erefore, the corre-
lation of the experimental data features should be tested.
*e method chosen in this study is the Pearson corre-
lation analysis, which can measure the linear
relationship between variables. *e calculation is
expressed as follows:

ρX,Y �
cov(X, Y)

σXσY

�
E X − μX(  Y − μX(  

σXσY

, (9)

where cov(X, Y) represents the covariance between the
variables X and Y, σX and σY represent the standard de-
viations of the variables X and Y, and ρX,Y represents the
correlation coefficient of two continuous variables; the value
of ρX,Y is between −1 and 1. If ρX,Y > 0, then the two variables
are positively correlated; if ρX,Y < 0, then the two variables
are negatively correlated. A large absolute value of ρX,Y

corresponds to a strong correlation. *e corr function of the
pandas library in Python is applied to obtain the correlation
coefficient matrix (Figure 3).

Figure 3 shows that the correlation among PM2.5, PM10,
and AQI is strong. A slight multicollinearity is observed in
the correlation between O3 and TEM (temperature);
therefore, a correlation exists between RHU and TEM.
Indicators with severe multicollinearity are excluded. *us,
indicators PM2.5 and PM10 are eliminated.

Four indicator variables of hour, wdy, week, and holiday
are also added to explore the impact of time, week, weekday,
and holiday factors on the taxi demand (Table 2).

4.3.One-HotEncoding. All data are encoded using the one-
hot encoder function in the scikit-learn.preprocessing
library. *e week attribute is taken as an example
(Figure 4).

After the one-hot encoding, the data dimension has
expanded to 39. In the experiment, the sample size of the
dataset is small, and the verification and test sets can be
combined when dividing the dataset. *e first 23 days of
April 2017 are taken as the training set, with the other 7 days
as the test set.

5. Results and Discussion

5.1. Extract Hotspots. *e ArcGIS 10.2 kernel density
analysis tool is used to analyze the kernel density of the
residents’ pickup and get-off positions in the three time
periods of the working and rest days (Figure 5).

As shown in Figure 5, the taxi demand on weekdays and
nonworking days are mainly distributed in the main roads of
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Xi’an. *e taxi demand at various peak hours is also dis-
tributed among the main roads of Xi’an. Xi’an taxi demand
intensive areas are normalized and have no visible space-
time character. *e 30-day thermogram is superimposed
(Figure 6).

Hotspots are distributed in areas such as Xi’anbei
Railway Station, Bell Tower, Xiaozhai, Railway Station, and
City Library. Xi’anbei Railway Station and Railway Station
are transportation hubs. Xiaozhai, City Library, and Bell
Tower are commercial areas. In this study, two represen-
tative areas, namely, Bell Tower and Xi’anbei Railway Sta-
tion, are selected (Figure 7).

5.2. Random Forest Prediction. Using Python’s sklearn.en-
semble library, we can use random forest regression (RFM)
(Table 3).

*e main influencing factor of RFM is “n_estimators.”
We use the goodness of fit (R2) to adjust the parameters of
RFM. *e calculation is expressed as follows:

R
2

�
SSE
SST

�


N
i�1 yi − y( 

2


N
i�1 yi − y( 

2 � 1 −
SSR
SST

, (10)

where N is the sample size, SST is the sum of squares, SSR is
the sum of squares of regression, SSE is the sum of squared

Table 2: Added indicators description.

Indicator Description
Hour Represents the current time period {1∼12 stands for 0:00∼2:00, 2:00∼4:00...22:00∼24:00}
Wdy Whether the day is a working day {“1” stands for weekdays, and “0” stands for nonworking days}
Week *e day of the representative is the day of the week {1∼7 represents Monday to Sunday, respectively}

Holiday Represents whether the day is a holiday (two holidays in April 2017: Ching Ming Festival and Labor day) {“0” stands for
nonholiday, and “1” stands for holidays}

Before encoding After encoding

Week Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

1 1 0 0 0 0 0 0

2 0 1 0 0 0 0 0

3 0 0 1 0 0 0 0

4 0 0 0 1 0 0 0

5 0 0 0 0 1 0 0

6 0 0 0 0 0 1 0

7 0 0 0 0 0 0 1

Figure 4: Example of the one-hot encoding process.
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residuals, yi is the value to be fitted, y is the mean of y, and yi

is the fitted value.
Considering the number of samples and training speed

of RRM, we choose [1 − 200] as variable span. *e relation

between “n_estimators” and R2 can be calculated (Figures 8
and 9).

*e adjusted optimal parameters for Xi’anbei Railway
Station and Bell Tower areas are shown in Tables 4 and 5.

0 1.5 3 6 9 12

N N

0 1.5 3 6 9 12

(a)

0 1.5 3 6 9 12

N N

0 1.5 3 6 9 12

(b)
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Figure 5: *ermogram of workday (left) and nonworkday (right) in peak hours: (a) in the morning; (b) at noon; (c) in the evening.
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*e prediction results of RFM in Xi’anbei Railway
Station and Bell Tower areas are shown in Figures 10 and 11.

RFM can score the importance of feature attributes. In
the RFM, evaluating the importance of feature attributes is
based on the random replacement of the permutation
principle. *e reduction in the mean square residual and the
prediction accuracy reflects the importance of characteristic
variables. In this study, the calculation of the mean square
residual reduction is used to evaluate the importance of the
variables:

(1) We assume M regression trees in the random forest.
OBBi represents the out-of-bag data of the ith tree.
*e out-of-bag mean square deviations of each tree
are MSEOOB1

, MSEOOB2
, . . . ,MSEOOBM

.

(2) We assume that the total number of variables is N.
For each input variable Xi, random replacement in
M out-of-bag data is conducted. M new out-of-bag
data OOB are obtained, and the mean square de-
viation of the new out-of-bag data is calculated.
*en, an out-of-bag error matrix can be constructed
as follows:

MSE1,OOB1
MSE1,OOB2

· · · MSE1,OOBM

MSE2,OOB1
MSE2,OOB2

· · · MSE2,OOBM

⋮ ⋮ ⋮ ⋮

MSEN,OOB1
MSEN,OOB2

· · · MSEN,OOBM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

N

(a)

N

(b)

Figure 6: Comparison of (a) workday and (b) nonworkday overlap thermogram.

(a) (b)

Figure 7: Hotspot selection: (a) description of hotspots in the Bell Tower; (b) description of hotspots in the Xi’anbei Railway Station.

Table 3: Random forest regression parameter description.

Parameters Introduction
n_estimators Number of submodules
Criterion Method to judge whether the node continues to split
max_features Maximum number of features involved in judging when node splits
max_depth Maximum depth
min_samples_split Minimum number of samples required for splitting
min_samples_leaf Leaf node minimum sample number
min_weight_fraction_leaf Minimum total sample weight of leaf nodes
max_leaf_nodes Maximum number of leaf nodes
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(3) *e out-of-bag error MSEOOB1
,MSEOOB2

, . . . ,

MSEOOBM
before replacement is subtracted with the

ith row of the out-of-bag error matrix. *en, the
significance score of Xi is the average of the
abovementioned calculated results, as shown in the
following equation:

VIMi �
1

M


M

j�1
MSEOOBj

− MSEi,OOBj
  1≤ i≤N.

(12)

A large value of VIMi corresponds to a great contri-
bution of the variable. *is study uses the featur-
e_importances_ function in RMM of the scikit-learn library
to score the input variables (Figures 12 and 13).

5.3. Ridge Regression Prediction. Using Python’s sklear-
n.ensemble library, we can find the implementation of ridge
regression prediction models (Table 6).
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Figure 8: R2 changes as “n_estimators” increases in the Xi’anbei Railway Station area.
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Figure 9: R2 changes as “n_estimators” increases in the Bell Tower area.

Table 4: Random forest parameters in the Xi’anbei Railway Station
area.

Parameter
Accuracy
before

adjustment

Accuracy
after

adjustment
Value

Increase
in

accuracy
n_estimators 0.857206 0.858649 80 0.001443
max_features 0.858649 0.884258 4 0.025609
max_depth 0.884258 0.884258 Default 0
min_samples_leaf 0.884258 0.8842589 Default 0

Table 5: Random forest parameters in the Bell Tower area.

Parameter
Accuracy
before

adjustment

Accuracy
after

adjustment
Value

Increase
in

accuracy
n_estimators 0.825876 0.836657 16 0.010781
max_features 0.836657 0.839204 28 0.002547
max_depth 0.839204 0.839204 Default 0
min_samples_leaf 0.839204 0.839204 Default 0
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*e two most essential parameters in the RRM are the
regularization intensity (alpha) and computational solver
(solver) (Table 7).

After the RRMwith the optimal parameters is constructed,
the prediction results are shown in Figures 14 and 15.

After the training of the RRM, the fitted model can be
output. *e standardization process is performed in ad-
vance.*us, themodel has no intercept term, and each index
coefficient represents the importance of the index (Fig-
ures 16 and 17).

5.4. Combination ForecastingModel. *e weight coefficients
of two models in the CFM can be obtained by the sum of

residuals of RFM and RRM on the training set. *e weight
coefficients of RFM and RRM are λ1 � 0.793067 and
λ2 � 0.206933, respectively.*e prediction results are shown
in Figures 18 and 19.

We use mean square error, mean absolute error, and
goodness of fit (R2) to test the prediction effect of three
models (Tables 8 and 9).

Figures 10, 11, 14, 15, 18, and 19 show the prediction
results of taxi demand in the Xi’anbei Station and Bell Tower
areas through by RRM, RFM, and CFM.*en, Tables 8 and 9
analyze the forecast effect of three forecasting methods. *e
tables indicate that CFM has the highest accuracy among the
three models.
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Figure 10: Prediction result of RFM in the Xi’anbei Railway Station area.
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Figure 11: Prediction result of RFM in the Bell Tower area.
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Figure 12: Index importance results of RFM in the Xi’anbei Railway Station area.
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Figure 13: Index importance results of RFM in the Bell Tower area.

Table 6: Model parameter descriptions of the RRM.

Parameters Description

Alpha It indicates the regularization strength; it is the complexity parameter of the control coefficient shrinkage; a large value of α
corresponds to a large shrinkage; thus, the coefficient is robust to collinearity

fit_intercept It indicates whether to calculate the intercept of this model
max_iter It is the maximum number of iterations of the conjugate gradient solver
Solver It is the solution method for calculation

Table 7: Model parameter description of the RRM.

Hotspots Alpha Solver
Xi’anbei Railway Station 1.724102 ‘Saga’
Bell Tower 5.050931 ‘Saga’
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Figure 14: Prediction result of the RRM in the Xi’anbei Railway Station area.
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Figure 15: Prediction result of the RRM in the Bell Tower area.
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Figure 16: Index importance results of the RRM in the Xi’anbei Railway Station area.
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Figure 17: Index importance results of the RRM in the Bell Tower area.
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Figure 18: Prediction result of the CFM in the Xi’anbei Railway Station area.
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Figure 19: Prediction result of the CFM in the Bell Tower area.
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As shown in Figures 12 and 13, the most crucial factor in
taxi demand is hours in the Xi’anbei Station because the
station is a transport hub. *is finding illustrates that taxi
demand in a transport hub has a strong correlation to the
time factor. Figures 12 and 13 also show that O3 is the main
factor in the Bell Tower. Ozone concentration is related to
temperature, and hot weather increases the taxi demand in
the commercial area. However, Figures 16 and 17 imply that
the main factors of RRM in two areas are time factor and O3.
Differences between the two areas of RRM are less than those
of RFM.

6. Conclusions

In this study, we investigated the taxi demand prediction in
hotspots and then proposed three prediction models,
namely, RFM, RRM, and CFM. We extracted hotspots of
taxi demand, and the taxi demand prediction model was
constructed on the basis of taxi demand hotspots. *e
proposed models combined time, meteorological, and
environmental characteristics to explain the generation of
taxi demand. *e prediction results show that CFM has
better robustness and smaller error than FRM and RRM in
the Xi’anbei Railway Station area and the Bell Tower area.
*e experiment also indicates that taxi demand prediction
is mainly affected by the time period in the Xi’anbei Railway
Station. In the Bell Tower area, the importance of ozone
concentration and temperature to the model is relatively
advanced. *e study concludes that the proposed model
can improve prediction accuracy. *e most important
influencing factor of the taxi demand prediction model is
the time factor. Temperature and weather indicators are
also relatively important.

Some limitations in the research on taxi demand
prediction still need to be addressed. For example, the
impact of other similar types of traffic demand is ignored in
this study. If travel demand can be met by an online car-
hailing service, then taxi demand will be greatly reduced.
*is study also ignores the impact of land use properties on
taxi demand, which will be one of our future research
directions. Part of environmental features is challenging to
obtain. *us, we will propose a method to predict envi-
ronmental features for predicting taxi demand more pre-
cisely in the future.
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[34] U. Grömping, “Variable importance assessment in regression:
linear regression versus random forest,” Ge American Stat-
istician, vol. 63, no. 4, pp. 308–319, 2009.

[35] M. Ristin, M. Guillaumin, J. Gall, and L. Van Gool, “Incre-
mental learning of random forests for large-scale image
classification,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 38, no. 3, pp. 490–503, 2016.

Journal of Advanced Transportation 13


