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Abstract

[n this report dynamic solution of unbounded domains using pure finite element method is presented.
The problems of concern are those with governing differential equations of constant coefficient. When
the grid 1s of repeatable pattern the solution of an unbounded domain is reducible to a solution over a
smaller domain with a grid consisting of few numbers of repeatable patterns. It is shown that by use of
the proportionality property, having roots in governing equations, both conditions required for a unique
solution, 1.e. the decay and radiation of energy, are met through a spectral formulation. As a key point,
a consistent transformation approach is proposed in order to employ such a spectral formulation for the
solution. The transformation technique is analogous to those conventionally used for solution of partial
differential equations but of course in a matrix form. To demonstrate the applicability of the method,
Green’s functions for two dimensional scalar and elastic wave equations are obtained numerically in
frequency domain. The method is also capable of giving Green’s functions for dynamic solution of

domains with repeatable material properties. Comprehensive discussions are given for accuracy and
convergence of the solution.
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1. INTRODUCTION

The need for solution of mathematical models of unbounded domains arises in many engineering
applications. Wave propagation in acoustic or magnetic fields and elastic waves in geophysics are the
notable examples. There are several approaches for dynamic solution of unbounded domains.
Boundary element/integral method is the most common method for such solutions when Green’s
functions are available. The Green’s functions are usually found through direct solution of the
governing differential equations using transformation techniques. Nevertheless, working with such
functions, 1if exist, is not easy task because of inherent singularities.

In the context of finite element method, however, solution of unbounded domain may be performed by
itroducing infinite elements or artificial boundary conditions for a bounded region. A survey in the

literature shows that both approaches are growing fast, though each has some advantages against the
other.

In the category of using infinite elements the work by Bettess and Zienkiewicz [1,2] appears to be the
pioneering one. In this approach the unbounded domain is replaced with a bounded one and elements
with infinite length are constructed with use of some shape functions representing decay condition. The
elements are sometimes called unconjugated infinite element in order to be distinguishable from their
counterparts, known as conjugated infinite elements, in which some complex conjugates shape
functions are used in the weighted residual method. The representative of the latter approach is the
work due to Astley [3]. A good literature of the methods can be found in review papers [4, 5] and also
reference [6].

In the category of using artificial boundary conditions the work due to Engquist and Majda in the late
1970s 1s recognized as a pioneering one [7]. In this form of approach the unbounded domain is again
replaced with a bounded one but the effects of the remaining parts are taken into account through a
series of energy absorbent boundary conditions. The concept has further been extended by others and
thus the so called Dirichlet-to-Neumann mapping technique [8, 9] and Perfectly Matched Layer
approaches [10, 11] were developed. A comparison between the performances of some classes of the
infinite elements and artificial boundary conditions has been given in [12]. A good survey to the date
of the methods may be found in reference [13].

The above mentioned methods are in fact solution treatments for using different element/boundary
components at the bounded part of the domain. For behavior prediction of pure finite element models,
1.. models using finite element covering the entire unbounded domain, few studies can be traced in the
literature. An early work on the subject is due to Thatcher in which the behavior of an infinite number
of elements has been predicted in a systematic manner for a Laplace’s equation [14]. A somewhat
similar approach has been employed by Dasgupta [15], called cloning, and later by Wolf and Song
[16], called multi-cell cloning, for dynamic solution of problems encountering in geophysics. These
methods employ similarity effects in the geometry of the meshes. In the same line, Wolf and Song
introduced another method, called “scaled boundary finite elements” [17]. The history of the method
may be found in [18]. This latter approach employs finite element and boundary integral methods in
circumferential and radial directions, respectively. The method may be considered in the category of
finite element approaches, nevertheless the main difference lies in the use of the exact solution along
redial direction for the differential equations resulted from the geometrical similarity effect.

In this report we shall model the behavior of an infinite number of elements, supposing that the whole
domain has been discretized into similar elements, on an area with finite number of the same elements.
As a representative of such solutions we shall present the Green’s functions in finite element sense. The
numerically-evaluated Green’s functions can readily be used in construction of absorbing energy



boundaries without much effort. This will also help to avoid the difficulties arising in integration of
singular functions. It should be noted that the approach given in this report does not limit to solution
with finite element method and any other numerical method can be employed 1n an analogous manner.

The layout of the report 1s as follows. In the next section the model problem and assumptions used are
presented. Requirements for decay and radiation conditions are also discussed in the same section. In
Section 3 we specify the wave problems which are considered in this report along with the finite
element approach employed. The solution method suitable for unbounded domains via FEM is
described in the same section. The new features including the spectral form of solution, the
transformations used, treatment of the boundary conditions and application of the decay and radiation
conditions in finite element sense are explained together with the solution method. In Section 4 some
numerical results are given. In this latter section we present numerical presentation of Green’s
functions for unbounded scalar and elasticity problems where we discuss about the accuracy and

convergence of the solutions. Overall conclusions from the application of the proposed method are
given in Section 5.

2. MODEL PROBLEM

In this section we shall give some preliminary assumptions used for the governing equations and the
unbounded domain.

Assumption I. We assume that the system of governing differential equation/equations is of constant
coefficient.

As we describe later this assumption plays a key role in our solution technique and constitutes simplest
form of repeatability in the numerical procedure. However, such a repeatability effect may be resulted

from a system of equations with periodic variation of coefficients treating of which is beyond the
scopes of this report and will be addressed 1n future works.

Numerous wave problems arising in physics or many problems in theory of diffusion fall within the

category of problems with above assumption especially when the governing equations are written in
Cartesian coordinates.

Assumption II. A Cartesian coordinate 1s used to define the mathematical model.

Most of wave equations in physics may be written as the following equation
2U-pU=F(x,y,1)  (x,y)eRxR (1)

where U and U are, respectively, vector of the main unknown functions and its second derivatives in
time, Z1s an appropriate differential operator, which is elliptic in spatial coordinates and, in our case,
is linear with constant coefficient, p 1s a material constant (e.g. density) and F(x, y,?) is the source

term expressed as a function of spatial coordinates and time 7. We note that the whole equation is of
hyperbolic type in time domain. As 1s seen 1n this report we focus on two dimensional wave problems.

The reader may also note that we have used notations with vector unknowns which are reducible to
scalar problems as special cases.

When the solution of (1) 1s sought in time domain, usually the fundamental solution (Green’s function)
1s first obtained through solution of the unbounded domain with unit impulse load defined at origin. In



that case the source term takes the form of Dirac Delta function in spatial coordinates as well as the
time. The complete solutions for general source terms are then found through suitable integration of
such fundamental solution in both spatial coordinates and time.

The solution of (1) may also be performed using Fourier transformation of the source term in time
domain. In that case the fundamental solution i1s obtained in frequency domain with the aid of a source
term as a Dirac Delta function just in spatial coordinates. The complete solution is then found through
inverse Fourier transformation and suitable integration in spatial coordinates. In this report we shall
give solutions to differential equations in frequency domain. Thus one may use

U=ue” (2)

while letting u be a vector of complex function. In Equation (2) wis the frequency value and i = 1.,
Substitution of (2) in (1) results in the following elliptic differential equation

Lu+ po’u=f (3)

[n which f 1s Fourier transformation of F. If uis to be fundamental solution in frequency domain, the
source term takes the form of

f=0(x)o(y) (4)
Where o 1s Dirac Delta function. This means that we are dealing with following problem

fﬁqupa)zu:(] x#0 y#0

{ | (5)
Lu+pouxd x=0 p=0

Usually, a quarter of the domain can be solved when appropriate boundary conditions are considered.

Assumption III. The unbounded domain is defined over a part of space with x>0and y >0 for two
dimensional problems (and z >0 for three dimensional ones).

The third assumption helps to use just one of the cases in (5) and treat the effects of the source term as a
point boundary condition. Therefore the problem is reduced to

Lu+po'u=0  (x,y)e[0,0)x[0,0) (6)
with some additional conditions either on w or on the gradients of itat x=0and y=0.

[t can be seen that the main problem to be solved is a system of homogenous differential equations with

specified boundary conditions. In the next sub-section we describe the proportionality property
existing in constant coefficient differential equations.

2.1 The proportionality effect

In this section we describe an interesting property that exists in any system of differential equation with

constant coefficients. From differential calculus we remember that the general form of solution for
system of equation like (6) may be written as



u(x,y) = Ae™""” (7)

With A, aand £ being a vector of constants and two unspecified scalars, respectively. It may be seen
that the following relations exist

u(x + E, y) — Ap?CHL )Ry _ A S(@xtfy)tal, _ A (@xtfy) joly ,Umll(x, y)

and

u(x+nL_,y)=A pA L) By _ A (axtfyyenal _ A (ax+fy) nal, _ (Uy ) u(x, y)
for x direction and similarly

U(I,y + Ly) _ AEH'T“I'ﬂ(F-{-Ly) - ﬂnzu(x: y)

and

u(x,y+mL,) =A™ """ = () u(x, )

or more generally

u(x+nL,, y+mL,)=Ae" " = () () u(x, ) (8)

In above L and L are arbitrary lengths along xand ydirection. Relation (8) states that for each

spectral solution as (7) the values of components of vector uis proportional to the values of the vector
at multiple length scale farther and the proportionality value varies exponentially with the order of the
multiply number. This appealing effect 1s also seen even when the differential equations are written as

the equivalent integral equations. In the forthcoming sections we shall refer to this effect when a
weighted residual method 1s applied for numerical solution.

We further note that substitution of (7) in (6) leads to a system of equations like
LAe®*” =0 or LA=0 (9)

In which L 1s a matrix containing functions of coefficients v and . A non-trivial solution for such a
system of equation 1s found as null space of L by letting its determinant be zero, i.e.

IL|=0. (10)

This results 1n a characteristic equation with « and /£ as the main variables. Now one variable can be

found 1n terms of the other as S = f(«) or a=g(f). We note that depending on the order of the
characteristic equation, there may be more than one relation in each case.

The general solution of the problem may be written as the superposition of spectral solutions, for
instance when £ 1s found in terms of & , as



u= LZAEe””ﬁ”’da = LZA,.e“-“"‘W“’da (11)

Where inner summation 1s taken over null space bases of L and the outer integration 1s performed over
all feasible values of « .

2.2 The decay and radiation conditions

Before explaining the numerical solution technique it is worthwhile to address the decay and radiation
condition for wave propagation problems.

Decay condition: Noting that the domain i1s defined as x>0 and y >0, and provided that the
exponents » and m in relation (8) are nonnegative integers then the decay condition 1s expressed as

|,um‘<l and ‘ﬂm‘(l (12)

Conditions (12) ensure that u — 0as n—> o0 or m — 0. It should be noted that wis the amplitude of
U as stated in (2) and clearly U — 0 as n,m — o since ¢ is a bounded periodic function.

We also note that z4,, and 4,, can generally be complex values and thus each condition of (12) defines a
circle in Gaussian plane.

Radiation condition:  Apart from the decay condition, in wave propagation problem the radiation
condition must be met. Physical interpretation of the phenomenon is that the energy going towards
infinity never comes back or be reflected. Representative of the traveling energy is in fact the wave or
the traveling deformation. Therefore it is necessary to ensure that the function representing the
deformation in time show such out going movements of energy.

Substitution of (7) in (2) leads to
U - Aeﬂ':ﬁﬁyﬁmf (1 3)

Now supposing that & and £ generally take the form of

a=a+ib and f=c+id (14)
Then
U - Ae(ﬂ+ib]x+{c+fd}y+im! - Aeﬂr+cy€f{bx+dy+m!) (15)

[t can be seen that for outgoing waves following conditions must be met
a<0,c<0,b<0 and d <0 (16)

The first two conditions are in fact reflecting the decay condition as the first two terms in the last
expression in (15) play the role of amplitude at point(x, y). However, the third term in the right hand

side of (15) defines the direction of the movement. From above discussion it is concluded that the
proportionality values in xand y direction take the forms of



‘“m = e-[uELIe—Ilble and ,uﬂz = €—|E]L}.e—fid|£j, (17)
Since L and L, are arbitrary lengths we may take L_|b |*=_i£ and L |b |_‘§.£. This leads to

X X 9 y 2
R(Uy)-3(tly) <O, R(ty)-S(thyy) < O (18)

where R(.)and 3(.) refer to the real and imaginary parts of the quantity. These two conditions ensure

the radiation condition in the directions of the main axes. This means that feasible domains are the
second and forth quadrants of the unit-radius circle over the Gaussian plane.

2
REMARK 1. In wave problems quantities || and | d | represent the values of % and =2 with A,

;1" J ll

and A, being the associated wave lengths along xand y. From relation L_|b |£-';E and L, [D|< i

2
one can conclude that

A
Lriéﬂl and L <—=
T4 ¥4

[t can be concluded that the best presentation of radiation condition can be seen when the periodic
lengths are considered less than a quarter of the associated wave lengths.
O

In forthcoming sections we shall frequently refer to inequalities of (18) as the radiation condition for
the solution technique.

3. THE WAVE PROBLEMS AND THE SOLUTION TECHNIQUE

Before explaining the formulation of the numerical solution, we prefer to choose particular form of
widely used differential operator as

2 =S"DS (19)

In which § 1s a differential operator and D is material modulus matrix. Then the differential equation
(6) takes the form of

S"DSu+ pw’u=0 (20)

For elastic or scalar wave two dimensional problems operator S and matrix D are defined as



For elastic wave problems (plane strain)

9 — 0
Ox l—v
S=| 0 E D= (I_V)E Y ] 0 (21)
Oy 1+v)Q-2v)| 1-v
1-2
2 2 0 0 i
Oy Ox | ’ 2(1-v)_

(22)

With Eand v being elastic modulus and Poisson’s ratio for elastic material and k and k, conductivity

coefficient along xand y, respectively.

[t 1s noteworthy that orthotropic material may also be used by replacing the D matrix and, as long as
the system of differential equations remains linear with constant coefficients, this does not affect the
methodology explained later.

As mentioned 1 the introduction, in this report we shall employ the finite element method for

numerical solution. It should be emphasized again that the approach given in this report does not limit

to finite element method. In the next subsection we shall give the finite element formulation of the
problem.

3.1 Finite element analysis
The finite element solution of (20) starts with discretization of the domain and approximation of u as

u~u, =Nu (23)

where ware nodal values of the approximate function and N is an appropriate set of shape functions.
Application of Galerkin form of weighted residual method leads to

| N"{S"DS(Nu)+ pa’Nu} dQ =0 (24)

Although we can continue with above strong formulation, in standard finite element it is usually
preferred to employ weak form of (24) in order to take advantage of shape functions with

C’ continuity. Thus the first integration in (24) is taken by part and the equation is rearranged as
following well known formulation



—( [, (SN DN+ por ( [ N“"Nm) w+ [ N(EDSNu)T =0 (25-a)
or
( jﬂ BTDBdQ) u-po’ ( jﬁ NTNdQ)"ﬁ' - jr N" (ADBu)dl" =0 (25-b)

in which B=SN and n is a matrix containing components of unit normal to the boundary arranged in
an appropriate form for scalar and elastic wave problems. In relations (25) I denotes the boundaries

with Neumann conditions and the last integration in (25) plays the role of external forces since the
tractions of approximate solution are considered to be equal to those of exact gradient field

nDBu=t on T (9)

o

where tis the vector of exact tractions. For the model problems in this report Neumann boundaries
[, , if exist, are considered at x =0and/or y =0. Essential boundary conditions with prescribed values

for uas u‘r =u, are also considered at x=0and/or y =0, if exist. Using conventional notation
K=| B'DBJQ , M=p| N'NdQ and f=[ N'tar (27)

then equation (25-b) becomes

(K—sz)ﬁ:f‘, (28-a)
or
Ku=f , K,=K-o’M (28-b)

Equation (28-b) is in fact representing the dynamic equilibrium equation of the system in finite element
sense. The system of equation consists of infinite number of degrees of freedoms and the solution must
be found with boundary conditions specified at x=0andy =0, and also the decay and radiation

conditions as x, y —> .

The solution of (28-b) is generally impossible unless some additional assumptions are made for
reduction of the size of the system of equations.

Assumption IV. The mesh of elements is constructed by repeatable patterns of smaller meshes in both
directions.

Assumption IV has been inspired by the proportionality effect existing in the solution of original
differential equations discussed in Section 2.1. Of course, to use such a proportionality property
another assumption is needed

Assumption V. The numerical solution inherits the proportionality property form the governing
differential equations.

10



We shall show that in order to employ assumption V, the numerical solution must be performed in a
spectral form. Nevertheless, we do not expect that the proportionality values in each spectrum be

equal to that of the original differential equation because of the approximation involved. This effect is
usually referred to as dispersion and has been studied by many authors [19-26].

Basic cell

(a) (b)
Figure 1. Grids with repeatable pattern constructed for unbounded domains, (a) a sample of mesh

constructed, (b) degrees of freedoms in nearby nodes of a cell is written in terms of the those inside L-
shape area.

Now a large mesh with repeatable pattern 1s considered. An example of such a mesh 1s illustrated in
Figure 1-a. We shall refer to a unit of the repeating pattern as a “cell”. Assembly of the coefficient

matrix K, in (28-b) may be performed first by assembly of the elements contributions at cell level and

again assembly of similar units of the resulting sub-coefficient matrices. Note that the equilibrium
equations at cell level pertaining to inner nodes should be condensed. Thus the remaining parts to be
assembled with other cells are those pertaining to edge and corner nodes.

The final coefficient matrix can be schematically partitioned as
KHB KHI ﬁB f

P, S—2 S (29)
_K;f KH_ ' ~_0

=l

In which B and [/ in subscripts denote the partitions pertaining to boundary nodes and those inside the
domain (at interfaces of the cells) respectively. We temporarily leave the boundary partitions and focus
on the parts pertaining to the inside nodes. Treatment of the boundary nodes for satisfaction of the

external forces comes after finding an appropriate spectral solution for dynamic equilibrium state of the
inside nodes.

Now considering a group of connecting cells far from the boundaries, it can be realized that the
corresponding rows of the coefficient matrix in (29) are of similar form with repeated sequence.

Smallest set of such rows of the matrix is constructed for nodes in L-shape shaded gray area in Figure
l-b.

The set of equations pertaining to shaded gray area in Figure 1-b can be represented by following
compact form

ki, +k, 1, =0 (30)

11



in which k, denotes the part of the coefficient matrix associated with DOFs of the nodes inside L-
shape area, represented by u;, and k,; denotes the part associated with DOFs of the surrounding nodes,

represented by u,, contributing to equilibrium equations of the first set. In Figure 1-b, for instance,

DOFs of nodes 1 to 3 are represented by u; and DOFs of nodes 4 to 21 are represented by u,.

Now we apply the proportionality property as

m n__»~§

w,(x+mL,,y+nL,)= " yw,(x, y) (31)

Where L, and L, are cell dimensions along xand y, g and u,are proportionality values which

should be determined in a consistent manner. Superscript s 1s used for denoting spectral value of the
function in a new space to be defined later. In above expression interpolated field of the unknowns (viz.
Eqn. (23)) are used and clearly the same relation is valid for node values.

REMARK 2. The reader may note that similarity in rows of the coefficient matrix has roots in the
type of the differential equation. In fact differential equation with constant coefficient has the
property in differential length scale, i.e. the form is similar for all differential volumes. Similarity
property of the equations and repeatability of the mesh pattern leads to sequential similarity effect
in the coefficient matrix since the coefficient matrix is in fact the result of integration of the
differential equation. The similarity effect in the coefficient matrix may also be seen even when the
material properties vary periodically with period length of the mesh pattern. In that case the
differential equation does not show such an effect. Nevertheless, as long as the coefficient matrix
shows similarity effect, the proportionality is still applicable. This is another appealing effect of
this approach which leads to solution of unbounded domain with repeatable material properties.

O

We use (31) in order to relate the values of nodes represented by u; to the values of nodes represented

by u,. For instance in Figure 1-b, following relations are used for a scalar wave problem

—Iﬁ—-rr

Ug = KUy, Ug = ) U,

o -

Uy = My Uy, Uy = My Uy
Uy =y Uy Uy = LGy Wy = M Mol Ty = Ml (32-a)
and so forth. All relations may be written in a matrix form as

u) =T, ) (32-b)

Substituting (32) in (30) leads to following matrix equation

12



Q{#ﬂz}ﬁf =( (33)
In which

Qi) =K TR L 10y (34)

Equation (33) states that u; should be defined in terms of null space bases of Q when the determinant
of Q 1s set to be zero

= f (4, 4,)=0 (35)

‘Q(ﬂi )

Equation (35) serves as a characteristic equation as the one in (10). Two unknowns, £ and u,, appear
in one equation and thus one may be evaluated in terms of another

H =8(4) (36)

In a numerical solution one may choose a value for g and evaluate &, form the characteristic equation

(35). In choosing appropriate values for the proportionality parameters the decay and radiation
condition must be kept in mind. In view of relations (18) we choose R(x,).3(x)<0, and

M(u,).3(u,) <0 to strictly satisfy the radiation condition (the reader may note that even positive sign

of such products might be interpreted as radiation condition but the negative sign rigorously enforces
this condition).

REMARK 3. Radiation conditions R(z).3(4,) <0 and R(y,).3(u,) <0 are written for one cell.

The physical interpretation of using these conditions for single cell i1s that the cell 1s enforced to
transmit the information from one corner to other corners. When this applied for all cells the
directional transmission over the whole domain is assured. It is worthwhile to note that although
this leads to satisfaction of the radiation condition over a group of mXxn cells, the same result could

m 1

not be taken by considering R(4").3(4") <0 and R(w, ).3(4, ) <0. This 1s because when g anc
w1, are chosen so that R(x,).3(4) <0 and R(u,).3(u,) <0 then, depending on exponents m anc

m

n, K" and 4, may not show the same properties.

]

REMARK 4. In view of Remarks 1 and 3 it 1s seen that the dimensions of the cell play an important
role in enforcement of the radiation condition. Considering the periodic lengths L and L as the

cell dimensions, it can be concluded that in order to use R(x,).3(4) <0 and R(u,).3(u,) <0, the

cell dimensions must be less than a quarter of the associated wave lengths. In practice the cell
dimensions are considered smaller than this limiting value.

O]

The following function is then defined

13



My = h(t4) h:{g ‘ |g(u) =1, 4 121, R(g).3(g) <0, fﬁ(ﬂl)-ﬁ(ﬂl)"‘:o} (37)

Generally, several relations like (37) exist since characteristic equation (35) possesses several roots for
a given 4, . Therefore

() = h (1) (38)

Now supposing that ¢ ,, belongs to the null space of Q, it may be observed that the nontrivial solution
of (33) 1s

ﬁf = ¢(,u1) (39)

Therefore the finite element solution for the set of nodes i may be written as

B, = I{Zklck {#1)¢k{ﬂ|}]dﬂ1 (40)

Where integration is taken over all feasible values of £ . We note that the vectors ¢, , , are normalized

with respect to their lengths. In Equation (40) coefficients ¢, .y are to be determined from boundary
conditions at x=0 or y=0.

The number of inner summation in (40) is dependent on the number of ¢, ,, for which g and 4,

satisfy (37) and may vary when g takes different values.

Based on above details for selection of proportionality factors and associated vectors, in view of the last
two conditions of (37) integral of (40) is written as

. T M-& 27 pl-¢ i
TR L J: [;Ck{;:,}¢k{p,}]rdrd9+ - L [;ck{mtﬁkm}]rdrdﬂ ., =re” (43)
2 2

over the second and forth quadrants of the unit-radius circle of the Gaussian plane. In above integrals ¢
is chosen as a very small value (& =107 in this study).

[t may be noticed that, generally, in solution of characteristic equation (35) either x4, or x4 may be

obtained in terms of the other one. Hence, it seems logical to perform both calculations and then
modify (43) as

A

3 [ :
— L n 7 2r (-¢ 1 n < = i0) _ io
0, =), J.EJ: [Zf’fcu:ﬂ) k{m.))’ldﬂ:d@fr j!_fr J: (Zcmﬂ) k) | dO, ¢ =re™ , i, =re™ (44)
k 2 k ]

n=l | 2

The integrations in (44) are to be taken numerically by using an appropriate Gauss quadrature rule.
Therefore the integrals can be replaced by summation sings. The weights for quadrature points and

corresponding , may be combined and considered as a part of coefficients of ¢ Therefore one

(2,) "
can write

14



2
u; = Z%L% Cr ) Pru,) (45)

n=| ¥

In which C;

k (4,
symbolically while keeping in mind their limits

, represents the combined coefficients. For simplicity all summations are shown

u, = ZCE%@;’{H,} , M, =re” n=12, 0e&{0,x/21VB3%x/2,2x]} , re(0,1) (46)

Supposing that the coefficient values C} , jare available we construct the finite element solution u for

n

the whole domain through defining characteristic vector w, ., ,from its smallest subset, 1.e. ¢,

using a transformation matrix like T, , , containing proportionality factors

I . m'n n
W#(ﬂ,.:l o T(ﬂ,, i (p,)) Tk (/) (47)

Clearly the dimension of w depends upon the number of cells considered along the two axes. The finite
element solution 1s then obtained for the domain selected by w as

W=D CiuyW ) (¥8)

We note that w consists of both u, and u, in equation (29).

Now the question regarding the values of coefficients, Cy ,,, must be answered. For satisfying the

Neumann/Dirichlet boundary conditions we shall start with the Dirichlet ones and then generalize the
formulation to mixed boundary conditions which will include the Neumann ones.

L. Dirichlet boundary condition: Supposing that a set of prescribed nodal values as wu, is

available we need to satisfy ﬁ|r =1, as essential boundary conditions. This means that

[ZCS(!‘.,}W’L’(M,}]F" = U, (49)
or

2. Ci Y ks = U (50)

[n which v’ is a vector containing components of w’, , , that fall on I', and can be defined by

components of ¢, , ,using a suitable transformation matrix

Viw = Yo e, (51)
Here Ty contains the proportionality factors, 4 and u,, and selects the nodal values of ¢, , , for
boundaries.
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Now we assume that the coefficient value associated with a value for 4, 1s proportional to the

projection of wyon v’ ,. Such an assumption, which is consistent with conventional
mathematical transformations, is applied in its general form as

N M Y o
Ck (H,) = (vk (,u”}) RuH (52)

Where R 1s a matrix assumed to be independent of ¢ and to be determined so that Equation (52)

holds for all values of & . We note that arrays in relation (52) are generally of infinite number of

components since infinite number of boundary nodes exist along x=0and y=0. For a

computable solution, one needs to truncate the arrays. Truncation of the arrays is performed based
on the largeness of the solution area and the accuracy required.

To evaluate R we substitute (52) in (50) to obtain

[Z Vi) (v:fﬁ") )T Rj| U, =u, (53)

Since R 1s assumed to be independent of z , 1t can be taken out of the summation sign

[Z Vi) (": (1) )T } Ru, =u, (54)

Above relation implies that

-
R= [Z Vi) (": (t4) )T ] (55)

The number of integration points required 1s dependent on the number of prescribed values, 1.e. the
length of w,. The reader will note that vectors v, are not orthogonal and thus increasing the

number of integration points helps to obtain a full rank matrix.

Having found matrix R, the finite element solution is evaluated from (48) as

= Z((v; » )T R, ) W (56)
or
= (Z Wi (Vi) ) Ru,, (57)

The solution corresponds to the homogenous part of the solution to integral equation (29) with
presence of prescribed boundary values for the main function, 1.e. when u, 1s prescribed instead of

f W
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2. Mixed boundary conditions In order to find general relation between nodal resultant of tractions
f, and corresponding nodal values of the function u, one can evaluate the nodal resultants due to

finite element field presented in (57). To this end, the first row of matrix equation (29) is rewritten

Figure 2. Nodes and cells contributing to tractions at a boundary of a sample mesh (shaded gray
area). Nodes 1,2,3,5 and 6 are those for which the Neumann conditions are to be satisfied and
nodes 4,7,8,9,10,11 and 12 represent the nodes which contribute to nodal forces at the former set.

K, u +K,u =f (58)

[t should be noted that just a small part of u,, including the first set of inner nodes, contributes to
f (see Figure 2 ). Equation (58) may be written as

Kbndﬁ, = fr (59)

[n which u'is the union of u, and the part of u, contributing to f , and K, , is corresponding
rectangular coefficient matrix, arranged from K,,and K, , which is the assembly of coefficient

—

matrices at the boundary. For instance for simple mesh pattern in Figure 2, w, represents the
DOFs of nodes 1,2,3,5 and 6, and u, represents the DOFs of nodes 4,7,8,9,10,11 and 12.

1

In order to construct ' in terms of u,, in (57) vector w', , , is replaced with a suitable one

W= (Vi (Vi) RS, (60)

fn 1

k(4, k(i)
and corresponds to the sets of node contributing to boundary tractions (nodes 1 to 12 in Figure 2 for

rn

instance). Construction of v’/ , may be performed through defining a suitable transformation

In above relation v’ , , is a vector the components of which are subset of components of w’

matrix as below

f
Vi) = Xo Peu,) (61)
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Where T;" contains the proportionality factors 4 and 4, , and selects the nodal values of ¢, ,at
or near boundaries.

Now substitution of (60) 1n to (59) leads to

b,,f,(Zv';’% (Vi) )Ru = (62)

Above equation relates the nodal resultants of traction and the corresponding nodal values of the
main function. In a conventional form of notation

Kou, =1, , K,=K,, (Zv’ﬁ:’(ﬂ” (VE (,u,,))T)R (63)

Where the so defined K, plays the role of a condensed dynamic stiffness of the domain evaluated

at nodes on x=0and y=0. Clearly, matrix K, 1s a complex matrix and its imaginary part 1s
interpreted as a damping matrix due to dissipated energy via radiation.

It may be noticed that with Equation (63) in hand, one can consider pure Neumann conditions at
x=0and y=0 when f 1s known a priori and u, 1s a set of the unknowns. In that case, u, 1s

evaluated from (63) and the rest of nodal values are calculated by (57).

REMARK 5. As an alternative way, especially for problems with pure Neumann conditions, one
may start from (59) by replacing u’ with its equivalent series

-_—f n In
K, W =1, 5 W= Gl Vi, (65)

In

with v, , defined as (61). Analogous to (52), the coefficients may be assumed to be proportional

In

to the projection of K, v, , onnodal tractions resultants f,. Therefore

oy = KoVt ) R, (66)

with R'being again a matrix assumed to be independent of 4 and to be determined so that (66)
holds for all values of x . Following similar reasoning in (53) to (55) it can be concluded that

11

-1
T /&
li rn rn . I n In IiT
[Z bndvk (u,) ( bnd k (,u”)) j| o bna’ |:Z vk (1) ( k(p”)) } bnd (67)

The finite element solution i1s then evaluated as

'ﬁ'=(z W L VL ] )K;dR'f (68)

which is written in flexibility form. It is obvious that this form can also be employed for problems
with mixed Dirichlet and Neumann conditions as what we saw 1n (63). Nevertheless, it 1s not easy

18



to show that the coefficient matrix in (68) 1s inverse of K,in (63) but from uniqueness of the

solution, however, it 1s expected that at least for the gradients both forms give similar results. In
this report we employ the form given in (63).

O

Our experience 1n using relation (63) shows that K, becomes ill-conditioned when a relatively large

number of cells are used for satisfaction of the boundary conditions. In fact, the first signs of 1ll-
condition effect appear in evaluation of R through relation (55). The expression inside the bracket in

(55) becomes ill-conditioned due to round off errors occurring in evaluations of vector v, ,.

From a computational mathematics stand of view, it 1s well understood that ill-condition effect is 1n
close relation with the precision used for the computations. Therefore such an effect can be completely
eliminated by increasing the precision. Nowadays, with available routines, it 1s possible to use any
desirable precision.

Nevertheless, it may be appealing to use machine precision to take advantage of compatibility with
other routines available for engineering computation. The reader is referred to Appendix A for possible
way of treating the problem.

In the next section we shall give results for numerical solution of some scalar and elasticity wave
problems.

4. NUMERICAL RESULTS

In this section we present numerical results for some benchmark problems. We shall try to evaluate the
Green’s functions, with definitions given in (3) and (4), for scalar and elasticity wave problems. It is
well understood that any other wave problem can be solved by use of such fundamental solutions
through superposition of the effects as is usually performed in boundary integral method.

We shall give discussion on the convergence of the solution in terms of the number of cells used along
xand y axes as well as the number points used in Gaussian plane for summations required in the
formulation.

An L, norm defined over a bounded area 1s used for convergence study. We define

ol = VXl
for nodal values of scalar wave problems and
ol = VX daif +[7

for nodal values of elastic wave problems. In above norms | . | denotes absolute values of the quantity
noting that the nodal quantities can be complex values.

Example 1. As the first benchmark problem we consider the following scalar wave equation,
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Figure 3. Patterns of cells used for numerical solutions, (a) four node quadrilateral element (b) regular
pattern of three node triangular elements (c) Criss-Cross pattern of triangular elements (d) doubly
arranged regular patterns of triangular elements (e) doubly arranged linear quadrilateral elements.

82U+82U l 62U_f(x A
ox* oy* ¢ o L

in which cis the wave speed and f(x, y,7)1s the source term. The equation has numerous applications
in physics and mechanics. The Green’s function in frequency domain is obtained by assuming
f(x, y,t) =6(x)5(y)e' and seeking for steady state solution as U = ue™
¢ =1. The following partial differential equation is obtained.

. In this example @° =3 and

) ) )
. 1;4_5 E:,,1f+m-:- u=0(x)o(y) (x,y) e RxR
ax: @y i€

The homogenous part of the equation, known as Helmholtz equation, is in fact a special form of
equation (20) with operator S being as (22), k, =k, =1 and also p=1. When the Laplace operator is

written 1n a polar coordinate the exact solution of the differential equation may be found as

U =C‘,H§(EF)
C

with H; being Hankel function of second kind and r = \/ x* +y* . Coefficient C,is found by making

balance between the gradients from the solution and those induced by source term near origin. As 1s
seen the solution is singular and needs special treatment when 1s used in boundary integral method.
However, when the solution is performed through finite element method the singularity effect
disappears and the solution remain finite at origin. In order to use the proposed method, first we
redefine the problem over a quarter of the full space with the following boundary conditions

o, M0 (x,y)e[0,0)x[0,0)
oy | _ OX |-
_}’-—-U x=0

We shall employ a series of meshes with basic repeated cells as shown in Figure 3. The solution for
meshes constructed by cells of Figure 3-a-b-¢ can be found, in spectral form, by writing the
proportionality relations for all nodes in terms of one node, e.g. node number one. The element
dimensions 1n all cell patterns are considered as a =5b=0.25. This reduces Q matrix in (34) to a scalar
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similar to the characteristic equation (35) and therefore there will be no need for finding null space
basis ¢ .

In order to give some insight to the forms of the characteristic equations resulted from using each basic
cell of Figure 3-a and 3-c, we present them in Appendix B.

Figure 4 and 5 depict three dimensional and contour plots of the real and imaginary parts of the
solutions obtained for the three finite element meshes. The exact solution is also shown in the same
figure and has been cut at singularity point in order to be comparable with the finite element solution at
the other parts of the domain. In these solutions 40 boundary cells are used along each axis to satisfy
the boundary conditions which are of Neumann type with zero values except the corner node at origin.
For integration over the Gaussian plane, see (46), 40 points are used along the radial and angular

directions separately. It can be seen that the numerical solutions are in agreement with the exact
solution.

[t might also be interesting to know the effects of choosing a larger cell as a repeated basic one. The
reader may notice that a basic cell like shown in Figure 3-d and 3-e can also be used as the basic cell.
In that case matrix Qin (34) will be a 3x3 matrix since all nodal values, in spectral form, can be

written 1n terms of values at nodes 1,2 and 3 in Figure 1-b. The vectors in null space of Q are of 3x1
dimension.

[t can be seen that the larger the cell the higher is the order of the characteristic equation. In order to
compare the results with the ones from smaller cell, 20 cells are used along each axis to satisfy the
boundary conditions. The number of points for integration over Gaussian plane is the same as the one
used for solution with smaller cells (cells in Figures 3-a and 3-b).  The results are shown in Figure 6

which should be compared with Figures 4-a-b-c-d for real parts and Figures 5-a-b-c-d for imaginary
parts.

To study the convergence of the solution, different numbers of integration points are used in a series of
solutions. Figure 7 demonstrates the results. Note that the numbers given for integration points
represent the number of points used along each direction in Gaussian plane, i.e. along and &, and
thus one point increase in the figure represents 2N +1 increase in the total number of points used in
each quadrant of the unit-radius circle. Forty cells are used along each axis for satisfaction of the
boundary conditions and the norms are calculated over an area of 20x20 cells.

For linear quadrilateral elements excellent convergence is seen. Maximum difference between norm
values for above 35 integration points is less than 0.0003% as is seen in Figure 7-a. For regular
triangles, however, the convergence seems to be rather cumbersome. In this case, as Figure 7-b depicts,
the difference between values of the norms is about 1.3%, for above 35 integration points, which is
much higher than that of the previous case. Figure 7-¢ shows convergence of the solution when Criss-
Cross pattern 1s used. The maximum difference between norm values for above 35 integration points is
less than 0.0005% which is in the same order as obtained for linear quadrilaterals. One important
observation is that in Figures 7-a and 7-c, as a rule of thumb, the minimum number of integration points

1s within the order of the number of cells used for satisfaction of boundary conditions along the xand
y axes.

The reader may notice that although all cell patterns consist of linear elements, small differences are
seen between the solutions and especially the convergences obtained. The sources for differences can
be traced by counting the number of nodes within a wave length along different directions and noting
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(c) Double quadrilaterals-‘R(u) (d) Double quadrilaterals- 3(u)

Figure 6. Three dimensional and contour plots for variation of the real and imaginary parts of the
solutions in scalar wave problem. Twenty cells are used for satisfaction of the boundary conditions and

the solution are plotted over an area of 10%10 cells; (a) and (b) solution using mesh with basic cell of

doubly arranged regular pattern of triangles as Fig. 3-d, (¢) and (d) solution using mesh with basic cell of
doubly arranged bilinear elements as Fig. 3-e.

the interpolation used. Along x and y axes patterns of regular triangles and square quadrilaterals

have similar number of nodes and similar interpolation order within a wave length. However one may
notice that along x =y axis the number of node per wave length differs from those along main axes

and, although both types have similar node per wave length, the cells with regular triangles are of less
order of interpolation compared with cells with linear quadrilaterals. In linear rectangular elements the
interpolation 1s of quadratic order along the diagonal. Therefore it is expected that the performance of
the regular triangular elements, as the pattern shown in Figure 3-c, be inferior to that of the square
elements (see Figure 4-b and 4-c for real part of the solution). The effect of number of nodes per wave
length and the associated interpolation, causing phase lead or error in direction of the wave propagated,
is usually referred to as dispersion effect and has been studied by many scientists. For problems with

Helmholtz equation the reader may refer to works by Ihlenburg and Babuska in [20, 21] or Babuska et
al in [22-24] for example.

Apart from the general expectation from performances of different cells, it may be observed that,
regarding the formulation used in this report and referring to the relations in (32-a), nodal values at two
sides of a diagonal of a cell are proportional with a factor which 1s a cross product of the two

proportionality values g and 4, . This effect 1s consistent with variation of shape functions in four node

quadrilateral elements which is of quadratic form, i.e. cross product of local normalized coordinates
inside of a bilinear element, and of course is not consistent with the interpolation inside regular
triangular patterns. This inconsistency for regular patterns has a pronounce effect when either of

integrant variables g and u, are quite small and thus it 1s logical to expect that the convergence of the
solution be rather cumbersome with respect to the number of integration points.

Sources mentioned above for the different behaviors indicate that patterns similar to Figure 3-b lead to
a sort of directional behavior in the solution. The directional behavior of the solution is much
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pronounced in elastic wave problems which are to be addressed in forthcoming examples. However,
when one uses Criss-Cross pattern of triangles (see Figure 3-c) the problem of directional node per
wave length is alleviated by adding a node along the diagonal directions. Moreover, the problem of
interpolation is also reduced since there is no explicit relation inside the cell between the two nodal
values at the ends of diagonals. This is mainly because that the shape function associated with the
middle node acts as a sort of bubble function and thus alleviates the excessive stiffness of the cell seen
in the previous case. The results given in Figures 4-e-f and 5-e-f for distribution of real and imaginary
parts of the solution and the ones in Figure 7-c for convergence of the solution show that Criss-Cross
pattern produces quite similar results to those obtained form use of bilinear quadrilateral elements.
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The number of integration points

(c)
Figure 7. Variation of L, norms of the solution, for scalar wave problem, versus the number of

integration points used for different patterns of cells. The norms are calculated over an area of 20 % 20
cells and 40 cells are used along each axis for satisfaction of the boundary conditions.

It should be noted that using Criss-Cross pattern or larger cell of regular pattern instead of single
regular pattern just reduces the effects of inconsistencies between the interpolation and the formulation

24



given 1n this report. Different behavior is still seen along diagonal direction in Figures 6-a-b. Note that
the effects of dispersion may still remain even in the case of using quadrilateral elements. Some
remedies for reduction of the dispersion, such as the ones given in [25] and [26], may also be sought
and implemented 1n the finite element formulation given here which of course are beyond of the scopes
of this report. However, the method proposed in this report may be employed for studies in dispersion
analysis in unbounded domains without need of using artificial boundary conditions..
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Figure 8. Variation of L_,_. norms of the solution, for scalar wave problem, versus the number of cells

used for satisfaction of boundary conditions. The norms are calculated over an area of 20% 20 cells and
40 points are used for integrations.

All results so far shown for this example were taken over an area with fixed number of cells along
xand yaxes. Figure 8 shows convergence of the solution with respect to the number of cells used

along the two axes. Here again for evaluation of the norms an area of 20x20 cells is used. Linear

quadrilateral elements are used in the study. The figure clearly shows the method proposed in this
report 18 convergent with respect to the number of cells for boundary conditions.

As final results for this example we present the distributions of the real and imaginary parts of the
solution when 100 cells are used along each axis. Three dimensional plots of the numerical and exact
solutions are presented in Figure 9. The results obtained with procedure explained in Appendix A using
machine precision. The figure shows that the method proposed is capable of giving numerical solution
to a large area, with respect to the wave length, of an unbounded domain.

Example 2. The problem of the first example is solved again with orthotropic material k_=1and
k, =4 . The differential equation takes the following form

)

2 2 2
-6—24—461;+w2u:§(x)5(y) , =3, ¢c=1, x>0, y=>0, &% =0 and o ={
Ox oy~ ¢ Oy Ox

_}’=U x=0

The exact solution may be obtained by suitable mapping as y' =2y and using the same form as given

in the first example with » = \/xz +4y* and modification of the intensity of the Delta dirac function in

y direction. We note that it is possible to use the results of the first example with the above mapping

but here the aim is to examine the capability of the method for solution of problems with orthotropic
materials using square elements, as shown in Figure 3-a, for the cells. The numerical and exact
solutions of the problem are shown in Figure 10. Here again 40 cells are used along each axis for
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boundary conditions but 60 points are employed for integration. It can be seen again that the proposed
method 1s capable of giving numerical solution to the problem.

1009 1000

(a) FEM-R(u) (b) FEM-3(u)

100 100

(c) Exact-R(u) (d) Exact- 3(u)

Figure 9. Variation of the real and imaginary parts of the solution of scalar wave problem shown over a
domain of 100%x100 cells. In numerical solution, 100 cells are used along each axis for satisfaction of
the boundary conditions and also 100 points are used for integrations.

Example 3. As a benchmark problem for elastic wave category, we try to give numerical presentation
of Green’s function in a two dimensional infinite plane. Plane strain condition is assumed and unit

harmonic point load is applied at origin of the coordinate system (x,y) in the direction of x. The

corresponding differential equation is defined by Equations (20) and (21). The exact solutions for
components of displacements, u and v, can be found in [27] as

26



0.26723 0.05313
~0.06655 ~0.12475
0 5 10 15 30
(a) FEM-R (1) (b) FEM- ()
20F ' : '
0.24905 0.05033
~0.0651 ~0.12493
0 5 710 15 20 10 15 20
(c) Exact-‘R(u) (d) Exact- 3(u)

Figure 10. Contour plots of real and imaginary parts of the solution in scalar wave equation with

k g = 4k . Forty cells are used along each axis for satisfaction of boundary conditions. The solutions

are plotted over an area of 20% 20 cells.
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where K is the modified Bessel function of order nand of the second kind, ( ,&) represent polar
coordinates of the point and ¢, ¢, denote shear and pressure wave speeds, respectively, which are

written in terms of shear and bulk modulus of the material

E E
TN2vp 7 \3-2v)p
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with p,Eand vbeing the density, elastic modulus and the Poisson’s ratio of the material. In this
example p=1, E=1000and v=0.3. Also @ is the frequency of the applied load which is chosen in

this study so that @* =1000 .

For numerical solution the cell patterns shown in Figure 3-a-b-c are again used in this example. In
order to model the problem in a quarter of the infinite plane, 1.e. x=0and y =0, the following

symmetric and anti-symmetric conditions are used

0, =

y= o

=0

x=0

[l
-
.
[l

=0 and o,
y=0

where o and 7 denote normal and shear stresses. Here again 40 boundary cells are considered for
satisfying the boundary conditions along xand y. Also the number of integration points on Gaussian

plane is 40 for radial and angular directions separately. Figures 11 to 14 depict variations of the two

displacement components over an area of 20x20 cells. The figures clearly show that the proposed
method is capable of producing finite element solution.

Comparison with the exact values shows that solution with linear quadrilateral elements exhibits
dispersion effect along y =0 especially for u displacement. This can be understood by measuring the

spacing between the contour lines along y =0. Considering the direction of the applied unit load and
the boundary conditions, gradients of u displacement along y =0 represent deformation due to

longitudinal component of the waves. For the same displacement, however, variation along x =0 seems
to be similar to the exact solution. Deformations associated with this latter case represent shear waves.
The overall conclusion 1s that linear quadrilateral elements perform better in shear wave deformation
rather than longitudinal waves especially along the edges. This coincides with observations and
analytical studies made by Cherukuri in [19].

For regular pattern of triangular elements, Figures 11-c-d to 14-c-d show that the directional behavior 1s
more pronounced than that of the case for solution of scalar wave problem. Figure 14-d clearly
demonstrates the skewness of the deformation due to the directional behavior of the cell. Figures 11-e
and 11-e-f and 14-e-f depict the results obtained from use of Criss-Cross pattern of cells. As expected,

the directional behavior 1s reduced and similar results to those obtained from linear quadrilateral
elements are achieved.

[n Figures 15 and 16 the distribution of the numerical solution 1s shown over an area of 100x100 cells.
Hundred of integration points are used to satisfy boundary conditions on 100 cells along the axes. As
the first example, here again, procedure of Appendix A with machine precision has been employed.
Better presentation of dispersion is seen along y =0 when real and imaginary parts of « displacement,

Figure 15-a and 15-b, are compared with the exact ones in Figures 15-c and 16-d.

For convergence study we present Figure 17 in which norms of the solutions with different number of
integration points are given. Similar to the first example, 40 cells are used along each axis for
satisfaction of the boundary conditions and the norms are calculated over an area of 20x20 cells. The
difference between norms for above 40 integration points 1s less than 0.05% for Criss-Cross pattern and
less than 0.09% for linear quadrilateral elements which are in the same order and show very good
convergence. Again an important observation is that the minimum number of integration points is

within the order of the number of cells used for satisfaction of boundary conditions along the xand
y axes.
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(c) Exact-‘R(u) (d) FEM-3(u)
Figure 15. Variation of the real and imaginary parts of u displacement in elastic wave problem shown

over a domain of 100x100 cell of single quadrilaterals. In numerical solution, 100 cells are used along
each axis for satisfaction of the boundary conditions and also 100 points are used for integrations.

Figure 18 demonstrates convergence of the solution with respect to the number of cells used along each
axis. For evaluation of the norms an area of 20x20 cells 1s used. The figure clearly shows the method
proposed in this report is convergent with respect to the number of cells for boundary conditions.

5. CONCLUSIONS

In this report we have presented a numerical solution method to wave problems with constant
coefficient differential equations. We have aimed at presenting Green’s functions in frequency domain,
as the representatives of wave problems, in a numerical manner. It has been shown that a
proportionality property exists in the solution since the general solution of the governing differential
equation can analytically be written as a summation of some exponential functions. Similar
proportionality effect has been assumed in the numerical solution when the grid is of repeatable
patterns (named as “cells”). It has been shown that such an effect also leads to sequential similarity in
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the rows of coefficient matrix. Application of the proportionality in columns of a generic series of rows,
results in an eigen value like problem through which a characteristic equation, consisting of the
proportionality values along main axes, i1s defined.

(b) FEM-3(v)

100 100

(c) Exact-‘R(Vv) (d) Exact- 3(v)
Figure 16. Variation of the real and imaginary parts of v displacement in elastic wave problem shown over a domain

of 100% 100 cell of single quadrilaterals. In numerical solution, 100 cells are used along each axis for satisfaction
of the boundary conditions and also 100 points are used for integrations.

[t has been shown that the numerical solution may be obtained in a spectral form through evaluation of
the roots of the characteristic equation and associated null space bases. Both decay and radiation
conditions are satisfied by defining a feasible domain for roots of the characteristic equation in
Gaussian plane. A compatible transformation technique has also been introduced for satisfaction of the

boundary conditions. Neumann, Dirichlet and mixed boundary conditions are considered for the
solution.

Finite element method has been employed as the numerical solution technique. Some benchmark
problems, 1n scalar and elastic wave categories, have been solved and the results of the numerical
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Green’s functions have been compared to those from analytical solutions. Several patterns for cells are
used for numerical solution. Convergence of the results, in terms of the number of cells along the main

axes and integration points in Gaussian plane, has also been addressed. The studies show that the
method leads to convergent results.
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0100524 L i | 1 L] 1 I L]
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The number of integration points
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The number of integration points

U]

(b)
Figure 17. Variation of L, norms of the solution, for elastic wave problem, versus the number of

integration points used for different patterns of cells. The norms are calculated over an area of 20 % 20
cells and 40 cells are used along each axis for satisfaction of the boundary conditions.

0.00415

0.00405

0.00395

U]

0.00385 -

0.00375 1 . : , ; . ;
20 25 30 35 40 45 50 55 60 65

The number of cells

Figure 18. Variation of L, norms of the solution, for elastic wave problem, versus the number of cells

used for satisfaction of boundary conditions. The norms are calculated over an area of 20% 20 cells and
40 points are used for integrations
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Appendix A

When machine precision 1s used in computations, one may confront with some ill-conditioned matrices.
In this part we give a remedy for reducing such an effect.

[n order to study possibilities of avoiding inversion of the matrix given in (55), one may rewrite
Equation (62) as

GRii, =f G=K,, ( S Vi (Vi })T) (A-1)
and thus

Ri, =G'f (A-2)
or

-1
ﬁH :Hfr H=R" IG | [ka(ﬁ" ( k (4, )) ]|: bnn’zvr;(y)( k(,u])r:| (A_3)

It may be seen that the inverse of the last bracket is still needed. Our experience also shows that the
matrix 1n the second bracket 1s less sensitive to round off errors than the one in the first bracket.

For problems with pure Neumann boundary conditions relation (A-2) may directly be used for
evaluation of the finite element solution through (57) as

2 Vi }( Vi, })T)Gulf (A-4)

For mixed Dirichlet-Neumann boundary conditions, first equation in (A-3) is written in partitioned
form

u ‘H, H,|(f
<uﬁl}: 1 12 | :D} (A-5)
B0 _HEI HZZ_ hfrl

u,,and f,, are the prescribed displacement and nodal forces. In order to use (A-4),

.r:}

In which vectors

vector of unknown nodal forces f, must be determined. From the second row of the equations in (A-5)
one can write

f, = Hy, (U, —H,,f,) (A-6)

The rest of procedure is to arrange the nodal forces as f, = [ff{; f T] and substitute it in (A-4). It can

t]

be seen that in the mixed form of boundary condition we just need the inverse of matrix H,, which is a

part of the matrix defined in (A-3). Experience shows that results from (A-4) and (A-5) are more
accurate than those from direct use of equations (57) and (62) which require evaluation of R as (55).
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However, when the boundary conditions are of pure Dirichlet form there is no escaping way from
evaluation of R 1f (63) is used. Nevertheless, one can use the set of equations given in (65) to (68).
For this, by virtue of (65) and (66), one may write

et n rn T !

T =(Zv“m(vk%)) )Kj;,dR f (A-7)
or

u' =G'Rf (A-8)

with G defined as (A-1). Then by use of (68) and noting that
G 'u'=RT (A-9)

the finite element solution for the whole domain can be written as
—_— n In : KT G—T—I A 10
u=(y w k(i) ("k {n*,}) md> U (A-10)

Note that Equations (65) and (66), in Remark 5, were originally proposed for pure Neumann boundary
condition but here we used them for pure Dirichlet.

[t is therefore seen that except for problems with pure Neumann or pure Dirichlet boundary conditions,
at least inversion of a part of the matrix defined in (55) is needed and thus round off error may still
encounter the computations when machine precision is used. As an effective way for further reduction

I h 1

of such an effect, the decimal numbers in components of vectors v/, , , v, and W', may be

truncated. By doing so, depending on the truncated decimals, the effects of highly decaying modes are

ignored in far field solution. In this report decimal numbers are truncated up to 10 for problems
solved in examples 1 and 3.

Appendix B

[n this part we give some expressions for the Q matrices, resulted from substitution of relations (32) in
(30) and defined as (34).

a) Scalar wave problems : For this case, when patterns like Figures 3-a and 3-c are used, Q is a scalar.
Denote the cell lengths in x and ydirections as aand brespectively, and let k_, k,and k,  be

coefficients in modulus of material matrix.
a-1) For linear quadrilateral elements (Fig 3-a):

Defining following factors
a = pw’

f, =b%k, +3abk, +d’k, f,=-6k +d’a f,=3k +d'a
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g, =18abk_, —6&2/{}, +b*f, g, = SaZky +b'f, g, = —6a2k}, +b' f, g, = —6f +a'b’a g.= 3a2ky +b* f,
(B-1)

then Q 1s evaluated as

1

O, 1) = St (84 + 480y + G145 +414, (g +Ags M, + o tly) + 17 (g, + 1, (432, + 8, 14,)))
1772

(B-2)

The characteristic equation is obtained when the determinant of Qis set to zero, i.e. in this
case Q(u,, 1,) =0.

a-2) For Criss-Cross pattern

Defining following factors

fi=12a’k, +12b%k, + a’b’ f, =12a°k, +12b°k, — a’b’ax f, =b"(12k, — a’a)(36k, + a’x)
fo=a'b’ 8k, —4kk, +a’ka)  f,=a’b’(24k, —12k k, +d’k,@) f,=b*(144k> +72a°k o +a'a?)
I = azbz(—24k_i, +36k .k, +7a’k,c)  f, =a"(432k! +168d’k a +7a'a?)

g, = (24abk,, + f,)’ g, = (24abk,, - f,)* 9. = —144a“kj + £, =721,
g, = -432a4kf, +24 f, + f, g = 864a“kf, +48 1, +2 f, (B-3)

then Q 1s evaluated as

1

O, 1,) = O6abf i (8 +2831, + oty + 1 (g, + 1, (28, + g44)) = 244,(g, + 14, (85 + g4 14,)))
1~717%2

(B-4)

b) Elastic wave problems : For this case, when patterns like Figures 3-a and 3-c are used,Qis
a2 X2 matrix. 1.e.

& B |
- B-5
°Zlo, o, s

Here again the cell lengths along x and yaxes are denoted as aand b respectively. The material
elastic modulus and Poisson’s ratio are considered to be as E and v .

b-1) For linear quadrilateral elements:

Defining following factors

o= pa’
F=1-2v F,==l4v F,=1+v
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G =a'F G,=b'F, G=a'F, G,=WF, G=ua'F G=WF

H =G,(-3E+G) H,=G,(6E+4G,2) H,=G,(-3E+G,a) H,=G,3E+2G.a)

I, =6G,E+H, I,=-3G,E+H, I, =6G,E+H, I,=12G,E+H, I, =24G,E+H,
I, =—12G,E+4H, I,=-12G,E+H, I,=-6G,E+H,

(B-6)
then one obtains following expressions for elements of Q
1
o = 36abF Fin (I + iy (I + Ly )+ A (1 + oy (L + L)) + 5 (1 + i (I + L)
Gl ¥ et
E(-1+ u)(~1+ 12
le = QEI = ( ﬂi )( Ju?_)
SIFy i,
1
O = e m s (I + ty (g + L) + 1y (1 + iy (L + Ly ) + 244 (1 + (4L + 1 4)) (B-7)
1= 37717772

Here again the characteristic equation is obtained when the determinant of Q is set to zero, i.e. in this
case‘Q(,ul, ,uz)lz(), The associated null space consists of a series of vectors with two components

which can be easily evaluated from one set of expressions for each row of Q given above.
b-2) For Criss-Cross pattern:
Defining following factors

F,=1-2y H==l+y E=1+p F,=1+2v F,=-3+2v F,=-2+v
F,==-5+6v F=-4+7Tv F,=-2+3v F,=-13+14v F =-10+17v F,h=31-34v

G, =2b°F, -a’F, G, =2a’F,-b’F
G, =a’b*(5+4v(-3+2v)) G, =a’b’(-5+2(5-2v)v) G, =a’b*(1+2v—-4v?)
G, =a’b*(11+4v(=7 +6v)) G, =a’b’(23+4v(-11+6v)) G, =a’b’(81+68v(-3+2v))

H =E’(a"+3a’b® +b* =3(a® +b*)’v +2(a* + b*)*v?)

H,=a’b’E*F,F,(4b*F,y —a'F,F +G,) H,=a’b’E’F,F,(4a'F,y -b'F.F +G,)
H,=a'b"E(F,F)*(2a’v +b’F,)a’ H,=d'b'"E(F,F)*(2b’v + a’F,)a’
H,=E°G (-a'F,F, +3b'F,F, +G,) H, = E’G,(-a"F,F, +3b*F,F, + G,)

H, =a’b’E*FF,(-4b*F,F, + G, -a*F)F)a  H,=da’b*E’F,F,(4a*F,F, +b'F,F, + G,)a
H,, = aﬁbﬁ(ﬁ;fﬁ)Eaa

H, =ad'b*E(F,F)*(b°F, +2a’F)a’ H,=a"b"E(F,F)*(a’F, +2b’F)a’
H,=a'b'E(FF)*(2a’F, +b’F )’ H,=a'b'E(F,F)*(2b*F, +a’F)a’
H=a'b'E(F,F)*(b’F, +2a°F,)a’ H,, =a'b*E(F,F)*(2b’F, + a*F,)a?
H,; = EzGl(b4FzE — G "'3’5’4]:'21:;) Hg = EZGz(bszFl _3941:?2};; -G,)
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H,=a’b’E°F,F,(-4b'F,F, -G, -a'F,F)a  H,,=a’b’E’F,F(4a’F.F,+b*F F, -G,)c
H, =E’(3a*+7a’b* +3a" -9(a’ +b*)*v +6(a* +b*)*v?)
Hy =a'b’E'FRF(AV'FF, +a'F,F+G)a  Hy, =a'b’E’FF,(4a'F,F, +b'F,F, +Gy)a
H,, = E*(2a* +5a°b* +2b* —6(a” + b*)*v + 4(a* + b*)*v?)

H,, = F,F,(12b°EF, - a’F,(6E + b°F,))) H,, = (-6b°EF, + a*(12EF, — b*F,F a))

I, =-432H,G, -36H,a+6H, + H,, I,=864H,~72H,+12H,,—2H,,

I, =-36H,,—6H,+H,, I, =432H, G, -36H,, +42H .~ 7H,,

I, =-432H,G, -36H,a + 6 H, + H,, I, =864H,—72H,+12H,, -2H,,

I, =-36H,,—6H,+H,, I, =432H,,G, -36H,, +42H,, —TH,, (B-8)

Then the following expressions for elements of Q are obtained

G+, L) =24 (A32EH , + 1, = 21, + (432H , + L) ) + i (1, + i, (1, + I, )

O
N (H96abH25H25ﬂlﬂ2)

|
QIE:'QZI—( SH. H, 111 )(E(36H24"ﬂ4b4(ﬂﬁ)zaz)(_l+:“12)(_1*“/-‘22))
- 254426812

_ U+, (U + L)) =244 (432EH y + I, =21, i, +(432H + L)y )+ pl (I + i, (I, + I 1))

&
2 (—96abH , H., 14, 1,

(B-9)
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