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Abstract. In recent years, stochastic modeling has been increasingly applied to investigate the 

uncertainties of input parameters in hygrothermal simulation and the moisture damage risks of building 

envelopes. Generally, stochastic modeling requires hundreds or even thousands of simulations to take 

into account the uncertainties of input parameters, which is computationally intensive and time-

consuming. This paper aims to apply polynomial and neural network metamodel as a substitute for the 

traditional hygrothermal model, to predict the hygrothermal performance of building envelopes. In the 

previous study carried out by the authors, stochastic simulations have been performed based on the 

traditional hygrothermal model, to investigate the hygrothermal performance of wood-frame walls 

under different rain leakage levels. The material properties and rain deposition factors were considered 

as stochastic variables, and stochastic simulations were performed under three rain leakage scenarios: 

1%, 0.5% and 0.1% of wind-driven rain. In this paper, the stochastic inputs (the hygric material 

properties and rain deposition factor) and outputs (the maximum moisture content and mold growth 

index over a 5-year period of the simulation) of a conventional 2×6 wood-frame wall are used to develop 

the metamodels through polynomial regression and neural network methods. The metamodels are 

developed for each rain leakage scenario, and the stochastic data of the three rain leakage scenarios 

are aggregated together to train another metamodel. It is found that the metamodels generally perform 

well to predict the maximum moisture content and mold growth index. The metamodels for low rain 

leakage scenarios are better than those for high rain leakage scenarios and the neural network 

metamodel is more accurate than polynomial metamodel for high rain leakage scenarios, i.e. 1% of rain 

leakage.  

Keywords: Neural Network Metamodel, Polynomial Metamodel, Hygrothermal Simulation, Wood-

frame Wall, Rain Leakage. 

1 Introduction 

In recent years, the stochastic modeling approach has been increasingly applied to investigate 

the uncertainties of input parameters in hygrothermal simulation and the moisture damage risks 

of building envelopes. Generally, stochastic modeling requires hundreds or even thousands of 

simulations to take into account the uncertainties of input parameters, which is computationally 

intensive and time-consuming. To improve computational efficiency, a statistical meta-model 

can be developed as a substitute for the traditional hygrothermal model, to predict the 

hygrothermal performance of building envelopes.  
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There are several comparative studies to investigate the performance of different 

metamodeling methods (Van Gelder et al., 2014; Janssen et al., 2015; Ostergard et al., 2018). 

And the hygrothermal performance of the building envelopes have been approximated by 

various metamodel methods, such as generalized additive model, polynomial regression and 

neural network (Zewdu Taffese and Sistonen, 2016; Zanetti Freire et al., 2017; Marincioni et 

al., 2018; Ostergard et al., 2018; Tijskens et al., 2019). According to the comparison study by 

ANNEX 55, the best metamodeling techniques are polynomial regression (PR), multivariate 

adaptive regression splines (MARS), and sigmoidal transfer function neural networks, and it 

was suggested that the metamodel can only be used within the range of the training data values.  

(Janssen et al., 2015). On the contrary, the data set in different ranges may need different 

metamodels to ensure their reliability. Most of the previous studies have focused on the 

performance of different types of metamodels, however, there is a lack of studies investigating 

the reliability of the metamodels at different data ranges. 

According to the stochastic analysis performed by Wang and Ge (2019), the rain leakage 

level significantly influences the moisture performance of building envelopes. This paper 

develops metamodels for predicting moisture performance of a conventional 2x6 wood-framed 

wall under different rain leakage scenarios. The polynomial regression and sigmoidal transfer 

function neural network methods are employed to develop the metamodels. Metamodels are 

developed for three rain leakage scenarios: 0.1%, 0.5% and 1% of wind-driven rain. 

Additionally, a metamodel representing all the three scenarios is developed by training the 

aggregated stochastic data. The performance indicators- Root Mean Square Error (RMSE) and 

Maximum Absolute Error (MAE) are used to evaluate the reliability of the developed 

metamodels. 

2 Methods 

2.1 Hygrothermal Model 

The metamodels are developed based on a hygrothermal model of a conventional 2×6 wood-

framed wall. Figure 1 shows the configuration of the investigated wall, and Table 1 shows the 

mean values of the material properties of each component in the wall.  

 

Figure 1. Configuration of 2x6 wood framed wall. 
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Table 1. Material properties. 

 
ρ     

(kg/m3) 

θpor (m3/m3) Wf (kg/m3) μDry 

- 

Dww       

(m2/s) 

c          

(J/kg∙K) 

λ  

(W/m·K) 

Cement Board 1130 0.479 152 905 2.16E-8 840 0.24 

Air Gap 1.3 0.999 - 0.56 - 1000 0.13 

Water Resistive 

Barrier  
400 0.001 0.9 328 - 1500 2.4 

OSB 650 0.9 377 994 1.29E-10 1880 0.1 

Fiberglass 30 0.99 208 1.35 - 840 0.036 

Vapor barrier 130 0.001 - 4E6 - 2300 2.3 

Gypsum Board 625 0.706 430.625 172 3.47E-11 870 0.16 

ρ- bulk density; θpor- porosity; Wf – saturation water content; μDry – vapor resistance factor at 

dry state; Dww- moisture diffusivity at saturation wáter content; c- specific heat capacity; λ- 

termal conductivity  

The boundary conditions are listed in Table 2. and the Canadian Weather Year for Energy 

Calculation (CWEC) data of Vancouver is used as weather data except for the rain data, which 

are extracted from the WUFI weather database. The wind-driven rain is calculated based on the 

semi-empirical model in ASHRAE 160 (2016). The equation of the semi-empirical model is 

presented as follows: 

                                     rbv = FE ∙ FD ∙ FL ∙ U ∙ cosθ ∙ rh                                                   (1)                                                                                          

     where   

     FE  - rain exposure factor 

     FD  - rain deposition factor 

     FL  - empirical constant, 0.2 (kg∙s/m3∙mm) 

     U  - hourly average wind speed at 10m (m/s) 

     θ  - the angle between wind direction and normal to the wall 

     rh  - rainfall intensity, horizontal surface (mm/h) 

Table 2. Boundary conditions. 

αin    

 (W/m2·K) 

αex         

(W/m2·K) 

βin                  

(s/m) 

βex       

(s/m) 

αs 

- 

αl 

- 

FE 

- 

FD 

- 

8 17 5.6E-8 1.19E-7 0.6 0.9 1.0 0.35 

To investigate the impact of rain leakage on the hygrothermal performance of the wall 

assembly, hygrothermal models are created for three rain leakage scenarios: 0.1%, 0.5%, and 1 

% of wind-driven rain. The wall is assumed to face east orientation, which receives the highest 

amount of wind-driven rain. The penetrated rain wáter is assumed to be deposited on the 

exterior surface of OSB.  The moisture content and mold growth index at the interior surface of 

OSB are used for performance evaluation. The details of the model setup can be found in Wang 

and Ge (2019). 
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2.2 Data Preparation 

To evaluate the moisture problem and mold growth risks, stochastic simulations were 

performed for 5 years starting from Oct. 2012 based on DELPHIN and MATLAB (Wang and 

Ge, 2019). The stochastic input and output data are used for training the metamodels.  

The input data includes stochastic hygric material properties of OSB and fiberglass and the 

rain deposition factor. The material properties are assumed to follow the normal distribution, 

the mean values and standard deviations are determined from literature (Kumaran et al., 2003; 

Mukhopadhyaya et al., 2007). The rain deposition factor is assumed to follow uniform 

distribution from 0.35 to 1.0 as prescribed in ASHRAE 160 (2016). The stochastic inputs are 

sampled by the Latin Hypercube Sampling technique, and the stochastic models are generated 

for the three rain leakage scenarios. For each scenario, 100 stochastic models are generated. In 

total, simulations are performed for 300 stochastic models. Table 3 shows the mean values and 

standard deviations of the stochastic inputs. Other parameters of the hygrothermal model are 

kept as deterministic values. The output data used for training the metamodel is the stochastic 

results of maximum moisture content and mold growth index for the 5-years’ simulation. 

Table 3. Stochastic inputs. 

Material properties  Boundary condition 

OSB Fiberglass Rain deposition factor 

Wf 

kg/m3 

μDry 

- 

A 

kg/m2∙s0.5 

Wf 

kg/m3 

μDry 

- 

Fd 

337 

(54) 

994 

(38) 

0.0022 

(0.00055) 

208 

(14.5) 

1.35 

(0.034) 

0.35 to 1 

2.3 Metamodel Development 

2.3.1 Polynomial Regression  

The polynomial regression method is one of the most widely used meta-modeling methods. The 

metamodel is nth polynomial, which is fitted by input and output samples.  The equation of the 

metamodel can be written as follows (Jin et al., 2001): 

                    �̂� = 𝑏0 + ∑ ∑ 𝑏𝑛𝑖𝑥𝑖
𝑛𝑝

𝑖=1 + ∑ ∑ ∑ ∑ 𝑏𝑛𝑘𝑖𝑗𝑥𝑖
𝑛𝑝

𝑗=1
𝑝
𝑖=1

𝑚
𝑘=1

𝑚
𝑛=1

𝑚
𝑛=1 𝑥𝑗

𝑘                          (2)                                       

     where 

     �̂�- estimated output 

     x- input vectors 

     p- the number of inputs 

     m- the order of the polynomial 

     b- regression coefficients 

In general, the regression coefficients can be determined based on the least square method. 

The accuracy of polynomial regression metamodel is influenced by sample size and order 

number. According to ANNEX 55 (Janssen et al., 2015), a third-order polynomial performs the 

best for approximating an original model with 14 parameters, while a second-order model 

significantly reduces the number of coefficients with only slightly worse performance than the 

third-order model. The Root Mean Square Error (RMSE), which measures the accuracy of the 

metamodel, has no significant reduction after the sample size is higher than 100. Therefore, in 
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this paper, the sample size is 100 for each rain leakage scenario, and the metamodel is developed 

based on the second-order polynomial. For the metamodel representing all the three rain leakage 

scenarios, there are 300 samples. The polynomial metamodels are developed using the Polyfitn 

toolbox in MATLAB (D’Errico, 2012). 

2.3.2 Neural Network Metamodel 

A neural network is composed of an input layer, an output layer, and one or more hidden layers 

in between. Figure 2 shows a typical architecture of the neural network. These layers are 

interconnected so that the information can be transferred from one layer to another through 

transfer function.  At each hidden layer, there are several neurons that contain the transfer 

function. The number of neurons in the hidden layer is defined by the users and the transfer 

function can be radial basis function or sigmoidal transfer function. According to Van Gelder 

et al. (2014), the radial basis function network needs more training samples to obtain the same 

accuracy with a sigmoidal transfer function network. And the performance of one hidden layer 

neural network with 9 neurons could be better than that of two hidden layers with 17 and 19 

neurons at each layer when predicting the number of hours with room temperature higher than 

25 ℃  in a semi-detached dwelling model. Therefore, in this paper, the sigmoidal transfer 

function network is used to develop the metamodel, and there is only one hidden layer with 10 

neurons.  The number of neurons in the input layer and the output layer is equal to the number 

of input and output parameters. In this paper, there are six input parameters (the six stochastic 

variables shown in Table 3) and one output parameter (stochastic maximum moisture content 

or mold growth index). The training algorithm used in this paper is the Bayesian regularization, 

which shows a better performance than the Levenberg-Marquardt algorithm (Kayri, 2016). The 

neural network metamodels are developed using Neural Net Fitting APP in MATLAB. 

 

Figure 2. A typical neural network model (Galkin and Lawell, 2013). 

 

3 Results and Discussion 

3.1 Metamodels for Moisture Content 

Figure 3 shows the comparison of maximum moisture content between metamodels and the 

originals model for the test data that are not participated in training the metamodels. In this 

paper, 85% of the sample data set are used for training, and 15% are used for testing. And Table 

4 shows the RMSE and MAE of the two types of a metamodel for each scenario. It can be seen 
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from Figure 3 that the metamodels for 0.1% rain leakage scenario have the best performance.  

All the metamodel outputs are almost on the 45-degree line, and the trendline of the outputs 

from metamodel is almost overlapping with the 45-degree line for both polynomial and neural 

 
a) 0.1% rain leakage_ polynomial 

 
b) 0.1% rain leakage_ neural network 

 
c) 0.5% rain leakage_ polynomial 

 
d) 0.5% rain leakage_ neural network 

 
e) 1% rain leakage_ polynomial 

 
f) 1% rain leakage_ neural network 

 
g) 0.1% to 1% rain leakage_polynomial 

 
h) 0.1% to l% rain leakage _ neural network 

Figure 3. Comparison of the outputs (maximum moisture content) between original models and metamodels 

for different rain leakage scenarios.  



Lin Wang, Hua Ge and Liangzhu (Leon) Wang 

 7 

Table 4. Comparison of the metamodel performance between polynomial regression and neural network 

methods for different rain leakage scenarios (maximum moisture content). 

 Polynomial Neural network 

 0.1% 0.5% 1% 0.1%  

to 1% 

0.1% 0.5% 1% 0.1% 

to 1% 

RMSE 0.05 1.49 3.29 2.05 0.06 1.50 2.11 1.12 

MAE 0.11 4.93 5.99 5.31 0.12 5.49 3.80 4.91 

network methods. Therefore, the predicted values from the metamodels are almost equal to 

those from original models and the metamodels perform very well for predicting the maximum 

moisture content. For the 0.5% and 1% rain leakage scenarios, the outputs from metamodels 

are distributed around the 45-degree lines, and the trendlines deviate from the 45-degree lines.  

The outputs of 1% rain leakage scenario is more spreading than those of 0.5% rain leakage 

scenario, which means the accuracy of the 1% rain leakage metamodels is lower than that of 

0.5% rain leakage metamodels.  Figure 3 g and h show the metamodels representing the whole 

range of rain leakage from 0.1% to 1%. It can be observed the outputs of the neural network 

metamodel are closer to the 45-degree line than those of the polynomial metamodel, which 

means the neural network metamodel has a better performance than polynomial metamodel. 

The performance of these metamodels can be verified by observing their RMSE and MAE 

as presented in Table 4. It can be seen that the 0.1% rain leakage scenario has the lowest RMSE 

and MAE, it is followed by 0.5% and 1% scenarios. The metamodels representing all the rain 

leakage scenarios have higher RMSE and MAE than the 0.1% and 0.5% rain leakage scenarios, 

but lower than the 1% scenario. For the 0.1% and 0.5% rain leakage scenarios, the RMSE and 

MAE of neural network metamodels are slightly higher than those of polynomial metamodels. 

While, for the 1% rain leakage scenario and the metamodels representing all the rain leakage 

scenarios, the neural network method has a lower RMSE and MAE than the polynomial 

regression method.    

3.2 Metamodels for Mold Growth Index 

Table 5. Comparison of the metamodel performance between polynomial method and neural network method 

for different rain leakage scenarios (maximum mold growth index). 

 Polynomial Neural network 

 0.1% 0.5% 1% 0.1% 

to 1% 

0.1% 0.5% 1% 0.1% 

to 1% 

RMSE 0.10 0.14 0.15 0.39 0.07 0.16 0.09 0.12 

MAE 0.23 0.39 0.24 1.01 0.12 0.36 0.20 0.37 

Table 5 shows the performance of the metamodels for predicting the maximum mold growth 

index. The conclusions that can be drawn from this table are similar to those for the maximum 

moisture content. The scenarios with higher rain leakage have higher RMSE and MAE, and the 

neural network method has lower RMSE and MAE than the polynomial method, particularly at 

higher rain leakage levels. 

4 Conclusions 

This paper developed polynomial and neural network metamodels to simulate the maximum 
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moisture content and mold growth index of a conventional 2x6 stud wall under different rain 

leakage levels. The main conclusions of this paper are: 1) In general, the developed metamodels 

are performing well to substitute the original hygrothermal models. 2) The metamodels for 

lower rain leakage levels (from 0.1% to 0.5% rain leakage) perform better than those with 

higher rain leakage levels (from 0.5% to 1% rain leakage). 3) Neural network metamodel 

performs better than polynomial metamodel, especially for the scenarios with higher rain 

leakage level.  
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