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Abstract: Satellite geodetic networks are commonly used in surveying tasks, but they can also be used
in mobile surveys. Mobile satellite surveys can be used for trackage inventory, diagnostics and design.
The combination of modern technological solutions with the adaptation of research methods known
in other fields of science offers an opportunity to acquire highly accurate solutions for railway track
inventory. This article presents the effects of work carried out using a mobile surveying platform on
which Global Navigation Satellite System (GNSS) receivers were mounted. The satellite observations
(surveys) obtained were aligned using one of the methods known from classical land surveying.
The records obtained during the surveying campaign on a 246th km railway track section were
subjected to alignment. This article provides a description of the surveying campaign necessary to
obtain measurement data and a theoretical description of the method employed to align observation
results as well as their visualisation.

Keywords: GNSS measurements; estimation methods; rail transport; railway infrastructure

1. Introduction

The development of modern rail transport is associated, inter alia, with increasing train speed.
This causes specific problems related to railway traffic control, as described, for example, in [1], or with
designing fast railway stops as described, for example, in [2]. An increase in train speed requires,
primarily, that a high level of rail transport safety should be ensured, which is not possible without
well-developed railway infrastructure constructed with the utmost care. Therefore, there is a need
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to monitor trackages, both at the construction stage and during operation [3]. The assessment of
railway track is important not only for assurance of a high level of rail transport, but it is also necessary
for providing high-quality transport services, as described in [4]. For the assessment of railway
track geometry, track gauges and measuring trolleys are used, whose application examples can be
found in the literature on the subject, e.g., in [5] or in [6]. However, in the last twenty years, Global
Navigation Satellite Systems (GNSS) have become the very basic precise instrument used worldwide.
GNSS and the relative instrumentation are under systematic development and constantly increase the
application possibilities, which has resulted in their widespread use despite the emerging hazards in
operation [7,8]. The main application of GNSS is in geodesy but they are more often used to determine
the position of objects in motion [9,10] in the process of directly ensuring a high level of safety of
maritime navigation, e.g., [11], or they support the process of modelling the surrounding reality in the
computer environment, e.g., [12]. It has become clear that there are possibilities for the application of
GNSS in railway transport, e.g., for monitoring railway infrastructure.

The proposal for the performance of mobile surveys involving the geodetic inventory of railway
tracks using Global Navigation Satellite Systems (GNSS) in railway engineering appeared for the first
time in Poland [13]. The proposals for the new use of positioning techniques were verified during
the initial experimental tests while taking an inventory of the railway route between Koscierzyna
and Kartuzy in Poland [14], when four GNSS receivers were used as well as the ASG-EUPOS Polish
active satellite GNSS surveying network [15]. The study results confirmed the extensive application
possibilities for the method and drew attention to its limitations due to signal availability in a
built-up area. Launching new GNSS systems (Galileo, Beidou) and creating multiconstellation GNSS
surveying networks [16] while increasing the accuracy of the existing ones (Navstar GPS/Glonass)
allowed the authors to develop this method [17]. In the period 2009–2017, while developing the
method of mobile satellite surveys, research was carried out in two main directions, i.e., the land
surveying method associated with increasing accuracy and availability of measurements ([18–20])
and the construction method aimed at developing new design and operational methods [21–25].
At other research centres, analogous studies were also undertaken to integrate tacheometric and
GNSS surveys [26], with measurement support through the application of inertial navigation systems
(INS) [27,28] or the application of mobile laser scanners [29,30]. In addition, studies were conducted to
apply multisensor methods [31–36].

A very important aspect is increasing the accuracy of determining the position of designated
vehicles using GNSS. To this end, it is worth applying techniques and methods for aligning observation
results used in land surveying. The literature provides examples of the application of land surveying
alignment methods in rail transport, e.g., [37] which described the application of the conditional
observation alignment method or referred to the estimation of the accuracies obtained during
traditional static surveys [38]. In [38] the authors describe the use of automated measurement
systems based on trolleys for track surveying supported with automatic tacheometric surveys.
Moreover, there are examples of the application of geodetic alignment methods in maritime transport,
e.g., [39,40]. These articles present the results of work related to the adaptation of a surveying
method for aligning observation results, known as the method of least squares with conditional
equations in mobile surveys. The alignment process was checked using the records of GNSS signals
during the mobile surveying campaign conducted in July 2019 on a 246-km-long section between
Tczew–Chojnice–Brusy–Chojnice–Tczew located in northern Poland.

2. Mobile Surveying Platform

To obtain GNSS surveying data that enable an assessment of the railway track geometry during
dynamic surveys (in motion), it was necessary to design and build a mobile surveying platform
(MSP). The MSP was conceptualised and developed as part of a research project implemented by the
Gdansk University of Technology and Gdynia Maritime University. The mobile surveying platform
comprises a railway car (Figure 1) on which nine mounted guides have been installed to mount
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measuring instruments (GNSS receivers, INS systems, a mobile laser scanner and visual systems),
a power generator and a workstation recording data from the installed sensors.
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Figure 1. Mobile surveying platform.

On the surveying platform prepared in this way, any given number of measuring instruments can
be installed. During the surveys, the car was connected to a DH-350.11 hydraulic handcar. In this
configuration, the test team can configure recorders depending on the type of research for which it is to
be used.

3. Theoretical Basis of the Method of Least Squares with Conditional Equations

In geodetic surveys, there are alignment tasks in which the parameters of the system of observation
equations must satisfy additional conditions [41]. In geodetic networks, these conditions may concern
the coordinates of certain points being part of a particular network. Such a case occurs when the
distance between points is determined with high accuracy, or the conditions between the coordinates
result from the geometric structure of the network. Such a case is found in the research problem under
consideration, where the position of antennas on the surveying platform are determined from satellite
observations as well as from tacheometric surveys conducted prior to the measurement session using
satellite measurement techniques. The distances between GNSS receiver antennas were precisely
measured prior to commencing dynamic surveys. The geodetic inventory of GNSS antennas was
carried out using an electronic total station and the values obtained were adopted as observations
determined with high accuracy, which justifies the assumption that they are relatively error-free.
Therefore, it follows that the parameters of the observation system (coordinates of GNSS antennas’
measuring points on the surveying platform) must satisfy additional conditions, i.e., the distances
between GNSS antennas on the MSP. For the cumulative processing of the obtained observations,
the Method of Least Squares with conditional equations (LSce) can then be applied. The theory behind
the method was discussed in detail inter alia in [42,43]. Its further developments and applications
to prepare geodetic observations are discussed inter alia in [41], [44,45]. It should also be noted that
conditional equations have also been used in other estimation methods, e.g., in Msplit estimation [46].
The initial tests of the application of LSce to estimate the GNSS receiver antennas’ coordinates on
surveying platforms were carried out over the test section of tram tracks in the urban agglomeration of
Gdansk [47].

Below are the main assumptions and the ways to apply LSce in the context of the surveying
platform and the associated observation systems considered in this study.
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Let us assume that the coordinates of antennas (xi, yi), i = 1, 2, · · · , s, on the surveying platform,
are contained in the vector X = [x1, y1, . . . , xs, ys]

T = [X1, X2, . . . , Xr]
T (s—the number of antennas,

r—the number of unknown coordinates). Following the previous assumptions about the adopted
measurement structure, these quantities must satisfy the following system of conditional equations:

Ψ1(X1, X2, . . . , Xr) = 0
Ψ2(X1, X2, . . . , Xr) = 0

...
Ψw(X1, X2, . . . , Xr) = 0


⇔ Ψ(X) = 0 (1)

For example, if we assume that (xi, yi) (x j, y j) are the coordinates of two antennas between which

the distance di j was measured with high accuracy, then [(x j − xi)
2 + (y j − yi)

2]
1/2
− di j = 0. Moreover,

in accordance with the general principles of determining geodetic network coordinates, the vector X
is determined based on GNSS satellite observations which enable the formulation of the following
system of observation equations:

y1 + v1 = F1(X1, X2, . . . , Xr)

y2 + v2 = F2(X1, X2, . . . , Xr)
...

yn + vn = Fn(X1, X2, . . . , Xr)


⇔ y + v = F(X) (2)

where y = [y1, y2 · · · , yn]
T is the observation vector. Using v = [v1, v2 · · · , vn]

T, the vector of random
observation errors with the covariance matrix Cv = σ2

0Q = σ2
0P−1 and the vector of expected values

E(v) = 0 (Q—known cofactor matrix, P—weight matrix, σ2
0—unknown variance coefficient). When

we assume that the approximate coordinates X0 = [X0
1, . . . , X0

r ]
T of GNSS receiver antennas are known,

then the equation y + v=F(X) can be replaced with a linear observation equation with the following
form:

v = F(X) − y = F
(
X0 + dX

)
− y =

∂F(X)
∂X

∣∣∣∣∣∣
X=X0

dX + F
(
X0

)
− y = AdX + l (3)

The quantity dX is the vector of unknown coordinate increments, such that X = X0 + dX. The matrix

A =
∂F(X)
∂X

∣∣∣∣∣∣
X=X0

=


∂F1(X)
∂X1

∂F1(X)
∂X2

· · ·
∂F1(X)
∂Xr

∂F2(X)
∂X1

∂F2(X)
∂X2

· · ·
∂F2(X)
∂Xr

· · · · · · · · · · · ·

∂Fn(X)
∂X1

∂Fn(X)
∂X2

· · ·
∂Fn(X)
∂Xr


X=X0

is the design of the system of linear equations, while

l = F
(
X0

)
− y =

[
F1

(
X0

)
− y1, F2

(
X0

)
− y2, · · · , Fn

(
X0

)
− yn

]T

is the absolute term vector. Let us also assume that the matrix A is a column full rank, i.e., rank(A) = r.
Considering that X = X0 + dX, the system of observation equations (1) can also be similarly brought to
the linear form. After developing the function Ψ(X) to the form

Ψ(X) = Ψ
(
X0 + dX

)
= Ψ

(
X0

)
+
∂Ψ(X)
∂X

∣∣∣∣∣∣
X=X0

dX = Ψ
(
X0

)
+ BdX (4)

the following linear conditional equation is obtained:

BdX + ∆ = 0 (5)
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where:

B =
∂Ψ(X)
∂X

∣∣∣∣∣∣
X=X0

=


∂Ψ1(X)
∂X1

∂Ψ1(X)
∂X2

· · ·
∂Ψ1(X)
∂Xr

∂Ψ2(X)
∂X1

∂Ψ2(X)
∂X2

· · ·
∂Ψ2(X)
∂Xr

· · · · · · · · · · · ·

∂Ψw(X)
∂X1

∂Ψw(X)
∂X2

· · ·
∂Ψw(X)
∂Xr


X=X0

,

∆ = Ψ
(
X0

)
=

[
Ψ1

(
X0

)
, Ψ2

(
X0

)
, · · · , Ψw

(
X0

)]T
.

Taking into account the conditions binding the parameters being determined, and the application
of the objective function of the least-squares method, it leads to the optimisation of the problem with
the following form (e.g., [38]):

AdX + l = v
BdX + ∆ = 0
Cv = σ2

0P−1

ϕ(dX) = vTPv = min

 (6)

In order to exactly solve this problem, it is necessary to replace the original objective function
ϕ(dX) = vTPv with the Lagrange function with the following form (e.g., [39])

ϕL(dX) = ϕ(dX) − 2κT(BdX + ∆) = vTPv− 2κT(BdX + ∆) (7)

where κ is the Lagrange’s unknown multiplier vector. The optimisation problem minϕL(dX) = ϕL(d
^
X)

solves such quantities for which the following sufficient conditions are satisfied:

∂ϕL(dX)
∂dX

∣∣∣∣∣∣^
κ,d

^
X
=
∂ϕL(dX)
∂v

∂v
∂dX

∣∣∣∣∣∣^
κ,d

^
X
= 2

^
v

T
PA− 2

^
κ

T
B = 0 (8)

∂ϕL(dX)

∂
^
κ

∣∣∣∣∣∣∣^
κ,d

^
X

= Bd
^
X + ∆ = 0 (9)

Moreover, in the issue under consideration, the necessary condition involving the positive-definite
of the second derivative ∂2ϕL(dX)/∂v∂vT = 2P should be satisfied here. It follows from
Equation (8) that

AP
^
v−BT ^

κ = 0 ⇔ ATPAd
^
X + ATPl−BT ^

κ = 0 (10)

If rank(ATPA) = rank(A) = r, then the solution to Equation (10) is vector

d
^
X = −(ATPA)

−1
(ATPl−BT ^

κ) (11)

The correlate vector must satisfy the condition (9). By substituting vector d
^
X described with the

dependence (11) to the equation Bd
^
X + ∆ = 0, the following is obtained:

^
κ = −

[
B
(
ATPA

)−1
BT

]−1[
∆ −B

(
ATPA

)−1
ATPL

]
(12)

In practice, task (6) can also be solved in a different way that is simpler from the numerical
perspective. To this end, the conditional equation BdX + ∆ = 0 should be replaced with the equivalent
observation equation:

BdX + ∆ = v∗ (13)

Since it is required that v∗ = 0, therefore the vector of fictitious observation errors v∗ should be

assigned such a covariance matrix Cv∗ = σ2
0P−1
∗ so that also fictitious corrections

^
v∗ meet the condition
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^
v∗ = 0 (within the calculation precision limits). Thus, task (6) is replaced with the optimisation problem,
classical for the LS-method, with the following form:

AdX + l = v
BdX + ∆ = v∗
Cv = σ2

0P−1

Cv∗ = σ2
0P−1
∗

ϕ(dX) = vTPv + vT
∗ P∗v∗ = min


⇔


_
AdX +

_
l =

_
v

_
Cv = σ2

0

_
P
−1

ϕ(dX) =
_
v

T_
P
_
v = min

(14)

where:
_
A =

[
A
B

]
,
_
l =

[
l
∆

]
,
_
v =

[
v
v∗

]
.

Vector
_
v is the total vector of observation errors with the covariance matrix of:

_
C =

[
Cv = σ2

0P−1 0
0 Cv∗ = σ2

0P−1
∗

]
= σ2

0

[
P−1 0

0 P−1
∗

]
= σ2

0

_
P
−1

(15)

where
_
P = diag(P, P*) is the total weight matrix (σ2

0—variance coefficient common for both components

of the model (15). The solution to task (14) is the increment estimator d
^
X with the following form:

d
^
X = −(

_
A

T_
P
_
A)
−1_

A
T_

P
_
l (16)

where:
_
A

T_
P
_
A = ATPA + BTP∗B,

_
A

T_
P
_
l = ATPl + BTP∗∆. By determining the covariance matrix for

this estimator, the following is obtained:

C
d

^
X
= σ̂2

0(
_
A

T_
P
_
A)
−1

(17)

where:

σ̂2
0 =

^
_
v

T
_
P

^
_
v

n + w− r
(18)

is an estimator of variance coefficient σ2
0. The vector

^
_
v = [

^
v

T
,

^
v

T

∗ ]
T

is a total correction vector
determined from the following dependence:

^
_
v =

_
Ad

^
X +

_
l (19)

The estimator of the GNSS receiver antennas’ coordinates is the vector:

^
X = X0 + d

^
X (20)

with the covariance matrix C^
X
= C

d
^
X

It should be noted that the diagonal elements of this matrix are

the squares of mean errors of the determined estimators, i.e., m2
X̂i

= [C^
X
]
ii
.

Considering both presented solutions, the exact one represented by the alignment task (6) with
the estimator (11), and the equivalent one represented by the alignment task (14) with the estimator (16)
yield the same solutions. Therefore, the equivalent solution that was used in the problem described in
this article is more often applied in technical applications.
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4. Practical Applications of GNSS in Railway Surveys and Alignment Results

On 16–17 July 2019, on a route between Tczew–Chojnice–Brusy–Chojnice–Tczew, located in
northern Poland, a study was conducted using six Leica GS-18 GNSS receivers (Figure 2).
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Figure 2. A LEICA GS-18 receiver used during the surveys.

Selected technical data of the receiver are provided in the Table 1.

Table 1. Selected parameters of a LEICA GS 18T receiver.

Parameter Value

Signals Tracked
GPS (L1, L2, L2C, L5), Glonass (L1, L2, L2C, L32),

BeiDou (B1, B2, B32), Galileo (E1, E5a, E5b, Alt-BOC, E62),
QZSS (L1, L2C, L5, L62), NavIC L53, SBAS (WAAS, EGNOS, MSAS, GAGAN), Band L

Initialisation Time Normally 4 s

Rtk Accuracy A single baseline: Hz 8 mm + 1 ppm/V 15 mm + 1 ppm
Network RTK: Hz 8 mm + 0.5 ppm/V 15 mm + 0.5 ppm

Postprocessing Accuracy Static mode (phase), long-term observations: Hz 3 mm + 0.1 ppm/V 3.5 mm + 0.4 ppm,
Static and fast static mode (phase): Hz 3 mm + 0.5 ppm/V 5 mm + 0.5 ppm

Weight 1.20 kg/3.50 kg—a standard configuration of an RTK receiver on a pole

Dimensions 173 mm × 173 mm × 108 mm

Position Measurement 5 Hz/20 Hz

On the day preceding the proper measurements, surveying devices and instruments were mounted
on a railway car (Figure 3).
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To precisely determine the distance between the receiver antennas axes, tacheometric surveys
were then conducted using a LEICA TS 1103 total station. The measured distances are provided in
Figure 4.
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Six GNSS receivers were used in the study. Furthermore, 507,251 coordinate surveys were obtained
for each receiver from the conducted observations, after rejecting incomplete observations. The data
obtained were aligned using the Method of Least Squares with conditional equations.

The observation results were aligned in the flat rectangular coordinate system PL-2000. The system
was developed based on the mathematically unique alignment of points on the reference spheroid
GRS80 with the corresponding points on the plane, in accordance with the Gauss-Krüger projection
theory, and is valid in the territory of the Republic of Poland [48].

Because of the large number of data, the alignment results for only one measurement epoch
(marked as 20190717_104340150), conducted in postprocessing, are presented below. The following
input data were obtained from satellite observations (Table 2):

• coordinates of GNSS antennas on the MSP,
• errors in determining the GNSS antenna position coordinates.
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Table 2. Coordinates of GNSS receiver antennas along with the errors of their determination, obtained
from satellite observations.

GNSS Receiver x y m

GNSS #1 5967572.5583 6505456.2272 0.0669
GNSS #2 5967571.9058 6505456.6093 0.2609
GNSS #3 5967571.2635 6505456.9836 0.0966
GNSS #4 5967576.0405 6505462.2802 0.0046
GNSS #5 5967575.3857 6505462.6552 0.0285
GNSS #6 5967574.7377 6505463.0309 0.0404

The position of antennas on the surveying platform is shown in the Figure 5.Sensors 2020, 20, x  9 of 17 
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Figure 5. The position of GNSS receivers on the mobile surveying platform.

Moreover, for further calculations, the measured distances between antennas (Figure 4) as well
as errors of their determination: m1−3 = 0.0031, m1−4 = 0.0033, m2−5 = 0.0034, m3−6 = 0.0035,
m4−6 = 0.0030, resulting from the total station instrumental errors, were used. In the calculations,
the measured distances to three reference stations being part of the SmartNet network [49] were used.
The coordinates of the station exposures are provided in the Table 3.

Table 3. Coordinates of the SmartNet network reference stations.

Station Name x y

Starogard Gdański 5981664.913 6532343.251
Konarzyny 5965574.243 6460849.453
Czersk 5962606.324 6498027.094
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The measured data allowed the system of equations comprising 18 observation equations (2) and
5 conditional equations (1) to be recorded. The solution to the alignment task (14) for the data provided

above was possible on the assumption that the matrices
_
A and

_
l have the following forms:

_
A =



−0.46423 −0.88571 0 0 0 0 0 0 0 0 0 0
0 0 −0.46425 −0.88570 0 0 0 0 0 0 0 0
0 0 0 0 −0.46427 −0.88569 0 0 0 0 0 0
0 0 0 0 0 0 −0.46422 −0.88572 0 0 0 0
0 0 0 0 0 0 0 0 −0.46425 −0.88571 0 0
0 0 0 0 0 0 0 0 0 0 −0.46427 −0.88570

0.04475 0.99900 0 0 0 0 0 0 0 0 0 0
0 0 0.04474 0.99900 0 0 0 0 0 0 0 0
0 0 0 0 0.04472 0.99900 0 0 0 0 0 0
0 0 0 0 0 0 0.04483 0.99899 0 0 0 0
0 0 0 0 0 0 0 0 0.04481 0.99900 0 0
0 0 0 0 0 0 0 0 0 0 0.04480 0.99900

0.55574 0.83135 0 0 0 0 0 0 0 0 0 0
0 0 0.55567 0.8314 0 0 0 0 0 0 0 0
0 0 0 0 0.55560 0.83145 0 0 0 0 0 0
0 0 0 0 0 0 0.55570 0.83138 0 0 0 0
0 0 0 0 0 0 0 0 0.55563 0.83143 0 0
0 0 0 0 0 0 0 0 0 0 0.55556 0.83148

0.86346 −0.50442 0 0 −0.86346 0.50442 0 0 0 0 0 0
0 0 0 0 0 0 0.86645 0.49927 0 0 −0.86645 0.49927

−0.49866 −0.86680 0 0 0 0 0.49866 0.86680 0 0 0 0
0 0 −0.49885 −0.86669 0 0 0 0 0.49885 0.86669 0 0
0 0 0 0 −0.49815 −0.86709 0 0 0 0 0.49815 0.86709



,
_
l =



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

−0.0003749
−0.001608
0.005840
0.006241
0.005869


By using Equation (16), increments to the coordinates obtained from GNSS observations were

obtained, which enable the determination, based on (19), of corrections to the conducted satellite
observations; also, by using relationship (20), aligned coordinates of the GNSS antennas’ positions
were obtained:

^
_
v =



−0.00537786
−0.00573547
−0.00466726

0.00002493
0.00006844
0.00085569
0.00015425
0.00050769
0.00111584
−0.00000250
−0.00000605
−0.00005803

0.00652925
0.00687617
0.00541878
−0.00002982
−0.00008206
−0.00103008
−0.00000003
−0.00000001

0.00000269
0.00000019
0.00000119



,
^
X =



5967572.571
6505456.227
5967571.918
6505456.609
5967571.272
6505456.984
5967576.040
6505462.280
5967575.386
6505462.655
5967574.736
6505463.031



By using Equation (17), the antennas’ position errors of m1 = 0.00016, m2 = 0.00077, m3 = 0.00016,
m4 = 0.00001, m5 = 0.00010, m6 = 0.00003 were determined.

A point position error is a conventional parameter that characterised the accuracy of a point’s
position following the observation alignment [41]. A geometrical interpretation of the accuracy
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parameter is a circle with a radius of mi. Even though the point position error is a conventional
parameter and has no deeper probabilistic justification, it is very useful in many comparative analyses;
therefore, Table 4 presents the percentage of error sizes, for the entire test section, along with the number
of points (n) for which their values are present in the intervals (0, 0.001);

〈
0.001, 0.005) ;

〈
0.005, 0.05) ;

〈0.05, mmax
〉 .

Table 4. Distribution of mean errors of determining the antenna positions following the alignment over
the entire section of the track being measured (n = 507,251) and their percentage for the entire recording.

Receiver

m [m]
m

max0–0.001 0.001–0.005 0.005–0.05 0.05–max

n % n % n % n %

GNSS #1 495,231 97.63% 9938 1.96% 1965 0.39% 116 0.02% 0.831
GNSS #2 455,199 89.74% 46,981 9.26% 4738 0.93% 333 0.07% 2.068
GNSS #3 496,176 97.82% 8971 1.77% 1963 0.39% 141 0.03% 1.983
GNSS #4 492,935 97.18% 12,438 2.45% 1707 0.34% 171 0.03% 1.206
GNSS #5 465,407 91.75% 37,738 7.44% 3824 0.75% 282 0.06% 2.908
GNSS #6 497,205 98.02% 8122 1.60% 1784 0.35% 140 0.03% 1.506

In analysing Table 4, it can be concluded that the error of determining the aligned coordinates of
GNSS antennas does not exceed 0.005 m:

• for GNSS #1 in 99.59%
• for GNSS #2 in 99.00%
• for GNSS #3 in 99.59%
• for GNSS #4 in 99.63%
• for GNSS #5 in 99.19%
• for GNSS #6 in 99.62%

The error values in the 〈0.05, mmax
〉 range appear, on average, only in 0.04%. On the other hand,

Figure 6 presents the distributions of the values of errors of determining the individual receivers’
position coordinates over the entire test section.

Table 5 presents the results of statistical analyses of the series of recorded error values. The table
provides minimum values, maximum values, sample mean values, confidence intervals for the mean
value, variance, standard deviation and the sample size.

The analysis was conducted independently for each of the six GNSS receivers as well as collectively
for the entire series of the measured values. The total sample size amounted to 3,043,296. The mean
value of the measured error values is in the order of 10−4. For the mean value from the sample,
confidence intervals with a specified confidence level α = 0.05 were determined, which means that the
mean value for the entire error population falls within the specified intervals with a probability of
0.95. It was observed that the confidence intervals were very narrow, i.e., the width of the confidence
interval was smaller by two orders of magnitude than the mean value of the sample. This proves that
the surveys were conducted very precisely, and the collected data set can be regarded as reliable and
credible. This is also confirmed by the very low variance, in the order of 10−5. Despite the fact that
values higher by as much as four orders of magnitude than the mean value are found in the set; these
cases can be considered extremely rare and should be regarded as exceptions or anomalies. These
exceptionally high values should be isolated and omitted in further research. Error values of more
than 5 cm are primarily found in the urbanised area (Tczew, Chojnice), which is confirmed by Figure 7.
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Table 5. Results of statistical analyses of the error of determining the antenna position coordinates
following the alignment.

Receiver Minimal Value Maximal Value Mean Value Confidence Intervals
for the Mean (α = 0.05) Variance Standard Deviation Sample Size

GNSS #1 1.592 × 10−6 0.831 3.099 × 10−4
〈
2.985× 10−4, 3.213× 10−4

〉
1.712 × 10−5 4.138 × 10−3 507,216

GNSS #2 4.557 × 10−7 2.068 6.161 × 10−4
〈
6.004× 10−4, 6.318× 10−4

〉
3.251 × 10−5 5.702 × 10−3 507,216

GNSS #3 5.999 × 10−7 1.983 3.297 × 10−4
〈
3.110× 10−4, 3.485× 10−4

〉
4.651 × 10−5 6.820 × 10−3 507,216

GNSS #4 9.948 × 10−7 1.206 3.047 × 10−4
〈
2.961× 10−4, 3.133× 10−4

〉
9.743 × 10−5 3.121 × 10−3 507,216

GNSS #5 8.365 × 10−7 2.908 5.643 × 10−4
〈
5.395× 10−4, 5.890× 10−4

〉
8.087 × 10−5 8.993 × 10−3 507,216

GNSS #6 6.732 × 10−7 2.613 3.611 × 10−4
〈
3.327× 10−4, 3.895× 10−4

〉
1.065 × 10−4 1.032 × 10−2 507,216

Total 4.557 × 10−7 2.908 4.143 × 10−4
〈
4.064× 10−4, 4.222× 10−4

〉
4.890 × 10−5 6.993 × 10−3 3,043,296
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All aligned coordinates of the position of 6 GNSS antennas (3,043,506 records in 507,251
measurement epochs) were plotted on a map of the region where surveys were performed (Figure 8).
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observations during mobile surveys. The theoretical assumptions of the method were verified using 
the data from GNSS satellite surveys during the inventory of the railway route of Tczew–Chojnice–
Brusy–Chojnice–Tczew in northern Poland. 
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(open areas, forest areas and built-up areas). This enabled the suitability of the method to be checked 
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Figure 8. The route of railway surveys with aligned 2D coordinates.

Due to the map scale, the coordinates of GNSS antennas faithfully reproduced the route of the
surveying set passage. The figure was prepared using the ArcGIS software by ESRI. After zooming
in on sections of the passage route, the positions of individual GNSS receiver antennas on any given
section of the route can be seen.

For the visualisation provided in Figure 9, orthophotomaps from the GEOPORTAL website [50]
were used. The images have a lowered resolution and were taken at a certain angle, which results in
minor shifts being visible in the position of receivers in relation to the railway track. Moreover, it can
be seen in the figure that the mobile surveying platform moved along the same route in two directions
but on different tracks. It should be concluded that the conducted alignment fulfilled its purpose
and yielded a very good result for such a large measurement sample implemented in a vast area
characterised by various availability of satellites due to the presence of obscuring features (built-up
areas, forest areas, an open area). Moreover, the mobile surveying platform moved at different speeds
(30–80 km/h), which also affected the continuity of coordinate measurement by GNSS receivers.
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5. Conclusions

The authors adapted the parametric method with conditional equations to align GNSS
observations during mobile surveys. The theoretical assumptions of the method were verified
using the data from GNSS satellite surveys during the inventory of the railway route of
Tczew–Chojnice–Brusy–Chojnice–Tczew in northern Poland.

The 246-km-long test section is located in areas with varying satellite system signal availability
(open areas, forest areas and built-up areas). This enabled the suitability of the method to be
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checked by aligning the observations obtained from GNSS records, which, due to the occurrence of
various field-obscuring features, were characterised by different levels of accuracy and availability of
GNSS signal.

The application of the surveying aligning method for satellite observations supported additionally
with tacheometric surveys of the position of GNSS receiver antennas on the mobile surveying
platform finally enabled the accuracy of the determinations of the antenna position coordinates to be
increased and the internally consistent surveying structure to be correctly fitted within the area of
measurement performance.

Analysis of the accuracy levels for the final determinations of the antennas’ position coordinates
demonstrated that the parametric method with conditional equations can be applied in research tasks
in which the subject of the study is the internally consistent surveying structure and the obtained
observations about the positions of these structures are additionally supported with highly accurate
surveys inside the structure under analysis.

The research results described in this article are the next step in checking the suitability of the
LSce method in rail transport. Earlier, the authors checked its usefulness on tram tracks [48]. Moreover,
the use of the mobile measurement platform is described, for example, in [18–21]. Previous studies
indicate the repeatability of the results and an increase the accuracy of determinations of the position
of GNSS receivers’ coordinates.

To confirm the possibility for the use of a mobile surveying platform, the authors are preparing to
conduct subsequent surveying campaigns on various test sections under different conditions of GNSS
signal availability. However, to confirm the universality of the proposed adaptation of the alignment
method, testing should be conducted using other vehicles. It will then be possible to fully assess the
suitability of the technologies applied and the methods developed for various forms of transport.
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24. Koc, W.; Specht, C.; Chrostowski, P.; Szmagliński, J. Analysis of the possibilities in railways shape assessing
using GNSS mobile measurements. MATEC Web Conf. 2019, 262, 11004. [CrossRef]

25. Specht, C.; Koc, W.; Chrostowski, P. Computer-aided evaluation of the railway track geometry on the basis
of satellite measurements. Open Eng. 2016, 6, 125–134. [CrossRef]

26. Gikas, V.; Daskalakis, S. Determining Rail Track Axis Geometry Using Satellite and Terrestrial Geodetic Data.
Surv. Rev. 2008, 40, 392–405. [CrossRef]

27. Chen, Q.; Niu, X.; Zhang, Q.; Cheng, Y. Railway track irregularity measuring by GNSS/INS integration.
Navigation 2015, 62, 83–93. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-97955-7_35
http://dx.doi.org/10.17402/151
http://dx.doi.org/10.1017/S0373463316000230
http://dx.doi.org/10.1201/b11347-14
http://dx.doi.org/10.1515/pomr-2015-0012
http://dx.doi.org/10.1016/j.trpro.2016.05.310
http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000303
http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000643
http://dx.doi.org/10.1515/eng-2016-0001
http://dx.doi.org/10.1051/matecconf/201926211004
http://dx.doi.org/10.1515/eng-2016-0017
http://dx.doi.org/10.1179/003962608X325448
http://dx.doi.org/10.1002/navi.78


Sensors 2020, 20, 4948 16 of 17

28. Chen, Q.; Niu, X.; Zuo, L.; Zhang, T.; Xiao, F.; Liu, Y.; Liu, J. A Railway Track Geometry Measuring Trolley
System Based on Aided INS. Sensors 2018, 18, 538. [CrossRef] [PubMed]

29. Lou, Y.; Zhang, T.; Tang, J.; Song, W.; Zhang, Y.; Chen, L. A Fast Algorithm for Rail Extraction Using Mobile
Laser Scanning Data. Remote Sens. 2018, 10, 1998. [CrossRef]

30. Puente, I.; González-Jorge, H.; Martínez-Sánchez, J.; Arias, P. Review of mobile mapping and surveying
technologies. Measurement 2013, 46, 2127–2145. [CrossRef]

31. Salvador, P.; Naranjo, V.; Insa, R.; Teixeira, P. Axlebox accelerations: Their acquisition and time-frequency
characterization for railway track monitoring purposes. Measurement 2016, 82, 301–312. [CrossRef]

32. Pham, N.T.; Timofeev, A.N.; Nekrylov, I.S. Study of the errors of stereoscopic optical-electronic system for
railroad track position. In Proceedings of the Optical Measurement Systems for Industrial Inspection XI,
SPIE 11056, Munich, Germany, 24–27 June 2019. [CrossRef]

33. Zhu, F.; Zhou, W.; Zhang, Y.; Duan, R.; Lv, X.; Zhang, X. Attitude variometric approach using DGNSS/INS
integration to detect deformation in railway track irregularity measuring. J. Geod. 2019, 93, 1571–1587.
[CrossRef]

34. Gao, Z.; Ge, M.; Li, Y.; Shen, W.; Zhang, H.; Schuh, H. Railway irregularity measuring using
Rauch–Tung–Striebel smoothed multi-sensors fusion system: Quad-GNSS PPP, IMU, odometer, and track
gauge. GPS Solut. 2018, 22, 36. [CrossRef]

35. Li, Q.; Chen, Z.; Hu, Q.; Zhang, L. Laser-Aided INS and Odometer Navigation System for Subway Track
Irregularity Measurement. J. Surv. Eng. 2017, 143, 04017014. [CrossRef]

36. Kurhan, M.B.; Kurhan, D.M.; Baidak, S.Y.; Khmelevska, N.P. Research of railway track parameters in the
plan based on the different methods of survey. Nauka Ta Prog. Transp. 2018, 2, 77–86. [CrossRef]

37. Izvoltova, J.; Cesnek, T. Accuracy analysis of continual geodetic diagnostics of a railway line. In Proceedings
of the 10th International Scientific and Professional Conference on Geodesy, Cartography and Geoinformatics
(GCG 2017), Low Tatras, Slovakia, 10–13 October 2017; pp. 53–58.

38. Sanchez, A.; Bravo, J.L.; Gonzalez, A. Estimating the Accuracy of Track-Surveying Trolley Measurements for
Railway Maintenance Planning. J. Surv. Eng. 2017, 143, 05016008. [CrossRef]

39. Czaplewski, K.; Waz, M.; Zienkiewicz, M.H. A Novel Approach of Using Selected Unconventional Geodesic
Methods of Estimation on VTS Areas. Mar. Geod. 2019, 42, 447–468. [CrossRef]

40. Zienkiewicz, M.H.; Czaplewski, K. Application of Square M-Split Estimation in Determination of Vessel
Position in Coastal Shipping. Pol. Marit. Res. 2017, 24, 3–12. [CrossRef]

41. Wisniewski, Z. Rachunek Wyrównawczy w Geodezji z Przykładami; Wydawnictwo UWM: Olsztyn, Poland, 2016;
468p. (In Polish)
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