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Abstract. Computer technology for communication has become an integral
aspect of daily operation. The exponential growth of internet services with
dynamic inquiries in such areas as manufacturing, business, air traffic control
and mission critical systems demands that there be quick, reliable and safe use
of services. Each service must contain QoS metrics to assure security,
performance and accuracy. A new paradigm of resource management
middleware techniques is in this paper presented which can provide QoS for
dynamic, distributed real-time systems on Common Off The Shelf (COTS)
operating systems. Accommodation of dynamic environments enables the
middleware to carefully consider an efficient design of resource profiling,
resource needs estimation, resource unification, and performance analysis (or
compliant with schedulability analysis) infrastructure providing significant
benefits for QoS management on COTS operating systems. First, the use of
low-cost COTS systems is extended to real-time computing without changing
the operating system. Further, experiments for response time analysis confirm
that the worst-case analysis poorly utilizes computational resources. Finally, it
is shown that the new method of middleware design employing scalability of
software and hardware system can be easily applied to legacy systems to
manage resources efficiently for quick, reliable services and accurate QoS.

1   Introduction

Computer Technology for communication has become an integral aspect of daily
operation. The exponential growth of internet services with dynamic inquiries in such
areas as manufacturing, business, air traffic control and mission critical systems
demands that there be quick, reliable and safe use of services. Each service must
contain QoS metrics to assure security, performance and accuracy.

Generally, the real-time system is designed to predict response times of
applications before they are executed in order to meet the QoS requirement in the
metric of timeliness. The Rate Monotonic Analysis (RMA)  introduced by  [1] is used
primarily to determine schedulability of an application by using a priori Worst-Case
Execution Time (WCET) and the priority of the application. The priority of the
application to be applied to RMA is dependent upon arrival patterns and rates. The
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application, which has a higher arrival rate of task or needs to be executed more
frequently, has a higher priority level than any other applications.

However, as has been noted in [2], and [3] resources are poorly utilized if the
average case is significantly less than the worst case. Another drawback of RMA is
that it cannot efficiently accommodate high-priority jobs that have relatively low rates.
It must, however, be noted that RMA can be made to work in such cases, by
transforming low-rate, high-priority jobs into high-rate jobs – but this can be
extremely wasteful in terms of resources.

It is stated in [4], and [3] that accurately measuring the WCET is often difficult,
and is sometimes impossible. Puschner and Burns in [5] consider WCET analysis to
be hardware dependent, making it an expensive operation on distributed heteogeneous
clusters.

Statistical RMA in [6] considers tasks that have variable execution times and
allocate resources to handle the expected case. The benefit of the approach is the
efficient utilization of resources. However, there are shortcomings. First, applications
which have a wide variance in resource requirements cannot be characterized
accurately by a time-invariant statistical distribution; and secondly, deadline
violations occur when the expected case is less than the actual case. Similarly, real-
time queuing theory [7] uses probabilistic event and data arrival rates for performing
resource a1location analysis. On the average, it provides good utilization of resources.
It must be noted, however, that applications which have a wide variance of resource
requirements cannot be characterized accurately by a time-invariant statistical
distribution

Use of distributed systems appears to provide strong integration for quick
services. However, distributed systems have heterogeneous resources. That is, they
have different capacities. Thus, when data or tasks are distributed to heterogeneous
systems to be processed concurrently, the load of data should be balanced. A major
difference between the traditional load-balancing techniques  demonstrated by [8] and
the dynamic QoS-based resource management services lies in the overall goals.

While load-balancing systems
1
 attempt to achieve system performance goals such as

minimized response time or maximized throughput, the dynamic QoS-based resource
management service strives to meet the QoS requirements of each application being
managed. Another major difference between these systems is their workload models.
Traditional load balancing systems assume independent jobs with known resource
requirements. In dynamic resource management systems, the workload requirements
of applications are dependent (communicate with each other) and can vary, based on
environmental conditions.

Presently, there is an increasing amount of research focused on QoS management
and resource management techniques using distributed real-time systems. However,
most of the Commercial Off The Shelf (COTS) systems use general purpose
operating systems such as Windows, Unix, and Linux rather than real-time operating
systems such as MACH, RT-Kernel, and Lynx.

Therefore, use of distributed systems with COTS operating systems to handle the
QoS and resource management for the dynamic real-time system becomes a new

                                                          
1

See Load-Leveler (IBM 1993), Globus (http://www.globus.org), Beowulf (Becker et al
1995), and Condor (http://www.cs.wisc.edu/condor/manual).
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challenge to handle complex problems. The COTS operating systems, especially, has
become widely used in many application fields (especially in internet based
applications) supporting QoS.

2   Contention Analysis for Tasks with Same Priority Level

The benefit of use of COTS operating systems can be extended, if they can be utilized
for real-time tasks. With the small number of priority levels in COTS operating
systems, tasks may often have the same priority which means they will use CPU time
quanta (denoted TQ) equivalently.

Furthermore, dynamic environments with the unknown arrival times of processes
make it difficult to predict the exact response time of the processes (or tasks). Thus, in
the following section, the techniques which are the worst-case analysis and
probabilistic analysis to predict response times of processes are studied.

2.1   Worst-Case

The worst-case of contention occurs when all tasks arrive at the same time and the
target task starts last.  The worst-case queuing delay of a task due to the same priority
tasks can be computed. This approach considers the period of the tasks and the
segments of execution times of all processes. The term, MC(axyz, aijk ,tl, Hq),  is the
modified execution time that an application of workload (tl (axyz)) will contend with
the target task (aijk) on the host (Hq).  The queuing delay of aijk on Hq due to the same
priority tasks,  SDpred(aijk,tl,Hq), is the approximated response time, minus execution
time, as shown in formula (1).

            SDpred(aijk,tl,Hq)=ari(aijk)-Cpred(aijk,tl,Hq), if  ari(aijk)=ari+1(aijk), ∀ I              ( 1)

The ith approximated response time, ari, starts with 0 and adds execution times of all
same priority tasks within the period. The following steps show the computation
process of the approximated response time.
Step 1.  Compute the first approximation of response time (ar0) by adding the time
range of other tasks, MC(axyz,aijk,tl2, Hq).

ar0(aijk)= Cpred(aijk,tl,Hq) + ∑∑∑
x y z

MC(axyz,aijk,tl2,Hq)

MC(axyz,aijk,tl2,Hq) =     SEG(aijk,tl,Hq)*TQ(Hq),  if SEG(axyz,tl2,Hq) > SEG (aijk,tl,Hq)

 Cpred(axyz,tl2,Hq),   if  SEG(axyz,tl2,Hq) ≤ SEG(aijk,tl,Hq)

where tl=tl(aijk, c+1),  Host(axyz, t)= Host(aijk, t), p(axyz)=p(aijk),
and x ≠ i, ∀ x,y,z

The conditions of other tasks (axyz) are as follows:
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1)  Should have the same priorities of tasks as the target task (p(aijk)=p(axyz)),
2)  Should run on the same host (Host(axyz, t)= Host(aijk, t)),
3)  Should be on a different path from  the target task (x ≠ i).

   From condition 1), it can be seen that the execution times of tasks need to be re-
computed due to the equivalent chance of execution among other tasks, which have a
different required execution time. Because the MC(axyz,aijk,tl2,Hq) depends on the
number of segments of the target task, SEG(aijk,tl,Hq) (=Cpred(aijk,tl,Hq))/TQ(p,Hq)),
the segments of other tasks become the same as the segment of the target task, even
though original execution times of other tasks  may be greater than that of the target.
The extra segments of the other tasks do not affect the response time of the target
task.
   In Step 2,  the next approximation is performed to  determine additional execution
time required. If the periods of the tasks are smaller than the previous approximated
response time ( ari(aijk)/T(axyz) ≥1), additional executions occur. Otherwise, the next
period does not appear.

Step 2. Compute the next approximation of the response time by using the previous
approximation.

         ari+1(aijk)=Cpred(aijk,tl,Hq) +  







∑ ∑ ∑

)(

)(

xyz

ijki

x y z aT

aar
 * MC(axyz,aijk,tl2,Hq)

  The ceiling function determines if the period of a task is within the previous
approximation. If  all task periods are smaller than the previous approximation, none
of the tasks starts during the approximation.  Thus,  Step 3 performs is necessary for
finding the answer.

Step 3. Determine if the approximation is the answer.

               if (ari(aijk) ==ari+1(aijk)), SDpred(aijk,tl,Hq) = ari(aijk) - Cpred(aijk,tl,Hq)
          else increase i and repeat step 2

2.2   Rate of Progress (RP)

Welch et al (1995) introduced two approaches for estimating the contention using
progress rate during the least common multiple (LCM) of periods of tasks, and for
resource usage.  These approaches were modified and applied to the dynamic real-
time systems.

2.2.1   The First Rate of Progress Technique (RP-1)

The following formula (2) called RP-1, shows how it is processed to compute the
queuing delay of the target application (aijk) due to the same priority tasks.

(2)
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In this approach, during LCM, the progress rate of the target task, prate1(aijk), is
computed by considering the segments of the task that have the same priority. It is the
ratio of execution segments of the target task versus other tasks (axyz), which will
contend the target task. The SEG(aijk,tl,Hq)/prate1(aijk) is the total number of segments
considering contention. Hence, by subtracting required segments, SEG(aijk,tl,Hq), the
contended segments due to the other tasks are produced. Finally, the contended
segments are converted into time unit (SDpred(aijk,tl,Hq): queuing delay) by
multiplying the time quantum (TQ(p,Hq)).

In Step 1, LCM is computed by using periods of all task on the same host with the
same priority, and during the LCM, required resource segments, (S(axyz,tl,Hq)) for the
target task on Hq are calculated.
Step 1. Compute the resource requirement of the target task (aijk) during the interval,
[0,LCM].

The required resource segments for other tasks on Hq (S(Hq,aijk)) in [0,LCM] can
also be computed as in Step 1. The LCM/T(aijk) computes the number of arrivals of aijk

during the LCM.

Step 2. Compute the resource requirement  of the other tasks (axyz) during the interval,
[0,LCM].

where, tl=tl(aijk, c+1), axyz ∈ AL(Hq,t), x ≠ i , p(axyz)=p(aijk),
and Host(aijk,t) = Host(axyz ,t) ∀ x,y,z

It must be noted that the conditions of other tasks (axyz) are the same as the worst-
case. For condition 3) in section 4.1, the applications in the same path as the target
task,  aijk, are ignored, as aijk can start after successor (succ(aijk)) is finished, and the
predecessor of the target task, (pred(aijk)) can start after aijk is finished. It can be said
that they are execution dependent.

S(Hq, aijk) plus S(aijk,tl, Hq) should be less than LCM; otherwise, tasks can not
meet time requirements.  The resource demands for the LCM is computed at Step 1
and Step 2. In Step 3, rate of progress  (prate1(aijk)), a metric to account contention, is
computed simply  by comparing the relative ratio of required resources.

Step 3. Compute rate at which requests of aijk for resource Hp are serviced.
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2.2.2   The Second Rate of Progress Technique

An improved approach called RP-2  considers the probability of the target task being
blocked by any other tasks. The basic comcept is the same as RP-1  introduced in
section 2.2.1. The improved progress rate, prate2(aijk), is presented in this section.
This technique considers all possible probability that the target task could progress,
including computation of progress rate within contention with other tasks. The
following formula (3) shows the computation of the queuing delay of the target task,
aijk, on Hq, (SDpred(aijk,tl,Hq)).

(3)

To compute  prate2(aijk),  utilization of the target task (U(aijk,tl,Hq)) and utilization
of other tasks (U(Hq,aijk)) on resource Hq are computed at Step 1. Welch et al (1995)
compute the utilization of tasks over the LCM, but in this study, utilization of a task
is computed over the period (T(aijk)) of the task. The results are the same.

Step 1. Compute utilization of the target and other tasks.

where, tl=tl(aijk, c+1),  x ≠ i , p(axyz)=p(aijk),
and Host(aijk,t) = Host(axyz ,t) ∀ x,y,z

The condition of other tasks are the same as the worst-case and the RP-1.  In Step
2, the improved rate of progress is computed by considering: 1) the probability of
being with no usage of the resource (cp0(aijk)), 2) the chance that only aijk uses the
resource (cp1(aijk)), and 3) the chance that there is aijk progress rate within contention
(cp2(aijk)).

Step 2. Compute progress rate
           prate2(aijk) = cp0(aijk)+ cp1(aijk)+ cp2(aijk)
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3   Contention Analysis for Tasks at Different Priority Levels

Priority scheduling in distributed environments is a sub-problem of distributed
resource management. At the present time, real-time priority services on COTS
operating systems can provide powerful means to improve performance of tasks
requiring time constraints. As noted in the literature review, different aspects of the
priority management problem have been addressed in a number of studies.
Especially, in [9], fixed-priority assignment and static-task allocations appear to be
the most common approaches employed by resource management systems in
distributed real-time systems.  However, the problem of the queuing delay estimation
for the dynamic real-time systems using real-time priority level on COTS operating
systems in order to manage QoS has not heretofore been addressed before. This
section, computation of queuing delays due to the higher real-time priority tasks,
HDpred(aijk,tl,Hp),  is ignored due to the page limit. Shortly, as used in section 2, all
formulas are identical as previous sections except tasks’ priorities considered for
computation of process contention.  

4   Synthesizing Contention Analysis for Response Time Prediction

In this section, the final prediction techniques for COTS operating systems under
dynamic environments by synthesizing previous approaches are presented. These
techniques are used for same priority level as well as for different priority levels.
Therefore, the final response time of aijk (= λ pred(aijk,tl,Hq)) is derived by the following
formula (4):

λ pred(aijk,tl,Hp)= Cpred(aijk,tl,Hp)+ Dpred(aijk,tl,Hp)
Dpred(aijk,tl,Hp) = SDpred(aijk,tl,Hp)+ HDpred(aijk,tl,Hp)

(4)

The following Table 1 shows possible choices (s1 to s13) for synthesizing
SDpred(aijk,tl,Hp) and HDpred(aijk,tl,Hp) computed by 5 different approaches for each.
The same technique used for computing SDpred(aijk,tl,Hp) and HDpred(aijk,tl,Hp),  shown
in diagonal of Table 1, might be possible selections for synthesizing to compute total
response time. Combination of the worst-case and other probabilistic approaches like
RP-2 also might be a good candidate..

Table 1. The synthesized cases for the final response time prediction.

       Same priority
Different priority

Worst-Case RP-1 RP-2

Worst-Case         S1 S6 S7
RP-1 S10     S2
RP-2 S11    S3
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5   Experiments

In experiment, the filter application in DynBench [10] is also used as a target task
examined on the dynamic and monotonic workload scenario. Several contention
conditions derived by periods and workloads are considered in this experiment.

As Shown in Fig. 1 the combined scenario brings more variations in response time
prediction, even though CPU is only used up to 65 percent. The "s1" overuses the
CPU resource 29 percent in this experiment, while "s3" exceeds 2.8 percent only.
Fig. 1 shows the comparison of each synthesized prediction technique.

Fig. 1. Response time prediction by synthesized techniques on the combined workload

From the experiment presented, there is no measurement error under the 95%
confidence interval. The “s3”, probabilistic contention analysis technique, RP-2, can
accurately predict response time of an application on a COTS operating system, while
the “s1” and the “s2” involving the worst-case analysis poorly predict response times.
Therefore, these experiments  for the dynamic real-time systems give strong analysis
that the worst-case analysis poorly utilizes computational resources, and new
approaches can predict response time on the COTS operating system with the
dynamic environment constraints using current utilization. This suggest that
schedulability of tasks can be predicted without using any real-time operating system
components.

6   Conclusion

A new paradigm of the dynamic resource management technique was the focus of this
research. This work mainly contributes to the area of QoS with an adaptive RM
architecture, middleware and framework. This is accomplished with a mathematical
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model for dynamic real-time systems, an execution time analysis, and a predictive
response time analysis using real-time priority services on COTS operating systems
for dynamic distributed real-time systems. The significant experiment results and
solution procedures are deployed in analytical models. A statistical analysis tool was
used to evaluate the accuracy of these new approaches compared with observed data
and previous approaches.
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