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Summary 
 
This paper deals with the computational modeling and sub-grid scale stabilization of 
incompressibility and convection in the numerical simulation of the material flow around the 
probe tool in a Friction Stir Welding (FSW) process. Within the paradigmatic framework of the 
multiscale stabilization methods, suitable pressure and convective derivative of the temperature 
sub-grid scale stabilized coupled thermomechanical formulations have been developed using an 
Eulerian description. Norton-Hoff and Sheppard-Wright thermo-rigid-viscoplastic constitutive 
material models have been considered. Constitutive equations for the sub-grid scale models 
have been proposed and an approximation of the sub-grid scale variables has been given. In 
particular, Algebraic Sub-grid Scale (ASGS) and Orthogonal Sub-grid Scale (OSGS) methods 
for mixed velocity, pressure and temperature P1/P1/P1 linear elements have been considered. 
Furthermore, it has been shown that well known classical stabilized formulations, such as the 
Galerkin Least-Squares (GLS) for incompressible (or quasi-incompressible) problems or the 
Streamline Upwind/Petrov-Galerkin (SUPG) method for convection dominant problems, can be 
recovered as particular cases of the multiscale stabilization framework considered. Using a 
product formula algorithm for the solution of the coupled thermomechanical problem, the 
resulting algebraic system of equations has been solved using a staggered procedure in which a 
mechanical problem, defined by the linear momentum balance equation, under quasi-static 
conditions, and the incompressibility equation, is solved first at constant temperature. Then a 
thermal problem, defined by the energy balance equation, is solved keeping constant the 
mechanical variables, i.e. velocity and pressure. The computational model has been 
implemented in an enhanced version of the finite element software COMET, developed by the 
authors at the International Center for Numerical Methods in Engineering (CIMNE). Two 
numerical examples have been considered. The first one deals with the numerical simulation of 
a coupled thermomechanical flow in a 2D rectangular domain. Steady-state and transient 
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conditions have been considered. The goal of this numerical example has been the comparison 
between different sub-grid scale stabilization methods for the velocity and temperature 
equations. In particular, using a GLS stabilization method for the pressure equation, a 
comparison between SUPG and OSGS convective stabilization methods has been performed. 
Additionally, using a SUPG stabilization method for the temperature equation, a comparison 
between GLS and OSGS pressure stabilization methods has been done. The second example 
deals with the 3D numerical simulation of a representative FSW process. Numerical results 
obtained have been compared with experimental results available in the literature. A good 
agreement on the temperature distribution has been obtained and predicted peak temperatures 
compare well, both in value and position, with the experimental results available.  
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1 Introduction, motivation and goals 
 
Thermally coupled incompressible rigid-plastic material models are of particular practical 
interest in the numerical simulation of different metal forming processes, in which the plastic 
strains are much higher than the elastic ones and, therefore, the elastic strains can be neglected. 
Furthermore, for some of those applications the plastic strains and plastic strain rates are 
extremely high and Eulerian or Arbitrary Lagrangian-Eulerian (ALE) formalisms, instead of a 
Lagrangian one, are far more convenient from the numerical point of view. Those situations 
arise, for instance, in the numerical simulation of Friction Stir Welding (FSW) processes 
[6,7,8,33,34].  

The formulation of thermally coupled incompressible rigid-plastic material models 
using Eulerian or ALE formalisms is of particular interest from the numerical point of view for 
different reasons. The need to stabilize the standard Galerkin finite element approximation 
comes from two main sources. Due to the incompressibility constraints, pressure instabilities 
appear if we wish to use equal velocity-pressure interpolations. On the other hand, Eulerian or 
ALE formalisms introduce convection terms in the governing equations and convection 
instabilities may arise for convection dominant problems. As it is now well known, both sources 
of instabilities can be overcome by using sub-grid scale finite element stabilized formulations 
[57,58,59,60].  

Sub-grid scale finite element stabilized methods have been widely used in 
Computational Fluid Dynamics (CFD) and they were initially developed by Hughes et al. 
(1986) for the Stokes problem [57].  

Sub-grid scale models were first introduced by Hughes (1995) [58]. The Variational 
Multiscale (VMS) method – a paradigm for computational mechanics – was introduced by 
Hughes et al. (1998) [59]. See also Hughes et al. (2004) [60] for a presentation of multiscale 
and stabilized methods. The basic idea was to split the exact continuous unknowns into two 
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components or scales: the finite-element component and the sub-grid scale or subscale 
component. The subscales represent the component of the exact continuous solution which 
cannot be captured by the finite element partition. The particular approximation used for these 
sub-grid scales defines the numerical model.  

Within the CFD framework, VMS methods have been used by Codina (1998) [37] for 
the diffusion-convection reaction problem, Codina (2000) [39] to stabilize incompressibility and 
convection through orthogonal subscales, first introducing the Orthogonal Sub-grid Scale 
(OSGS) method, Codina (2001) [41] for generalized stationary incompressible flows, Codina 
(2002) [42] for transient incompressible flows using dynamic orthogonal subscales, Hughes et 
al. (2004) [60] for the incompressible Navier-Stokes equations, Codina et al. (2007) [43] for 
transient incompressible flows using dynamic subscales, Codina and Principe (2007) [44] for 
thermally coupled incompressible flows using nonlinear dynamic subscales, Principe (2008) 
[68], Principe and Codina (2008) [69], and Avila et al. (2010) [14] for the low Mach number 
flow equation, and Codina et al. (2010) [45] for turbulent thermally coupled incompressible 
flows. 

Codina et al. (2007) [43] showed that it was worth to track the subscales in time in a 
variational multiscale approach to the transient incompressible Navier–Stokes equations and to 
take into account all their contributions in the convective term. They pointed out two main 
reasons. The first and very simple reason was that it leaded to global momentum conservation, a 
rare property. The second one was the door opening to model turbulence. Tracking the subscales 
from the point of view of the time integration scheme showed several advantages. First, the 
resulting formulation leaded in a natural way to the correct behavior of the stabilization 
parameters with the time step, while steady-state solutions were not depending on it. Moreover, 
the conflict about the design of the stabilization terms for time dependent problems (either at the 
semi-discrete or the fully discrete level) disappeared, since space discretization (scale splitting) 
and time discretization can be commuted. Numerical results showed that the method was stable 
and the improvement in accuracy with respect to quasi-static subscales was notorious. 

Codina and Principe (2007) [44] showed that the use of dynamic subscales had also 
several benefits in the numerical simulation of thermally coupled incompressible flows, such as 
improved time stability and accuracy, particularly when 0tδ → , correct behavior of the 
stabilization parameters with the time step size, commutation of space discretization (subscale 
splitting) and time discretization, and the coupling of velocity and temperature subscales was 
dealt with in a natural way. Numerical results confirmed the conclusions drawn for isothermal 
flows, yielding a more accurate formulation, in which oscillations originated by initial transients 
were eliminated and numerical dissipation was minimized. 

Within the framework of Computational Solid Mechanics (CSM) sub-grid scale 
stabilization methods have been used by Chiumenti et al. (2002) [29] for incompressible linear 
elasticity, Cervera et al. (2003) [22], Christ et al. (2003) [35] and Chiumenti et al. (2004) [30] 
for incompressible linear elasticity and small strains J2 plasticity, Cervera et al. (2004) [23] for 
small strains J2 continuum damage models, Agelet de Saracibar et al. (2004) [4] for 
infinitesimal strains and finite deformation J2 plasticity, and Agelet de Saracibar et al. (2006) 
[5] for finite deformation J2 plasticity. They used sub-grid scale finite element stabilized mixed 
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displacement/pressure formulations, in which the sub-grid scale pressure was neglected. 
Algebraic Sub-grid Scale (ASGS) and Orthogonal Sub-grid Scale (OSGS) methods were used. 

Cervera et al. (2010) [25,26] used sub-grid scale finite element stabilized mixed 
stress/displacement and strain/displacement formulations for nonlinear (damage) solid 
mechanics models. Chiumenti et al. (2010) [32] used sub-grid scale finite element stabilized 
mixed strain/displacement and displacement/pressure formulations for Mode-I and Mode-II 
strain localization, using Rankine and J2 elasto-plasticity models, respectively. Sub-grid scale 
finite element stabilization methods, using continuum damage models and a mixed 
strain/displacement formulation, have been used by Cervera et al. (2010,2011) [26,27] to 
address the problem of strain localization for tensile and mixed-mode cracking within the so-
called smeared crack approach. Numerical examples showed that the resulting procedure was 
remarkably robust, it was not required the use of auxiliary tracking techniques and the results 
obtained were not suffering from spurious mesh bias dependence. 

Chiumenti et al. (2010) [31] used a sub-grid scale finite element stabilized mixed 
displacement/pressure/temperature for the numerical simulation of Shaped Metal Deposition 
(SMD) processes. 

Agelet de Saracibar et al. (2010) [6,7], Agelet de Saracibar et al. (2011) [8], Chiumenti 
et al. (2012) [33], and Dialami et al. (2012) [52] used a sub-grid scale finite element stabilized 
mixed velocity/pressure/ temperature formulation for coupled thermo-rigid-plastic models, 
using Eulerian and Arbitrary Lagrangian Eulerian (ALE) formalisms, for the numerical 
simulation of Friction Stir Welding (FSW) processes. They used ASGS and OSGS methods and 
quasi-static sub-grid scales, neglecting the sub-grid scale pressure and using the finite element 
component of the velocity in the convective term of the energy balance equation.  

Chiumenti et al. (2013) [34] used a novel stress-accurate FE technology for highly non-
linear analysis with incompressibility constraints typically found in the numerical simulation of 
FSW processes. They used a mixed linear piece-wise interpolation for displacement, pressure 
and stress fields, respectively, resulting in an enhanced stress field approximation which enables 
for stress accurate results in nonlinear computational mechanics.  

Friction Stir Welding (FSW) is a new method of welding in solid state, created and 
patented by The Welding Institute (TWI) in 1991 [77]. In FSW a cylindrical, shouldered tool 
with a profiled probe is rotated and slowly plunged into the joint line between two pieces of 
sheet or plate material, which are butted together. The parts have to be clamped onto a backing 
bar in a manner that prevents the abutting joint faces from being forced apart. Once the probe 
has been completely inserted, it is moved with a small tilt angle in the welding direction. The 
shoulder applies a pressure on the material to constrain the plasticised material around the probe 
tool. Due to the advancing and rotating effect of the probe and shoulder of the tool along the 
seam, an advancing side and a retreating side are formed and the softened and heated material 
flows around the probe to its backside where the material is consolidated to create a high-quality 
solid-state weld. The maximum temperature reached is of the order of 80% of the melting 
temperature. Despite the simplicity of the procedure, the mechanisms behind the process and the 
material flow around the probe tool are very complex. The material is extruded around the 
rotating tool and a vortex flow field near the probe due to the downward flow is induced by the 
probe thread. The process can be regarded as a solid phase keyhole welding technique since a 
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hole to accommodate the probe is generated, then filled during the welding sequence. The 
material flow depends on welding process parameters, such as welding and rotation speed, 
pressure, etc., and on the characteristics of the tools, such as materials, design, etc.  

The first applications of FSW have been in aluminium fabrications. Aluminium alloys 
that are difficult to weld using conventional welding techniques, are successfully welded using 
FSW. The weld quality is excellent, with none of the porosity that can arise in fusion welding, 
and the mechanical properties are at least as good as the best achievable by fusion welding. 
Being a solid-state welding process, the structure in the weld nugget is free of solidifying 
segregation, being suitable for welding of composite materials. The process is environmentally 
friendly, because no fumes or spatter are generated, and there is no arc glare or reflected laser 
beams with which to contend. Another major advantage is that, by avoiding the creation of a 
molten pool which shrinks significantly on re-solidification, the distortion after welding and the 
residual stresses are low. With regard to joint fit up, the process can accommodate a gap of up to 
10% of the material thickness without impairing the quality of the resulting weld. As far as the 
rate of processing is concerned, for materials of 2 mm thickness, welding speeds of up to 2 
m/min can be achieved, and for 5 mm thickness up to 0.75 m/min. Recent tool developments are 
confidently expected to improve on these figures. 

Friction stir welding has been used to weld all wrought aluminium alloys, across the 
AA-2xxx, AA-5xxx, AA-6xxx and AA-7xxx series of alloys, some of which are bordering on 
being classed as virtually unweldable by fusion welding techniques. The process can also weld 
dissimilar aluminium alloys, whereas fusion welding may result in the alloying elements from 
the different alloys interacting to form deleterious intermetallics through precipitation during 
solidification from the molten weld pool. Friction stir welding can also make hybrid 
components by joining dissimilar materials such as aluminium and magnesium alloys. The 
thicknesses of AA-6082-T6 that have so far been welded have ranged from 1.2 mm to 50 mm in 
a single pass, to more than 75 mm when welding from both sides. Welds have also been made 
in pressure die cast aluminium material without any problems from pockets of entrapped high 
pressure gas, which would violently disrupt a molten weld pool encountering them. 

The original application for friction stir welding was the welding of long lengths of 
material in the aerospace, shipbuilding and railway industries. Examples include large fuel tanks 
and other containers for space launch vehicles, cargo decks for high-speed ferries, and roofs for 
railway carriages. FSW is used already in routine, as well as in critical applications, for the 
joining of structural components made of aluminium and its alloys. Indeed, it has been 
convincingly demonstrated that the process results in strong and ductile joints, sometimes in 
systems which have proved difficult using conventional welding techniques. The process is 
most suitable for components which are flat and long (plates and sheets) but can be adapted for 
pipes, hollow sections and positional welding. 

The computational modeling of FSW processes is a complex task and it has been a 
research topic of increasing interest in computational mechanics during the last decades.  

Thermal models for the numerical simulation of FSW processes were used by McClure 
et al. (1998) [66], Colegrove et al. (2000) [46], and Khandkar and Khan (2001,2003) [62,63]. 
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Bendzsak et al. (2000) [15,16] used the Eulerian code Stir3D to model the flow around 
a FSW tool, including the tool thread and tilt angle in the tool geometry and obtaining complex 
flow patterns. The temperature effects on the viscosity were neglected. 

Dong et al. (2001) [53] developed a simplified model for the numerical simulation of 
FSW processes, taking into account both the friction heating and plastic work in the modelling 
of the heat flow phenomena, predicting the development of a plastic strain around the weld zone 
in the initial stage of welding. However, they did not consider the longitudinal movement of the 
tool.  

Xu et al. (2001) [79] and Xu and Deng (2003,2004) [80,81] developed a 3D finite 
element procedure to simulate the FSW process using the commercial Finite Element Method 
(FEM) software ABAQUS, focusing on the velocity field, the material flow characteristics and 
the equivalent plastic strain distribution. The authors used an Arbitrary Lagrangian-Eulerian 
(ALE) formulation with adaptive meshing and consider large elasto-plastic deformations and 
temperature-dependent material properties. However, the authors did not perform a fully 
coupled thermo-mechanical simulation, superimposing the temperature map obtained from the 
experiments as a prescribed temperature field to perform the mechanical analysis. The 
numerical results were compared to experimental data available, showing a reasonable good 
correlation between the equivalent plastic strain distributions and the distribution of the 
microstructure zones in the weld.  

Ulysse (2002) [78] presented a fully coupled 3D FEM visco-plastic model for FSW of 
thick aluminium plates using the commercial FEM code FIDAP. The author investigated the 
effect of tool speeds on the process parameters. It was found that a higher translational speed 
leads to a higher welding force, while increasing the rotation speed has the opposite effect. 
Reasonable agreement between the predicted and the measured temperature was obtained and 
the discrepancies were explained by an inadequate representation of the constitutive behavior of 
the material for the wide ranges of strain-rate, temperatures and strains typically found during 
FSW. 

Askari et al. (2003) [13] used the CTH hydrocode coupled to an advection-diffusion 
solver for the energy balance equation. The CTH code, developed by Sandia National 
Laboratories, uses the finite volume method to discretize the domain. The elastic response was 
taken into account in this case. The results proved encouraging with respect to gaining an 
understanding of the material flow around the tool. However, simplified friction conditions 
were used. 

Chen and Kovacevic (2003) [28] developed a 3D FEM model to study the thermal 
history and thermo-mechanical phenomena in the butt-welding of aluminium alloy AA-6061-T6 
using the commercial FEM code ANSYS. Their model incorporated the mechanical reaction 
between the tool and the weld material. Experiments were conducted and an X-ray diffraction 
technique was used to measure the residual stress in the welded plate. The welding tool (i.e. the 
shoulder and pin) in the FEM model was modeled as a heat source, with the nodes moved 
forward at each computational time step. This simple model severely limited the accuracy of the 
stress and force predictions. 

Colegrove et al. (2000,2004) [46,47] used the commercial Computational Fluid 
Dynamics (CFD) software FLUENT for a 2D and 3D numerical investigation on the influence 
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of pin geometry during FSW, comparing different pin shapes in terms of material flow and 
welding forces on the basis of both a stick and a slip boundary condition at the tool/work-piece 
interface. In spite of the good obtained results, the accuracy of the analysis was limited by the 
assumption of isothermal conditions. Seidel and Reynolds (2003) [73] also used the CFD 
commercial software FLUENT to model the 2D steady-state flow around a cylindrical tool. 

Schmidt and Hattel (2004) [72] presented the development of a 3D fully coupled thermo 
mechanical finite element model in ABAQUS/Explicit using the ALE formulation. The 
flexibility of the FSW machine was taken into account by connecting the rigid tool to a spring. 
The work-piece was modeled as a cylindrical volume with inlet and outlet boundary conditions. 
A rigid back-plate was used. The contact forces were modeled using a Coulomb friction law, 
and the surface was allowed to separate. Heat generated by friction and plastic deformation was 
considered. The simulation modeled the dwell and weld phases of the process.  

An ALE formulation for the numerical simulation of FSW processes was also used by 
Zhao (2005) [82]. 

Nikiforakis (2005) [67] used a finite difference method to model the FSW process. 
Despite the fact that he was only presenting 2D results, the model proposed had the advantage 
of minimizing the calibration of model parameters, taking into account a maximum of physical 
effects. A transient and fully coupled thermo-fluid analysis was performed. The rotation of the 
tool was handled through the use of the overlapping grid method. A rigid-viscoplastic material 
law was used and sticking contact at the tool work piece interface was assumed. Hence, heating 
was due to plastic deformation only. 

Heurtier et al. (2006) [56] used a 3D semi-analytical coupled thermomechanical FE 
model to simulate FSW processes. The model uses an analytical velocity field and considers 
heat input from the tool shoulder and plastic strain of the bulk material. Trajectories, 
temperature, strain, strain rate fields and micro-hardness in various weld zones were computed 
and compared to experimental results obtained on an AA 2024-T351 alloy FSW joint. 

Buffa et al. (2006) [18] using the commercial finite element software DEFORM-3D, 
proposed a 3D Lagrangian, implicit, coupled thermo-mechanical numerical model for the 
simulation of FSW processes, using a rigid-viscoplastic material description and a continuum 
assumption for the weld seam. The proposed model is able to predict the effect of process 
parameters on process variables, such as the temperature, strain and strain rate fields, as well as 
material flow and forces. A reasonable good agreement between the numerically predicted 
results, on forces and temperature distribution, and experimental data was obtained. The authors 
found that the temperature distribution about the weld line is nearly symmetric because the heat 
generation during FSW is dominated by rotating speed of the tool, which is much higher than 
the advancing speed. On the other hand, the material flow in the weld zone is non-
symmetrically distributed about the weld line because the material flow during FSW is mainly 
controlled by both advancing and rotating speeds.  

De Vuyst et al. (2004-2006) [48,49,50,51] used the coupled thermo-mechanical finite 
element code MORFEO to simulate the flow around simplified tool geometries for FSW 
process. The rotation and advancing speed of the tool were modeled using prescribed velocity 
fields. An attempt to consider features associated to the geometrical details of the probe and 
shoulder, which had not been discretized in the finite element model in order to avoid very large 
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meshes, was taken into account using additional special velocity boundary conditions. In spite 
of that, a mesh of roughly 250,000 nodes and almost 1.5 million of linear tetrahedral elements 
was used. A Norton-Hoff rigid-viscoplastic constitutive equation was considered, with averaged 
values of the consistency and strain rate sensitivity constitutive parameters determined from hot 
torsion tests performed over a range of temperatures and strain rates. The computed streamlines 
were compared with the flow visualization experimental results obtained using copper marker 
material sheets inserted transversally or longitudinally to the weld line. The simulation results 
correlated well when compared to markers inserted transversely to the welding direction. 
However, when compared to a marker inserted along the weld centerline only qualitative results 
could be obtained. The correlation may be improved by modeling the effective weld thickness 
of the experiment, using a more realistic material model, for example, by incorporating a yield 
stress or temperature dependent properties, refine velocity boundary conditions or further 
refining the mesh in specific zones, such as for instance, under the probe. The authors concluded 
that it is essential to take into account the effects of the probe thread and shoulder thread in 
order to get realistic flow fields. 

Shercliff et al. (2005) [74] developed microstructural models for friction stir welding of 
2000 series aluminium alloys. 

López et al. (2008) [65] and Agelet de Saracibar et al. (2013) [9] developed numerical 
algorithms to optimize material model and FSW process parameters using neural networks. 
They proposed a new model for the dissolution of precipitates in fully hardened aluminium 
alloys and they optimized the master curve and the effective activation energy. Furthermore, 
they developed an algorithm to optimize the advancing and rotation speed, taking as weld 
quality criteria the minimization of the maximum hardness drop at the transversal section under 
the pin. 

Santiago et al. (2010) [71] developed a simplified computational model taking into 
account the real geometry of the tool, i.e. the probe thread, and using an ALE formulation. They 
considered also a simplified friction model to take into account different slip/stick conditions at 
the pin shoulder/work-piece interface.  

Chiumenti et al. (2012) [33], Dialami et al. (2012) [52], and Chiumenti et al. (2013) [34] 
developed an apropos kinematic framework for the numerical simulation of FSW processes. 
They considered a combination of ALE, Eulerian and Lagrangian descriptions at different zones 
of the computational domain and they proposed an efficient coupling strategy. Within this 
approach, a Lagrangian formulation was used for the pin, an ALE formulation was used at the 
stir zone of the work-piece, and an Eulerian formulation was used in the remaining part of the 
work-piece. The stir zone was defined as a circular domain close to the pin. The finite element 
mesh in the stir zone was rotating attached to the pin. The resulting apropos kinematic setting 
efficiently permitted to treat arbitrary pin geometries and facilitates the application of boundary 
conditions. The formulation was implemented in an enhanced version of the finite element code 
COMET [21] developed by the authors at the International Center for Numerical Methods in 
Engineering (CIMNE).  

Bussetta et al. (2013) [19,20] compared a fluid approach using an apropos kinematic 
framework, developed by Chiumenti et al. (2012) [33], Dialami et al. (2012) [52], and 
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Chiumenti et al. (2013) [34], and their solid approach using an ALE formalism, in the numerical 
simulation of FSW processes with a non-cylindrical pin. 

This paper deals with the computational modeling and sub-grid scale stabilization of 
incompressibility and convection for the numerical simulation of the material flow around the 
probe tool in a FSW process. 

Within the paradigmatic framework of the multiscale stabilization methods, suitable 
sub-grid scale finite element stabilization methods to stabilize the incompressibility constraint 
and the convection term arising in coupled thermomechanical formulations when a Eulerian 
description and mixed P1/P1/P1 linear velocity/linear pressure/linear temperature finite 
elements are used. Norton-Hoff and Sheppard-Wright thermo-rigid-viscoplastic constitutive 
material models are considered. Quasi-static sub-grid scales are considered and approximations 
of the sub-grid scale variables and stabilization parameters are given. In particular, Algebraic 
Sub-grid Scale (ASGS) and Orthogonal Sub-grid Scale (OSGS) methods are presented. 
Furthermore, it is shown that well known classical stabilized formulations, such as the Galerkin 
Least-Squares (GLS) for incompressible (or quasi-incompressible) problems or the Streamline 
Upwind/Petrov-Galerkin (SUPG) for convection dominant problems, can be recovered as 
particular cases of the multiscale stabilization framework considered.  

Within the framework of fractional step methods, a product formula algorithm, arising 
from an isothermal split, is introduced to solve the coupled thermomechanical problem 
[1,2,3,10,11,12]. The resulting algebraic system of equations is solved using a staggered 
procedure, in which a mechanical problem, defined by the quasi-static version of the linear 
momentum balance equation and the incompressibility equation, is solved first at constant 
temperature. Then a thermal problem, defined by the energy balance equation, is solved next, 
keeping constant the mechanical variables, i.e. velocity and pressure. 

One of the goals of the paper is to compare the two sub-grid scale finite element 
stabilization methods implemented, ASGS and OSGS. Another goal of the paper is to assess the 
performance of the ASGS and OSGS methods in a 3D numerical simulation of a FSW process. 

The outline of the paper is as follows. Section 2 deals with the sub-grid scale stabilized 
mixed formulation for the numerical simulation of the flow of the material around a tool probe 
in a FSW processes. Some key features of the FSW process are addressed and their implications 
in the computational model are first identified. The strong form of the governing equations and 
constitutive equations are provided, and the mixed variational form of the governing equations 
is given. Next, the multiscale stabilization method is introduced and an approximation of the 
sub-grid scale variables and the stabilization parameters is given. ASGS and OSGS finite 
element stabilization methods are considered and it is shown how classical GLS and SUPG 
methods can be recovered as a particular case of the ASGS method.  

An isothermal operator split and a Product Formula Algorithm (PFA), defining 
mechanical and thermal problems, are introduced in Section 3. The ASGS and OSGS finite 
element stabilized formulation for the mechanical and thermal problems are presented. 

Section 4 introduces a finite element partition of the mechanical and thermal problems 
and the resulting algebraic systems of equations are written in matrix form. Finally a convenient 
and efficient staggered solution algorithm for the OSGS method is presented. 
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Two representative numerical examples are shown in Section 5. The first one is a 
numerical simulation of a coupled thermomechanical flow in a 2D rectangular domain. Steady-
state and transient conditions are considered. An assessment of the ASGS and OSGS 
stabilization methods implemented is performed. The second example shows a 3D numerical 
simulation of a FSW process. Numerical results are compared with the experimental results 
provided by Zhu and Chao (2004) [83]. Calculations are performed using an enhanced version 
of the finite element program COMET [21] developed by the authors at the International Center 
for Numerical Methods in Engineering (CIMNE) in Barcelona. Pre- and post-processing is done 
with GiD [54], also developed at CIMNE. Finally some concluding remarks are drawn. 
 
 
2 Sub-grid scale stabilized mixed formulation 
 
2.1 Computational modelling of FSW processes 

The flow of the material around a FSW tool is characterized by a Reynolds number which is 
much smaller than 1, typically of the order 410− , due to the small length scale, the low 
velocities and the very high viscosity of the material. For these values of the Reynolds number, 
the inertial forces of the linear momentum balance equation can be neglected and a quasi-static 
analysis can be performed.  

The deformation of the material taking place around a FSW tool is extremely high. The 
computational modeling of the material flow around a FSW tool using a Lagrangian formulation 
requires continuous remeshing to avoid extremely distorted mesh elements. Therefore, the use 
of alternative formulations, such as ALE or Eulerian formulations, is a better choice. In this 
work we will use an Eulerian formulation. 

Transient thermal conditions will be considered. On the other hand, the Peclet number 
for a FSW process typically ranges from 110  to 310 . For this range of values of the Peclet 
number, the convective term of the spatial energy balance equation cannot be neglected. 

Coupled thermo-mechanical rigid-visco-plastic constitutive material models, such as the 
Norton-Hoff or the Sheppard-Wright, will be considered [6,7,8,19,20,33,34,52]. 

Heat transfer by conduction, convection and radiation are considered. Heat transfer by 
conduction is considered at the contact interface between the work-pieces and the tool, and the 
work-pieces and the back-plate. Heat transfer by convection, governed by the Newton law, and 
radiation, governed by the Stefan-Boltzmann law, are considered at the surfaces of the work-
pieces and the tool which are in contact with the environment [33,34]. 

The resulting coupled thermo-mechanical problem will be solved using a product 
formula algorithm, arising from an isothermal split, leading to a staggered solution algorithm. A 
mechanical problem, involving mechanical variables as unknowns, is defined at constant 
temperature and a thermal problem, involving the temperature as unknown, is defined at 
constant configuration. A pressure stabilized mixed linear velocity/linear pressure finite element 
interpolation formulation will be used to solve the mechanical problem and a convection 
stabilized linear temperature interpolation formulation will be used to solve the thermal problem 
[33,34]. 

 
2.2 Local formulation 
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Let dimnΩ⊂  , with dim 2,3n = , be the computational domain of interest in which the 
deformation takes place during the time interval [ ]0,T , and let ∂Ω  be its boundary. Let us 
consider the following partitions of the boundary v σ∂Ω = ∂ Ω∪∂ Ω , qϑ∂Ω = ∂ Ω∪∂ Ω , such 
that v σ∅ = ∂ Ω∩∂ Ω , qϑ∅ = ∂ Ω∩∂ Ω . Using a mixed velocity/pressure/temperature spatial 
formulation, considering quasi-static conditions and incompressibility, the Initial and Boundary 
Value Problem (IBVP) to be considered is defined by the local spatial form of the linear 
momentum balance equation, mass continuity equation and energy balance equation, together 
with appropriate Dirichlet and Neumann boundary conditions, and initial conditions. The IBVP 
consists in finding a velocity vector field v , a pressure scalar field p , and a temperature scalar 
field ϑ  such that 
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 (1) 

 
In these equations, ( ),ϑs v  is the deviatoric part of the Cauchy stress tensor, ( )ϑq  is 

the spatial heat flux per unit of surface, b  is the body force per unit of spatial volume, r  is the 
internal heat source rate per unit of spatial volume, ( ),ϑ= v   is the dissipation rate per 
unit of spatial volume, v  is the prescribed velocity vector field, t  is the prescribed traction 
vector field, ϑ  is the prescribed temperature, q  is the prescribed outward normal heat flux per 
unit of surface, 0ϑ  is the initial temperature, ( )c c ϑ=  is the heat capacity, ∇  is the spatial 
nabla vector differential operator, and 1  is the unit second-order tensor.  

Heat transfer by thermal contact, convection and radiation is considered according to 
the following expressions 

 

 ( )
( )4 4

c c

conv conv env

rad env

q h g
q h

q

ϑ

ϑ ϑ

σ ε ϑ ϑ

=

= −

= −

 (2) 

where cq  is the heat transfer by thermal contact, convq  is the heat transfer by convection, radq  is 
the heat transfer by radiation, ch  is the contact heat transfer coefficient, gϑ  is the thermal 
contact gap, convh  is the convection heat transfer coefficient, envϑ  is the environmental 
temperature, -2 -45.6704E-08 W m Kσ =  is the Stefan-Boltzmann constant, and ε  is the 
relative emissivity. 

Material mechanical response is modeled using an incompressible thermo-rigid-plastic 
material model. Taking into account incompressibility, the constitutive equation for the 
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deviatoric part of the Cauchy stress tensor and the dissipation rate per unit of volume can be 
written as 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

, 2 , dev 2 ,

, , : dev 2 , dev : dev 2 , :

s s

s s s s s

ϑ µ ϑ µ ϑ

ϑ ϑ µ ϑ µ ϑ
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v s v v v v v v v v
 (3) 

where ( ),µ µ ϑ= v  is the equivalent viscosity of the material model, ( )s∇ ⋅  is the spatial 
symmetric gradient operator, and ( )dev ⋅  is the deviatoric operator.  

Here two target thermo-rigid-plastic material models, Norton-Hoff and Sheppard-
Wright, will be considered and their constitutive equations are given in the next sub-section. 

Material thermal response is modeled using Fourier law given by 
 

 ( ) ( )ϑ κ ϑ ϑ= − ∇q  (4) 

where ( )κ κ ϑ=  is the thermal conductivity. 
 Substituting the mechanical and thermal constitutive equations into the governing 
equations, the IBVP can be written as 
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 (5) 

 
2.3 Constitutive equations 

Two mechanical constitutive incompressible thermo-rigid-plastic material models, suitable for 
the numerical simulation of Friction Stir Welding (FSW) processes, are considered: Norton-
Hoff and Sheppard-Wright [6,7,8,19,20,33,34,52]. 

(i) Norton-Hoff material model: The constitutive equation for the rigid-plastic Norton-
Hoff material model is given by 
 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) 1
, 2 , dev 2 , : 3

ms s sK
ϑ

ϑ µ ϑ µ ϑ ϑ ε
−

= ∇ = ∇ = ∇s v v v v v v v  (6) 

where ( )K ϑ  is a temperature dependent consistency parameter, ( )0 1m ϑ≤ ≤  is a 
temperature dependent rate sensitivity parameter and ( )ε v  is the equivalent strain rate defined 
as 
 



                Computational modeling and sub-grid scale stabilization of incompressibility and convection in the numerical simulation of friction stir welding processes 13 
 

 ( ) ( ) ( )
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   
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Then, the equivalent viscosity for the Norton-Hoff material model takes the form 
 

 ( ) ( ) ( )( ) ( ) 11, : 3
2

m
K

ϑ
µ ϑ ϑ ε

−
=v v  (8) 

(ii) Sheppard-Wright material model: The constitutive equation for the rigid-plastic 
Sheppard-Wright material model is given by 
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where ( )( ),eσ ε ϑv  is the strain rate and temperature dependent yield stress defined as 
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where α , A  and n  are material parameters, and ( )( ),Z ε ϑv
 

is the Zener-Hollomon 
parameter, representing the temperature compensated equivalent strain rate, given by  
 

 ( )( ) ( ), exp QZ
R

ε ϑ ε
ϑ

 =  
 

v v   (11) 

where Q
 
is the activation energy and 1 18.314 J mol KR − −=  is the universal constant for an 

ideal gas. 
Then, the equivalent viscosity for the Sheppard-Wright material model takes the form 
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 (12) 

 
2.4 Variational formulation 

To define the variational setting let us introduce some standard notation. Let ( )pL Ω  be the 
space of functions whose p  power ( )1 p≤ < ∞  are integrable in a domain Ω , being ( )L∞ Ω  
the space of bounded functions in Ω . Let ( )mH Ω  be the space of functions whose derivatives 
of order up to 0m ≥  (integer) belong to ( )2L Ω . The space ( )1

0H Ω  consists of functions in 
( )1H Ω  vanishing on the boundary. A bold character is used to denote the vector counterpart of 

all these spaces. The ( )2L Ω  inner product is denoted as ( ),⋅ ⋅  and the ( )2L ∂Ω  inner product is 
denoted as ( ),

∂Ω
⋅ ⋅ . 

 Let us introduce the infinite dimensional functional spaces := × ×     and 

0 0 0:= × ×     where 
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The variational form of the IBVP consists in finding a velocity vector field ∈v  , 
pressure scalar field p∈  and temperature scalar field ϑ∈  such that 
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where 0 0, ,pδ δ δϑ∈ ∈ ∈v    . 

Integrating by parts some of the terms above, the variational form of the IBVP consists 
in finding a velocity vector field ∈v  , pressure scalar field p∈  and temperature scalar 
field ϑ∈  such that 
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where 
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and 0 0, ,pδ δ δϑ∈ ∈ ∈v     where, now the spaces of functions := × ×     and 

0 0 0:= × ×     are defined as 
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2.5 Galerkin finite element projection 

The standard Galerkin projection of the variational form of the IBVP is now straightforward. 
Let us consider a finite element partition { } , 1, ,e ee nΩ =   of the computational domain Ω , 
where en  is the number of elements in the partition. We can now construct conforming finite 
element spaces for the velocity, pressure and temperature in the usual manner. We will assume 
that they are all built from continuous piecewise polynomials of the same degree k . 

Let us introduce the finite element spaces :h h h h= × × ⊂      and 

0, 0, 0, 0:h h h h= × × ⊂      where h ⊂  , h ⊂  , h ⊂  , 0, 0h ⊂   and 0, 0h ⊂   
are defined as 
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The spatial discrete variational form of the IBVP consists in finding a velocity vector 
field h h∈v  , pressure scalar field h hp ∈  and temperature scalar field h hϑ ∈  such that 
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where 0, 0,, ,h h h h h hpδ δ δϑ∈ ∈ ∈v    . 

It is well know that the spatial discrete variational problem defined above may suffer 
from two types of numerical instabilities: the compatibility required for the velocity and 
pressure finite element spaces posed by the inf-sup condition and the dominance of the 
(nonlinear) convective term over the viscous one when the equivalent viscosity is small [17].  

In this work we adopt a stabilized finite element formulation based on the sub-grid 
scales method first introduced by Hughes (1995) [58] and as a Variational Multiscale (VMS) 
stabilization method by Hughes et al. (1998) [59]. The sub-grid scale finite element stabilization 
method allows the use of equal velocity/pressure order interpolation, thus avoiding or bypassing 
the need to satisfy the inf-sup or Babuska-Brezzi condition [17], and avoids the oscillations 
which arise in convective dominant problems. The basic idea is to split the exact continuous 
unknowns into two components, corresponding to two different scales, the resolvable coarse 
scale and the unresolved fine scale. The first one is captured by the Galerkin finite element 
projection and is denoted as the finite element scale. The second one cannot be captured by the 
finite element solution and is denoted as the sub-grid scale. The goal is to find an approximate 
solution for the sub-grid scales and to include them into the discrete finite element solution.  

Within the sub-grid scales framework, different stabilization formulations can be 
considered. Here we will restrict our attention to two approaches denoted as Algebraic Sub-grid 
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Scale (ASGS) and Orthogonal Sub-grid Scale (OSGS). In the ASGS method, the velocity, 
pressure and temperature sub-grid scales are taken proportional to the corresponding residuals 
of the velocity, pressure and temperature equations, given in terms of the linear momentum 
balance, incompressibility and energy balance equations, respectively. In the OSGS method, 
only the component of these residuals which is 2L  orthogonal to the corresponding finite 
element space is considered. This idea was first introduced by Codina (2000) in [39] as an 
extension of a stabilization method originally introduced for the Stokes problem in [36] and 
fully analyzed for the stationary Navier-Stokes equations in [40].  

The main features of the sub-grid scale finite element stabilization formulation proposed 
in this work are the following: (i) quasi-static sub-grid scales, instead of dynamic sub-grid 
scales, are considered, neglecting the time derivative of the sub-grid scale temperature; (ii) only 
sub-grid scale velocity and temperature are introduced, assuming that the sub-grid scale 
pressure is zero; (iii) the stabilized velocity, instead of its finite element component, is used in 
the convective term of the sub-grid scale temperature; (iv) tracking of the sub-grid scales is not 
done in the temperature dependent material properties and the dissipation rate, and they are 
approximated by their corresponding finite element components; (v) ASGS and OSGS sub-grid 
scale finite element stabilization methods are considered. 
 
2.6 Sub-grid scales stabilization  

Within the paradigmatic sub-grid scale stabilization framework introduced by Hughes et al. 
(1998) [57], it is considered that the continuous unknown fields can be split in two components, 
corresponding to different scales or levels of resolution: a coarse one, which is captured by the 
finite element partition, and a fine one, which cannot be captured by the finite element partition.  
 In order to get a stable finite element solution for the discrete finite element 
formulation, it is necessary to include, somehow, the effect of both scales in the approximation. 
The coarse or finite element scale can be appropriately solved by a standard Galerkin finite 
element approximation, while the fine or sub-grid scale can be included, at least locally, to 
enhance the stability of the Galerkin finite element approximation.  

Let us consider the following splits of the infinite dimensional spaces as 

h= ⊕     and 0 0, 0h= ⊕    , where = × × 
       is any suitable space to 

complete h  in   and 0 0 0 0= × × 
       is any suitable space to complete 0,h  in 0 , 

where , ,      are sub-grid scale spaces for the velocity, pressure and temperature, 
respectively, and 0 0 0, ,      are the sub-grid scale spaces for the variations of the velocity, 
pressure and temperature, respectively. Obviously the sub-grid scale spaces are infinite-
dimensional spaces, but once the final method is formulated they will be approximated by 
finite-dimensional spaces, although we will keep the same symbols in order to simplify the 
notation. 

Let us consider the following sub-grid scale split of the exact continuous velocity, 
pressure and temperature fields 
 

 , ,h h hp p p ϑ ϑ ϑ= + = + = +v v v 

   (20) 

where the components with subscripts h  belong to the corresponding finite element spaces, and 
the components with the tilde belong to the corresponding sub-grid spaces. Then 
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, ,h h h h h hp ϑ∈ ∈ ∈v      are the components of the velocity, pressure and temperature on the 
(coarser) finite element scale, and , ,p ϑ∈ ∈ ∈v 

  

     are the components of the velocity, 
pressure and temperature on the (finer) sub-grid scale. These additional components are what 
we will call sub-grid scale or subscale velocity, pressure and temperature. We will assume that 
the sub-grid scales vanish at the inter-element boundaries e∂Ω  and thus 0≈   . This 
happens, for instance, if they are approximated using bubble functions [58], or if one assumes 
that their Fourier modes correspond to high wave numbers [39]. 

Substituting the sub-grid scale split of the velocity and temperature into the equivalent 
viscosity, thermal conductivity and heat capacity, the following expressions are obtained and 
the following approximations are introduced 
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Substituting the sub-grid scale split of the velocity and temperature into the mechanical 
and thermal constitutive equations, and taking into account the above approximations, yields 
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Similarly, the following approximation is introduced for the dissipation rate per unit of 
volume 
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(23) 

Neglecting the sub-grid scale pressure, 0p = , considering quasi-static sub-grid scales, 
neglecting the dynamic sub-grid scale temperature, setting 0tϑ∂ = , and substituting the sub-
grid scale split of the velocity and temperature into the variational formulation of the IBVP, two 
systems of variational equations are obtained. The first one represents the projection of the 
governing equations onto the corresponding discrete finite element spaces, and is given by 
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 (24) 

The second system of equations represents the projection of the governing equations 
onto the corresponding infinite-dimensional sub-grid scale spaces, and is given by 
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 (25) 

Note that modeling the gradients of the sub-grid scales is more involved than modeling 
the sub-grid scales themselves. Therefore integrating some terms by parts at the element level 
and taking into account that the sub-grid scales vanish at the inter-element boundaries, the first 
system of equations can be conveniently written as 
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       (26) 

On the other hand, for the second system of equations it is convenient to write them in 
terms of the corresponding finite element residuals of the governing equations. Therefore 
integrating some terms by parts at the element level and taking into account that the sub-grid 
scales vanish at the inter-element boundaries, the second system of equations can be 
conveniently written as 
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 (27) 

where the finite element residuals of the velocity and temperature equations, arising from the 
local governing equations, are defined as 
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 (28) 

Note that the sub-grid scale velocity appears in the convective term of the temperature 
residual.  
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The idea now is to find an approximate solution for the second system of variational 
equations, finding an approximate discrete solution for the sub-grid scales within each element 
of the finite element partition. Once the approximation for the sub-grid scales has been found, 
they are substituted into the first system of variational equations, resulting in an enhanced stable 
mixed variational formulation of the IBVP.  
 If v

  and ϑ
  denote the projections onto the sub-grid scale velocity and temperature 

spaces, respectively, the second system of equations can be written as 
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 (29) 

These equations need to be solved within each element, at the element level, using 
homogeneous velocity and temperature Dirichlet boundary conditions.  

Using the same arguments as in [39], now extended to thermally coupled problems, the 
sub-grid scales are approximated within each element of the finite element partition as 
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         (30) 

where the stabilization parameters introduced above are approximated as 
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 (31) 

 
where h  is the element size, and 1c  and 2c  are algorithmic constants. 

Note that, taking into account that we have assumed that the material parameters and the 
dissipation rate were not dependent on the sub-grid scales, the resulting system of equations for 
the sub-grid scales is linear, the stabilization parameter for the velocity do not depends on the 
sub-grid scales, while the stabilization parameter for the temperature depends on the sub-grid 
scale velocity. 

Introducing the stabilized velocity, pressure and temperature given by 
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 (32) 
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the quasi-static sub-grid scale stabilized mixed variational formulation of the IBVP can be 
written as 
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 (33) 

Taking into account that :stab
h h= +v v v  is divergence free, the following expression 

holds 
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and the quasi-static sub-grid scale stabilized mixed variational formulation of the IBVP can be 
written as 
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 (35) 

 
2.6.1 P1/P1/P1 linear velocity/linear pressure/linear temperature elements 

For P1/P1/P1 linear velocity/linear pressure/linear temperature elements, the terms s
h∇ v

 

and 

hϑ∇ , as well as s
hδ∇ v

 

and hδϑ∇ , are constants within an element and the following 
expressions hold 
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h h

δ

ϑ δϑ

∇⋅ ∇ = ∇⋅ ∇ =
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v v
 (36) 

On the other hand, note that the equivalent viscosity is a highly non-linear function of 
the equivalent strain rate, which is a function of s

h∇ v , and, in general, of the temperature. Note 
that for P1/P1/P1 linear velocity/linear pressure/linear temperature elements, the equivalent 
strain rate is constant within an element. Then, for P1/P1/P1 linear velocity/linear 
pressure/linear temperature elements, the equivalent viscosity will be constant within an element 
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only if it is not a function of the temperature or if being a function of the temperature, the 
temperature is constant within the element. 

Then, if the equivalent viscosity and the thermal conductivity are temperature 
dependent, the following expressions hold for P1/P1/P1 linear velocity/linear pressure/linear 
temperature elements 
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The quasi-static sub-grid scales for P1/P1/P1 linear velocity/linear pressure/linear 

temperature elements are given by, 
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 (38) 

The stabilized velocity, pressure and temperature for P1/P1/P1 linear velocity/linear 
pressure/linear temperature elements, take the form 
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The quasi-static sub-grid scale stabilized mixed variational formulation for P1/P1/P1 

linear velocity/linear pressure/linear temperature elements, reads 
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REMARK 1. Temperature independent equivalent viscosity, constant thermal conductivity and 
constant heat capacity. Let us consider now P1/P1/P1 linear velocity/linear pressure/linear 
temperature elements with temperature independent equivalent viscosity, constant thermal 
conductivity, and constant heat capacity. Note that the equivalent viscosity is a function of the 
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equivalent strain rate, which is a function of the symmetric spatial gradient of the velocity, and 
the temperature. Using a linear interpolation for the velocity and the temperature, the spatial 
gradient of the velocity is constant within an element, and its spatial gradient will be equal to 
zero if the viscosity is temperature independent. Then, if the equivalent viscosity is temperature 
independent, the thermal conductivity is constant, and the heat capacity is constant, the 
following expressions hold at the element level 
 

 , ,h h hcµ κ∇ = ∇ = ∇ =0 0 0  (41) 

The quasi-static sub-grid scales for P1/P1/P1 linear velocity/linear pressure/linear 
temperature elements, temperature independent equivalent viscosity, and constant thermal 
conductivity, take the form 
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and the stabilized velocity, pressure and temperature, take the form 
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The quasi-static sub-grid scale stabilized mixed variational formulation for P1/P1/P1 

linear velocity/linear pressure/linear temperature elements, temperature independent equivalent 
viscosity, constant thermal conductivity, and constant heat capacity, reads 
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Substituting the quasi-static sub-grid scales into the above expression, the sub-grid scale 
stabilized mixed variational formulation reads 
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2.6.2 Quasi-static Algebraic Sub-grid Scale (ASGS) 

For the Algebraic Sub-grid Scale (ASGS) method, the projections onto the sub-grid scale spaces 
velocity and temperature spaces are defined as v I=  and Iϑ = , respectively, yielding 
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The ASGS stabilized velocity, pressure and temperature for P1/P1/P1 linear 
velocity/linear pressure/linear temperature elements take the form 
 

 

( )

( )

: 2

:

:

stab s
h h h v h h h h

stab
h h

stab stab
h h h h t h h h h h h h h

p

p p

c c rϑ

τ µ

ϑ ϑ ϑ ϑ τ ϑ ϑ κ ϑ

= + = + ∇ + ∇ ∇ +

=

= + = − ∂ + ⋅∇ −∇ ⋅∇ − −

v v v v v b

v



 

 (47) 

 
REMARK 2. Temperature independent equivalent viscosity, constant thermal conductivity and 
constant heat capacity. The quasi-static ASGS sub-grid scales for P1/P1/P1 linear 
velocity/linear pressure/linear temperature elements, with temperature independent equivalent 
viscosity, and constant thermal conductivity, take the form 
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and the ASGS stabilized velocity, pressure and temperature take the form 
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The quasi-static ASGS sub-grid scale stabilized mixed variational formulation reads 
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REMARK 3. Use of the finite element velocity, instead of the stabilized one, in the convective 
term of the temperature equation. Setting 0vτ =  in the stabilized variational form of the energy 
balance equation, i.e. setting stab

h h=v v  in the convective term of the sub-grid scale 
temperature, the stabilized velocity, pressure and temperature read 
 

 

( )

( )

:

:

:

stab
h h h v h h

stab
h h

stab
h h h h t h h h h h h

p

p p

c c rϑ

τ

ϑ ϑ ϑ ϑ τ ϑ ϑ

= + = + ∇ +

=

= + = − ∂ + ⋅∇ − −

v v v v b

v



 

 (51) 

 
The quasi-static ASGS sub-grid scale stabilized mixed variational formulation reads 
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REMARK 4. Classical GLS/SUPG stabilization method. Classical GLS pressure stabilization 
and SUPG convection stabilization methods can be recovered as a particular case of the ASGS 
stabilization method neglecting the following terms: 
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The quasi-static ASGS sub-grid scale stabilized mixed variational formulation 

corresponds to the classical GLS/SUPG stabilized mixed variational formulation and reads 
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2.6.3 Quasi-static Orthogonal Sub-grid Scale (OSGS) 

For the Orthogonal Sub-grid Scale (OSGS) method, the projections onto the sub-grid scale 
velocity and temperature spaces are defined as v h

⊥=   and hϑ
⊥=  , where h hI⊥ = −   

represents the 2L  orthogonal projection, i.e. the 2L  projection onto the space which is 
orthogonal to the appropriate finite element one, and h  represents the 2L  projection onto the 
appropriate, velocity or temperature, finite element space. The sub-grid scales turn out to be 
orthogonal to this finite element space.  

Note that, assuming constant heat capacity, the orthogonal projection of the transient 
thermal term is zero, yielding  
 

 ( ) 0h h t hc ϑ⊥ ∂ =  (55) 

 The quasi-static OSGS sub-grid scales for P1/P1/P1 linear velocity/linear 
pressure/linear temperature elements take the form 
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The OSGS stabilized velocity, pressure and temperature for P1/P1/P1 linear 
velocity/linear pressure/linear temperature elements, take the form 
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REMARK 5. Temperature independent equivalent viscosity, constant thermal conductivity and 
constant heat capacity. The quasi-static OSGS sub-grid scales for P1/P1/P1 linear 
velocity/linear pressure/linear temperature elements, with temperature independent equivalent 
viscosity, and constant thermal conductivity, take the form 
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and the OSGS stabilized velocity, pressure and temperature take the form 
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The quasi-static OSGS sub-grid scale stabilized mixed variational formulation reads 
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REMARK 6. Use of the finite element velocity, instead of the stabilized one, in the convective 
term of the temperature equation. Setting 0vτ =  in the stabilized variational form of the energy 
balance equation, i.e. setting stab

h h=v v  in the convective term of the sub-grid scale 
temperature, the sub-grid scale stabilized velocity, pressure and temperature read 
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The quasi-static OSGS sub-grid scale stabilized mixed variational formulation reads 

 

 

( ) ( ) ( )
( )

( )( )
( )( )

( ) ( ) ( )
( )( )
( )( )
( )( ) ( )

, , 2

,

,

, 0

, , ,

,

,

,

s s
h h h h h v h h

h h

v h h h

v h h h h

h h t h h h h h h h h

h h h h h h h

h h h h h

h h h h h h h

p F

p

p p

p p

c c

c c

c r

c F

ϑ

ϑ

ϑ ϑ

δ δ µ δ δ

δ

τ δ

τ δ δ

δϑ ϑ δϑ ϑ δϑ κ ϑ

τ δϑ ϑ

τ δϑ

τ δϑ δϑ δϑ

⊥

⊥

⊥

⊥

⊥

∇ ⋅ + ∇ ∇ = ∀

∇⋅

− ∇ ∇

− ∇ = ∀

∂ + ⋅∇ + ∇ ∇

+ ⋅∇ ⋅∇

− ⋅∇

− ⋅∇ = ∀

v v v v v

v

b

v

v v

v

v









 

 (62) 

 
REMARK 7. OSGS counterpart of the classical GLS/SUPG stabilization method. The OSGS 
counterpart of the GLS/SUPG stabilization method can be obtained neglecting the following 
terms in the stabilized variational equations given above: 
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The quasi-static OSGS sub-grid scale stabilized mixed variational formulation 

corresponds to the OSGS counterpart of the GLS/SUPG stabilized mixed variational 
formulation and reads 
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2.6.4 Summary 

A summary of the main results obtained so far on the space-discrete setting is shown in Boxes 
1-3. Box 1 collects the stabilized variational equations and stabilized unknowns for the ASGS 
and OSGS method using P1/P1/P1 linear velocity/linear pressure/linear temperature elements, 
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assuming temperature dependent viscosity, thermal conductivity, and heat capacity. Box 2 
collects the corresponding expressions for the particular simplified case of constant thermal 
conductivity, constant heat capacity and temperature independent viscosity. Finally, as a 
particular case of the expressions shown in Box 2, in Box 3 the stabilized velocity appearing in 
the convective terms of the temperature equation is substituted by its finite element component, 
and the projections of body forces, temperature transient term, heat source and dissipation are 
neglected. In this case, the classical GLS and SUPG stabilization methods are recovered as a 
particular case of the ASGS method.  
 

Box 1. Quasi-static sub-grid scale stabilization. P1/P1/P1 linear velocity/linear pressure/linear 
temperature element. Temperature dependent viscosity, thermal conductivity and heat capacity.  
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Box 2. Quasi-static sub-grid scale stabilization. P1/P1/P1 linear velocity/linear pressure/linear 
temperature element. Constant heat capacity, constant thermal conductivity and temperature 

independent viscosity.  

Sub-grid Scale Stabilized Mixed Variational Formulation 
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Box 3. Quasi-static sub-grid scale stabilization. P1/P1/P1 linear velocity/linear pressure/linear 
temperature element. Constant heat capacity, constant thermal conductivity and temperature 

independent viscosity, finite element velocity in the convective terms, and projections of body 
forces, temperature transient term, heat source and dissipation are neglected. 

Sub-grid Scale Stabilized Mixed Variational Formulation 
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3 Time discrete setting and product formula algorithm 
 
The sub-grid scale stabilized mixed variational formulation of the IBVP can be solved using a 
staggered algorithm arising from an isothermal operator split of the governing equations and a 
Product Formula Algorithm (PFA). Within this framework, a mechanical problem at constant 
temperature, with the velocity and pressure as mechanical variables, and a thermal problem at 
constant velocity and pressure, with the temperature as thermal variable, may be defined 
[1,2,3,10,11,12].  

Within a time discrete setting, a staggered algorithm is defined such that for an arbitrary 
time step, the isothermal mechanical problem is solved first, keeping constant the temperature 
from the previous time step. Once the mechanical variables have been updated, the thermal 
problem is solved next, keeping constant the updated mechanical variables [1,2,3,10,11,12].  
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P1/P1/P1 linear velocity/linear pressure/linear temperature elements are considered. A 
first-order Backward-Euler (BE) time integration scheme is used to integrate the local time 
variation of the temperature. 
 
3.2 Mechanical problem 

The fully discrete mechanical problem which arises from the application of a PFA to the 
isothermal operator split of the governing equations is defined by the discrete stabilized 
variational forms of the linear momentum balance and incompressibility equations given by 
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The fully discrete residual of the velocity equation at time n+1 is given by 

 
 , , 1 , 1 , 1 , 1 , 1: 2 s
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and the discrete velocity stabilization parameter at time n+1 is given by 
 

 
1 2

, 1
, 1 1 2

1 , 1

2 1
2

h n
v n

h n

hc
h c
µ

τ
µ

−
+

+
+

 
= = 
 

 (67) 

Note that for the mechanical problem, the temperature is kept constant and equal to the 
temperature at the end of the previous time step, denoted as ,h nϑ . Therefore, for the mechanical 
problem, the equivalent viscosity , 1h nµ +  at time n+1 is evaluated as ( ), 1 , 1 ,: ,h n h n h nµ µ ϑ+ += v . 
 
3.2.1 Algebraic Sub-grid Scales (ASGS)  

The fully discrete sub-grid scale velocity at time n+1 for the ASGS is defined as 
 

 ( )1 , 1 , , 1 , 1 , 1 , 1 , 1 , 12 s
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The fully discrete sub-grid scale stabilized velocity and pressure at time n+1 for the 
ASGS are defined as 
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Substituting the fully discrete stabilized velocity and pressure at time n+1 into the 

corresponding stabilized variational formulation of the linear momentum balance and 
incompressibility equations yields 
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 (70) 

For implementation purposes, a compact and convenient alternative expression can be 
obtained in terms of the residuals, yielding 
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3.2.2 Orthogonal Sub-grid Scales (OSGS)  

The fully discrete sub-grid scale velocity at time n+1 for the OSGS is defined as 
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The fully discrete sub-grid scale stabilized velocity and pressure at time n+1 for the 
OSGS are defined as 
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Substituting the fully discrete stabilized velocity and pressure at time n+1 into the 

corresponding stabilized variational formulation of the linear momentum balance and 
incompressibility equations yields 
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For implementation purposes, a compact and convenient alternative expression can be 
obtained in terms of the residuals, yielding 
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Orthogonal projection of the residual of the velocity equation can be written as 
 

 ( ) ( ), , 1 , , 1 , , 1 , , 1 , , 1: :h v h n v h n h v h n v h n v h n
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where we have introduced ( )2
, , 1v h n+ ∈ Ωπ L  as the 2L  projection of the discrete residual of the 

velocity equation at time n+1 onto the corresponding finite element space. 
 Adding the corresponding variational equation for the 2L  projection of the residual of 
the velocity equation onto the finite element space, the extended stabilized variational 
formulation of the mechanical problem can be written as 
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where ( )2
,v hδ ∈ Ωπ L  is the test function for the 2L  projection of the residual of the velocity 

equation onto the corresponding finite element space. 
 
3.3 Thermal problem 
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The fully discrete thermal problem which arises from the application of a PFA to the isothermal 
operator split of the governing equations is defined by the stabilized variational form of the 
energy balance equation given by 
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The fully discrete residual of the temperature equation at time n+1 is given by 
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The discrete temperature stabilization parameter at time n+1 is given by 
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Note that the convective terms and the time-discrete stabilization parameter for the 
temperature at time n+1 are computed with the discrete stabilized velocity at time n+1. 
Therefore the stabilized temperature at time n+1 is a function of the stabilized velocity at time 
n+1. 
 
3.3.1 Algebraic Sub-grid Scales (ASGS)  

The fully discrete sub-grid scale temperature at time n+1 for the ASGS is given by 
 

 1 , 1 , , 1n n h nrϑ ϑϑ τ+ + += −  (81) 

The fully discrete sub-grid scale stabilized temperature at time n+1 for the ASGS is 
given by 
 

 , 1 , 1 , 1 , , 1:stab
h n h n n h nrϑ ϑϑ ϑ τ+ + + += −  (82) 

Substituting the fully discrete sub-grid scale stabilized temperature at time n+1 into the 
corresponding stabilized variational formulation of the energy balance equation yields 
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For implementation purposes, a compact and convenient alternative expression can be 
obtained in terms of the residual of the temperature equation, yielding 
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Note that we need to store and update just the finite element component of the 
temperature at time n.  
 
REMARK 8. Constant heat capacity and constant thermal conductivity. If the heat capacity and 
the thermal conductivity are constants, the following expressions hold 
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Using the expressions given above, the discrete sub-grid scale stabilized formulation 
takes the form 
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3.3.2 Orthogonal Sub-grid Scales (OSGS)  

The fully discrete sub-grid scale temperature at time n+1 for the OSGS is given by 
 

 ( )1 , 1 , , 1n n h h nrϑ ϑϑ τ ⊥
+ + += −   (87) 

The fully discrete sub-grid scale stabilized temperature at time n+1 for the OSGS is 
given by 
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Substituting the fully discrete stabilized temperature at time n+1 into the corresponding 
stabilized variational formulation of the energy balance equation yields 
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For implementation purposes, a compact and convenient alternative expression can be 
obtained in terms of the residual of the temperature equation, yielding 
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The orthogonal projection of the residual of the temperature equation can be written as 
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where we have introduced ( )2
, , 1h n Lϑπ + ∈ Ω  as the 2L  projection of the discrete residual of the 

temperature equation at time n+1 onto its corresponding finite element space. 
 Adding the corresponding variational equation for the 2L  projection of the residual of 
the temperature equation onto its corresponding finite element space, the extended stabilized 
variational formulation of the thermal problem can be written as 
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where ( )2
,h Lϑδπ ∈ Ω  is the test function for the 2L  projection of the residual of the 

temperature equation onto its corresponding finite element space. 
 
REMARK 9. Constant heat capacity and constant thermal conductivity. If the heat capacity and 
the thermal conductivity are constant, the following expressions hold 
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Using the expressions given above, the discrete sub-grid scale stabilized formulation 
takes the form 
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3.4 Summary 

Boxes 4 and 5 collect the main expressions for the discrete ASGS and OSGS stabilized 
variational formulation for the mechanical and thermal problems, respectively, using P1/P1/P1 
linear velocity/linear pressure/linear temperature elements. 
 
Box 4. Mechanical Problem: ASGS and OSGS stabilized variational formulation for P1/P1/P1 

linear velocity/linear pressure/linear temperature elements. 
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Box 5. Thermal Problem: ASGS and OSGS stabilized variational formulation for P1/P1/P1 
linear velocity/linear pressure/linear temperature elements. 

Thermal Problem 
Discrete Quasi-static Sub-grid Scale Stabilized Mixed Variational Formulation 
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4 Finite element implementation 
 
4.1 Mechanical problem 

 
4.1.1 Algebraic Sub-grid Scale (ASGS) 

Once the finite element discretization has been performed, the matrix form of the nonlinear 
algebraic system of equations emanating from the discrete ASGS sub-grid scale finite element 
stabilized variational form of the governing equations of the mechanical problem can be written 
as 
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 (95) 

where , 1v n+R  and , 1p n+R  are the global nodal residual vectors arising from the velocity and 
pressure equations at time n+1, respectively, and 1n+V  and 1n+P  are the vectors of nodal 
velocity and nodal pressure unknowns at time n+1, respectively. 
 The vectors of nodal mechanical unknowns 1n+V  and 1n+P  can be obtained through an 
incremental-iterative solution method. Using a Newton-Raphson algorithm, the nonlinear 
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algebraic systems of equations has to be linearized at the iteration i+1 of the time step n+1, 
yielding 
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where the vectors of nodal increment of velocities ( )
1

i
n+∆V  and nodal increment of pressures 

( )
1

i
n+∆P  are defined as 
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Typical element entries for a node A of the global nodal residual vectors , 1v n+R  and 

, 1p n+R  are given by 
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where ,v AN  and ,p AN  are the velocity and pressure interpolation shape functions for node A, 
respectively, and AB  is the velocity symmetric gradient interpolation matrix for node A. 
 
4.1.2 Orthogonal Sub-grid Scale (OSGS) 

Once the finite element discretization has been performed, the matrix form of the nonlinear 
algebraic system of equations emanating from the discrete OSGS sub-grid scale finite element 
stabilized variational form of the governing equations of the mechanical problem can be written 
as 
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where , 1v n+R , , 1p n+R , , 1v nπ +R  are the global nodal residual vectors arising from the velocity, 

pressure, and velocity residual projection equations, respectively, at time n+1, and 1n+V , 1n+P , 

, 1v n+Π  are the vectors of nodal unknowns, velocity, pressure, and velocity residual projection, 
respectively, at time n+1. 

The solution of the above system of equations can be obtained through a robust and 
efficient staggered algorithm by solving instead the slightly modified system of equations given 
by 
 

 

( )
( )
( )

, 1 1 1 ,

, 1 1 1 ,

, 1 1 1 , 1

: , , 0

: , , 0

: , , 0
v v

v n v n n v n

p n p n n v n

n n n v nπ π

+ + +

+ + +

+ + + +

= =

= =

= =

R R V P Π

R R V P Π

R R V P Π

 (100) 

The idea is to obtain first 1n+V  and 1n+P  by solving the first two systems of equations, 
keeping constants ,v nΠ  at the time step n. Once 1n+V  and 1n+P  have been obtained, they are 
substituted into the last two equations to obtain , 1v n+Π  at the time step n+1. 

The unknowns 1n+V  and 1n+P  can be obtained using an incremental iterative Newton-
Raphson algorithm, through an exact linearization of the first two systems of equations given by 
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where the vectors of nodal increment of velocities ( )
1

i
n+∆V  and nodal increment of pressures 

( )
1

i
n+∆P  are defined as 
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Typical element entries for a node A of the global nodal residual vectors , 1v n+R  and 

, 1p n+R  are given by 
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where ,v AN  and ,p AN  are the velocity and pressure interpolation shape functions for node A, 
respectively, and AB  is the velocity symmetric gradient interpolation matrix for node A. 

Once 1n+V  and 1n+P  have been obtained they are substituted into the last two systems of 
equations to get , 1v n+Π  by solving the uncoupled algebraic linear system 
 

 ( ), 1 1 1 , 1: , , 0
v vn n n v nπ π+ + + += =R R V P Π  (104) 

The computation of the projection , 1v n+Π  can be transformed in a straight-forward 
operation by considering appropriate lumped mass matrices, leading to an efficient solution 
algorithm, without loss of precision or robustness [4,5,22,23,29,30,35]. 
 
4.2 Thermal problem 
 
4.2.1 Algebraic Sub-grid Scale (ASGS) 

Once the finite element discretization has been performed, the matrix form of the nonlinear 
algebraic system of equations emanating from the discrete ASGS sub-grid scale finite element 
stabilized variational form of the governing equation of the thermal problem can be written as 
 

 ( ), 1 1: 0n nϑ ϑ+ += =R R T  (105) 

where , 1nϑ +R  is the discrete global nodal residual vector arising from the temperature equation 
at time n+1, and 1n+T

 
is the vector of nodal temperature unknowns at time n+1. 

 The vector of nodal temperature unknowns can be obtained through an incremental-
iterative solution method. Using a Newton-Raphson algorithm, the nonlinear algebraic system 
of equations has to be linearized at the iteration i+1 of the time step n+1. The exact 
linearization of the above system of equations can be written as 
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where the vector of nodal increment of temperature unknowns is defined as 
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For the Quasi-static Sub-grid Scales (QSGS), a typical element entry for a node A of the 
global nodal residual vector  , 1nϑ +R  is given by 
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where ,ANϑ  is the temperature interpolation shape function for node A. 
 
4.2.2 Orthogonal Sub-grid Scale (OSGS) 

Once the finite element discretization has been performed, the matrix form of the nonlinear 
algebraic system of equations emanating from the discrete OSGS sub-grid scale finite element 
stabilized variational form of the governing equation of the thermal problem can be written as 
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where , 1nϑ +R  and , 1nϑπ +R  are the global nodal residual vectors arising from the temperature and 
temperature residual projection equations at time n+1, respectively, and 1n+T  and , 1nϑ +Π  are the 
vectors of nodal unknowns, temperature and temperature modified residual projection at time 
n+1, respectively. 

The solution of the above system of equations can be obtained through a robust and 
efficient staggered algorithm by solving the slightly modified systems of equations given by 
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The idea is to obtain first 1n+T  by solving the first system of equations, keeping constant 

,nϑΠ  at the time step n. Once 1n+T  has been obtained, it is substituted into the second equation 

to obtain , 1nϑ +Π   at the time step n+1. 
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The vector of nodal temperature unknowns 1n+T  can be obtained using an incremental 
iterative Newton-Raphson algorithm, through an exact linearization of the first system of 
equations given by 
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where the vector of nodal increment of temperatures ( )
1
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n+∆T  is defined as 
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Once 1n+T  has been obtained it is substituted into the second system of equations to get 

, 1nϑ +Π  by solving the linear system 
 

 ( ), 1 1 , 1: , 0n n nϑ ϑπ π ϑ+ + += =R R T Π  (113) 

Similarly as for the mechanical problem, the computation of the projection , 1nϑ +Π  can 
be transformed in a straight-forward operation by considering an appropriate lumped mass 
matrix, leading to an efficient solution algorithm, without loss of precision or robustness 
[4,5,22,23,29,30,35]. 

A typical element entry for a node A of the global nodal residual vector , 1nϑ +R  is given 
by 
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where ,ANϑ  is the temperature interpolation shape function for node A. 
 
 
5 Numerical examples 

In this section we present two numerical examples that illustrate the performance of the 
formulation presented above. The first example deals with the numerical simulation of a 
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coupled thermomechanical flow in a 2D rectangular domain. Both steady-state and transient 
conditions are considered. The main goal of this numerical example is to compare the behavior 
of the different pressure and convection stabilization methods. First, using GLS method to 
stabilize the pressure, temperature distributions using SUPG and OSGS convection stabilization 
methods are compared. Secondly, using SUPG method to stabilize the convective term of the 
temperature equation, pressure and velocity contours using GLS and OSGS pressure 
stabilization methods are compared. The second numerical example shows the 3D numerical 
simulation of a FSW process. ASGS (GLS for the pressure equation and SUPG for the 
temperature equation) and OSGS (both for the pressure and the temperature equations) 
stabilization methods are used. The Newton-Raphson method, combined with a line search 
procedure, is used to solve the nonlinear equations emanating from the fully discrete stabilized 
variational equations. Calculations are performed with an enhanced version of the finite element 
code COMET [21] developed by the authors at the International Center for Numerical Methods 
in Engineering (CIMNE) in Barcelona. Pre- and post-processing is done with GiD [54], also 
developed at CIMNE. 
 
5.1 Coupled thermomechanical flow in a 2D rectangular domain 

The first numerical example deals with the coupled thermo-mechanical analysis of the fluid 
flow and thermal convection along a 2D rectangular domain.  

The geometry of the domain, length 4 m and height 1 m, is shown on Figure 1. 
Mechanical and thermal boundary conditions are schematically shown on Figure 2. Velocity is 
prescribed to zero along the lateral sides of the tube. The inflow velocity is prescribed in x-
direction using a parabolic velocity given by ( )21.252E-02 0.5 3.13E-03 V y m s= − + . The 
temperature is prescribed to 50 ºC and 30 ºC at the inflow and outflow, respectively. 
 

 
 

Figure 1. Geometry of the 2D rectangular domain 
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Figure 2. Prescribed velocity and temperature boundary conditions on the 2D rectangular 
domain 

 
 

Table 1. Material thermal properties 

Mass density 
[Kg m-3] 

Heat capacity 
[J Kg-1 ºC-1] 

Thermal conductivity 
[W m-1 ºC-1] 

7.80E+03 0.5E+03 50 

 
Table 2. Norton-Hoff material model parameters 

Material Model Consistency parameter 
[MPa s] 

Rate sensitivity parameter 
 

Norton-Hoff 100 1 

 

 
Figure 3. Finite element mesh consisting of 20×20 linear quadrilateral elements 
 
A Norton-Hoff rigid visco-plastic constitutive model is considered. The thermal 

material properties and Norton-Hoff material model parameters are given in Tables 1 and 2, 
respectively.  

The geometry is discretized with a finite element mesh consisting of 20×20 linear 
quadrilateral elements and 441 nodal points, as shown in Figure 3. 

Two simulations, steady-state and dynamic for 70 time steps of 10 seconds are 
considered. First, the GLS stabilization method is used for the mechanical part and the thermal 
part is stabilized using SUPG and OSGS stabilization methods. The temperatures at time steps 
10, 40, 70 and the steady-state temperature along a line at the center of the tube are shown in 
Figure 4.  

Temperatures provided by the SUPG and OSGS methods look very similar and only 
some slight differences can be seen, showing that OSGS provides slightly better results for the 
steady-state case. 
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Figure 4. Comparison between the temperature distribution at the center line at different times 
(10, 40 and 70) and at the steady state, obtained using GLS pressure stabilization method and 

OSGS and SUPG convection stabilization methods 
 

Next, the SUPG stabilization method is used for the thermal part and the mechanical 
part is stabilized once with the GLS and once with the OSGS stabilization methods. The 
pressure contour lines for both cases are shown in Figure 5 and 6.  

A difference on the pressure contours obtained using GLS and OSGS stabilization 
methods is clearly shown at the inflow and outflow. 

The velocity profiles at the inflow, outflow and center of the tube, using GLS and 
OSGS stabilization methods, are shown on Figures 7 and 8, respectively. The velocity contour 
lines for both cases are illustrated in Figure 9 and 10.  

The figures clearly show that there is also an influence of the stabilization method on 
the velocity fields. 

 
 

 
 
Figure 5. Pressure contour lines using SUPG convection stabilization method and GLS pressure 

stabilization method 
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Figure 6. Pressure contour lines using SUPG convection stabilization method and OSGS 
pressure stabilization method 

 

 
 
 

Figure 7. Velocity profiles at the inflow, outflow and center using SUPG convection 
stabilization method and GLS pressure stabilization method 

 

 
 

Figure 8. Velocity profiles at the inflow, outflow and center using SUPG convection 
stabilization method and OSGS pressure stabilization method 
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Figure 9. Velocity contour lines using SUPG convection stabilization method and GLS pressure 

stabilization method 
 
 

 
 
 

Figure 10. Velocity contour lines using SUPG convection stabilization method and OSGS 
pressure stabilization method 

 
 
5.2 3D Transient coupled thermo-mechanical numerical simulation of a FSW process 

This example shows the 3D transient coupled thermo-mechanical numerical simulation of a 
FSW process. A finite element discretization of the work-pieces, cylindrical tool and back-plate 
has been considered in the simulation. A simplified geometrical model for the tool has been 
used, avoiding the finite element discretization of the shoulder scroll and the probe thread.  

Geometrical data, process parameters, material properties and experimental results are 
taken from Zhu and Chao (2004) [83]. The diameters of the tool shoulder and tool probe are 
19.05 mm (3/4 inches) and 6.35 mm (1/4 inches), respectively. The height of the tool shoulder 
and the depth of the tool probe are 50 mm and 3 mm, respectively. The length of the work-
pieces, along the welding direction, is 300 mm. The total width of the two work-pieces is 200 
mm and the thickness is 3.18 mm (1/8 inches). The rotational velocity and advancing velocity of 
the tool are 500 rpm and 101 mm/min (4 inches/min), respectively. Material thermal properties 
are shown in Table 3. 

The material of the work-pieces is an AISI 304 L and it has been modeled using a 
Sheppard-Wright material model. Material parameters for the Sheppard-Wright material model 
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have been taken from Jorge Jr. and Balancin (2005) [61] and they are shown in Table 4. The 
tool and the back-plate have been modeled as thermo-rigid bodies.  

Table 5 shows the boundary conditions used in the simulation for the mechanical and 
thermal problems. 
 

Table 3. Material thermal properties for the work-pieces, tool and back-plate 

 
Body 

Mass 
density 

[Kg m-3] 

Heat 
capacity 

[J Kg-1 ºC-1] 

Thermal 
conductivity 
[W m-1 ºC-1] 

Convection heat 
transfer coefficient 

[W m-2 ºC-1] 

Relative 
emissivity 

Work-pieces 8.00E+03 0.51E+03 21.4 10 0.17 

Tool 7.85E+03 0.46E+03 43.0 10 0.80 

Back-plate 7.85E+03 0.46E+03 43.0   

 
Table 4. Material parameters for the Sheppard-Wright material model for the work-pieces 

Material Model A α [Pa-1] n Q [J mol-1] 
AISI 304 L Sheppard-Wright 8.3E+15 1.2E-08 4.32 4.01E+05 

 
Table 5. Boundary conditions for the mechanical and thermal problems 

Body Boundary Mechanical Problem Thermal Problem 

Work-pieces 

Inlet Prescribed minus advancing tool velocity Prescribed temperature=25ºC 

Outlet Zero prescribed traction vector Adiabatic 

Sides Prescribed minus advancing tool velocity Adiabatic 

Bottom Prescribed minus advancing tool velocity Thermal contact, HTC 

Top 
Zero normal velocity and zero tangential 
components of the traction vector 

Convection+radiation 

Shoulder Frictional stick  Thermal contact, HTC=∞ 

Probe Frictional stick Thermal contact, HTC=∞ 

Tool 

Side 

Rigid with prescribed rotational tool 
velocity at all the nodes of the tool 

Convection+radiation 

Top Convection+radiation 

Shoulder Thermal contact, HTC=∞ 

Probe Thermal contact, HTC=∞ 

Back-plate 

Inlet 

Rigid with prescribed minus advancing 
tool velocity at all the nodes of the back-
plate 

Prescribed temperature=25ºC 

Outlet Adiabatic 

Sides Adiabatic 

Bottom Adiabatic 

Top Thermal contact, HTC 
 
The prescribed tool advancing velocity has been imposed as a prescribed advancing 

velocity in the opposite direction to the work-pieces and back-plate. The prescribed tool 
rotational velocity has been applied to the tool.  

Full stick friction conditions and thermal contact boundary conditions on the tool 
shoulder/work-pieces and tool probe/work-pieces contact interfaces have been considered, 
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assuming an infinity value for the heat transfer coefficient. Thermal contact boundary 
conditions, with a contact heat transfer coefficient of 5.0E+3 W m-2 ºC-1, have been also 
considered on the contact surface between the work-pieces (bottom surface) and the back-plate 
(top surface). Convection/radiation boundary conditions have been considered on the top and 
lateral surfaces of the tool and on the top surface area of the work-pieces which is not in contact 
with the tool shoulder. Adiabatic boundary conditions have been considered on the outlet and 
the two external lateral surfaces of the work-pieces, as well as on the outlet, bottom and lateral 
surfaces of the back-plate. On the inlet surfaces of the work-pieces and the back-plate, the 
temperature has been prescribed to the environmental one. The initial and environmental 
temperature is 25ºC.  

A finite element mesh consisting of 116,414 linear tetrahedra and 21,494 nodal points 
has been considered in the simulation. Prescribed advancing and rotational velocities have been 
imposed in an incremental way, using 1,000 time steps. A uniform time step of 0.1 sec has been 
considered. The full FSW numerical simulation has been done using 2,000 time steps. 
Computing time for the whole simulation, using a personal computer with 2 Gb RAM, was 
around 74 hours. 
 

 
 

Figure 11. Finite element mesh of the tool, work-pieces and back-plate 
 

       

Figure 12. Details of the finite element mesh of the tool (left) and work-pieces (right) 
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Figure 11 shows a view of the finite element mesh of the tool, work-pieces and back-
plate. Figure 12 shows a detail of the finite element mesh used for the tool (left) and work-
pieces (right) in the stir area. 

Figure 13 shows the temperature map distribution at the end of the numerical 
simulation. It can be clearly seen the convection effect due to the advancing tool speed. A detail 
of the temperature map on the tool and work-pieces at the welding line section at the end of the 
simulation is shown in Figure 14. Extremely high temperature gradients through the thickness 
of the work-pieces arise below the tool shoulder area. 

 

Figure 13. Temperature map distribution at the end of the simulation 
 
 

 
 

Figure 14. Zoom of the temperature map distribution at a cut of the welding line section at the 
end of the simulation 
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Figure 15. Temperatures at the end of the simulation, along four different lines parallel to the 

welding line on the top surface of the work-pieces. Comparison between the experimental 
results (symbols) reported by Zhu and Chao [83] and the numerical results (lines), using ASGS 

(GLS) and OSGS stabilization methods. 
 

 
Figure 16. Temperatures at the end of the simulation, along four different lines parallel to the 
welding line on the bottom surface of the work-pieces. Comparison between the experimental 

results (symbols) reported by Zhu and Chao [83] and the numerical results (lines), using ASGS 
(GLS) and OSGS stabilization methods. 
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Figures 15 and 16 show a comparison between the experimental results reported by Zhu 

and Chao [83] and the numerical results, using ASGS (GLS) and OSGS stabilization methods, 
obtained for the temperature along five different lines parallel to the welding line on the top 
surface (z=3.18 mm) and four different lines parallel to the welding line on the bottom surface 
(z=0.0 mm) of the work-pieces, respectively. 

The five lines considered on the top of the surface (z=3.18 mm) of the work-pieces are 
located at y=12 mm, y=15.5 mm, y=18 mm, y=21 mm and y=27.5 mm of the welding line. As it 
is shown in Figure 5, numerical results obtained compare qualitatively well with the 
experimental ones. The peak temperature for the lines located at y=12 mm, the one which is 
closest to the welding line, is remarkably well caught by the numerical simulation, both in 
position and value. Peak temperatures for lines located at y=15.5 mm, y=18 mm and y=21 mm 
are slightly underestimated by the numerical simulation, but the values at x=0 fit well with the 
experimental results. On the other hand, ASGS (GLS) and OSGS stabilization methods yield 
basically the same results. 

The four lines considered on the bottom surface (z=0.0 mm) of the work-pieces are 
located at y=14 mm, y=17 mm, y=21 mm and y=27 mm of the welding line. As it is shown in 
Figure 6, numerical results obtained compare qualitatively well with the experimental ones. 
Once again, the peak temperature for the line located at y=14 mm, the one which is closest to 
the welding line, is caught remarkably well by the numerical simulation, both in position and 
value. Similarly, peak temperatures for lines located at y=17 mm and y=27 mm are also quite 
remarkably well caught, both in position and value, while the peak temperature for the line 
located at y=21 mm is slightly underestimated by the numerical simulation. Temperatures at 
x=0 fit pretty well with the experimental results. ASGS (GLS) and OSGS stabilization methods 
yield virtually identical results. 
 
 
6 Conclusions 

In this paper, different aspects related to the computational modeling and the sub-grid scale 
finite element stabilization of incompressibility and convection in the numerical simulation of 
friction stir welding processes have been addressed. Two suitable rigid-thermoplastic 
constitutive models, Norton-Hoff and Sheppard-Wright, have been introduced. Within the 
paradigmatic framework of the multiscale methods, suitable ASGS and OSGS stabilization 
methods have been introduced for a fully incompressible, quasi-static, transient coupled 
thermomechanical formulation, using an Eulerian description. Classical GLS and SUPG 
stabilization methods can be recovered as a particular case of the sub-grid scale stabilization 
framework developed. An assessment of the sub-grid scale finite element stabilization methods 
has been performed. Two numerical examples have been considered. The first one deals with 
numerical simulation of a coupled thermomechanical flow in a 2D rectangular domain. Steady-
state and transient conditions have been considered. Using the GLS method to stabilize the 
pressure, temperature distributions using SUPG and OSGS convection stabilization methods 
have been compared. Numerical results show that OSGS stabilization method yields slightly 
better temperature results. On the other hand, using the SUPG method to stabilize the 
convective term of the temperature equation, pressure and velocity contours using GLS and 
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OSGS pressure stabilization methods have been also compared. Numerical results show that 
OSGS stabilization method yield better results, particularly at the inflow and outflow sections. 
Finally, the second example shows a 3D numerical simulation of a FSW process. ASGS (GLS 
and SUPG) and OSGS stabilization methods have been used. Numerical results have been 
compared with experimental ones available. A good agreement on the temperature distribution 
along different lines parallel to the welding line on the bottom and top surfaces of the work-
pieces has been obtained and predicted peak temperatures compare well, both in value and 
position, with the experimental results available. 
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