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Abstract. In this contribution, the displacement-based scaled-boundary finite element method
(SBFEM) is extended to a mixed displacement-pressure formulation for the geometrically and
materially nonlinear analysis of nearly-incompressible solids. The displacements and pressures
are both parameterized by a scaled-boundary approach, for which an interpolation in the scaling
direction is used. Here, higher-order interpolation functions may be employed. It is shown that
by introducing the pressure as a field variable, volumetric locking is no longer present. The
approach is valid for arbitrary scaling center locations, which can be either inside or outside
of the element domain. Other than that, the formulation is valid for non-star-convex element
geometries. Numerical examples show that the method is capable of alleviating volumetric
locking for arbitrary polygonal meshes and is beneficial in comparison to the displacement-based
method when it comes to modeling nearly-incompressible materials.

1 INTRODUCTION

The scaled-boundary finite element method (SBFEM) finds its applications in the field of fracture
mechanics [1], quadtree and octree refinement techniques [2], and Voronoi meshes [3]. The
transformation of the parameter space into a boundary direction and a scaling direction allows
for the description of polygonal element geometries. In the semi-analytical SBFEM [4], the finite
element must possess a star-convex geometry. The analytical solution, which is only employed in
the scaling direction, makes the method inapplicable to geometrically and physically nonlinear
problems. To overcome this deficit, it was shown that one can employ special shape functions
in the scaling direction [5], segment the nonlinear differential equation into linear parts [6], or
approximate the scaling direction numerically [7, §].

It was shown in [7], that by approximating the scaling direction with lower-order interpolation
functions, volumetric locking can be observed for materials reaching the incompressible limit. Its
severity is dependent on the location of the scaling center. In case of an accurately chosen scaling
center location, it was observed that volumetric locking could be eliminated for quadrilateral
element geometries.

In this contribution, we aim to alleviate volumetric locking and its dependency on the scaling
center location for scaled-boundary elements with nearly-incompressible hyperelastic material
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laws. The approach originates from [9], where linear quadrilateral acoustic fluid finite elements
are modeled by this approach. The weak formulation is derived from a two-field functional,
which includes the displacement and pressure as independent field variables. Both quantities
are approximated by Lagrangian interpolation functions in both directions, which can be chosen
independently. By invoking special pressure continuity requirements in the polygonal element,
the volumetric part of the material law is enforced weakly on polygonal element level. This
allows for a compressible deformation of the polygon’s interior nodes but enforces a nearly-
incompressible deformation of the polygonal boundary. We show that by substituting the an-
alytical solution in the scaling direction by a numerical approximation, both star-convex and
non-star-convex element geometries can be handled and star-convexity of the element domain is
thus no longer required. Other than that, arbitrary scaling center locations, which can be either
inside or outside of the element domain, can be chosen.

2 WEAK TWO-FIELD PROBLEM

In this work, the weak form of equilibrium is developed by employing an approach presented in
[10]. A pure displacement potential is rewritten into a two-field displacement-pressure potential
by employing a Legendre transform:

11 (u, p)—/WdeU(C) dv+/pU(J) dV—;/lﬁ dV—/qudV—/ u' tdA. (1)
Q Q ok Q o0

Here, the strain energy density function W (C,J) has been split into a deviatoric and a volu-
metric part according to:

W (C,J) = Wi (C) + Wt (J) = W (C) + 5 [0 ()] : ()

where x denotes the material’s bulk modulus and U (J) represents the quadratic term of the
volumetric strain energy density function. Several possible functions for U (J) exist, however, a
suitable choice is to employ a linear function: U (J) = J — 1 [11].

The weak formulation is derived from the energy potential in Eq. (1), which is subsequently
linearized in the direction of the displacement and pressure increments Au and Ap as:

D, |Gy (6u)] Au+ D, [Gy, (du)]Ap = =Gy, (0u) + Wege (0u) (3a)
Dy |Gy (0p)] Au — Dy [Gy (9p)] Ap = =G, (0p) - (3b)

Here, the directional (or Gateaux) derivatives are defined as:

Dy [Gu (50)] Au = /Q<5E .C:AE dV+/QS . AGE dV, (4a)
Dy (G (6u)] Ap = /Q B S, ApdV, (4b)
D. (G (5p)) Au = [ 597 Sl AB AV, (40)
Dy [Gp, (0p)] Ap = /Q p" % Ap dV. (4d)
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In Egs. (4a)-(4d), the deviatoric and volumetric second Piola-Kirchhoff stress tensors Sy, and
S,or are defined by the gradients of Wy, and W,, with respect to the Green-Lagrange strain
tensor E. Furthermore, S! , = %Svol holds. The fourth-order tensor C = gég[]; is also known as
the material tensor.

3 SCALED-BOUNDARY PARAMETERIZATION

The most important characteristic of the scaled-boundary finite element method is the practical
description of the polygonal domain. The polygon’s edges, which may be discretized into multiple
line elements, are parameterized by the boundary parameter n € [—1, 1]. The scaling direction
¢ € [0, 1] describes the polygon’s interior and defines the scaling factor applied to the polygonal
boundary (see Fig. 1a). The scaling of a single line element towards the so-called scaling center
X covers a triangular domain, which is referred to as a section {25 (see Fig. 1b). In general, a
polygonal domain . can be subdivided into any number ny of sections, and thus Q. = [J™ Q.
Consequently, 092, = [J" 09 is defined for the polygonal boundary. The aforementioned
discretization of the polygonal boundary allows for a numerical approximation in the boundary
direction by making use of a set of boundary interpolation functions N (1) and the initial nodal
coordinates X of the boundary, resulting in Eq. (5a). The element interior is then defined in
Eq. (5b) by simply scaling X towards the scaling center.

X =N(n)X on 08 (5a)
X=Xp+¢ (X — XQ) in Qg (5b)

To reformulate the kinematical quantities, the deformation gradient F = 9x/0X is rearranged:

Fiq %)(1 0 1 %Xl 0

o ek pe [‘ﬂ: |0 o {“1]:1+Du (6)
Fio X5 0 T2 0 % 0 U ’
Fy 0 % 0 0 8LX1

where D denotes the differential operator:

| 0 Glief 9 1 :

0 Gl-el 0 (_}2~e1
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The entries in by and by follow from the inverse Jacobian matrix J~! on the boundary, which
is constructed from a set of contravariant basis vectors G/ (j = 1,2) on the boundary:
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The Green-Lagrange strains in Voigt notation then read:

F
) Ey [P0 0 By F; 1
E=| Ey :§ 0 Fyy  Fio 0 Fly — 11 . (9)
2E19 Fig Fyy Fip Fao 2 0
_ | F2o1
BT —
F

(a) (b) (©)

Figure 1: (a) - Definition of the boundary direction 7 and scaling direction £. (b) - Subdivision of a
polygonal element into six sections. (c) - Parameterization of a section with contravariant basis vectors
on the boundary, spanning the inverse Jacobian.

4 NUMERICAL APPROXIMATION

It was mentioned in Section 2 that the two-field potential consists of two independent field
variables, which are the displacement and pressure fields. It is therefore necessary to approximate
both field variables by proper interpolation functions according to the scaled-boundary concept.
By employing the scaled-boundary parameterization, it is possible to distinguish between four
different interpolation orders. Displacement interpolation functions of order p are employed on
the element boundary and functions of order ¢ are defined in the scaling direction. The pressure
is approximated by interpolation functions of order s on the boundary and order ¢ in the scaling
direction. We refer to our mixed scaled-boundary finite elements as B(p, s)S(q, t) elements,
where B(p, s) defines the boundary direction and S(g, t) the scaling direction.

Although the Ladyzhenskaya-Babuska-Brezzi (LBB) or inf-sup condition [12] is not proven in
this work for the proposed element, we cannot exclude the fact that a violation of the condition
might be possible and that numerical instabilities may occur. With this in mind, we choose the
interpolation orders for the displacement and pressure in both directions with care (i.e. p > s
and ¢ > t) and keep in mind that so-called “checkerboard-modes” may occur in our numerical
examples. Within the examples presented in this work, however, we have not observed any
instabilities which could raise the suspicion that the inf-sup condition is not fulfilled.
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The numerical approximation of the displacement field follows the theory presented in [7] and
is not further elaborated here. The pressure is approximated by an analogous approach. The
pressure on the boundary of a section is constructed by a set of n,, = s+1 interpolation functions
NP () on the boundary, rearranged into a matrix form consistent with Eq. (5a):

p1
o S N P2
P= [N N NE ]| (10)
Ny (1) ﬁﬁp
\7_/
p

Here, p; indicate all pressures on the sectional boundary 0f2;. The pressures in the scaling
direction are approximated by an interpolation matrix N, (§) according to:

-f)t-

p= MOV NP ... NI N (6)11’} ol (11)

where sz (&) denotes a pressure interpolation function in the scaling direction, n, = t + 1,
I? € R™*™ is an identity matrix and I = 11 ... I]T € R™*1 The pressure belonging
to the scaling center is defined as pg. The vector p; with j = 1,2,...;¢ contains the sectional
pressures on the line £ = 4 and reads

. . ; LT

pj =[Pt P2 -~ Dim,] - (12)
Substitution of Eq. (11) into Eq. (10) then leads to the approximated pressure in the sectional
domain:

p" =N, ()N, ()b =H, (n.€) p. (13)
The numerical approximation of a section that belongs to a B(1,0)S(1,0) element is shown in Fig.
2. The approximated nonlinear strain-displacement matrix B” [7] and the pressure interpolation

matrix H), can be inserted into the linearized weak form of Egs. (3) and lead to a solvable system
of equations in the sectional domain €),:

i 1) faw) 1) "
Kfm Kf)p Ap? rz
—_———————

K35 Avs re

The tangential sectional stiffness matrices K7 are then assembled into their corresponding polyg-
onal stiffness matrices, which are subsequently assembled into the global stiffness matrix. The
internal degrees-of-freedom that do not contribute to the continuity between polygonal elements
are eliminated by static condensation on polygonal element level.
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Figure 2: Visualization of a B(1,0)S(1,0) section with corresponding Lagrangian interpolation functions
for the displacement (left) and pressure (right).

One should note that the interpolation functions for the pressure are allowed to be discontinuous
since the derivation of the pressure does not occur in the weak formulation. To keep mesh gener-
ation as simple as possible, the pressure is kept discontinuous over polygonal element boundaries.
This allows us to eliminate all pressure degrees-of-freedom on polygonal element level by static
condensation. Other than that, the pressure between neighboring sections in the polygonal inte-
rior is enforced to be continuous. This is due to the fact that by employing the scaled-boundary
parameterization with linear displacement interpolation functions, the strain field in a section
remains constant. An independent constant pressure degree-of-freedom in each section would
lead to a strong fulfillment of the incompressibility constraint if the pressure is assumed to be
discontinuous. The results will then be identical to those obtained by the displacement-based
formulation, indicating that the mixed method is still prone to lock volumetrically [13]. By
choosing a continuous pressure between sections, the incompressibility constraint is enforced
weakly on polygonal element level, which alleviates volumetric locking.

5 NUMERICAL EXAMPLES

In this section, we show that the proposed method does not exhibit volumetric locking as the
material’s volumetric behavior tends towards the incompressible limit (v — 0.5). The examples
show that in the proposed formulation, the location of the scaling center does not contribute to
volumetric locking. Additionally, it is shown that the numerical approximation and integration
of the scaling direction allow for the definition of a scaling center that is located outside of the
polygon’s kernel area. This feature eliminates the star-convexity criterion which must be fulfilled
in the semi-analytical SBFEM [4].

Within the proposed examples, we consider linear displacement and constant pressure inter-
polation functions with a Neo-Hookean material law, for which the strain energy density function
is defined as:

W (C,J) = Wey, (C) + Wiy (J)

7! K
:§(tr(C)—3)+§(J—l)2.

(15)
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The elasticity matrix can then be defined in two dimensions by enforcing plane strain conditions.

5.1 Eigenvalue analysis

In this example, it is shown that volumetric locking is alleviated in the proposed formulation
and is independent of the scaling center’s coordinates. The occurrence of volumetric locking
is investigated for both the displacement-based (rldl) [7] and proposed B(1,0)S(1,0) scaled-
boundary elements. The stiffness matrix is constructed for a quadrilateral element with dimen-
sions b = h = 1 as depicted in Fig. 3. The material is defined by its Young’s modulus £ = 100
and Poisson’s ratio v = 0.4999999999 under plane strain assumptions. The displacement and
pressure degrees-of-freedom which belong to the scaling center are eliminated by static conden-
sation, leaving eight degrees-of-freedom on the polygonal boundary. The eigenvalues A\; and
eigenvectors ¢; (i =1,2,... ,8) of the condensed stiffness matrix K are evaluated according to:

(K—-X\I)g, =0. (16)

The occurrence of volumetric locking can be observed from an eigenvalue comparison. Due to
the nearly-incompressible material behavior, the eigenvalue Ag - which represents the stiffness
associated with the volumetric expansion mode of the element (see Fig. 3b) - is expected to
tend towards infinity. In an element that is free of volumetric locking, the eigenvalues A; until
A7 do not interact with the volumetric expansion mode and remain finite for » — 0.5.

The eigenvalues and eigenvectors of the stiffness matrix are determined for both element
formulations with six different scaling center locations. All scaling center locations Xg and the
corresponding two largest eigenvalues A7 and Ag are summarized in Table 1. It should be noted
that the eigenvector ¢, is not comparable to the results obtained for a classical quadrilateral
(Q1) element [14] and does not represent a pure bending or shear mode.

| |

_
x
IS @I
a a a a a a
(a) Deformation mode ¢, (b) Volumetric expansion mode ¢y

Figure 3: Eigenvalue analysis. Eigenvectors ¢, and ¢g of the stiffness matrix K for the B(1,0)S(1,0)
element with quadrilateral geometry. The displacements and pressure associated with the scaling center
are eliminated by static condensation.
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It can be recognized from Table 1 that the deformation mode ¢, and volumetric expansion mode
¢y are coupled if the quadrilateral is discretized by the displacement-based r1d1 element. An
exception is observed if the scaling center is placed at Xo = [0.5 0.5]. It can hence be concluded
that the quadrilateral displacement-based scaled-boundary element [7] locks volumetrically if
the scaling center does not coincide with the element’s barycenter. In fact, this observation
follows the conclusion presented in Nagtegaal et al. [15], who stated that the subdivision of a
quadrilateral element into four triangular elements meeting at the intersection point of the main
diagonals, does not show any volumetric locking.

In the proposed mixed formulation, ¢, and ¢g remain uncoupled for any of the chosen
scaling center locations listed in Table 1. This indicates that volumetric locking is alleviated
in the proposed element formulation and is not associated with the physical coordinates of the
scaling center.

Table 1: Eigenvalues A7 and Ag of the stiffness matrix in dependence of the scaling center location Xj.
The eigenvalues marked in red indicate that volumetric locking is present.

X, rld1 [7] B(1,0)S(1,0)

x y A7 A8 A7 A8

0.2 02 |1.19-10'" 3.33-10'" | 56.38 3.33-10"
09 0.9 | 213-10'"" 3.33-10" | 70.60 3.33-10%
0.7 04 | 3.31-10'° 3.33.10" | 41.10 3.33-10%
0.3 0.95| 1.62-10'" 3.33-10' | 53.10 3.33-10!!
0.1 08 |1.66-10'" 3.33-10'" | 52.57 3.33-10"
0.5 0.5 66.66 3.33.10'" | 38.05 3.33-10'!

5.2 Non-star-convex patch test

In this example, we demonstrate that the proposed formulation is applicable to arbitrary polyg-
onal element geometries and is able to represent a constant stress state for these elements. A
square plate of dimensions b = 10 and h = 10 is subjected to a uniform tension and shear
load n = 10, as depicted in Fig. 4a. As in Section 5.1, the material parameters are defined as
E =100 and v = 0.4999999999. The use of plain strain conditions and the constant stress state
6=[n n n]' =[10 10 10]" yield a lincar analytical solution for the enginecring shear strain:
Yoy = 2€zy = 0.3.

In the plate’s interior, a sub-mesh is constructed consisting of three polygonal elements.
Elements 1 and 2 possess a star-convex geometry (there exists a kernel area from which every
element node is visible), whereas element 3 is defined by a non-star-convex boundary. The
coordinates of the non-star-convex polygon are given in Table 2. The semi-analytical SBFEM
would require a partition of element 3 into two star-convex elements (indicated by the blue
dotted line in Fig. 4a) in order to obtain the solution to the problem. In the proposed mixed
formulation, however, the scaling center can be placed at nearly any arbitrary location, which
can be either inside or outside of the element. This is caused by the fact that the boundary
direction 7 is mirrored for several sections, leading to a sign change in the Jacobian determinant.
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Table 2: Nodal coordinates of the non-star-convex polygon in the reference configuration.

006 ® 6 ®

X |50 70 50 50 3.0 5.0
Y |10 60 55 9.0 4.0 4.5

The sectional stiffness matrices are then either ”added” (positive determinant) or ”subtracted”
(negative determinant) from the polygonal element’s stiffness matrix. Overall, this leads to the
exact integration of the stiffness matrix over the polygonal domain [16].

To test the robustness of the scaling center location, the scaling center X% is placed at several
randomly generated locations, both inside and outside of element 3. The analytical solution
Yzy = 0.3 is reached for all tested scaling centers, indicating that the numerical integration of
the stiffness matrix is carried out correctly for non-star-convex geometries.

Unfortunately, the numerical approximation of both parametric directions causes a minor
deficit. By placing the scaling center at any spatial point which is colinear to any of the element’s
edges, the Jacobian determinant becomes zero for the corresponding section. This result is
physically correct since the area spanned by the colinear edge and the scaling center is equal to
zero, but contributes to a numerical problem when inverting the Jacobian matrix. In practice,
however, the scaling center can be placed at a random location. The probability that a colinearity
between the scaling center and an element edge exists, is then practically equal to zero.

T T t fe=w

} Pox”
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| t
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=
[ < ) (e
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l X} ., @ T
- - n<:_1() T4 -
' b=10 '
(a) (b)

Figure 4: Non-star-convex patch test. (a) - Discretization, dimensions and loading. A possible set of
scaling centers corresponding to elements 1, 2 and 3 are indicated. (b) - Deformed configuration and
engineering shear strain v,,.

5.3 Perforated square plate

The performance of the proposed mixed scaled-boundary formulation can be compared to its
displacement-based variant [7]. To do so, a perforated square plate of dimensions b = h = 5 and a
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hole radius of r = 1 is investigated. The plate is subjected to a uniform tensile load p = 20 in the
vertical direction. The material parameters are set to £ = 100 and v = 0.49. We take advantage
of the symmetry of the problem and analyze the upper right quarter of the plate. Symmetry
boundary conditions are therefore employed at the left and bottom edges. Both quadrilateral
and Voronoi discretizations (see Fig. 5) of the domain are taken into consideration.

Fig. 6a illustrates the convergence of the vertical displacement uf,) of point P towards a refer-
ence solution, which is determined on an unstructured mesh consisting of nonlinear quadrilateral
elements of sixth order [17] and 946,452 degrees-of-freedom. The corresponding relative error of
u5 is shown in Fig. 6b. It is observed that for quadrilateral meshes, both scaled-boundary ap-
proaches yield the same solution. This is caused by the fact that by the scaling center was placed
at the intersection point of the main diagonals, which excludes locking in the displacement-based
element (see Section 5.1). As soon as the element geometry consists of more than 4 vertices, vol-
umetric locking becomes inevitable in the displacement-based method and a locking-free scaling
center position cannot be found. This is shown in Fig. 6, where the yellow solid line (rldl)
converges evidently slower than the blue solid line (B(1,0)S(1,0)) on the exact same Voronoi
discretization. Still, one can recognize that the error corresponding to the Voronoi mesh is
not perfectly linear. This discrepancy between the Voronoi and quadrilateral mesh is probably
caused by the fact that the Voronoi mesh is not refined by the subdivision of a coarse mesh and
all refinement steps are thus independent of each other.

[N

h=5

A h 5

(a) (b) (c)

Figure 5: Perforated square plate. (a) - Discretization by 100 Voronoi elements, dimensions and loading.
(b) - Global refinement towards 1000 Voronoi elements. (c) - Discretization by 32 quadrilateral elements.

Overall, it is shown that in this particular example, the proposed element behaves better on a
Voronoi mesh than on a structured quadrilateral mesh. This accentuates a benefit of polygonal
discretization methods in comparison to classical quadrilateral discretizations. Moreover, polyg-
onal meshing-software can be applied to any geometry without partitioning the domain a priori
and can be locally refined at low computational cost [18].

10
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Figure 6: Perforated square plate. (a) - Convergence of u,, for the r1dl [7] and B(1,0)S(1,0) elements
on Voronoi and quadrilateral meshes. (b) - Relative error of u5 with respect to the reference solution.

6 CONCLUSIONS

In this work, the occurrence of volumetric locking in displacement-based scaled-boundary finite
elements with a numerically approximated scaling direction is handled by a mixed displacement-
pressure formulation. In addition to this, pressure continuity must be enforced over sectional
boundaries to fulfill the incompressibility constraint weakly in the polygonal domain. This allows
the sectional domains to exhibit compressible deformations, whereas the superior polygonal
domain remains (nearly-)incompressible.

The alleviation of volumetric locking is demonstrated by three examples. It was shown that
in contrast to the displacement-based scaled-boundary formulation [7], the eigenvalues of the
stiffness matrix remain uncoupled for the proposed method. Furthermore, it was shown that
volumetric locking is fully excluded and its severeness does not correspond to the position of
the scaling center. The nonlinear analysis of a perforated plate problem consisting of a nearly-
incompressible Neo-Hookean material showed that the approximation error for the proposed
method is up to 16 times smaller than its displacement-based counterpart. It was additionally
shown that polygonal element discretizations are beneficial in comparison to quadrilateral el-
ement geometries and converge faster. This result presents a solid motivation for the use of
polygonal finite elements, such as the proposed element formulation.
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