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Executive summary

This deliverable presents the final release of the ExaQUte framework as result of task 4.6
of the project focused on the framework development and optimization. The first part
of the document presents an overview of the different parts of the ExaQUte framework
providing the links to the repositories where the code of the different components can be
found as well as the installation and usage guidelines. These repositories will include the
final version of the ExaQUte API and its implementation for the runtimes provided in
the project (PyCOMPSs/COMPSs and Quake).

The second part of the document presents a performance analysis of the framework
by performing strong and weak scaling experiments. In this case, we have focused on the
analysis of the new features introduced during the last part of the project to support and
optimize the execution of MPI solvers inside the framework. The support for OpenMP
was already reported in Deliverable D4.3 [21]. The results of the experiments demonstrate
that the proposed framework allow to reach very good scalability for the analysed Monte
Carlo problems.
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1 Introduction

Task 4.6 in ExaQUte aims at performing continuous improvements to the scheduling
mechanisms and the development of optimizations specific to UQ and to the different
MC algorithms. During the first phase of the project, we analysed and optimized the
execution of MLMC problems using solvers whose internal parallelism was provided within
a single node with the OpenMP programming model and runtimes which was reported
in D4.3 [21]. In the second phase of the project, we have focused on supporting and
optimizing larger problems which require the execution of solvers implemented on top
of MPI. This deliverable presents the final version of the ExaQUte framework and the
evaluation using as benchmark a UQ problem implemented with a MC algorithm and an
MPI enabled solver.

The deliverable is structured as follows: Section 2 provides the overview of the Ex-
aQUte framework and the links to the code repository, installation and usage instructions;
Section 3.1 present the evaluation of the framework; and Section 4 draws the conclusions
of the deliverable.

2 ExaQUte framework

Figure 1 depicts the different components of the ExaQUte software framework. On the
top, we show the Solvers layer and the xMC library which allow developers to easily im-
plement different Monte Carlo approaches for solving uncertainty quantification problems.
This library is implemented on top of the ExaQUte API which allow the uniformed usage
of different task-level parallel programming models and runtimes.

The following paragraph provide more details about these components as well as the
links to repositories and installation and usage guidelines.

2.1 Solvers

The solvers layer mainly includes two software components: Kratos and ParMmg. These
components were released in D1.4 [3]. This deliverable include a brief description and
links to the download and documentation the latest versions. More details and usage
examples can be found in D1.4.

2.2 Kratos Multipysics

The Kratos software[24] is used as the basic multi-physics solver for dealing with a mul-
titude of different physical problems, such as computational fluid dynamics, convection
diffusion, structural applications or fluid structure interaction. The Kratos software can
be downloaded from the Kratos release page:

https://github.com/KratosMultiphysics/Kratos/releases

Installation and usage instructions can be found in the Kratos documentation page:
https://github.com/KratosMultiphysics/Kratos/wiki
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Figure 1: ExaQUte Framework overview.

2.3 ParMmg

ParMmg is an open source software for parallel version of bidimensional and tridimensional
surface and volume mesh adaptation [8][13].

The ParMmg software can be downloaded from the following github repository page:
https://github.com/MmgTools/ParMmg/releases/

Installation instructions can be found in the following URL:
https://github.com/MmgTools/ParMmg#readme

Usage documentation can be found in the following URL:
https://github.com/MmgTools/ParMmg/wiki#user-guide

2.4 XMC

The ExaQUte XMC library [4] offers the user the ability to carry out uncertainty quantifi-
cation simulations using a multitude of Monte Carlo methods. It allows users to configure
a wide variety of hierarchical Monte Carlo algorithms, either single- or multi-level, with
fixed or adaptive calibration strategies, to estimate various statistics with controlled ac-
curacy. The XMC library was introduced in D5.2 [1]; usage details can be found in this
deliverable. It has been interfaced with Kratos Multiphysics and – via the ExaQUte API
– with both PyCOMPSs and Hyperloom/Quake.

The XMC code as well as the installation and usage documentation are available in
the following public repository:

https://gitlab.com/RiccardoRossi/exaqute-xmc/
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2.5 ExaQUte API

The ExaQUte API aims at proviving a common and uniformed access to distributed
computing resources. It provides a programming interface that allow developers to cre-
ate application for distributed computing infrastructures following the task-based parallel
paradigm. The ExaQUte API is designed to allow the interaction with different run-
time systems which will distribute the task execution between the different computing
resources. To validate it, two implementations of this API have been developed: one for
interacting with the COMPSs runtime developed by BSC and another for the Hyper-
loom/Quake framework developed by IT4I. The ExaQUte API provides a set of Python
decorators to enable the definition of different types of task such as sequential python
methods, OpenMP kernels and MPI applications, including hints to enable an efficient
execution (such as resource constraints, data directionality and affinity). It also provides
a synchronization API to allow users to synchronize remotely generated data and barriers
to synchronize tasks’ execution. More details about the ExaQUte API are provided in
Appendix A

The ExaQUte API implementations and installation guides can be found in the fol-
lowing Github repository:

https://github.com/ExaQUte-project/exaqute-api

2.6 Supported Runtimes

As introduced above the ExaQUte API is currently supported by two runtime systems
which are able to schedule tasks in distributed computing infrastructures. The following
paragraphs provide an overview of these systems

2.6.1 PyCOMPSs/COMPSs

PyCOMPSs [28] is the Python binding of the COMPSs framework [7, 22] that facilitates
the development of parallel computational workflows for distributed infrastructures. It of-
fers a programming model based on sequential development – the application is a plain se-
quential Python script – where the user annotates the functions to be run as asynchronous
parallel tasks. This decorator also contains a description of the function parameters, such
as type and direction, which are vital for building the dependency graph. In this graph,
tasks are represented as nodes and data dependencies between tasks as edges. At execu-
tion time, asynchronous tasks are created for each decorated function and forwarded to
the COMPSs Runtime which handles data dependency analysis, task scheduling and data
transfers. The task creation is performed in an asynchronous way, and once the runtime
has added a given task to the dependency graph, the execution of the main Python code
continues, possibly generating new tasks. With this aim, PyCOMPSs manages future ob-
jects: a representant object is immediately returned to the main program when a task is
invoked. A future object returned by a task can be involved in subsequent asynchronous
task calls and PyCOMPSs will automatically find the corresponding data dependencies
without requiring to wait for the actual result of the task.

PyCOMPSs applications are deployed as master-worker applications, where the master
executes the main code and invokes the runtime, and the workers execute the tasks.

During the ExaQUte project, the PyCOMPSs programming model has been extended
to support OpenMP an MPI applications as tasks, as well as data layout to support the
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distribution of data through the different MPI processes to reduce the data management
overhead.

These features have been included in version 2.9. This version an higher can be
downloaded from the following github repository:

https://github.com/bsc-wdc/compss

Further information and documentation about how to install and use PyCOMPSs/-
COMPSs can be found in the following link:

https://compss-doc.readthedocs.io/en/stable/

2.6.2 Quake

Quake is a tool for scheduling multi-node allocations developed within ExaQUte. It
based on the similar ideas as the HyperLoom. HyperLoom was heavily optimized for very
different scenario (many subnode tasks); we have decided to create the tool from scratch
now fully oriented on multi-node allocations.

The source code as well as the installation and usage instructions can be found in the
following public repository.

https://code.it4i.cz/boh126/quake

3 Evaluation

To validate the performance of the final ExaQUte framework we have prepared a set of
experiments consisting on executing a benchmark application with different configurations
and system to evaluate its scalability. In deliverable D4.3 [21], we performed an initial
evaluation with an application based on simulations performed with OpenMP. During
the last part of the project we have introduced the management of MPI simulations as
tasks in ExaQUte framework. For this reason, the evaluation reported in this deliverable
will use a benchmark application with the MPI version of the solvers. The next parts
of this section will present the benchmark applications, the testbed infrastructure, the
description of the experiments, and the obtained results.

3.1 MPI Benchmarks

We solve two different MPI benchmarks. The former is the wind flow past the CAARC
building, a standard benchmark in the computational wind engineering field [10, 18, 19,
26], and results are shown in section 3.4. The second benchmark is the wind flow past a
rectangle obstacle [11] and results are shown in section 3.5. The second benchmark can
be understood as a two-dimensional simplification of the first system.

In both cases the wind flow is modeled with the incompressible Navier-Stokes equa-
tions, which read

∂tu + u · ∇u− ν∆u +∇p = f in [0, T ]×D
∇ · u = 0 in [0, T ]×D,

(1)

where f is the force vector, ν the kinematic viscosity and, as usual, we denote vectors
and tensors using bold characters. In both benchmarks, properties or air are considered.

Equation 1 must be complemented with appropriate boundary conditions and initial
conditions. The problem is discretized using linear triangular elements for both pressure
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and velocity fields. Algebraic subgrid scale stabilization is used to stabilize the problem
[14, 15]. A second order fractional step method is used for time stepping that treats both
pressure and velocity implicitly.

These benchmarks have been implemented using Kratos as finite element software to
solve the computational fluid dynamics problem and XMC as hierarchical MC library.
This library uses the ExaQUte API to uniformly interact with the PyCOMPSs/COMPSs
and HyperLoom/Quake backends for distributed computing. These examples are available
online [25].

Both benchmarks are stochastic, in the sense that boundary conditions are unknown.
Details about each boundary condition are given in the two following sections. We aim at
solving these stochastic problems using hierarchical MC methods, and we refer to [16, 17,
27, 29] for details about hierarchical MC methods and their asynchronous counterparts.
Due to the difficulties of satisfying standard MLMC hypotheses for chaotic systems (see
deliverables [5, 6]), the problem is solved using the asynchronous MC method [29].

We are interested in estimating the expected value of of an output QoI. Therefore, we
define the MC expected value estimator as

EMC [QH ] =

∑N
n=1QH(w(n))

N
, (2)

where Q is the QoI we are interested in, QH its discretization on a mesh of characteristic
length H, N is the total number of MC realizations and w refers to the random event.
The convergence of the asynchronous MC method is evaluated using a failure probability
convergence criterion, which reads

P
(∣∣EMC [QH ]− E[Q]

∣∣ ≥ ε
)
≤ φ, (3)

where ε > 0 is the absolute tolerance of the difference between the sampled estimator
EMC [QH ] and the true estimator E[Q] and 1−φ ∈ (0, 1) is the confidence on the the final
statistical estimator. We refer for example to [27, 29] for details about how to compute
such a convergence criterion.

A total of six observables are computed at runtime, and are listed next.

• Drag force Fd,

• Base moment Mb,

• Pressure field p on the building surface,

• Time-averaged drag force 〈Fd〉T0,T ,

• Time-averaged base moment 〈Mb〉T0,T ,

• Time-averaged pressure field 〈p〉T0,T on the building surface.

We comment that [0, T0] is the burn-in phase, and is discarded to remove the bias of initial
conditions, while [T0, T ] is the effective time. Convergence is assessed only for the time-
averaged drag force, even though more observables are computed and their associated
statistics estimated. International units are used to measure quantities.
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Figure 2: CAARC problem domain. H = 180 m, W = 45 m and L = 30 m.

3.1.1 High rise building benchmark

This benchmark solves the wind flow past the CAARC building and is also solved in
other ExaQUte reports [2, 9, 30, 31]. The domain is presented in figure 2. The wind
velocity mean profile is logarithmic and modeled as in [23], and we refer to our deliverable
[9] for details about the wind generation. The wind reference velocity is 40 m s−1 at the
reference height of 180 m. The roughness height is a uniformly distributed random variable
U [0.1, 0.7], where 0.1 and 0.7 are the minimum and maximum values, respectively. Such a
roughness height is typical of sparsely built-up urban areas [20]. In other words, the wind
mean profile is constant in time and stochastic, and on top of it there are fluctuations.
The Reynolds number is of the order of 108, computed with a characteristic length of 45 m
and density and viscosity of air. A velocity field snapshot can be observed in figure 3.

Figure 3: Snapshot of the velocity field.
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3.1.2 Rectangle obstacle benchmark

This benchmark solves the wind flow past a rectangle obstacle problem and is also solved
in other ExaQUte reports [5, 6, 30, 31]. The problem domain is shown in figure 4. The

B = 5D

D

Lx

Λx

Ly

Figure 4: Scheme of the computational domain used for the rectangle problem, where
D = 1 m, B = 5D, Lx = 55B, Ly = 30B and Λx = 15B. Thus, the dimensions of the
outer domain are 275× 150 m, and the inner rectangle has size 5× 1 m.

inlet velocity is constant in time, uniformly distributed on the y-axis, and has an average
value of 2 m s−1. We assume the wind inlet velocity magnitude is represented by a normal
distribution,

u inlet ∼ N (2.0, 0.02). (4)

Slip boundary conditions are applied on the external boundaries, and no-slip boundary
conditions are enforced on the rectangle body. The Reynolds number of the problem is
132719. We remark that, even though turbulence cannot be identified in two-dimensional
systems, the rectangle obstacle problem we define is particularly important, since it pro-
vides a cheap yet accurate system for studying features of chaotic flows. A velocity field
snapshot can be observed in figure 5.

3.2 Testbeds

3.2.1 MareNostrum Supercomputer

The MareNostrum 4 Supercomputer [12] located at the Barcelona Supercomputing Center
(BSC). Its current peak performance is 11.15 Petaflops, ten times more than its previous
version, MareNostrum 3. The supercomputer is composed by 3,456 nodes, each of them
with two Intel®Xeon Platinum 8160 (24 cores at 2,1 GHz each). Regarding memory,
there are two types of nodes: regular memory nodes with 2GB per core and fat memory
nodes with 4GB per core. In this evaluation, we have only used regular nodes. All
nodes are connected through an 100Gb Intel®Omni-Path Full-Fat Tree Interconnection
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Figure 5: Velocity field snapshot.

network and have access to a shared disk storage managed by the IBM®Global Parallel
File System.

3.2.2 Barbora Supercomputer

The Barbora supercomputer was installed in autumn 2019 with a theoretical peak per-
formance of 849 TFlop/s.

The computing power consists of:

• 192 standard computational nodes; each node is equipped with two 18-core Intel
processors and 192 GB RAM,

• 8 compute nodes with GPU accelerators; each node is equipped with two 12-core
Intel processors, four NVIDIA Tesla V100 GPU accelerators with 16 GB of HBM2
and 192 GB of RAM,

• 1 fat node is equipped with eight 16-core Intel processors and 6 TB RAM.

The supercomputer is built on the Bull Sequana X architecture and for cooling its
standard compute nodes the direct liquid cooling technology is used. The computing
network is built on the latest Infiniband HDR technology. The SCRATCH computing
data storage capacity is 310 TB with 28 GB/s throughput using Burst Buffer acceleration.
Another computing data storage is NVMe over Fabric with a total capacity of 22.4 TB
dynamically allocated to compute nodes. It is also equipped with the Bull Super Computer
Suite cluster operation and management software solution as well as PBS PRO scheduler
and resource manager. The computing network is built with the latest Infiniband HDR
technology.
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3.3 Experiments description

To evaluate the performance of the ExaQUte framework, we are going to perform a
strong and weak scaling analysis using the two different runtimes in the different available
supercomputers.

For the strong scalability analysis, we have executed the MPI Benchmark applications
with a fixed configuration and a variable number of nodes. In the case of weak scalability
analysis, we are changing the configuration of each execution in order to scale the load
of the execution in the same portion as the increment of resources. Regarding the MPI
Benchmark applications, the parallel load of the application is given by the number of
parallel simulations which can run at the same time. This is controlled by the number of
simulations per batch and number of initial batches. So, for the strong scaling analysis,
we keep all the parameters fixed (the simulation time window, number of MPI processes
per simulation, number of simulations per batch, number of batches and other input
parameters such as the considered mesh, etc.). In the case of the weak scaling, we just
scale the number of initial batches with the same proportion as number of cores.

The following sections show the results obtained from the execution of the strong and
weak experiments with the different benchmarks, runtimes and clusters.

3.4 COMPSs Results

This section presents the results obtained for running the the High rise building bench-
mark, described in Section 3.1 with the COMPSs backend in the the MareNostrum su-
percomputer. Table 1 and Table 2 show the different application and computing ins-
frastructure configurations selected for running the strong and weak scaling experiments
described in Section 3.3.

Sim. End time 5
MPI Processes/sim. 16
Sims./batch 386
Initial batches 2

Application Setup

Iterations 2
Nodes 16 32 64 128

Cluster Setup
Cores 768 1536 3072 6144

Table 1: Setup for the Strong Scaling Experiments with COMPSs in the MareNostrum
supercomputer.

Figure 6 shows the results for the strong scaling experiment. In this figure, we can
see we have obtained a good strong scalability which is close to the ideal. The deviation
from the ideal scaling is due to the sequential initialization, where only a task is active,
and the simulations variability which is accumulated at the end of the execution.

In figure 7 we can see the comparison of two execution traces of the strong scaling
experiments corresponding to the same application execution with 32 and 64 nodes. We
can observe that the initialization task (blue line at the left of the traces) and the vari-
ability parts (tail of white executions) remains constant while the main computation is
reduced when increasing the number of nodes. For a larger number of nodes, this part is
becoming more relevant and limits strong scalability.
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Sim. End time 5
MPI Processes/sim. 16
Sims./batch 386
Initial batches 2 4 8 16

Application Setup

Iterations 2 4 8 16
Nodes 16 32 64 128Cluster Setup
Total Cores 768 1536 3072 6144

Table 2: Setup for the Weak Scaling experiments with COMPSs in the MareNostrum
supercomputer.

Figure 6: Strong scaling results for COMPSs runtime in MareNostrum supercom-
puter. The baseline for calculating the scalability is the execution time obtained
for 16 nodes.

Figure 7: Comparison of two execution traces of the strong scaling experiments
running the MPI Benchmark with the COMPSs runtime in MareNostrum su-
percomputer with 32 and 64 nodes. The two traces are at the same time scale,
showing almost perfect scaling.

Figure 8 shows the results for the weak scaling experiment. In this case, we are
scaling the computation load the same way as the resources, and the time remains almost
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Figure 8: Weak scaling results for COMPSs runtime in MareNostrum supercom-
puter. The baseline for calculating the efficiency is the execution time obtained
for 16 nodes.

constant, achieving a very good weak scalability.

Figure 9: Comparison of two execution traces of the weak scaling experiments
running the MPI Benchmark with the COMPSs runtime in MareNostrum super-
computer with 32 and 64 nodes.

As we can observe in Figure 9 the initialization task and variability remains constant
for all the executions and proportionally small in all cases, not impacting the weak scaling.

3.5 Quake Results

Quake backend was tested on MPI version of Rectangle obstacle benchmark. Quake
was designed from the scratch as a multi-node scheduler and does not address individual
CPUs; it assigns a whole node for one MPI processes. Kratos in the current version does
not support MPI+OpenMP; hence it would lead to utilization of a single core per node
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if it is used in combination of Quake. Therefore, we have decided to benchmark it on a
smaller instance.

Figure 10: Two-dimensional flow benchmark, executed on Barbora with Quake
backend; strong scalability

The strong scalability results are shown in Figure 10; as a baseline, the result on 4
nodes was taken.

Figure 11: Two-dimensional flow benchmark, executed on Barbora with Quake
backend; weak scalability

The weak scalability results are shown in Figure 10. The instance was scale up by
modifying end_time parameter.

4 Conclusions

This deliverable provides the release of the final version of the ExaQUte framework. The
first part of the document briefly describes the different components of the framework
and links to the code and installation and usage guidelines.
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The second part of the document reports the evaluation of the latest developments of
the framework. The results of the evaluation showed that the framework achieves good
strong and weak scalability for the evaluated benchmarks.
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A Appendix: Final specification of ExaQUte API

A.1 Decorators

A.1.1 Task decorator

First of all, a decorator has been defined to identify the tasks. Its basic syntax is shown
in Figure 12. All the functions marked with this decorator will be executed remotely.

1 from exaqute import task
2 from exaqute import INOUT
3
4 @constraint (computing_units="4")
5 @task (c = INOUT)
6 def func(a, b, c):
7 c += a*b
8 ...

Figure 12: Task basic usage. Parameters a and b are assumed as input objects and c is
an object modified by the task

The following lists shows the possible properties of a task decorator:

• returns=<number|string with environment variable> allows the user to indi-
cate how many return values have the task. By default, if the this property is not
defined, the scheduler assumes that the task does not generates any return value.

• keep=<true|false> indicates if the user wants to hold the resulting value(s) of the
task. If the flag is set to true, the the task keep the results and the user is responsible
for an explicit clean-up. Otherwise, the task result is considered temporary and it
can be removed when the runtime considers appropriate.

• <variable_name>=<parameter description> allow the users to provide hints to
the scheduler about task parameters to optimize the application execution as much
as possible.

Parameters are mainly described by its type and direction. The supported types in
the ExaQUte tasks are Basic parameter(integer, boolean, strings, ...), serializable object,
FILE and COLLECTION. The type parameter type can be inferred from the code. How-
ever, there are ambiguous cases, such as files or collections, that the automatic inference
can lead to an unexpected behaviour. For instance a filename can be treated as an string
or a file. If it is treated as object the path must be available from all the nodes, oth-
erwise the remote execution of a task will fail. In the case, it is defined as file, transfer
management and the path transformation can be managed by the scheduler. In the cases
of lists, we could treat the whole list as a single object or a collection of objects. A
wrong definition can make that the scheduler do not detect task dependencies properly.
A parameter description can be provided done in two ways as a key:value fashion or as
an abbreviation, as indicated below.

• <variable_name>={key1:val1, key2:val2>}

• <variable_name>=Abbreviation

The supported keys used in the ExaQUte API are the following:
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• Type:<FILE|COLLECTION> indicates the parameter type when no automatic infer-
ence.

• Direction:<IN|OUT|INOUT> indicates the parameter direction when no automatic
inference.

• Depth:<number> when nested collections, indicates the depth level used to detect
dependencies.

The supported abbreviations in the ExaQUte API are the following:

• IN|OUT|INOUT indicates the parameter is an object whose direction is IN, OUT or
INOUT.

• FILE_<IN|OUT|INOUT> indicates the parameter is a file whose direction is IN OUT
or INOUT.

• COLLECTION_<IN|OUT|INOUT> indicates the parameter is a list of parameters whose
direction is IN OUT or INOUT.

A.1.2 Constraint decorator

It is possible to define constraints for each task. To this end, the decorator @constraint
followed by the desired constraints needs to be placed over the @task decorator.This
decorator enables the user to set the particular constraints for each task, such as the
number of Cores required explicitly. Alternatively, it is also possible to indicate that the
value of a constraint is specified in an environment variable. Figure 13 shows how to
express these constraints. The example of the figure can can be used to indicate the task
is internally parallelized by threads (such as pthreads or OpenMP) and it will require 4
cores (computing units) and a certain memory(memory size) to be efficiently executed.

1 from exaqute import task
2 from exaqute import constraint
3 from exaqute import INOUT
4
5 @constraint (computing_units="4", app_software="numpy",
6 memory_size="$MIN_MEM_REQ")
7 @task (returns =1)
8 def func(a, b, c):
9 return a*b

10

Figure 13: Tasks Constraint usage

A.1.3 MPI tasks decorator

A new Python decorator is used to indicate that a task is implemented with MPI. In this
decorator, a developer can specify the following properties:

• runner This specifies the command to spawn the MPI processes. By default an
MPI application is executed with the mpirun command, but there are other runners
to spawn MPI processes such as the srun command in systems managed by Slurm

• processes Indicates the number of MPI processes used by this task
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• processes per node Indicates the number of MPI processes co-allocated in the
same node to limit the distribution of the mpi processes. (This flag is ignored in
the case of Quake backend)

• data layout Indicates the mapping between the elements of a collection task pa-
rameters and the MPI processes. It allows the scheduler to optimize data transfers
and object serialization/deserialization in order to reduce the MPI execution over-
head. The syntax used to define the data layout is the same as the used by MPI
to define a strided vector (MPI type vector), where the developer has to indicate:
the number of blocks (block count), the number of contiguous elements per block
(block length) and the number of elements between start of each block (stride). If
no layout is defined for a parameter, it is assumed that all the MPI processes will
require all the elements of the parameter.

nprocs = 4

@mpi(runner="mpirun", processes=nprocs)

@task(returns=nprocs)

def init(seed):

from mpi4py import MPI

rank = MPI.COMM_WORLD.rank

return rank+seed

@mpi(runner="mpirun", processes=nprocs)

@task(input_data=COLLECTION_IN, returns=nprocs)

def scale(input_data, i):

from mpi4py import MPI

rank = MPI.COMM_WORLD.rank

a = input_data[rank]*i

return a

@mpi(runner="mpirun", processes=nprocs,

input_data_layout={block_count:nprocs, block_length:1, stride:1}))

@task(input_data=COLLECTION_IN, returns=nprocs)

def increment(input_data):

from mpi4py import MPI

rank = MPI.COMM_WORLD.rank

a = input_data + 1

return a

@mpi(runner="mpirun", processes=nprocs,

idata_layout={block_count:nprocs, block_length:nprocs, stride:nprocs})

@task(idata={Type:COLLECTION_IN, Depth:2}, returns=nprocs)

def merge(idata):

from mpi4py import MPI

rank = MPI.COMM_WORLD.rank

a=0

for data in idata:

a=a+data

return a

if __name__ == '__main__':

input_data = init(0)

partial_res=[]

for i in [1,10,20,30]:

p_data = scale(input_data, i)

for j in range(2):

p_data = increment(p_data)

partial_res.append(p_data)

results= merge(partial_res)

Figure 14: Application example with collections and MPI tasks
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Figure 14 shows an application example o where the @mpi decorator and COLLEC-
TION data type are combined. This sample application is performing several simple
operations (scale, increment) over a set of data generated in the init task. All these
operations are parallelized with MPI an defined as MPI tasks. In the code snippet, you
can see that the init task implements an MPI task which returns a list of four values,
each one generated by a different MPI process. Then the scale and increment tasks get a
collection of four values and generate a new collection, where each value of the collection
is computed by a MPI process. To illustrate the data layout fuctionality, we have defined
a layout for the increment task, but not for the scale task. The difference is that for the
scale task all the elements of the input data collection will be transferred and deserialized
in all the processes, while only one element per process will be transferred and deserialized
in theincrement task. Finally, the merge task is getting a collection of 16 values (four
lists of four elements) and we are indicating with the layout property, that indicates data
is treated in four disjoint blocks of four elements.

1

2

d1v2 d2v2 d3v2 d4v2

5

d1v2 d2v2 d3v2 d4v2

8

d1v2 d2v2 d3v2 d4v2

11

d1v2 d2v2 d3v2 d4v2

3

d6v2 d7v2 d8v2 d9v2

4

d11v2 d12v2 d13v2 d14v2

14

d16v2 d17v2 d18v2 d19v2

6

d21v2 d22v2 d23v2 d24v2

7

d26v2 d27v2d28v2 d29v2

d31v2 d32v2 d33v2 d34v2

9

d36v2 d37v2 d38v2 d39v2

10

d41v2 d42v2d43v2 d44v2

d46v2 d47v2 d48v2 d49v2

12

d51v2 d52v2d53v2 d54v2

13

d56v2 d57v2d58v2 d59v2

d61v2 d62v2 d63v2 d64v2

python_mpi.init  
python_mpi.scale  

python_mpi.increment  
python_mpi.merge  

Figure 15: Example application execution graph.

When the code of the figure is executed, the runtime system is able to detect the
dependencies between tasks generating the DAG depicted in Figure 15. Next section
provides the details about how the runtime manages the execution of this type of graphs
composed by MPI tasks.

A.2 API calls

This section provides the definition of the ExaQUte API calls. The following paragraphs
provide list of functions and its expected behavior:

• init()

Explicit scheduler environment initialization.

• barrier()

The purpose of this call is to wait until all the tasks have been executed.

• get_value_from_remote(obj)

This API call brings back to the master/client the value of a remote computed
object.
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• delete_object(obj)

This API call removes all the copies allocated in the workers of the given object.

• delete_file(path_to_file)

This API call removes all the copies allocated in the workers of the given file.
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[21] T. Karasek, S. Böhm, B. Keith, R. Amela, R. M. Badia, R. Rossi, and C. Soriano.
D4.3 Benchmarking report as tested on the available infrastructure. Technical report,
Open Access Repository of the ExaQUte project: Deliverables, 2020.

[22] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Álvarez, F. Marozzo, D. Lezzi,
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