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Abstract

The parametric analysis of electric grids requires carrying out a large number of Power
Flow computations. The different parameters describe loading conditions and grid proper-
ties. In this framework, the Proper Generalized Decomposition (PGD) provides a numeri-
cal solution explicitly accounting for the parametric dependence. Once the PGD solution
is available, exploring the multidimensional parametric space is computationally inexpen-
sive. The aim of this paper is to provide tools to monitor the error associated with this sig-
nificant computational gain and to guarantee the quality of the PGD solution. In this case,
the PGD algorithm consists in three nested loops that correspond to 1) iterating algebraic
solver, 2) number of terms in the separable greedy expansion and 3) the alternated direc-
tions for each term. In the proposed approach, the three loops are controlled by stopping
criteria based on residual goal-oriented error estimates. This allows one for using only the
computational resources necessary to achieve the accuracy prescribed by the end-user. The
paper discusses how to compute the goal-oriented error estimates. This requires lineariz-
ing the error equation and the Quantity of Interest to derive an efficient error representation
based on an adjoint problem. The efficiency of the proposed approach is demonstrated on
benchmark problems.

1 Introduction
The Power Flow problem models the response of electric grids under quasi-static loading con-
ditions (dynamic effects are neglected). It consists in solving a nonlinear system of algebraic
equations providing the complex voltages in each bus (the nodes of the grid are called buses)
and for each phase.
The standard solvers for the Power Flow problem are based on the classical methodologies like
Newton-Raphson’s (NR) [1, 2] and Gauss-Seidel (GS) [3, 4] but also on specific approaches
like Fast Decoupled Load Flow (FDLF) [5, 6] or the primitive methods based on admittance
or impedance matrices [7, 8, 9, 10, 11, 12], for instance the Z bus method [13]. See [14]
for a review. Different strategies have also been devised to avoid the assembly of the Jacobian
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when the dimension of the problem is considerably large. These include Jacobian-free methods
[15], Newton-Krylov methods, [16] or partial Jacobian update variants, [17, 18] among others
[19, 20, 21, 22]. Other methods address the problem of finding the physical or high voltage
solution and avoid nonphysical solutions. For instance, the Holomorphic Embedding Load
Flow Method (HELM) [23] or others based on truncated Taylor expansions [24, 25]. Recently,
a family of iterative solvers converging to the operative solution was proposed in [26].
Solving the parametric form of the Power Flow problem is of special importance to obtain
simulations for operational control and optimization of the electric grids (optimization refers
to the design phase but also in modifications like adding new power devices). This requires
accounting for a large number of different scenarios that are typically parameterized. The
computational burden of such families of parametric problems explodes with the number of
parameters (actually, with the number of parametric dimensions). In this context, Reduced
Order Models are especially indicated to remedy the curse of dimensionality. In particular the
Proper Generalized Decomposition (PGD) providing an explicit expression for the parametric
dependence is used in this framework in [27] and [28].
The drastic cost savings associated with PGD may lead to a reduction in accuracy and, conse-
quently, an error assessment strategy is needed to control the quality of the solution and as a
stopping criterion for the enrichment process. This issue has already been addressed in different
fields [29, 30]. Particularly, we focus on analyzing the error committed when calculating the
system losses solving the Parametric Power Flow Problem using PGD. Thus, the loss functional
is taken as the Quantity of Interest to be analyzed.
The remainder of the paper is structured as follows: after this introduction, the power flow
equations and an algebraic solver are reviewed in section 2. The definition of the Parametric
Power Flow problem and the PGD algorithm are illustrated in detail in section 3. The quantity
of interest and the error equation are presented in section 4 where the different stopping criteria
are also discussed. Numerical results are shown in section 5 before drawing concluding remarks
in section 6.

2 The Power Flow problem and an algebraic solver

2.1 Governing Equations
The unknowns of the Power Flow problem are the voltages and nodal intensities at the nodes of
an electric grid. These unknowns are collected in vectors of n complex components, V ∈ Cn

and I ∈ Cn, where n is the number of degrees of freedom. For a three-phase distribution
system, n is three times the number of buses.
The input data characterizing the Power Flow problem is the following:

• The topology of the grid, described by the number of lines, the number of buses and their
connectivity.

• The complex powxer source vector S ∈ Cn, describing the power supplied and/or ex-
tracted at each phase of each node.

• The admittance matrix Y ∈ Cn×n including the material characteristics of the devices
conforming the grid (wires and other system devices like transformers). Note that the
sparsity of Y is associated with the lines-buses connectivity.
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• The vector I0 ∈ Cn accounting for the current originated by the slack node. Introducing
a slack node is necessary to garantee the solvability of the problem, see [31, 32, 33].

At each bus, the nonlinear relation between the voltage, the current and the complex power is
provided by the following equation:

S = V � I∗ , (1)

where I∗ denotes the complex conjugate of the current vector I , and the symbol � denotes the
Hadamard product of vectors (component-wise product).
Thus, Kirchhoff’s law leads to the following algebraic system of equations:

YV = I + I0 , (2)

which, using (1) results in a nonlinear algebraic system of equations for the unknown V :

YV = S∗ � V ∗ + I0, (3)

where the symbol � denotes the component-wise quotient between vectors. Note that this
equation is also seen as V ∗ � (YV − Io) = S∗.
The remainder of the paper is devoted to discuss how to solve this equation, first in the simple
form of (3), then in a parametric version.

2.2 An algebraic solver for the Power Flow problem
As mentioned in section 1, there is a diversity of methods to solve (3). Here, we recall a simple
iterative procedure that is easily extended to deal with the parametric version of the problem.
The idea comes from observing that the nonlinear system (3) results of combining the relations
(1) (which is nonlinear but local) and (2) (which is global but linear). Thus, in a divide and
conquer mindset, the adopted strategy consists in dualizing the problem, that is keeping the two
unknowns I and V . Then, an iteration scheme is defined in two steps: in the first step the new
approximation for I and V is obtained enforcing (2) and in the second step, using (1). These
two steps require defining linear relations between the increments of currents and voltages at
each iteration. These relations are given by the search directions α and β, both considered
initially in Cn×n.
Thus, each iteration consists in computing (V, I)[γ+1] from the previous approximation (V, I)[γ].
The first step consists in finding an intermediate approximation (V, I)[γ+

1
2
] such that{

I [γ+
1
2
] − I [γ] = α(V [γ+ 1

2
] − V [γ]),

YV [γ+ 1
2
] = I [γ+

1
2
] + I0.

(4)

Similarly, the second step computes (V, I)[γ+1] such that{
I [γ+1] − I [γ+ 1

2
] = β(V [γ+1] − V [γ+ 1

2
]),

V ∗[γ+1] � I [γ+1] = S∗.
(5)

This family of algorithms, introduced in [26] is parameterized by the search directions α and
β. A similar approach is used in [34] for nonlinear structural mechanics. The performance of
this method is strongly dependent on the choice of the search directions α and β. For β →∞
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and α = 0, the resulting method is precisely the well known Z bus method, that can be written
as a single step method for V , namely

V [γ+1] = Y−1
(
S∗ � V ∗[γ] + I0

)
. (6)

This choice is not the most efficient one for a standard algebraic solver. Nevertheless, in the
next sections, the simplicity of this version is preferred for the sake of a simpler presentation in
the framework of the parametric version of the problem.

3 Parametric power flow problem and PGD solver

3.1 Parametric problem and separable approximation
Solving problem (3) as indicated in section 2.2 provides the state of the network for a given
configuration of the materials and loads. In practice, analyzing an electric grid requires solving
the same problem with a large number of configurations. These configuration are parametri-
cally described. Typical examples of parameters are the location and nominal power (in the
following denoted by q and r) of some Distributed Generator (DG), and the time t that modu-
lates the power S. Here, the general form of the Parametric Power Flow problem is described
by taking S depending of these three parameters in (3), that is S(q, r, t).
Consequently, the solution of (3) is also depending of these parameters, namely V (q, r, t). In
practice, this brings the problem from a simple nonlinear algebraic equation in Cn into a multi-
dimensional setup: formally, V is now in [L2(Iq)× L2(Ir)× L2(It)]

n, that is, each component
of V is a function taking values for (q, r, t) ∈ Iq × Ir × It where Iq, Ir and It are intervals in
R . This multidimensional problem is potentially subject to the curse of dimensionality, that is
to a dramatic increment of the computational cost with the number of dimensions. This phe-
nomenon is remedied using Reduced Order Models (ROM), see [35, 36, 37, 38, 39, 40] for
their application to power flow problems.
PGD is a particular case of ROM in which the parametric dependence is expressed explicitly.
The PGD approximation Va has a separated form. That means that it is a sum of M terms, each
of them being the product of functions only depending on one of the parameters, namely

V (q, r, t) ≈ Va(q, r, t) =
M∑
m=1

αmV V
mQm(q)Rm(r)T m(t) , (7)

where, for m = 1, . . . ,M , αmV are positive scalars, V m ∈ Cn are the unit vector modes of volt-
ages, and Qm(q),Rm(r) and T m(t) are the unit parametric modes. The modes are normalized
(to have unit norm) and the positive scalar αmV collects the amplitude of each term.
In practice, the parametric dimensions are discretized in a Finite Element fashion. Let nq, nr
and nt denote the number of degrees of freedom discretizing the three parametric dimensions.
Thus, function Qm(q) is identified with vector Qm ∈ Cnq , similarly vectors Rm ∈ Cnr and
T m ∈ Cnt represent functions Rm(r) and T m(t). Thus, the multivariate function Va(q, r, t)
(from Iq× Ir× It to Cnr) is also described by a n×nq×nr×nt complex tensor Va, such that

Va =
M∑
m=1

αmV V
m ⊗Qm ⊗Rm ⊗ T m . (8)
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Remark 1. Using finite element approximations of the parametric modes is only a way of
numerically describing the 1D functions. For instance, Qm can be seen just as a set of values
of Qm(q) in some sampling points. The fact of identifying this set of points with a finite
element 1D grid is not strictly necessary in this context but it can be helpful in the case some
integral of the nodal modes needs to be computed. For instance, in section 4.2, a quantity of
interest based on the integral along a parametric dimension of a function is introduced. Thus,
the underlying finite element space, typically C0 linear elements which is the simplest option,
allows performing the integrals systematically. Note also that the continuity of the parametric
modes is implicitly assumed and therefore the functional spaces where the modes are sought
are, in practice, smaller than L2.

In order to use PGD, parametric dependence on the input data has also to be expressed in a
separable form. Thus, in the following it is assumed that

S(q, r, t) =
H∑
h=1

αhS S
mQ̆h(q)R̆h(r)T̆ h(t) , (9)

where H is the number of terms in the S expansion, and for h = 1, . . . , H , αhS are positive
scalars, Sh ∈ Cn are the unit vector modes of powers, and Q̆h(q), R̆h(r) and T̆ h(t) are the
unit parametric modes. Similarly to (8), S(q, r, t) is identified with its tensorial version S ∈
Cn×nq×nr×nt that reads

S =
H∑
h=1

αhS S
m ⊗ Q̆h ⊗ R̆h ⊗ T̆ h . (10)

3.2 A PGD solver
The PGD solver uses a greedy algorithm to compute sequentially the terms in the expansion
(7) (or its tensorial form (8)), see [41, 42, 43, 44].
Adapting the iterative strategy presented in section 2.2 (the so-called Z bus method) to the
parametric context can be summarized in rewriting (6) with the explicit parametric dependence,
i.e.

V [γ+1]
a (q, r, t) = Y−1

(
S∗(q, r, t)� V ∗a [γ](q, r, t) + I0

)
. (11)

For algorithmic purposes, and following the ideas presented in section 2.2, this operation is
split into two steps. First, an intermediate quantity I is computed such that

I(q, r, t) = S∗(q, r, t)� V ∗a [γ](q, r, t) , (12)

Thus, the second step consists in solving the global (but linear) system, that is in computing

V [γ+1]
a (q, r, t) = Y−1 (I(q, r, t) + I0) . (13)

Note that in (11), the operations are not as trivial as in their algebraic version. For instance,
for S and Va in Cn, computing I = S∗ � Va (which is the operation corresponding to (5) in
the adopted choice for α and β) is a simple division for each component: [I]` = [S]∗`/[V ]∗`
for ` = 1, . . . , n. For Va(q, r, t) and S(q, r, t) represented in the separable forms (7) and (9),
the operation (12) requires solving a PGD problem. That is (for each iteration γ) to solve a
problem of the type: find I(q, r, t) such that I(q, r, t)�V ∗a [γ](q, r, t) = S∗(q, r, t). The standard
PGD procedure consists in computing sequentially the terms of the PGD expansion of I(q, r, t)
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(loop on M ) and for each term iterate in the alternated directions scheme (this is going to be
denoted as a loop on k).
Thus, in this context, the PGD algorithm involves three nested loops:

• the external one corresponds to the nonlinear solver and iterates in γ

• the second is the greedy part of the PGD algorithm to solve (12) (loop on the number of
terms of the PGD expansion M )

• the inner loop iterates (for k = 1, 2, . . .) in the alternated direction scheme for each of
the parametric dimensions.

The global idea of the PGD procedure is described and illustrated in Algorithm 1, see [27] and
[28]. The initialization is typically provided after the slack node intensity, I0, namely

V [0]
a = Y−1I0. (14)

The different stopping criteria based on the user prescribed tolerances are discussed in the next
section.

Algorithm 1:
Data: I0, S
%Initialize
V

[0]
a = Y −1I0
%Iterations of the nonlinear solver
Loop on γ: while [stopping criteria for γ do not hold (i.e. error > tolerance)] do

%Computation of I = S∗ � V ∗a [γ] à la PGD
Loop on M : while [stopping criteria for M do not hold] do

I =
M−1∑
m=1

V mQm(q)Rm(r)T m(t)︸ ︷︷ ︸
known

+V MQM(q)RM(r)T M(t)︸ ︷︷ ︸
unknown

;

%Iterations for alternated directions
Loop on k: while [stopping criteria for k do not hold] do

Compute (V M)k+1 from (QM(q))k, (RM(r))k and (T M(t))k ;
Compute (QM(q))k+1 from (V M)k+1, (RM(r))k and (T M(t))k ;
Compute (RM(r))k+1 from (V M)k+1, (QM(q))k+1 and (T M(t))k ;
Compute (T M(t))k+1 from (V M)k+1, (QM(q))k+1 and (RM(r))k+1 ;

% Compute V [γ+1]
a = Y −1(I + I0)

V m ← Y −1V m for m = 1, . . . ,M ;
V

[γ+1]
a = Y−1I + V

[0]
a ;

4 Error assessment
This section aims at introducing the concept of error assessment in the context of the power
flow and the Parametric Power Flow problem. Besides the standard stopping criteria for the
solver described above, novel criteria are devised using goal-oriented error assessment.
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4.1 Algebraic formulation of error assessment
4.1.1 Error equation.

Vector V is the actual solution of the problem and Va is an approximation, both in Cn. The
error is readily defined as

E = V − Va. (15)

The residual of equation (3) associated with Va (also in Cn) reads

R(Va) = S∗ − V ∗a � (YVa − I0). (16)

The error equation is derived from the identity R(V ) = 0, that is R(Va+E) = 0. The idea is to
linearize R(·) noting that R(Va) is computable once Va is obtained. Expanding the expression
of R(·), it is found that

R(V ) = R(Va + E) = S∗ − (V ∗a + E∗)� (Y(Va + E)− I0) =

= S∗ − V ∗a � (YVa − I0)− V ∗a �YE − E∗ � (YVa − I0)− E∗ �YE.
(17)

In order to obtain a linear equation for the error, the quadratic term E∗�YE is neglected, that
is

R(V )=R(Va)− V ∗a �YE − E∗ � (YVa − I0) = R(Va)−AE −BE∗ (18)

where A = Diag(V ∗a )Y and B = Diag(YVa− I0) are matrices in Cn×n. The operator Diag(·)
is introduced to compact the notation such that it produces a square matrix with the elements
of a vector on the diagonal, that is for V ∈ Cn, W = Diag(V ) ∈ Cn×n and Wij = Viδij .
Equation (18) results from neglecting the quadratic terms in (17) but it is still nonlinear because
it involves the conjugate operator, see remark 2 below. In order to linearize (18), vectors and
matrices are separated in their real and imaginary parts, using the so-called Cartesian represen-
tation. Thus, equation (18) is rewritten as a linear system of 2n real equations and unknowns,
namely

CÊ = R̂(Va) (19)

where the matrix C ∈ R2n×2n, and vectors R̂(Va) and Ê in R2n are the real valued representa-
tions (duplicating dimensions) of the complex matrices and vectors in (18), that is

C =

(
<(A) + <(B) −I(A) + I(B)
I(A) + I(B) <(A)−<(B)

)
, R̂(Va) =

(
<(R(Va))
I(R(Va))

)
and Ê =

(
<(E)
I(E)

)
,

where <(·) and I(·) stand for the real and the imaginary part of the matrix or vector.

Remark 2. The nonlinearity in equation (18) arises from the fact that it involves the conju-
gate of the error. The conjugate operator is nonlinear and also non-holomorphic (the Cauchy-
Riemann equations are obviously not fulfilled in this case). The non-holomorphic character of
the resulting expression precludes using the linearization via the Laurent series truncation strat-
egy (similar to truncating the Taylor expansion for the real-valued functions). The separation
in real and imaginary part presented above is an effective alternative to linearize the resulting
equations.
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4.1.2 Error representation via adjoint problem and error estimates.

It is assumed that the Quantity of Interest (QoI) in the simulation are the energy or power
losses. This is a standard choice for grid optimization, where energy losses are the objective
quantity to be minimized. In general, given a generic vector of voltagesW , the positive number
representing the losses associated with this vector is:

l(W ) = <(W ∗TYLW ) (20)

where the matrix YL coincides with the admittance matrix Y almost everywhere. The differ-
ence between YL and Y corresponds to the admittance values of the generators which in YL
are taken to be 0. In other words, YL is the admittance matrix corresponding to the grid, ac-
counting for all the lines and buses but not including the terms associated with the generators.
Note that the form l(·) is nonlinear and has to be linearized in order to define a goal-oriented
error assessment strategy.
The expression of the losses in terms of the approximated solution and the error reads

l(V ) = <(V ∗TYLV ) = <((V ∗a + E∗)TYL(Va + E))

= <(V ∗a
TYLVa) + <(V ∗TaYLE) + <(E∗TYLVa) + <(E∗TYLE) .

(21)

Following the same procedure as in section 4.1.1, the quadratic term is neglected:

l(V )=l(Va) + <(V ∗a
TYLE) + <(E∗TYLVa)

= l(Va) + <(fTE) + <(gTE∗)
(22)

where f = YT
LV
∗
a and g = YLVa are vectors in Cn.

Now, using the Cartesian representation:

l(V )=l(Va) + <(fTE) + <(gTE∗) = l(Va) + λ̂TÊ (23)

where

λ̂ =

(
<(f) + <(g)
−I(f) + I(g)

)
∈ R2n.

That is, the linear approximation for the error in the Quantity of Interest reads

EQoI = l(V )− l(Va)=λ̂TÊ (24)

The following auxiliary problem (referred to as dual or adjoint problem) is introduced in order
to obtain a representation of the error in the quantity of interest:

CTρ̂ = λ̂. (25)

The solution of this problem, ρ̂, is a real vector of dimension 2n. This is a classical strategy that
has been applied to different problems in the field of error estimation for reduced order models,
see [29, 45, 46]. Assuming that the linearization of equation (21) holds, using ρ̂ and (19), the
error in the QoI is readily represented as:

EQoI = λ̂TÊ = ρ̂TCÊ = ρ̂TR̂(Va) (26)
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The matrix C and the vectors R̂(Va), λ̂ and ρ̂ are computable but all of them depend on the
approximation Va at every iteration. This means that the computational cost for computing the
adjoint problem at one iteration is almost the same than the cost of a PGD solver iteration.
Nevertheless, this can be simplified because C and the vector λ̂ become stable after a few itera-
tions: in practice, they are constant along the iterative process, and therefore the corresponding
dual solution does not change along the iterative process. That is, ρ̂ does not change signifi-
cantly with the γ iterations and it is not necessary to solve the dual problem at every iteration.
This is related to the fact that, once the approximation enters the asymptotic range, one should
expect that Va suffers slight perturbations along the γ iterations. Note also that C and λ̂ depend
linearly on Va and therefore the perturbations in the left and right side of (25) do cancel each
other producing almost the same solution ρ̂. This property is also observed in the numerical
experiments, see Figures 2a and 2b in section 5.1. Once vector ρ̂ is obtained, computing the
error in the quantity of interest with (26) requires only computing the residual R̂(Va) which is
affordable in terms of computational time.

4.2 Error assessment in the parametric problem
This section aims at describing the methodology to assess the error in the framework of the
parametric problem described in section 3. For the sake of a simpler presentation, we omit here
the dependence on q and t (it is equivalent to take nq, nt = 1). However, this is not a loss of
generality because the behaviour of the q and t parametric dimensions is analogous to the r
dimension.

4.2.1 Error equation, representation and estimates.

Taking the tensorial representation of the solution (recall that the q and t parametric dependence
is here omitted), Va ∈ Cn×nr is such that

Va =
M∑
m

αmV V
m ⊗Rm , (27)

the error and the residual are also complex matrices in Cn×nr ,

E = V −Va, (28)

R(V) = S∗ −V∗ � (Y V − I0). (29)

In the parametric setup, the QoI is taken as the integration with respect to the parametric di-
mensions (here, only r) of some nonparametric QoI l(·), namely

L(Va(r)) =

∫
r

l(Va(r)) dr. (30)

Note that if normalized by the measure of Ir, L(Va(r)) can be seen as the average value of
l(Va(r)).
Recalling the identity between the functional and tensorial representations in (7) and (8), the
integral along r is also determined by the mass matrix Mr (associated with the 1D mesh dis-
cretizing Ir) multiplied by vector 1nr = [1, 1, . . . , 1]T ∈ Cnr :

L(Va) = 1T
nr
Mrl(Va), (31)
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where l(·) is now the generalization to the tensor representation of the operator introduced in
equation (20), producing a vector of nr components, namely

l(Va) = diag(<(V∗a
TYLVa)), (32)

where the operator diag(·) maps the elements of the diagonal of the input matrix of size nr×nr
into a column vector of size nr. Similarly as in (22),

l(V) = l(Va) + <(V∗a
TYLE) + diag(<(E∗TYLVa)) + diag(<(E∗TYLE))

≈ l(Va) + diag(<(FE)) + diag(<(GE∗))
(33)

where F = V∗a
TYL and G = (YLVa)

T are matrices in Cnr×n. Assuming that the approxima-
tion holds and using the Cartesian representation, this equation is rewritten as:

l(V) = l(Va) + diag(λ̂
T
pÊ) (34)

where

λ̂p =

(
<(F) + <(G)
−I(F) + I(G)

)
, Ê =

(
<(E)
I(E)

)
∈ R2n×nr .

Using the tensor contraction notation, equation (34) becomes:

L(V) = L(Va) + λ̂
T

: Ê (35)

where λ̂ = (12n1T
nr
Mr)� λ̂p ∈ R2n×nr .

The error equation is derived following the same ideas as in the previous section:

R(V) = R(Va + E) = S∗ − (V∗a + E∗)� (Y(Va + E)− I0)

= S∗ −V∗a � (YVa − I0)−V∗a �YE− E∗ � (YVa − I0)− E∗ �YE.
(36)

Neglecting the quadratic term, and enforcing R(V) = 0 , the following equation for the error
follows

V∗a �YE + E∗ � (YVa − I0)=R(Va). (37)

Taking every column of the matrix Va, it is possible to build two tensors A(·, ·, `) = Diag(V∗a(·, `))Y
and B(·, ·, `) = Diag((YVa(·, `) − I0(·, `)))Y for ` = 1, . . . , nr in Cn×n×nr . Thus, (37) is
rewritten as:

A
·
� E + B

·
� E∗ = R(Va) (38)

where the operation
·
� denotes a contraction of one index and a Hadamard product in another

index. For instance, in the particular case of A ∈ Cn×n×nr and E ∈ Cn×nr , it reads[
A
·
� E

]
i`

=
n∑
j=1

Aij`Ej` , with no sum on `. (39)

Note that the definition is general for the field (C can be replaced by R) and for the dimensions
of the tensors, the only restriction being that the two last indices of tensor A have the same
range as the the two indices of tensor E.
Using the Cartesian representation, the equation becomes linear:

C
·
� Ê = R̂(Va) (40)
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where tensor C ∈ R2n×2n×nr is:

C(·, ·, `) =

(
<(A(·, ·, `)) + <(B(·, ·, `)) −I(A(·, ·, `)) + I(B(·, ·, `))
I(A(·, ·, `)) + I(B(·, ·, `)) <(A(·, ·, `))−<(B(·, ·, `))

)
, ∀` = 1, . . . , nr.

and

R̂ =

(
<(R)
I(R)

)
∈ R2n×nr .

The dual problem is readily introduced as:

CT ·
� ρ̂ = λ̂, (41)

where CT(·, ·, `) = C(·, ·, `)T, ∀` (transposing only the two first dimensions of the tensor).
Hence the error in the quantity of interest using equation (40) is:

EQoI = L(V)− L(Va) = λ̂
T

: Ê = λ̂
T

: (C†
·
� R̂(Va)) =

= ρ̂T : R̂(Va)
(42)

where C†(·, ·, `) = C−1(·, ·, `), ∀` (sectionally inverting the two first dimensions of the tensor).
The previous identity is straightforwardly derived by analyzing the component-wise expres-
sion:

EQoI =
∑
i,`

λ̂`iÊi` =
∑
i,j,`

λ̂`iC
†
ij`R̂(Va)j` =

∑
j,`

ρ̂j`R̂(Va)j`

using the definition of the dual problem in equation (41).
The error representation provided in (42) describes the scalar EQoI as the double contraction
of ρ̂T and R̂(Va), both n × nr tensors. This is because the residual error equation (40) is
in fact a set of nr algebraic residual equations similar to (19), one for each possible value of
parameter r.The same occurs with the adjoint problem (41), which can be seen as a collection
of nr algebraic adjoint problems like (25).
The error assessment technique using the solution ρ̂T of (41) and the error representation (42)
is in practice computationally unaffordable. This is due to the multidimensional character of
both ρ̂T and R̂(Va), which are tensors of order n × nq × nr × nt. Moreover, once ρ̂T and
R̂(Va) are obtained, all the tensorial dimensions must be contracted (this requires four nested
loops) to compute the scalar quantity EQoI . In the following, we introduce a numerical strategy
that condensates all the parametric dimensions in order to devise an amenable error assessment
methodology.
Thus, the QoI introduced in (30) (or its matrix form (31)) is integrating the effect of the para-
metric dimensions and one expects the resulting problem to depend only on the physical dimen-
sion (represented here by the vector of voltages of size n). Accordingly, we expect providing
an error representation having the form

EQoI = (ρ̂A)TR̂A(Va), (43)

where ρ̂A and R̂A(Va) are vectors in R2n that have to be obtained condensing the parametric
dimensions (here, integrating with respect to parameter r).
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The condensation of R̂(Va) ∈ R2n×nr and C ∈ R2n×2n×nr into R̂A(Va) ∈ R2n and CA ∈
R2n×2n (superscript A is used to denote that the quantities are condensed into an accumulated
value) is readily obtained by just integrating the parametric dimension, namely

R̂A(Va) =

∫
r

R̂(·, r) dr = R̂(Va)Mr1nr , (44)

and
CA =

∫
r

C(·, ·, r) dr = CMr1nr .

It is assumed that there exists some vector ÊA ∈ R2n, representing an average value of Ê(·, r),
such that ∫

r

C(·, ·, r)
·
� Ê(·, r) dr = CAÊA. (45)

Consequently, the equation for the mean error ÊA is precisely the following linear system of
dimension 2n

CAÊA = R̂A(Va). (46)

Note that the existence of vector ÊA is guaranteed by the integral Mean Value Theorem applied
to the left-hand-side of (40), under the hypothesis of having a continuous dependence of Ê(·, r)
on r. In this case, there exists some value of r such that ÊA = Ê(·, r). Note that continuity of
Ê(·, r) is ensured by the continuity of the parametric description of the solution Va(r). If the
modes are not continuous, the existence of ÊA is also guaranteed provided that CA is a regular
matrix. In this case, ÊA does not necessarily coincide with any value of Ê(·, r).
In the parametric case, the error in the QoI reads

EQoI = L(V)− L(Va) =

∫
r

diag(λ̂p(·, r)TÊ(·, r)) dr = diag(λ̂
T
pÊ)Mr1nr , (47)

where the last term in the right uses the multidimensional tensor structure to express the inte-
grals along the r range by a scalar product.
An accumulated value of λ̂p, λ̂A ∈ R2n, is readily introduced

λ̂A =

∫
r

λ̂p(·, r) dr = λ̂pMr1nr .

In order to obtain a suitable error representation, it must be assumed that the following hypoth-
esis is true.

Hypothesis 1. The quantity of interest EQoI is expressed using the accumulated value of λ̂p
and the vector ÊA, that is to say,

EQoI = (λ̂A)TÊA.

This can be interpreted as a new application of the mean value theorem in (47), with the ad-
ditional assumption that the average value of Ê is again ÊA. Actually in this case there is no
a unique average value: there exist an affine space of dimension 2n − 1 where all the possi-
ble vectors ÊA fulfilling the equation above lie. Thus, the assumption claiming that ÊA from
equation (45) fulfils also (47) (at least approximately) is very likely to hold. This assumption
is further supported by noting that the dependence on r of C and λ̂p is directly given by the
dependence on r of Va (the matrices F, G, A and B and the tensors A and B depend on the
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solution Va linearly). Thus, the dominant r mode in Va is going to be the dominant r mode
also in C and λ̂p and hence ÊA from equation (45) is expected to fulfil also (47). An error
indicator is introduced in section 4.2.2 in order to numerically check the validity of Hypothesis
1.
Hence, the dual problem in the condensed form reads

CAT
ρ̂A = λ̂A , (48)

and the corresponding error representation is

EQoI = (ρ̂A)TR̂A(Va) . (49)

Thus, also in the parametric form of the problem, the error in the quantity of interest can
be affordably assessed by solving the condensed dual problem (48) and computing the error
estimate using (49).

4.2.2 Tolerances and stopping criteria.

The goal-oriented error estimates defined above are used to define the stopping criteria in Al-
gorithm 1.
Let us introduce the error indicators ξ�? , where � accounts for the type of error measured
(taking three possible values: � = R for a purely residual estimate; � = S for a measure of
the stationarity in the loop, the difference with the previous term or iteration; or � = QoI for
the error in the quantity of interest as described above), and ? denotes the loop where it is used
(taking three possible values: ? = γ; ? = M ; or ? = k).
Thus, the different stopping criteria are expressed as: continue with the loop while ξ�? > tol�? ,
tol�? being the different tolerances prescribed for the different criteria.
The definitions of the different error indicators are listed below:

1. Loop in γ

ξRγ =
‖R̂A(V

[γ+1]
a )‖2

‖ŜA‖2
, ξSγ =

‖V[γ+1]
a −V

[γ]
a ‖2

‖V[γ+1]
a ‖2

and ξQoIγ =
|(ρ̂A)TR̂A(V

[γ+1]
a )|

|L(V
[γ+1]
a )|

(50)

where ŜA = SMr1nr . Recall that R̂A(Va) = R̂(Va)Mr1nr and ‖ · ‖2 stands for either
the L2-norm or the Frobenius norm (depending on whether the argument is a vector or a
matrix).

2. Loop in M

ξRM =
‖R̂A

I (Ia)‖2
‖ŜA‖2

, ξSM =
|αMI |
|α1
I |

and ξQoIM =
|λ̂T(V

[γ],M
a −V

[γ],M−1
a )|

|L(V
[γ]
a )|

, (51)

where R̂A
I (Ia) = (S−Va � Ia)Mr1nr .

3. Loop in k

ξS1
k =

‖(V M)k+1 − (V M)k‖2
‖(V M)k+1‖2

and ξS2
k =

‖(RM)k+1 − (RM)k‖2
‖(RM)k+1‖2

. (52)
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Moreover, in order to check the stabilization of λ̂A and ρ̂A, the following indicator is introduced:

dρ =
‖ρA[γ+1] − ρA[γ]‖2
‖ρA[γ+1]‖2

. (53)

If the value of dρ is small enough, the assumption on the stability of ρ̂A is going to be confirmed.
Besides, for checking that the Hypothesis 1 holds, another indicator is introduced:

eÊ =
|EQoI − (λ̂A)TÊA|

|EQoI |
. (54)

Note that ÊA is computed using equation (46) straightforwardly.
Similarly, the verification of the obtained solution and the corresponding losses is performed
with the following error measures (with respect to a reference solution V):

eV =
‖V −Va‖2
‖V‖2

(55)

eL =
‖l(V)− l(Va)‖2
‖l(V)‖2

. (56)

5 Numerical examples
In all the following examples, we apply the Algorithm 1 to both the algebraic and paramet-
ric version of the Power Flow problem taking into account the proposed goal-oriented error
estimates. Figure 1 shows the diagram of test system. The model, taken from [47], is a three-
phase system with different topologies and load characteristics including a simplified represen-
tation of the high-voltage system. The three-phase grid has 256 nodes (located in 3 different
branches), and therefore the number of degrees of freedom is n = 3 × 256 = 768. However,
the number of geometrical nodes in Figure 1 is only 155, numbered from a701 to a777 (first
branch), from b701 to b746 (second branch), from c701 to c729 (third branch), and three more:
a700 connecting the three branches, the transformer and the slack node. The additional 101
nodes correspond to the duplication of the 101 nodes of the mesh where the DG can be located.
These new 101 nodes are identified by adding an l, for instance lc701 is the duplication of c701.
This duplication is necessary because each distributed generator (DG) is connected to the sys-
tem through a step-up interconnection transformer allowing the switch from high-voltage to
low-voltage.
Some of the main characteristics of the substation transformer are given below:

• High-voltage rating: 230 kV

• Low-voltage rating: 4.16 kV

The main objective in the above examples is to solve an optimization problem: find the optimal
position and power of a distributed generator that minimizes the system losses, quantity of
interest in this work. Considering the error assessment in the implementation of the solver
allows one to compute the solution taking them into consideration. As a first step, we compute
the solution while we evaluate it for calculating the losses and as a post-process or second step
we look for the value that optimizes the problem statement.
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Figure 1 Diagram of the test system network

5.1 Algebraic approach
Our goal in this section is to show the efficiency of the procedure for linearizing the residual
and the losses equation explained in section 4.1. In this case, fixing the position q = lc707,
the power r = 850 kW of the DG and the hour of the year t = 759 we solve the power flow
problem associated with these values. Consequently, nq, nr, nt = 1 and the number of degrees
of freedom is n = 768.
For computing the relative errors, for instance eL, we consider as real solution the one calcu-
lated using Newton-Raphson algorithm while tolerances tolRγ , tolSγ and tolQoIγ are 10−8. As we
mentioned above, it is not necessary to calculate the solution of the dual problem at every γ
iteration. In Figure 2a, we observe this fact, plotting ξQoIγ and ξQoIγ̂ . Note that we introduce
the notation ξQoIγ̂ for indicating that the vector ρ̂ is just calculated until the tolerance for the
indicator dρ is reached, in this particular case that tolerance is 10−3. The standard notation
ξQoIγ implies that the dual problem is solved at every single iteration. We notice that ρ̂ barely
changes, thus the EQoI does not either. In this example the stability is evident, as Figure 2b
shows after only 4 iterations the indicator dρ verifies that dρ < 10−4, and the same fact was
noticed in other simulations. That is the reason why from now on in the examples below, once
we reached the tolerance for the indicator dρ, the vector ρ̂ is reused in the following iterations.
Hence at some point, the cost of calculating the error in the quantity of interest has the same
computational cost as the residual calculation because we do not need to update C, λ̂ or ρ̂.
Figure 2c shows the growth of ξQoIγ when tolQoIγ increases. The numbers in the graph represent
the number of iterations required until we reach the tolerance. We observe that logically this
number decreases when tolQoIγ increases. Moreover, in order to show the efficiency of the error
indicator ξQoIγ used as stopping criteria in the algorithm, the effectivity index is shown in Figure
2d comparing the relative error with respect to the reference solution eL versus ξQoIγ .
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Figure 2 (a) Convergence diagram of the relative error in the losses and error in quantity of
interest with the iteration index γ. (b) Convergence diagram of stagnation criteria for the
solution of the dual problem ρ. (c) Error in the quantity of interest for different simulations
varying the tolerances. The numbers reported on the curve represent number of iterations.(d)
Effectivity index in the losses.

5.2 Parametric approach
5.2.1 Optimal nominal power of a DG with fixed loads.

As a first example of resolution of the parametric version of the power flow problem, the goal
is to find the optimal nominal power of a DG when it is set at the node lb707 (second branch)
and nq, nt = 1. Thus, the resolution of the Parametric Power Flow problem is shown when we
consider the nominal power r of the DG as a parameter. We seek the value of r that minimizes
the system losses. Since the loads are fixed, the problem consists in finding the voltage solution
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as a separated representation:

Va =
M∑
m

αmV V
m ⊗Rm , (57)

where r belongs to a set of possible values of power that the DG can provide. That is, the parti-
tion of the interval [0, rmax] where the increment is rmax/(nr − 1) with rmax = 800 kW and nr
is the number of samples, particularly in this example nr = 100. The separated representation
of the input data S is:

S = α1
SS1 ⊗ 1nr + α2

SS2 ⊗ r2 , (58)

where S1 is the vector of demand loads with dimension n, 1nr is a vector of ones with dimension
nr, S2 is a zero vector except for the position of the DG where 1 is placed and r2 is a vector in
Rnr where [r2]i = (i/nr) · rmax,∀i = 0, . . . , nr.
The goal is to set different tolerances and compare the obtained solutions in order to validate
the goal-oriented error estimates in terms of controlling the quality of the approximations. In
Figure 3, the sub-figures 3a and 3b show the stopping criteria for γ and M respectively for
the first set of tolerances in the algorithm, tol�γ = 10−7, tol�M = 10−8 and tol�k = 10−10

for � = S,R,QoI . The numbers in sub-figure 3a represent the amount of modes that the
solution contains at every iteration γ. In this case, the final solution consists of 24 modes after
9 iterations. It is remarkable that in all M iterations, at some point the criterion ξRM stabilizes
after some iterations. This might be because at every iteration M , we add a new term hence
more information is considered. However,it is possible that the added information is not enough
for changing significantly the quality of the solution, thus the residual in the first step of the
algorithm does not decrease. The same quantities are shown in the other two sub-figures 5a and
5b but the fixed tolerances are tol�γ = 10−5, tol�M = 10−6 and tol�k = 10−7 for � = S,R,QoI
in this case. As we can see, the amount of terms of the solution changes, we need just 19 in this
simulation.
The introduction of error estimators in the Algorithm 1 allows to control the whole procedure
and specifically the construction of the solution V. By adding more modes to the final solution,
its accuracy can increase when we compare it to the solution obtained using the algebraic
version of the algorithm (it is used as reference solution). In Figure 3c and 5c this fact is
observed, the accuracy of the solution and the losses improve when the tolerances are lower
because the solution has more modes, i.e. 24 versus 19, thus it is more precise.
Besides, the effectivity index is shown in Figure 4a compared to the relative error in losses
eL and the error indicator of the quantity of interest ξQoIγ . In Figure 4b, the proof that the
Hypothesis 1 holds in the numerical examples is shown using the indicator eÊ . At every γ
iteration, the difference between the two average vectors ÊA is insignificant.
Once we have the solution Va, the losses are calculated using the operator L. The minimum
loss is 212 kW given when the power of the DG is r = 307 kW. Table 1 shows the comparison
between the solution that we get using the parametric and the algebraic version of Algorithm 1
and NR solver.

17



2 4 6 8

10−9

10−7

10−5

10−3

10−1

16
24

31
26

22
27
25 32 24

γ-iteration

ξRγ
ξSγ
ξQoIγ

(a)

0 5 10 15 20 25
10−10

10−7

10−4

10−1

102

105

M -modes (last γ-iteration)

ξRM
ξSM
ξQoIM

(b)

2 4 6 8

10−9

10−7

10−5

10−3

10−1

γ-iteration

eV
eL

(c)

Figure 3 Diagrams of convergence for tolerances tol�γ = 10−7, tol�M = 10−8 and tol�k =
10−10. (a) Convergence diagram of the stopping criteria for the outer loop with the itera-
tion index γ. The numbers along the curves refer to the number of modes that the solution
contains. (b) Convergence diagram of the enrichment algorithm in the last M iteration (last
γ-iteration). (c) Relative errors comparing the real and the approximated solution.

5.2.2 Optimal nominal power and position of a DG with fixed loads.

In this second example, we introduce the position of the DG q as a parameter. In such manner,
the goal is to seek the optimal nominal power and the position of the DG that minimizes the
system losses. One more time, the range of values that r can take is the partition of the interval
[0, rmax] when the increment is the same as before, rmax/(nr − 1), with nr = 100 and rmax =
800 kW. We set the DG in the two first branches corresponding with q = 1, . . . , 82 being
nq = 82 while nt = 1.
Following the same procedure as before, we fix two shorts list of tolerances. In the first case,
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Figure 4 (a) Effectivity index in the losses.(b) Convergence diagram of the error indicator eÊ
with the iteration index γ.

Method Par. Version (case 1) Par. Version (case 2) Alg. Version NR
Minimum Losses (kW) 212.126925 212.126518 212.126921 212.126925
Optimal power r (kW) 307 307 307 307

Table 1 Comparative table showing the optimal value of r and the minimum losses when the
solution is calculated using different numerical methods.

the tolerances are tol�γ = 10−7, tol�M = 10−8 and tol�k = 10−10 for � = S,R,QoI . Figure
6 shows the diagrams of convergence for γ and the last M iteration. The final solution is
composed of 29 terms. The criterion ξRM stabilizes after a few iterations. Similarly, when the
tolerances are tol�γ = 10−5, tol�M = 10−6 and tol�k = 10−7 for � = S,R,QoI , Figure 7 shows
how the stopping criteria are reached. In this case, the number of terms is lower, 24 and only 9
γ iterations are needed. It is worth mentioning that even when the two approximations have a
different number of terms for accuracy, the difference is hardly noticeable, see Figures 6c and
7c.
As a post-process the evaluation of the system losses is carried out evaluating the operator
L. The two dimensional representation of the losses is presented in Figure 8 where we can
observe that the minimum value of the losses corresponds to a DG situated in the second branch.
Concretely, the minimum loss is 193 kW when the DG is set at the position lb736 with power
573 kW. Note that the process of optimization could be carried out with any algorithm, since
the objective function is now explicitly available.

19



1 2 3 4 5 6
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

9

14

25

23

22
19

γ-iteration

ξRγ
ξSγ
ξQoIγ

(a)

0 5 10 15 20
10−10

10−7

10−4

10−1

102

105

M -modes (last γ-iteration)

ξRM
ξSM
ξQoIM

(b)

1 2 3 4 5 6

10−7

10−5

10−3

10−1

γ-iteration

eV
eL

(c)

Figure 5 Diagrams of convergence for tolerances tol�γ = 10−5, tol�M = 10−6 and tol�k = 10−7.
(a) Convergence diagram of the stopping criteria for the outer loop with the iteration index
γ. The numbers along the curves refer to the number of modes that the solution contains. (b)
Convergence diagram of the enrichment algorithm in the last M iteration (last γ-iteration).
(c) Relative errors comparing the real and the approximated solution.

5.2.3 Optimal positioning of a DG with time varying loads.

The goal in this last example is to seek the optimal nominal and position of the DG over a year
when the parameter time t is introduced. Now, we consider three DGs, each of them is set in
a different branch. The parameters associated to this problem are the position of the DGs q1,
q2 and q3, the active power of the DGs r1,r2 and r3 and the time t. The representation of the
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Figure 6 Diagrams of convergence when the tolerances are tol�γ = 10−7, tol�M = 10−8 and
tol�k = 10−10. (a) Convergence diagram of the stopping criteria for the outer loop with the
iteration index γ. The numbers along the curves refer to the number of modes that the solution
contains. (b) Convergence diagram of the enrichment algorithm in the last M iteration (last
γ-iteration). (c) Relative errors comparing the real and the approximated solution.

solution is given by

Va =
M∑
m

αmV V
m ⊗Qm ⊗Rm ⊗ T m , (59)
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Figure 7 Diagrams of convergence when the tolerances are tol�γ = 10−5, tol�M = 10−6 and
tol�k = 10−7. (a) Convergence diagram of the stopping criteria for the outer loop with the
iteration index γ. The numbers along the curves refer to the number of modes that the solution
contains. (b) Convergence diagram of the enrichment algorithm in the last M iteration (last
γ-iteration). (c) Relative errors comparing the real and the approximated solution.

while the representation of the load term S requires more terms:

S =
24∑
h=1

αhSS̆
h ⊗ Q̆h ⊗ R̆h ⊗ T̆ h + α1S1 ⊗Q1 ⊗R1 ⊗ T 1 + α2S2 ⊗Q2 ⊗R2 ⊗ T 2+

α3S3 ⊗Q3 ⊗R3 ⊗ T 3 ,
(60)
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Figure 8 Reconstructed System Losses

where ∀i = 1, 2, 3 Si are n vectors representing the nodal positions of the network, Qi are
zero vectors of nq components except for the position of the DGs varying from 1 to 19 and Ri

corresponds to the variation of the power. Due to the characteristics of the first two branches,
the variation of r1 and r2 is the same with rmax = 400 kW, while the maximum value for r3
is 2200 kW, nr is also equal to 100. The functions T i expresses the load curves that represent
the DGs for every hour of the year. Apart from these three terms, the load demand and the
generation profiles during a year are represented by the load curves T̆ h(t),∀h = 1, . . . , 24. For
this particular system, 24 load curves were generated using the software HOMER described
in [48]. These load curves are mainly based on solar and wind data but also depend on the
customer type (commercial, industrial or residential). The time parameter t is varied from 1 to
8760 with a time step of 1h, thus nt = 8760.
Due to the separated representation of the input source S containing all the information about
the load during one year, more γ iterations are necessary for reaching the tolerances in both
cases, 15 and 9 iterations, as can be seen in Figures 9a and 10a. Accordingly, the number of
modes of the final solution also varies, 52 versus 41 modes. The diagrams of the relative errors
shown in Figures 9c and 10c point out that the solution in the first case is more accurate than
the second.
The reconstruction of the losses is shown in Figure 11 where the positions of the DGs la724, lb726
and lc726 that provided the annual optimal losses 341 kW can be seen. In terms of the param-
eters, the values that provide this minimal loss are r1 = 121 kW, r2 = 365 kW and r3 = 311
kW.

6 Conclusions
The paper introduces a goal-oriented error estimation strategy for the Parametric Power Flow
problem. The estimate is defined in the context of a PGD nonlinear solver. The error is assessed
using a residual error representation and it is used to obtain consistent stopping criteria for all
the iterative schemes of the PGD algorithm.
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Figure 9 Diagrams of convergence when the tolerances are tol�γ = 10−5, tol�M = 10−6 and
tol�k = 10−7. (a) Convergence diagram of the stopping criteria for the outer loop with the
iteration index γ. The numbers along the curves refer to the number of modes that the solution
contains. (b)Convergence diagram of the enrichment algorithm in the last M iteration (last
γ-iteration). (c) Relative errors comparing the real and the approximated solution.

The Parametric Power Flow problem is nonlinear and has complex unknowns. The challenges
encountered in the derivation of the error representation and the definition of the linearized
error equations arise from these two difficulties. The linearization requires not only neglecting
the quadratic terms but also using a Cartesian representation.
Although the adjoint (or dual) problem depends on the solution itself, in practice it is observed
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Figure 10 Diagrams of convergence when the tolerances are tol�γ = 10−4, tol�M = 10−5 and
tol�k = 10−6. (a) Convergence diagram of the stopping criteria for the outer loop with the
iteration index γ. The numbers along the curves refer to the number of modes that the solution
contains. (b) Convergence diagram of the enrichment algorithm in the last M iteration (last
γ-iteration). (c) Relative errors comparing the real and the approximated solution.

to be stationary along the iterative process. This saves a number of computational resources
because the adjoint problem is solved just once.
The condensation of the parametric dimensions is also a key aspect to make the proposed
technique computationally affordable. To properly define a condensed version of the error
equation and the error representation, an additional hypothesis has to be formulated stating the
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Figure 11 Reconstructed System Losses

coincidence of two mean values of the parametric error. In practice, this hypothesis is fulfilled
with a very good accuracy.
This new computational strategy is used in the framework of optimal allocation of Distributed
Generators in a grid, based on losses minimization. In the context of the optimization iter-
ative techniques, the nonlinear PGD solver provides multiple queries of the model with the
prescribed accuracy at very low computational cost.
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