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Abstract. The contribution is devoted to the homogenization and the two-scale numer-
ical modelling of fluid-saturated porous media subject to static loads which, at the pore
level, induce unilateral self-contact. The initial microstructure is periodic, being gener-
ated by a representative cell consisting of elastic skeleton and a rigid inclusion which is
anchored in the skeleton on a part of its pore surface. The unilateral frictionless contact
interaction is considered between the inclusion and the elastic skeleton on matching sur-
faces. Depending on the deformation due to applied macroscopic loads, the self-contact
interaction alters the one between the solid and fluid phases. Both the disconnected
and connected porosities are treated. The two-scale limit model is presented in detail for
structures of the first type which do not allow for the fluid mass redistribution. Numerical
examples of 2D deforming structures are presented.

1 INTRODUCTION

Porous materials with the self-contact interaction in the microstructure present a chal-
lenging issue for the homogenization-based two scale modelling. The literature devoted
to this topic is not vast. Fissured media were treated in [10] using the formal approach
of asymptotic expansion, leading to the homogenized macroscopic variational inequality.
Further contributions to the frictionless self-contact problem with soft, or hard inclusions
were handled using the two-scale convergence in [7], or matched asymptotic expansions
[1]. In [3], the theoretical homogenization result was extended using the periodic unfolding
method [2] for problems with friction and possibly rotating rigid inclusions, cf. [6]. The
computational homogenization approach to solving the contact problems was considered
in [11], and [5].

In our recent study [8], we proposed a two-scale model of dry porous elastic medium
with local self-contacts at the pores scale of the periodic structure. Therein, an incre-
mental algorithm was proposed which involves a consistent tangent modulus of the elastic
medium with a “frozen sliding contact” constraining the macroscopic step of the two scale
computational procedure.
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As a new contribution, here we consider a fluid-saturated porous elastic material subject
to external loads inducing the self-contact interaction at the pore level. Its microstruc-
ture is constituted as a periodic lattice generated by a representative cell consisting of
a solid skeleton and a fluid-filled pore. On its surface, the unilateral frictionless contact
appears when the porous material is deformed. We focus on microstructures with rigid
inclusions whereby the contact process involves opposing surfaces on the rigid and the
compliant skeleton parts. A macroscopic model is derived using the periodic unfolding
homogenization and the method of oscillating test functions which has been applied in [8].
Both the disconnected and connected porosities are treated; in the latter case, quasistatic
fluid flow is described by the Stokes model. A homogenized model is derived using the
periodic unfolding and the method of oscillating test functions. The macroscopic model
attains the form of a nonlinear Biot continuum, whereby the Darcy flow model governs the
fluid redistribution. However, this study focuses on the microstructures with disconnected
porosities saturated by a slightly compressible fluid.

We propose an efficient algorithm for two-scale computational analysis with the nu-
merical model obtained using the FE discretization of the homogenized model. For this,
a sequential linearization is used which leads to consistent stiffness matrices of the macro-
scopic elasticity problem. At the local level, the contact problem attains the form of a
nonsmooth equation which is solved using the semi-smooth Newton method [4] without
any regularization, or a problem relaxation.

Basic notations By x = (x1, . . . , xd) ∈ Rd we denote spatial coordinates at the
macroscale, while y = (y1, . . . , yd) specifies the zoomed “microscopic” coordinates in the
sense of the unfolding method of homogenization [2]. We use ∇ = ∇x = (∂xi ) and
∇y = (∂yi ) to denote gradients with respect to these coordinates.

2 SELF-CONTACT IN POROUS MEDIUM

An open bounded domain Ω ⊂ IRd, with the dimension d = 2, 3, is constituted by the
solid skeleton Ωs and by the fluid occupying domain Ωf , so that

Ω = Ωε
s ∪ Ωε

f ∪ Γε , Ωε
s ∩ Ωε

f = ∅ , Ωε
f ⊂ Ω , (2.1)

where Γε = ∂Ωε
s∩∂Ωε

f is the interface. The solid part Ωε
s is generated as a periodic lattice

by repeating the representative volume element (RVE) occupying domain Zε = εY . The
zoomed cell Y = Π3

i=1]0, ȳi[⊂ R3 splits into the solid part occupying domain Ys and the
complementary fluid part Yf , see Fig. 1, thus

Y = Ys ∪ Yf ∪ ΓY , Ys = Y \ Yf , ΓY = Ys ∩ Yf . (2.2)

We assume that Ωε
s is a connected domain, whereas domain Ωε

f can be connected (a
channel network, thus ∂Yf ∩ ∂Y 6= ∅), or it can be constituted as a periodic array of
disconnected fluid inclusions, thus Yf ⊂ Y .

To impose boundary conditions on the external surface of Ω, the decomposition of the
boundary is introduced, ∂Ω = ∂uΩ ∪ ∂σΩ, ∂uΩ ∩ ∂σΩ = ∅. The fluid-structure interface
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Γε splits in two parts: the self-contact can be attained on Γεc, whereas Γεf , is a part of Γε

on which any contact is excluded,

Γεf = Γε \ Γεc , Γε+ = Γεc \ Γε− , Γε+ ∩ Γε− = ∅ . (2.3)

Γεc splits into two disjoint parts, such that, in the deformed configuration, points on Γε+
can get in contact with those situated on Γε−. The contact gap is introduced using the
jump [u ]εn = n(x−) · (u(x+)− u(x−)), x+ ∈ Γε+, x− ∈ Γε−, where n is the unit normal.

2.1 Micromodel for disconnected pores – static problem

We assume that the pores Ωε
f are filled with slightly compressible fluid, compressibility

modulus γ is given. In the solid phase loaded by body forces f ε and external surface
traction forces b, the displacement field uε satisfies the following relationships,

∇ · σε + f ε = 0 in Ωε
s ,

uε = 0 on ∂uΩs ,

σε · n = bε on ∂σΩs ,

(2.4)

and the fluid-structure interaction including the unilateral self-contact conditions,

σε · n = −pε on Γεf ,

gεc(u
ε) ≤ 0 , σεn ≤ −pε , gεc(u

ε)(σεn + pε) = 0 on Γεc ,

σε : n ⊗ t = 0 on Γεc ,

(2.5)

where gεc(v)(x) = [v(x)]εn − [x]εn is the gap function defined on Γεc. By σε = IDεe(uε) we
denote the stress tensor involving the strain e(uε). The contact stress σεn = n ⊗ n : σε

is the stress projection in the normal direction determined by n = n [s], and the tangent
t is any unit vector satisfying n · t = 0.

The set of displacements satisfying (2.4)2, is denoted by U0(Ωε
s) = {v ∈ H1(Ωε

s)| uε =
0 on ∂uΩ

ε
s}. If a part of Ωε

s is rigid, the “rigid body motion” constraint applies in Ωr,ε
R ,

r = 1, 2, . . . , whereby r refers to a r-th copy of the rigid inclusion Zε
R ⊂ Zε

s . By Rε(Ωε
s)

we denote a space of rigid body displacement fields defined in each Ωr,ε
R .

To establish in the whole domain Ω a pressure field defined in the voids, we define Ωk,ε

as a k-th copy of the reference cell Zε placed at position xk in the periodic lattice; By
Ωk,ε
f ⊂ Ωk,ε we refer to the k-th fluid inclusion. Pressure pε is related to the displacement

field due to the mass conservation,∫
∂Ωk,εf

uε · n [s] = γpε|Ωk,ε
f | , ∀k = 1, 2, . . . , k̄ε , (2.6)

where γ is the fluid compressibility. We assume that for uε ≡ 0 (unloaded structure) the
pressure vanishes in all pores, i.e. pε = 0.
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The homogenization procedure is applied to the weak formulation of problem (2.4)-
(2.6) which is now introduced. For this, the set Kε comprising kinematically admissible
displacements and the space Qε of pore pressures is needed,

Kε = {v ∈ U0(Ωε
s) ∩R(Ωε

s)| v = 0 on ∂uΩ
ε
s , g

ε
c(v) ≤ 0 on Γεc} ,

Qε = {q ∈ L2(Ω)| q is constant in each Ωk,ε , k = 1, 2, . . . , k̄ε} ,
(2.7)

The displacement field uε ∈ Kε and the pressure pε ∈ Qε is called a weak solution to
Problem (2.4)-(2.6) when it satisfies the variational inequality,

aεΩ(uε, v ε − uε) +

∫
∂Ωεf

pεn [s] · (v ε − uε) ≥
∫

Ωεs

f ε · (v ε − uε) +

∫
∂σΩ

b · (v ε − uε) , ∀v ε ∈ Kε ,∫
∂Ωεf

qεuε · n [s] − γ
∫

Ωεf

pεqε = 0 ∀qε ∈ Qε ,

where aεΩ(w , v) =

∫
Ωεs\ΩεR

IDe(w) : e(v) .

(2.8)

2.2 Micromodel for steady flow in connected pores

The flow in collapsible channels, here presented by the contact gap, belongs to sin-
gularly perturbed problems which are cumbersome to solve. Instead of defining a free
boundary problem, we consider a relaxed problem imposed in the deformed configura-
tion, namely in the deformed pores Ω̃ε

f . Let Ωε
C ⊂ Ωε

f be a subdomain occupied by
the fluid “between” the two matching surfaces Γε+ and Γε− of the contact area, so that
Ωε
f = Ωε

C ∪ Ωε
F ∪ ΓεFC , where Ωε

F denotes the uncollapsible part of the porosity. We

establish a nondegenerate domain Ω̃ε
C,δ in the deformed configuration. For this, we con-

sider ψεδ ∈ C∞0 (Γε−), such that ψεδ = 0 on ∂Γε−, while ψεδ = δ in Γε−,δ ⊂ ∂Γε−, where

dist(∂Γε−,δ, ∂Γε−) = δ. We define Ω̃ε
C,δ(v) = {x ∈ R3, x = ξ−n−(ξ)(gεc(v)−ψεδ(ξ)), ξ ∈ Γε−}.

Parameter δ > 0 presents the minimum gap clearance; we consider δ = κε with a given
proportion 0 < κ << 1, therefore we can drop δ from the notation. Now the relaxed
deformed fluid domain Ω̃ε

f (v) = Ω̃ε
C ∪ Ω̃ε

F ∪ Γ̃εFC associated with a displacement field can

be obtained using a smooth mapping ϕε(v) : Ωε
f 7→ Ω̃ε

f , in particular Ω̃ε
f 3 z = ϕε(v , x)

for x ∈ Ωε
f , assuming a sufficiently smooth field v defined in Ωε

f .
The viscous fluid flow in the fluid channels (pores) requires a slight modification of

condition (2.4)-(2.5) to respect the fluid stress τ ε = −pεI + µεe(v f,ε) depending on the
fluid velocity v f,ε and viscosity µε = ε2µ̄, so that

(σε − τ ε) · n = 0 on Γεf , t · (σε − τ ε) · n = 0 on Γεc ,

gεc(u
ε) ≤ 0 , σεn ≤ τ εn , gεc(u

ε)(σεn − τ εn) = 0 on Γεc ,
(2.9)

where τ εn = n ⊗ n : τ ε = −pε + µεe(v f,ε) : n ⊗ n . Instead of (2.6), the Stokes flow of an
incompressible viscous fluid in the deformed channels is considered,

µε∇2v f,ε −∇pε + f ε = 0 , ∇ · v f,ε = 0 in Ω̃ε
f (u

ε) , v f,ε = 0 on Γ̃ε(uε) , (2.10)
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where the no slip condition holds in the steady state, since u̇ε = 0. Due to the assumed
smooth mapping ϕε(uε), the associated transformation of coordinates enables to rewrite
(2.10) in the undeformed configuration Ωε

f . In any case, the homogenization of the fluid
and the solid responses is tightly coupled.

3 HOMOGENIZATION

Homogenization of the considered two-phase medium with the self-contact and the
fluid-structure interactions is treated in analogy with the void-pore situation reported
in [8]. Here we focus on the case of non-connected pores, problem (2.4)-(2.6). We only
present resulting model equations and formulate problems to be solved numerically by a
tow-scale computational procedure, see Section 4.

The limit problem is defined in terms of global macroscopic coordinates x ∈ Ω, and
the local microscopic ones y ∈ Y . Formally, the local (microscopic) and global (macro-
scopic) problems can be derived using asymptotic expansions combined with the periodic
unfolding technique; using the unfolding operator Tε(), we consider

Tε(uε(x)) = u0(x) + εu1(x, y) + ε2(. . . ,

where u0 ∈ H1(Ω) and u1 ∈ L2(Ω; H1
#(Ys)). The same form of the expansion (3) is used

to define the test functions v ε. For any D ⊂ Y , H1
#(D) designates the Sobolev space

W 1,2(Y ) = H1(Y ) of vector-valued Y -periodic functions (indicated by the subscript #)
defined in D. Integral ∼

∫
D

= |Y |−1
∫
D

gives the mean value.
For the case of nonempty rigid inclusions YR ⊂ Ys, let YS = Ys \ YR and R#(Ys, YR) =

H1
#(Ys) ∩ R(YR) be the restriction of H1

#(Ys) to displacements u1(x, ·) constraint by a
rigid body motion in YR. Let φRF = (|Yf |+ |YR|)/|Y | = φF + φR, hence φS = 1− φRF is
the volume fraction of the compliant solid.

3.1 Local contact problems

We can introduce the gap function and the associated convex set KY ,

KY (∇u) = {v ∈ R#(Ys, YR)|gYc (v ,∇u) ≤ 0} ,

where gYc (u1,∇u0) =
[
∇u0ŷ + u1 − ŷ

]Y
n
,

(3.1)

where [w ]Yn = n · (w |+ − w |−) is the contact gap jump on Γc. The asymptotic ho-
mogenization based on the unfolding technique leads to the local contact problem for
microstructures with rigid inclusions. For a.a. x ∈ Ω, the fluctuating displacement fields
u1(x, ·) ∈ KY (∇u0), satisfy

aFYS
(
u1 + Πijexij(u

0), v − u1
)
− 1

γφf
δije

x
ij(u

0) ∼
∫
YS

∇y · (v − u1) ≥ 0 , (3.2)
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for all v ∈ KY (∇u0), where Πij = (Πij
k ), i, j, k = 1, 2, 3 with its components Πij

k = yjδik,
and

aFYS (u , v) = aYS (u , v) +
1

γφf
∼
∫
YS

∇y · u ∼
∫
YS

∇y · v ,

aYS (u , v) =∼
∫
YS

(IDey(u)) : ey(v) .

(3.3)

3.2 Macroscopic problem and incremental subproblems

The global (macroscopic) model equation involving u0 and u1 is derived from (2.8) by
choosing a special interplay between the test functions v 0 and v 1 which are coupled by
virtue of the gap function. The two fields u0 ∈ U(Ω) and u1 ∈ L2(Ω;KY (∇u0)) satisfy∫

Ω

σ0(u0,u1) : ex(v
0)− 1

γφf

∫
Ω

(
∼
∫
YS

∇y · u1 − φRF∇x · u0

)
φRF∇x · v 0

=

∫
Ω

f̄ · v 0 +

∫
∂σΩ

b · v 0 ∀v ∈ U0(Ω) .

(3.4)

where σ0(u0,u1) = |Y |−1
∫
YS

ID(ey(u
1) + ex(u

0)) is the mean stress and the pressure

p0(x) of the pore fluid can be determined for a.a. x ∈ Ω,

φRF∇x · u0− ∼
∫
YS

∇y · u1 + γφfp
0 = 0 . (3.5)

Small perturbations δu0 and δu1 = w ijexij(δu
0) are related by a “linearized” contact

problem which yields the corrector problem for w ij introduced below, see (3.10). Let
r(v 0) be the out-of-balance functional,

r(v 0) :=

∫
Ω

f · v 0 +

∫
∂σΩ

b · v 0 −
∫

Ω

σ̃tot : ex(v
0) , (3.6)

where the total stress σtot = σ0− p0φRFI evaluated for the current approximation of the
two-scale solution (ũ0, ũ1) is denoted by σ̃tot; note that p̃0 is determined for ũ0 by virtue
of (3.5). Thus, σtot := σ̃tot(ũ0)+δσtot with δσtot := IDHex(δu

0) involving the tangential
stiffness effective modulus IDH = (DH

ijkl) defined below. The perturbation δu0 ∈ U0(Ω)
satisfies the macroscopic incremental problem,∫

Ω

IDHex(δu
0) : ex(v

0) = r(v 0) , ∀v ∈ U0(Ω) . (3.7)

3.3 Effective tangent stiffness

To compute the tangent stiffness, the following problem must be solved: Find w ij(x, ·) ∈
V0(Πij, YS, x), i, j = 1, . . . , d which satisfy

∼
∫
YS

IDey(w
ij + Πij) : ey(v) +

1

γφf

(
∼
∫
YS

∇y ·w ij − φRF δij
)
∼
∫
YS

∇y · v = 0 , (3.8)
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for all v ∈ V0(0, YS, x), where the set of admissible displacement perturbations is intro-
duced for the actual contact surface Γ∗c(x) ⊂ Γc,

V0(U , Ys, x) = {v ∈ H1
#(Ys)| [v + U ](Y )

n = 0 on Γ∗c(x)} . (3.9)

In analogy with the local contact problem expressed using the bilinear form (3.3),
problem (3.8) can be rewritten, as follows: Find w ij(x, ·) ∈ V0(Πij, YS, x), i, j = 1, . . . , d
which satisfy

aFYS
(
w ij + Πij, v

)
− 1

γφf
δij ∼
∫
YS

∇y · v = 0 , (3.10)

for all v ∈ V0(0, YS, x). Now, using correctors w ij, the tangential stiffness effective mod-
ulus, IDH = (DH

ijkl) is computed

DH
ijkl = aYS

(
w ij + Πij, w kl + Πkl

)
+

1

γφf

(
∼
∫
YS

∇y ·w ij − φRF δij
)(
∼
∫
YS

∇y ·w kl − φRF δkl
)
.

(3.11)

3.4 Two-scale incremental computational algorithm

By virtue of the small deformation assumption, we use the initial configuration associ-
ated with the “unfolded” domain Ω×Y as the reference one. The local contact problems
(3.2), with actual contact gaps depending on the macroscopic deformation, are solved

in micro-configurations M̃Y (x) at Selected Macroscopic Points (SMP) x ∈ Ω associated
with the numerical discretization. This step is commuted by solving the global problem
(3.7) in Ω. The following Algorithm has been implemented.

1. Initialization: set data; put ũ0 = 0 in Ω and ũ1 = 0.

2. Given local micro-configurations M̃Y (x) and an approximation ũ0 at SMP x ∈ Ω,
compute u1(x, ·) solve local contact problems (3.2), with the initial guess ũ1 (to
initiate the semi-smooth Newton method).

3. For SMP x ∈ Ω, update the micro-configurations: Ỹs(x) = Ys + {ũmic(x, ·)}Ys with
ũmic(x, ·) := Πijexij(u

0) + u1. This yields the actual true contact boundary Γ∗c(x).

Compute the tangent stiffness IDH(x) by solving linear problems (3.10) and using
(3.11). Update the total effective stress σ̃0(x).

4. Compute the correction δu0 ∈ U0(Ω) by solving (3.7) which depends on the out-of-
balance r̃(v), see (3.6).

5. Update u0 = ũ0 + δu0, hence ũ0 := u0. Check the convergence (δu0 being small);
if NOT converged, GO TO Step 2.

7



Eduard Rohan and Jan Heczko

3.5 Homogenization of the steady flow in collapsible pores

Homogenization of the fluid-structure interaction, as described by (2.4), (2.9) and
(2.10), presents a cumbersome problem introducing an additional nonlinearity since the
flow in the contact gap is described in the deformed configuration Ω̃ε

f . Nevertheless, a
sequential linearization enables to derive formally a two scale model which leads to a
computational procedure similar to the one announced above. Below we make a reference
to corresponding Steps of the Algorithm presented in Section 3.4.

Besides the displacements u0(x) and u1(x, y), pressure p0(x) and the seepage flow
velocity w(x, y) are involved in the local problems to be solved at SMP x ∈ Ω. Since the
fluid-structure interaction phenomenon is the same as in the non-contact situation, cf. [9],
assuming a given reference configuration, i.e. an approximation of Ω̃ε

f , hence also Ỹf (x)
for the fluid subproblem, similar arguments justify a separate treatment of the flow and
the solid-contact problems, thus, being interconnected by the macroscopic pressure p0(x)
only. In analogy to (3.2), see Step 2 of the Algorithm, local problems have to be solved
for given (ũ0, p̃0). The fluctuations u1(x, ·) ∈ KY (∇ũ0) satisfy the variational inequality

aYS
(
u1 + Πijexij(ũ

0), v − u1
)

+ p̃0 ∼
∫
YS

∇y · (v − u1) ≥ 0 , ∀v ∈ KY (∇ũ0) . (3.12)

The macroscopic incremental problem analogous to (3.7), see Step 4, attains the form a
modified Biot-Darcy model. It involves the static permeability computed for the reference
deformed microstructure, and the (drained) elasticity IDH and the Biot stress coefficients
IBH which are obtained by homogenizing the porous structure, as in the linear case,
however, using the kinematic constraint due to the set (3.9). Within one increment, the
Darcy flow problem is solved, which yields an updated p0(x). Then δu0 ∈ U0(Ω) is solved,∫

Ω

IDHex(δu
0) : ex(v

0) = r(v 0) +

∫
Ω

p0IBH : ex(v
0) , ∀v ∈ U0(Ω) , (3.13)

where r(v 0) is given as in (3.6). Consequently, the deformed configuration Ỹf is updated,
in analogy with Step 3.

4 NUMERICAL EXAMPLES

For illustration of the two-scale model reported in Section 3, we present simulations of
2D structures with disconnected inclusions. Under obvious symmetry assumptions and
consistently with the presence of rigid inclusions, the 2D problems describe 3D structures
under the plane strain conditions. The material properties are given by the Young’s
modulus, E = 2.3 GPa, the Poisson’s ratio, ν = 0.35, and the bulk modulus of the fluid,
K = γ−1 = 2.2 GPa.

4.1 Periodic cell and micro-problems

The deformable part of the representative cell Y = ]0, 1[ × ]0, 1[ is partitioned by a
triangular finite element mesh, which is shown in Fig. 1. The contact region ΓcS, the
deformable-rigid interface ΓR, and the parts of domain boundary, on which boundary
conditions are applied, are highlighted.
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Γc+

YS

YR
Yf

Γc-

deformable part (mesh)

Rigid inclusion

R

cS

Periodic BCs

Dirichlet BCs

Figure 1: Periodic unit cell Y ad its decomposition (left), see (2.2). The actual finite element mesh
(right). Note the thin gap Yf between the matching contact surfaces, Γc+ and Γc− .

A B

C

u

Figure 2: Macroscopic finite element mesh and po-
sitions A,B, and C, see Fig. 4.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
iteration

10 9

10 7

10 5

10 3

t = 0.01 GPa
|| u||
||r||

Figure 3: Convergence criteria in the case of fluid-
filled structure.

4.2 Macroscopic response

We consider a short cantilever beam subject to a bending. In the 2D setting, the porous
structure occupies domain Ω = ]0, L[ × ]0, L[, L = 1m. Displacements are fixed on its
bottom edge, u = 0 on Γu = {x ∈ ∂Ω|x2 = 0}. On its top edge Γσ = {x ∈ ∂Ω|x2 = L},
the structure is loaded by uniform tractions tangential to the surface b =

(
t, 0
)
. The

numerical model is obtained by the finite element discretization [8]. Being approximated
using the linear triangular elements, the local micro-problems are imposed at all Gauss
points of the the macroscopic finite element mesh, see Fig. 2, corresponding to the Q1
conforming approximation, thus, four micro-problems to be solved per one macro-element.
Hence, the simulations required 64 local contact problems to be solved in any macroscopic
iteration. To display local responses, selected locations – points A, B, and C, are indicated
for further reference in Fig. 2, where also the surfaces Γu and Γσ are highlighted.

The total loading by traction t = 10−2 GPa was split into five steps; in each one, the
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0.002

0.000

0.002
e0 11

A
fluid-filled
dry

B C

0.02

0.00

0.02

e0 22

0.000 0.005 0.010
prescribed traction [GPa]

0.00

0.01

0.02

e0 12

0.000 0.005 0.010
prescribed traction [GPa]

0.000 0.005 0.010
prescribed traction [GPa]

Figure 4: Histories of macroscopic strain components at the three selected points (see Fig. 2). Two
simulations are compared: with dry and with fluid-filled pores.

Algorithm presented in Section 3.4 was performed. The convergence of the two-scale
iterations are shown in Fig. 3 for the case of fluid-filled pores. Within 15 iterations,
the out-of balance r, as well as the macroscopic corrections δu0 converged with global
tolerances ‖δu0‖ < εu = 10−8 m and ‖r‖ < εr = 10−10 GPa.

Fig. 4 shows the histories of macroscopic strain components at the selected locations,
A, B, and C, for both the dry and the fluid-filled pores cases; note that the dry case, as
described in [8], is comprised formally in the fluid-filled inclusion model with the infinite
compressibility, thus, when putting γ = ∞. The effect of the presence of the fluid is
mostly seen at the base of the structure (points A and B).

The fluid in pores also modifies the redistribution of the contact stress in the mi-
crostructure when compared with the dry-pore situation. Fig. 5 shows the numbers of
the mesh nodes in contact in the simulations with dry or fluid-filled pores, microscopic
solutions, and fluid pressure distribution in the deformed fluid-saturated porous struc-
ture. Stress component σ22 and contact pressure are shown in the plots of microscopic
solutions. It can be seen that the distribution of tensile stress σ22 is more uniform in the
microstructure with fluid-filled pores thanks to the load-bearing capacity of the fluid.

5 CONCLUSION

The two-scale model of the homogenized porous medium with self-contact in fluid
filed pores has been derived for the linear kinematics of the strain and a linear material
behaviour. For the connected porosity which admits the fluid flow, a hybrid treatment
with the flow described in the deformed configuration using a relaxed contact gap was
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proposed. Numerical solutions of 2D problems are obtained using an iterative algorithm
which proved a satisfactory convergence rates, however further improvements are required
to enhance its efficiency and robustness.
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[7] A. Mikelić, M. Shillor, and R. Tapiéro. Homogenization of an elastic material with
inclusions in frictionless contact. Mathematical and Computer Modelling, 28(4):287
– 307, 1998. Recent Advances in Contact Mechanics.

[8] E. Rohan and J. Heczko. Homogenization and numerical modelling of poroelastic ma-
terials with self-contact in the microstructure. Computers & Structures, 230:106086,
2020.

[9] E. Rohan and S. Naili. Homogenization of the fluid-structure interaction in acoustics
of porous media perfused by viscous fluid. Zeitschrift für angewandte Mathematik
und Physik (ZAMP), 71(4):137–164, 2020.

[10] E. Sanchez-Palencia. Non-homogeneous media and vibration theory. Number 127 in
Lecture Notes in Physics. Springer, Berlin, 1980.

11



Eduard Rohan and Jan Heczko

[11] A. Temizer and P. Wriggers. A multiscale contact homogenization technique for the
modeling of third bodies in the contact interface. Computer Methods in Applied
Mechanics and Engineering, 198(3):377 – 396, 2008.

dry pores:
F G

dry pores

F G
1

2

3

4

5

6

7

8

11

13

fluid-filled pores

D E 2

3

4

5

6

7

fluid pressure p0

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

fluid-filled pores:
D E

Figure 5: Number of nodes in contact as indicated for the simulations with dry pores (middle row, to
the left) and with fluid-filled pores (middle row, center) and the corresponding fluid pressure (middle
row, to the right). The top and bottom rows show micro solutions along the D-E (fluid-filled pores) and
F-G line (dry pores); stress component σ22 and contact tractions are displayed.
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