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Summary. This paper describes a recently developed numerical technique to simulate
high-speed flows on complex 3D inflatable structures using tetrahedral volume grids. In
detail, the proposed methodology is based on the front-tracking approach, as it involves
the coupling between a shock-fitting technique and a non-linear structural solver: by
doing so, we are able to exploit the well-known advantages of shock-fitting regarding the
computation and modelling of gas-dynamic discontinuities to deal with fluid-structure
interaction problems. More details about the proposed technique and some applications
to inflatable structures in hypersonic flows are presented in this paper.

1 INTRODUCTION

Fluid-structure interaction (FSI) problems involve interactions of movable and/or de-
formable structures with a surrounding fluid flow. These phenomena are commonly en-
countered in both engineering and biological applications, which range for instance from
wind turbines to blood flow in arteries. Concerning aerospace applications, FSIs are par-
ticularly relevant when dealing with tank-fuel sloshing [1], aircraft wings[2] as well as
supersonic parachutes [3]. For this reason, many studies were carried out on this subject,
proposing different methodologies.
In this work, we present a novel fluid dynamic technique for computing high speed flows
past hypersonic inflatable shields (HIADs): specifically, it is based on a shock-fitting (S-F)
method [4], which models gas dynamic discontinuities, such as shock waves, as surfaces of
null thickness bounding regions of the flow-field where a smooth solutions to the govern-
ing PDEs exists. Moreover, the space-time evolution of these discontinuities, as well as
their upstream/downstream states, are provided by enforcing the Rankine-Hugoniot (R-
H) jump relations. S-F allows to overcome most of the troubles encountered by the widely
used shock-capturing (S-C) schemes when dealing with shocked-flows. These drawbacks
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include: a “captured” shock-width which exceeds by orders of magnitude the physical one
and the presence of spurious disturbances along the “captured” shock-front which spoil
the solution in the entire shock-downstream region, see Refs. [5, 6, 7, 8].

Even though S-F methods were designed for modelling gas-dynamic discontinuities, a
similar approach can be used to represent inflatable structures, which are generally mod-
eled as membranes [9], i.e. as thin structures of negligible thickness. Following this idea,
thin membranes can be considered as discontinuities within the flow field, just like shock
waves and, therefore, are modelled using zero-thickness surfaces. However, while the dis-
placement of the gas-dynamic discontinuities is computed by enforcing the jump relations,
the displacement of the structure is provided by a structural solver according to the val-
ues of the loads determined by the inflation pressure and by the external fluid-dynamic
field acting on the membrane wall. Even though the modelling approach described here
is similar to those reported in previous studies, which simulate FSI in supersonic flows
using front-tracking techniques [3, 10], there are also some differences. First of all, in the
aforementioned publications front-tracking was limited to the modelling of the deformable
structure, whereas the gas-dynamic discontinuities were modeled using shock-capturing.
Moreover, compared to the commonly used immersed-boundary methods [11], our ap-
proach does not require any interpolation/extrapolation to prescribe boundary conditions
on the wall. Indeed, as will be clarified in Section 2, we perform a local re-meshing of the
volume mesh around the surfaces of both the shock and the inflatable shield. By doing
so, these surfaces are constrained to be part of the computational grid, so that boundary
conditions on the inflatable wall can be straightforwardly applied.
Algorithmic details about the proposed methodology are given in Section 2. Furthermore,
the application of this novel technique to two FSI test-cases involving inflatable shields
in hypersonic flows is presented, including a quantitative investigation of the error reduc-
tion obtained with the proposed approach, using both a global and local grid-convergence
analysis.

2 METHODOLOGY

Numerical simulations reported in this study are computed using a numerical technique
for FSI based on the S-F approach. More precisely, the aforementioned methodology
is the most recent enhancement in the development of a three-dimensional S-F code for
unstructured grids UnDiFi-3D, developed by some of the authors and described in Ref. [7].
In this approach, the behaviour of the membranes is modelled and computed by coupling
the UnDiFi-3D solver with the non linear structural solver MSC Nastran [12], in order to
exploit for the first time the advantages offered by S-F in the context of FSI simulations.
To briefly describe this novel technique, Figure 1 shows the hypersonic flow past an
inflatable shield, leading to the formation of a bow-shock in the proximity of the inflatable
wall. Both the bow-shock and the inflatable wall are represented by surfaces of zero
thickness, resp. coloured in blue and red in Fig.1. The FSI simulation starts from a
solution supplied by a S-C solver, treating the shield as a rigid body. This solution is
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used as the initial condition for the S-F computation: details concerning the shock-surface
extraction from this initial S-C solution and the shock modelling in the UnDiFi-3D solver
are available in Refs. [7, 8]. The tetrahedral grid used in the S-C calculation shall be
referred to in the following as the “background” mesh.

The FSI algorithm can be split into the following five main steps:

1. Step 1 : Generation of the computational mesh
The shock surface is inserted into the background tetrahedral mesh, which was used
for computing the S-C solution. In doing so, all cells of the background mesh that
are crossed by shock surface are removed. This step is performed only once, in
order to initialize the FSI algorithm. This newly created “computational” grid,
thus containing the shock points, is given as input to the FSI algorithm, as shown
in Fig.1.

2. Step 2: CFD solver
Once the computational grid has been generated as described in Step 1, solution
values within all grid and shock points are advanced over a single (pseudo) time-step
using the in-house, unstructured, S-C, CFD code eulfs [13], which has second order
spatial accuracy.

3. Step 3: MSC Nastran nonlinear finite element solver on the two faces of the inflat-
able shield.
At this point, the structural deformation of the HIAD is computed using the mem-
brane non-linear solver, SOL 400 of MSC Nastran [12], that takes into account both
the inflation pressure and the aerodynamic loads computed by the eulfs solver.
It is worth underlying, see Fig.2, that we chose to mesh the inflatable shield using
quadrangular elements, instead of the triangular ones used for discretizing the shock
surface, because quadrilateral elements make iterative convergence of the structural
solver more robust. For this reason, each quadrangular element of the structural
mesh in Fig. 2 is split into two triangles when it is fed to the CFD solver. By doing
so, the triangulated surface describing the inflatable wall for the CFD solver shares
the same nodes with the quadrangular grid used for the structural analysis, so that
no interpolation is required to transfer the dependent variables from the CFD solver
to the structural one. Moreover, grid-points located along the nose of the HIAD,
marked using a red line in Fig. 2, are constrained to move only in the flow direction
because they are anchored to a rigid nose that can only move along the capsule’s
symmetry axis. On the contrary, the peripheral nodes of the inflatable structure,
marked using a blue line in Fig. 2, can only move in the plane normal to the flow
direction. Finally, Fig. 3 shows the loads acting on the inflatable wall: the red
arrows represent loads due to the constant inflation pressure, whereas the black ar-
rows represent those of the external pressure calculated by eulfs; their differential
magnitude governs the displacement of the thin shield. This structural model aptly
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mimics the inflation and deflation behavior of the shield, and it will play a crucial
role for applying the FSI algorithm to drag modulation.

4. Step 4: Solution update within the shock-nodes
As explained in detail in Ref. [7], the shock-downstream values of the dependent
variables within the shock-points need to be corrected by enforcing the R-H jump
relations within each shock-point. The R-H equations also provide the local shock-
speed, which allows to compute the new shock position.

5. Step 5: Shock and wall points displacement
Because of the displacement of both the inflatable wall and the shock-points, the
computational grid needs to be remeshed. This is accomplished using the Tet-
Gen [14] mesh generator, which provides a new computational mesh to be used as
input to restart the FSI algorithm from step 2, until steady-state is reached.

Figure 1: FSI algorithm flowchart

3 NUMERICAL SIMULATION OF FSI INTERACTION OF AN INFLAT-
ABLE SHIELD

In this section we will analyze and discuss the results obtained from the simulation of
an inviscid high-speed flow past a HIAD. More precisely, the Mach 24 hypersonic flow past
an inflatable shield is used as a benchmark for the proposed technique; more specifically,
this test-case simulates the flow conditions during an aerocapture mission on Mars, which
we proposed as a viable application for inflatable shields in Ref. [15]. In order to evaluate
also the grid-convergence properties, calculations have been performed using two nested
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Figure 2: Inflatable shield surface: structured grid for FEM
solver

Figure 3: Internal and external
loads

grid levels, the finest one obtained by splitting each cell of the coarsest mesh into eight
tetrahedra. Figure 4 shows half of the computational domain and the coarsest volumetric
grid: it consists of an hemisphere representing the fluid-dynamic field, with the shock
surface highlighted in blue and the inflatable shield in green.

Figure 4: Half computational domain and coarsest grid

The atmospheric conditions during the aerocapture maneuver reported in Ref. [15]
correspond to an altitude of 50 km above the Martian surface. At this altitude, the
Mars Climate database [16, 17] gives a density value equal to ρ = 9.74 · 10−5kg/m3 and
a free-stream pressure p∞ equal to 3.23 Pa. Furthermore, it is noted that the Martian
atmosphere primarily consists of CO2, accounting for 95% of the composition. CO2 is
characterized by an adiabatic constant γ of 1.33 and a specific gas constant R of 191
J/kgK. These atmospheric parameters are crucial for accurate analysis and modeling of
hypersonic flow around inflatable shields on Mars. Indeed, we can use the jump relations
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for the analytical calculation of the stagnation point pressure pst:
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where p∞ is the static pressure,M∞ the upstreamMach number,Msv the shock-downstream
Mach number and pst is the stagnation pressure that in these conditions is determined to
be 2307.45 Pa.
Some considerations regarding the inflatable shield modelling can be drawn. First of all,
Kevlar has been chosen as the material for the inflatable portion with a thickness of 1mm,
moreover the shield is inflated to a pressure pinf = 3462 Pa, corresponding to 1.5 times the
stagnation point pressure. It is important to mention that, in these preliminary results,
the rotational degrees of freedom of the structural model have been constrained in order
to enhance the convergence of the structural simulations and to overcome the buckling
problems that occur. Figure 5 illustrates the pressure flow field on symmetry plane YZ

Figure 5: Hypersonic flow past an inflatable shield: pressure flow field on symmetry plane YZ

provided by the FSI algorithm previously described. The advantages provided by the S-F
are self-evident: the bow shock exhibits null thickness and a smooth pressure distribution
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is provided in the shock layer. Figure 6, which compares the wall pressure distribution
on the two grid levels, highlights a further advantage related to the S-F approach: the
S-F calculation reveals a good circumferential symmetry already on the coarse grid, de-
spite the use of a fully unstructured tetrahedralization. Thus, S-F is able to provide high
quality solution also using coarse meshes, meaning in computational costs savings.

Figure 6: Wall pressure distribution on both the coarse and fine grids

A grid-convergence analysis of the FSI technique is hereafter presented by measuring
the global total temperature, T0, error, taking into account that T0 is constant in the
whole computational domain. In particular, the observed order of accuracy, ñ, has been
calculated using the following equations, as stated in Ref. [18, 19]:

ñ =
logR−1

log r
(2)

where the grid refinement ratio is equal to r = 2 for nested meshes and the grid conver-
gence ratio R is given by Eq. (3):

R =
u2 − u0

u1 − u0

(3)

where ui denotes the flow variable used for evaluating the order of accuracy computed
on ith grid level, the subscripts 1 and 2 resp. refer to the coarse and fine grid-levels,
whereas the subscripts 0 denotes the exact solution, which in our case is the constant,
free-stream dimensionless total temperature. Table 1 shows the values of the L1 norm
of the discretization error based on T0 for both grid levels and the observed order of
accuracy computed using Eq. (2). The observed order of accuracy is seen to be close to
design order, n = 2, which implies that both the coarse- and the fine-grid solutions are
in asymptotic convergence. This is further confirmed by the fact that the discretization
error is reduced by a factor R−1 nearly equal to four, when moving from the coarse to the
fine mesh. Moreover, it is worth noting that the error on the coarsest mesh is less that
1% of the total temperature value.
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Table 1: L1 norm of the discretization error on the coarse and on the fine mesh.

u1 − u0 u2 − u0 ñ
5.718e-04 1.608e-04 1.83

A local grid-convergence analysis has also been performed by measuring the discretiza-
tion error at the stagnation point. Table 2 allows to compare the stagnation pressure
computed by the UnDiFi gas-dynamic solver with the analytical value computed using
Eq. (1); the dimensionless discretization error ϵ is also shown. The observed order of
accuracy is seen to be close to design order, as it happens to be the case with the global
analysis based on total temperature.

Table 2: Local convergence analysis: comparison between computed and analytical stagnation pressure.

Grid level Analytical pst (Pa) Numerical pst (Pa) ϵ
1 2307.45 2304.53 0.0012669
2 2307.45 2306.6 0.0003698

order of convergence ñ 1.7765

4 COMPLETE INFLATABLE STRUCTURE CONFIGURATION

This section describes a new test-case, similar to the previous one used for the con-
vergence analysis, where is also modelled the rear part of the inflatable structure. The
presented geometry is inspired by the ESA Efesto capsule engineered for re-entry into
Mars atmosphere. The initial geometry is considered fully inflated at an inflation pres-
sure of 20 kPa (this is a typical value for the inflation pressure). Since the Finite Element
Model (FEM) is built by assuming this configuration, the structure must exhibits a cer-
tain stress state determined by this configuration. Thus, we derive the stress following
this procedure:

1. start from the inflated configuration;

2. compute the solution by imposing the maximum inflation pressure without FSI;

3. extract the stress state.

This stress state is then integrated into the FEM model using the ”ISTRESS” function
available in MSC Nastran. Consequently, when the inflation pressure is set to 20 kPa,
the shield does not deform, while applying a lower inflation pressure the shield deflates.

Figure 8 depicts the structural model, which employs a quadrilateral mesh on the
inflatable part, in contrast to the CFD solver that requires triangular elements, as in the
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Figure 7: Computational domain

Figure 8: Inflatable shield surface: structured grid for FEM
solver

Figure 9: Rear view of the compu-
tational domain in Fig.7

previous case. Consequently, as explained in Sec. 2, the squares of the structural mesh
are split into triangles to preserve the same nodes, thus avoiding interpolation to transfer
data from the CFD to the structural solver.
For this test case, the computational domain shown in Fig.7 and 9 is considered. Also in
this case, numerical computation involves Martian atmosphere with the same freestream
conditions described in the previous test-case, along with two different inflation pressures:
2600 Pa and 20 kPa. The former was chosen to represent a deflated scenario, while the
latter represents the fully inflated structure. Figures 10 and 11 show the solutions in
terms of pressure field on the symmetry plane YZ: as in the previous test-case, similar
considerations regarding solution quality improvement due to S-F can be made evaluating
these images.
Figure 12 illustrates the effect of the MSC Nastran ISTRESS function: at pressures below
20 kPa, the structure tends to deflate, as observed in the cases represented by the black
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Figure 10: Pressure field on
plane YZ (pinf = 2600Pa)

Figure 11: Pressure field on
plane YZ (pinf = 20kPa)

Figure 12: Side view of
the structure at different
inflation pressures

(2600 Pa) and blue (10 kPa) lines, while remaining unchanged at 20 kPa. It is noteworthy
that the external fluid dynamic field does not exert a significant influence in this scenario,
as the pressure field exhibits values lower than 2300 Pa. To observe its effect, lower
inflation pressures should be considered.
Inflatable shields lend themselves well to drag modulation techniques, which amounts to
alter the drag during a reentry or aerocapture maneuver to achieve trajectories with less
critical thermal loads or to compensate the unforeseen variations in atmospheric density
on the target planet. For example, Table 3 shows the different values of aerodynamic drag,
computed using D = 1

2
ρ∞CDAU

2
∞, for each configuration in Fig. 12 and the percentage

variation w.r.t. the fully inflate shield. Since by continuously modulating the inflation
pressure of the shield we modify the product CDA, we are able to continuously change
the spacecraft drag in order to follow a target trajectory, as proposed in Ref. [15].

Table 3: Aerodynamic drag of three different inflation pressures

pinf (kPa) D (N) ϵ
20 124142.47
10 104933.69 15.47%
0.26 88031.52 29.08%

5 CONCLUSION AND FUTURE WORK

In this study a novel numerical technique for computing fluid-structure interaction on
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inflatable structures in high speed flows has been presented. This methodology derives
from shock-fitting methods that explicitly identify and track the motion of gas-dynamic
discontinuities within the flow-field, modelling them as internal boundaries in the com-
putational domain. Following this approach, a similar model for describing inflatable
structures was considered for thin structures of negligible thickness. Therefore, we de-
veloped a solver for computing fluid-structure interaction problems that couples a non
linear structural solver with a shock-fitting gas-dynamic code, developed in the past years
by some of the authors. By doing so, we were capable of exploiting the advantages in
terms of flow-field solution quality provided by shock fitting, as highlighted by the two
test-cases included in this paper. An analysis of both local and global grid-convergence
of this novel technique showed that observed order-of-convergence was very close to the
theoretical one: moreover, it showed small errors even on the coarsest grid level. Further
developments of the proposed technique, such as viscosity effects in the flow-field as well
as non-isotropic material behaviour for the wall, will be subject of future work.
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