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SUMMARY

This paper describes a number of triangular and quadrilateral plate and shell
clements derived via Reissner-Mindlin plate theory and mixed interpolation. It
is shown how by introducing the adequate constrains the original thick plate
clements evolve into DK forms adequate for thin situations only. This evolution
process allows to revisite some classical elements like the Morley triangle and
also to derive simple plate and shell triangles and quadrilaterals with only
translational degrees of freedom as nodal variables.

INTRODUCTION

Considerable effort has been put in recent years in the development of
plate and shell elements based on the so called Reissner-Mindlin plate theory
[1]. The attractive feature of this theory is that it allows for an independent
approximation of the deflection and the rotation fields, thus overcoming one
of the main drawacks of standard Kirchhoff’s theory [1]. Moreover, shear
deformation is naturally taken into account in Reissner-Mindlin theory and,
thus, the corresponding plate and shell elements are in principle applicable to
both thick and thin situations. It is however well known that overstiff solutions
are obtained when Reissner-Mindlin elements are used to solve very thin cases.
This “locking” effect is due to the progressibly increasing influence of the shear
stiffness terms as the thickness reduces. This leads to an undesirable larger global
stiffness which tends to an infinite value in the thin limit. Locking was originally
overcome by means of the so called selective integration (SI) techniques [1] which
basically use a reduced quadrature for integrating the shear stiffness terms. This
simple procedure can in some occassions modify the proper rank of the global
stiffness matrix leading to the appearance of spurious mechanisms. The more
popular alternative to SI techniques is the use of mixed interpolations where the
deflection, the rotations and the shear forces (and sometimes also the bending
moments) are independently interpolated. The analogy of this procedure with SI
techniques was soon established and it has opened a wide scope for development
of new plate and shell element families which can “safely” operate in both thick
and thin regimes [1].

Reissner-Mindlin theory can be taken as the starting point for the
development of “pure” thin plate (or shell) elements, i.e. elements satisfying



Kirchhoff’s orthogonality conditions for the normal vector. A well known
technique is based on the introduction of Kirchhoff’s constraints at a number
of discrete element points so that the transverse shear strain is effectively zero
over the element. Some of the so called DK elements, like the DK triangle [1,
2, 3], have enjoied great popularity in the last decade among plate and shell
practitioners .

This paper reviews the derivation of different Reissner-Mindlin and DK
element families for plate and shell analysis. It is shown in particular how mixed
Reissner-Mindlin thick plate elements “degenerate” into thin DK forms in a
natural and simple manner. The first element family starts from compatible
quadratic triangle and quadrilateral elements based on Reissner-Mindlin theory
and a mixed interpolation. By introducing adequate Kirchhoff’s constraints these
element evolve naturally into standard DK triangular and quadrilateral forms.

The second element family starts from simple incompatible linear triangular
and quadrilateral Reissner-Mindlin elements. The introduction of Kirchhoff’s
constraints leads in this case to the well known Morley triangle [4] and also to
its corresponding quadrilateral form. The introduction of new constrains on the
rotations field leads to the simplest elements of this family, i.e. the linear triangle
and bi-linear quadrilateral with the deflection as the only nodal variable [5, 15].
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Figure 1. Definition of deflection and rotations in a plate

COMPATIBLE PLATE ELEMENT FAMILIES. FROM QUADRA-
TIC REISSNER - MINDLIN ELEMENTS TO THE DKT AND DKQ

Figure 1 shows the geometry of a plate with the sign convention for the
deflection w and the two rotations 6z and 6y.

Table I shows the basic equations of Reissner-Mindlin plate theory [1] defining
the curvature and shear strain fields, the constitutive relationships and the
principle of virtual work for a distributed loading g.

An independent finite element interpolation will now be assumed for the
deflection, the rotations and the shear strains as
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Table I. Basic equations of Reissner-Mindlin plate theory

where w;, 0; and «; are nodal values of the deflection, the rotation and the
transverse shear strains, respectively and Ny, Ny, and Ny, are the corresponding
interpolating functions. »

The conditions which must be satisfy these three fields to give a stable and
locking free solution are (1, 6-8]

ng +ny 2 ny nyan (2)
where ny, ng and n, denote the number of variables involved in the interpolation
of each field (after discounting the prescribed boundary values). Condition
(2) must be satisfied for any element (or patch of elements) as a necessary
(although not always sufficient) requirement for stability of the solution, whereas
the convergence should always be verified via the patch test [1].



TQQL quadratic triangle

The first element considered is a 6 node Reissner-Mindlin plate triangle

(Figure 2) with the following interpolation fields:

1) A complete quadratic field is used to interpolate the deflection and the
rotations in terms of the nodal values in the standard manner

2) A linear interpolation for the transverse shear strains is defined in the natural
coordinate system as

Ve = a1 + agf + agn
Tn = ag + a5 + agn (3)
The parameters a; are obtained by sampling the shear strains at the six

Gauss points along the sides. This allows to express 7¢ and 7y in terms of the
six tangential shear strains 7, along the element sides.
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Figure 2. TQQL and TLQL Reissner-Mindlin plate elements

The relationship between the tangential shear strains and the nodal
displacements is obtained at element level by imposing the condition s — %133 +
0s = 0 along the element sides in a weighted residual sense as

/lWl'ys—aa—w—i—Gsts:O (4)
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where s denotes the side coordinate, [ is the side length and W are appropriate
weighting functions. The simplest choice is point collocation, however other
alternatives are possible [1, 6-8]. Transforming the natural shear strains to the
cartesian system gives the final expression between the shear strain vector 7 of
Table I and the nodal displacement vector for the element a®) as

v = Bsal® (5)

Matrix By is termed substitute transverse shear_stra,in matrix (sometimes
called also B-bar matrix). The detailed derivation of Bs can be found in [1, 6-8].



The element bending and shear stiffness matrices are obtained now by -

K9 = /A " BTD,Bsdd ; K = ” BID;BsdA (6)

where A(©) is the element area, B is the substitute shear strain matrix of eq. (5)
and By is the standard bending strain matrix given by Bj = [Bp,, Bg, - - - By, ]
where n is the number of element nodes and By, = LN, (see Table I for definition
of L).

The computation of the integrals in (6) requires in this case a 3 point
numerical quadrature.

This element was originally developed by Zienkiewicz et al. [7] and it is
termed here TQQL (for Triangle, Quadratic deflection, Quadratic rotations and
Linear transverse shear strain fields). The TQQL element satisfies eq. (2) for all
meshes and it behaves well in all examples analyzed [6-9] although a too flexible
behaviour was found for coarse meshes. This can be improved as shown next.

TLQL quadratic triangle

An enhanced version of the TQQL element can be derived by constraining the
normal rotation to vary linearly along the sides (Figure 2). This idea originally
proposed in [7] was the basis towards the derivation of a new plate triangle with

the following assumed fields:
3
1) The deflection varies linearly as w = > Liw;
=1
2) The following incomplete quadratic interpolation is used for the rotations

3
0= Z L;0; +4L1Loe19Abs, + 4L9L3eo3Abs; + 411 Lye13Abs, (8)
1=1

In above L; are the standard linear shape functions of the 3 node triangle,
A, is a hierarchical tangential rotation at the mid-side points (Figure 2) and
e;j are unit vectors along the side directions. Eq (8) defines a linear variation
of the normal rotation along the sides, whereas the tangential rotation varies
quadratically.

3) The transverse shear strains vary linearly as (8, 10]
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where 7;']' are the tangential shear strains at the mid point of side ;.
Eq.(4) is now used to obtain the relationship between the tangential shear
strains and the nodal displacements. Choosing W =1 in (4) gives [8]

1 Lij 1 2 lij
§



where zg =13 =1 and zg = /2, I is the length of side ij and k = 3+ ;.
Combining egs. (9) and (10) and transforming the natural strains to the
cartesian system gives finally an expression identical to (5). Full details
of the derivation of matrix B in this case can be found in [6, 8]. It can
verified that the so called TLQL element (Linear w, Quadratic  and Linear
v) satisfies eqs. (2) for all cases. Also note that a 3 point quadrature is
required for integrating all terms of the stiffness matrix to prevent spurious
mechanisms. The extension of the TLQL to the shell case is straightforward
and details can be found in [6, 16]. The performance of the TLQL element
is excellent for plate and shell analysis and many examples are given in [6,
8, 11]. This element is the basis for the derivation of a 9 d.o.f. DK plate
triangle as shown is next section.
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Figure 3. DKT and DST plate elements

Derivation of a DKT plate triangle

The TLQL evolves naturally into a 9 d.o.f. DK plate triangle (hereafter
termed DKT) as follows. The transverse shear strains are made zero over the
element by constraining the tangential shear strains at the element mid-sides to
a zero value (Figure 3). This allows to eliminate the hierarchical side rotations
in terms of the side degrees of freedom as

3

.. 3
ij

Substituting (11) into (8) gives the new rotation field as

3 w;
0= ZNiage) ;=1 6, (12)
=1 Oy;

with
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where s is the 2 x 2 unit matrix. Eq. (12) allows to obtain the element bending
stiffness matriz using eq. (6)1. Again a 3 point quadrature is required in this
case. It is interesting to note that the resulting element is identical to the popular
DKT element originally presented by Batoz et al. [2, 3] although the derivation
shown here is much simpler.

Derivation of a 9 d.o.f. triangle with shear deformation

The hierarchical mid-side rotation in the TLQL element can be eliminated
by equaling the mid-side tangential shear strains to those given by the standard
bending moment-shear equilibrium relationship, i.e.

4 =D:lq=-D; 1L m = —-D; 'LTD;B;a® (14)
where L can be deduced from Table I.

Eq. (14) can now be particularized to give the tangential shear strain at
the mid-side points. Equaling the resulting expression to that given by eq.(10)
provides the three equations necessary for eliminating the three hierarchical
rotations Af, . The resulting 9 d.o.f. element - termed DST (for Discrete Shear
Triangle) is incompatible and it incorporates shear deformation effects (Figure
3). This approach was originally proposed by Batoz et al. [13, 14] and Katili
[18] to derive similar plate elements.

Some elements of the Reissner-Mindlin and DK quadrilateral family

The simplest Reissner-Mindlin (mixed) plate quadrilateral is the four node
with bilinear interpolation of deflections and rotations and the following linear
shear strain field

ve=ai+agn , Yp=o03+asd (15)

Parameters a; can be obtained via eq. (4). The simplest choice for W in this
case is point collocation. The integration of the stiffness matrix requires a full
2 x 2 quadrature. This element termed here QLLL (for Quadrilateral and Linear
deflection, rotation and shear fields) was originally proposed by Dvorkin and
Bathe [12], it satisfies egs. (2) (except for a four element patch) and it behaves
very well for thick and thin plate and shell analysis. A detailed description of
this element can be found in [1, 6, 8, 12].
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Figure 4. QLLL, QLQL and DKQ plate elements

16 d.o.f. QLQL plate quadrilateral

This is an element with identical features to the TLQL of a previous section.
The interpolating fields are the following:
1) The deflections are bi-linearly interpolated in terms of the corner values in
the standard manner [1].
2) The following incomplete quadratic field is chosen for the rotations

4

0= 3" Nibi+ 2 F(E)(L —n)e1aAeg + ZF(n(L+ E)ensAbug
=1
+ O+ mersAby + 5 £0)(1 =~ Dersbi, (16)

where N; are bilinear shape functions, f(z) =1 — z? and e;; and Afs; have
the same meaning as in eq. (8).

3) The transverse shear strains are assumed to vary linearly as is eq. (15) for
the QLLL element. A 2 x 2 quadrature 1s used for all terms of the stiffness
matrix.

Examples of the good behaviour of this element can be found in [6, 8, 11].

12 d.o.f. DK and DS plate quadrilaterals

The QLQL plate element is the basis for deriving a DK quadrilateral with 12
d.o.f. The approach follows precisely the lines explained for deriving the DKT in
a previous section; i.e. the condition of zero tangential shear strain along the four
element sides is used to eliminate the hierarchical tangential side rotations Afs;
in terms of the corner degrees of freedom. Details of the resulting interpolating
functions for the rotation field can be found in [6].

The procedure explained previously to derive a 3 node triangle incorporating
shear effects (DST element) can be followed now again to obtain an equivalent
DSQ 12 d.o.f. quadrilateral. This element has been formulated by Onate and
Castro [11] and Katili [18]. However its efficiency 1s not comparable to the simpler
QLLL element.



NEW INCOMPATIBLE TRIANGULAR AND QUADRILATERAL
PLATE ELEMENTS

Linear 9 d.o.f. TLLL Reissner-Mindlin plate triangle

Ofiate et al. [10] have recently proposed a simple lower order plate triangle
based on the following fields:
1) The deflection 1s linearly interpolated in terms of the corner values.
2) The rotations are also linearly interpolated in terms of the mid-side node
values as (Figure 5)

6
6=> Nib; ; 6;= [0z;, 0y:)7 (17)
1=4

with
Ny=1-2 , Nsg=2+22m—1 , Ng=1-2¢

For convenience the element displacement vector is now defined as
ale) = [w1, we, w3, 9:{, ot Gg]T. Eq. (17) defines an incompatible rotation
field with interelemental compatibility satisfied at the mid-side nodes only.
The good performance of the element is however ensured via satisfaction of
the patch test.

3) The assumed transverse shear strains field is also linear and it coincides with
that expressed by eq.(9) for the TLQL element. The form of the Bs matrix
is simply given in this case by [10]

B -1 1 0 =z19 w12 0 0 0 0
B,=J!s|0 —-a a 0 0 azgg ays3 0 0 (18)
-1 0 1 0 0 0 0 213 Y13

where a = 1/v/2, Tij = T — Tj Yij = Yi — Yj> S is given by eq.(9) and J is
the standard Jacobian matrix.

Examples of the good behaviour of this element (termed TLLL due to the
linearity of all fields) for plate and shell analysis can be found in [6, 10, 15].

The Morley element revisited

The DK version of the TLLL element is simply obtained by constraining the
three tangential shear strains along the sides to a zero value. This allows to
climinate the three tangential side rotations giving a DK triangle with 6 d.o.f.
(three corner deflections and three normal rotations along the sides (Figure 5)).

It can be verified that this element is identical to the classical Morley triangle
[4]. Note however that the derivation follows here a different approach. The
resulting bending strain matrix 1s extremely simple and its expression is given
below.

(a19 —a13) (ag3 —a12) (a13 —ag3)  c12 c93  —C13
B, = | (a13 —a12) (a1g—ag3) (agg—a13)  bi2 b3 —biz | (19)
(di3 —d19) (dig—do3) (dog —di3) —2a13 —2a3 —2a13
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The element bending stiffness matrix is obtained by eq.(6);. One point
quadrature suffices in this case.

From the incompatible 12 d.o.f. linear quadrilateral to a 8 d.o.f.
Morley quadrilateral

The extension of the incompatible TLLL element to a new 12 d.o.f.
incompatible thick plate quadrilateral is straight-forward. This element (termed
here QLLL-I) has now four corner deflections defining a bilinear deflection field
and two rotations at each mid-side point defining an incompatible linear rotation
field (Figure 5). The shear strains are linearly iterpolated in terms of the
tangential values at the mid-side nodes as for the original QLLL element (see eq.

(15)).



The condition of zero tangential shear strain at each mid-side node allows
to eliminate the tangential rotations at these nodes leading to an 8 d.o.f. thin
plate quadrilateral. This element can be considered a quadrilateral version of

the classical Morley triangle (Figure 5).
The cost-efficiency of these two elements still needs to be verified through

numerical experiments.

Derivation of thin plate triangles and quadrilaterals with one degree
of freedom per node

Ofiate and Cervera [5] have recently presented a procedure for deriving thin
plate bending elements with the deflection as the only nodal variable. The
starting point is the following mixed set of equilibrium equations

/ /A sl DyrdA = / /A SwqdA (21)

/ /A W[k — Lw]dA =0 (22)

Eq.(21) expresses the PVW for the thin plate case, whereas eq.(22) defines

the curvature-deflection relationship in a weighted residual sense with
~ 62 52

L=[-32 —ap
weighting functions W = I over appropriate subdomains As where I1s the 3 x 3

—2%}? Integrating by parts eq. (22) and choosing the

unit matrix leads to
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Eq. (23) relates the curvature field within A with the deflection gradient
along its boundary I's. Obviously, these gradients are discontinuous when a
Cj continuous field is chosen for the deflection and some problems arise in the
computation of the boundary integral in (23). These problems can be overcome
by smoothing the deflection gradient over element patches (the simplest option
being nodal averaging). Further details on the smoothing procedure can be found
in [5].

The discretized systems of equations is obtained now by choosing two
independent interpolating fields for the deflection and the curvatures as

w=Nuw® and &= Nyk(e) (24)

The simplest option is the choice of a Cj continuous field for w and a
discontinuous field for x. However many other alternatives are possible [5].
Substituting (24) into (23) allows to obtain the discretized curvature-deflection
relationship as kK = Bbv_v(e) Substituting this expression into (21) gives the final
stiffness equations relating external forces and nodal deflections as Kyw = f
where the bending stiffness matrix is given by eq. (6);. Full details of this
approach can be found in [5].



The simplest elements of this family are the three node triangle and the
four node quadrilateral with 3 and 4 d.o.f., respectively (termed hereafter BPT
and BPQ for Basic Plate Triangle and Quadrilateral respectively, Figure 6).
A description of the BPT including the explicit form of its stiffness matrix can
be found in [5]. Both BPT and BPQ plate elements can be derived from the
Morley triangle and quadrilateral elements presented in previous sections, simply
by constraining the normal rotation at the mid-side nodes to take the following

value

o — 1|22 ow
=5 ol on

| (25)

where %%Ll and %%I? denote the values of the discontinuous normal deflection
gradient at the two clements sharing the mid-side node .

Obviously many other smoothing alternatives are possible and some are
discussed in [15] where new thin plate and flat shell elements with only
translational degrees of freedom are proposed.

Variables
O w

BP

Figure 6. BPT and BPQ elements and patches used for smoothing of the
discontinuous deflection gradient along the sides

CONCLUDING REMARKS

This paper shows the potential of combining Reissner-Mindlini theory and
mixed interpolations for deriving different clement families adequate for thick
and thin plate (and shell) analysis.

Obviously the list of elements presented here is by no means exhaustive and
many new and interesting clements are available. Among these we note the
simple Q4BL and T3BL plate elements developed by Zienkiewicz et al. [19]
and Taylor and Auricchio [20] using an interpolation linking the deflection and
rotations fields, and the family of plate and shell elements developed by Van
Keulen et al. [21, 22] using a mixed hybrid approach.
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