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Abstract The application of the semi-Lagrangian particle
finite element method (SL–PFEM) for the seakeeping sim-
ulation of the wave adaptive modular vehicle under spray
generating conditions is presented. The time integration of
the Lagrangian advection is done using the explicit integra-
tion of the velocity and acceleration along the streamlines
(X-IVAS). Despite the suitability of the SL–PFEM for the
considered seakeeping application, small time steps were
needed in the X-IVAS scheme to control the solution accu-
racy. A preliminary proposal to overcome this limitation of
the X-IVAS scheme for seakeeping simulations is presented.

Keywords Particle finite element method ·
Semi-Lagrangian formulations · Seakeeping

1 Introduction

The particle finite element method (PFEM) [18] is a versa-
tile framework for the analysis of fluid–structure interaction
problems. The PFEM combines Lagrangian particle-based
techniques with the advantage of the integral formulation of
the Finite Element Method (FEM). It has been shown [13–
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15,21,27,28] to successfully simulate a wide variety of
complex engineering problems, e.g., free-surface/multi-fluid
flows with violent interface motions, multi-fluid mixing and
buoyancy-driven segregation problems etc. The latest devel-
opment within the framework of the PFEM is the X-IVAS
(eXplicit Integration along the Velocity and Acceleration
Streamlines) scheme [16]. It is a semi-implicit scheme built
over a semi-Lagrangian (SL) formulation of the PFEM.

In this paper we present the application of the SL–PFEM
using the X-IVAS scheme1 to the seakeeping simulation
of the wave adaptive modular vehicle (WAM-V) [32]. The
objective of the WAM-V is to be a lightweight watercraft
capable of moving fast and efficiently on the surface of the
sea. The motivation is that this technology could someday
be used for quickly deploying research and reconnaissance
equipment to far-flung locations and for search-and-rescue
operations in the sea. To operate safely close to the shore, the
WAM-V has an inflatable catamaran-style hull that displaces
only a few feet below the waterline. To travel efficiently with
low wave resistance in rough seas, it is designed to have a
flexible wave-adaptive sub-structure. This feature allows it
to surf on top of the waves rather than cut through them.

Objective The purpose of this paper is first to show the
suitability of the SL–PFEM method to simulate the afore-
said seakeeping problem under spray generating conditions
and secondly, to identify some limitations of the SL–PFEM
related to the trajectory approximation obtained using the
X-IVAS schemewhen the underlying physics imposes wave-

1 The SL–PFEM method using the X-IVAS scheme has been called
the particle finite element method second generation (PFEM-2) by the
original authors [16]. However, we choose the former nomenclature
(SL–PFEM + X-IVAS) to acknowledge its connection (see Sect. 2)
with semi-Lagrangian schemes.
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likemotion. Finally, thework presents a preliminary proposal
to overcome the identified limitation.

Seakeeping simulations usually involve water wave
motion. Stokes waves propagating on the water surface is
an interesting example where time integration schemes are
coerced into using small time steps. The X-IVAS scheme
is no exception; the hypothesis—the streamlines are a good
approximation to the pathlines, fails for this example. Using
second-order Stokes wave propagation as the model problem
we illustrate the particle trajectory approximation in the X-
IVAS scheme which explains why the underlying hypothesis
fails. An alternative to the X-IVAS scheme is where the parti-
cles are driven by the acceleration in the latest configuration.
The trajectory approximation driven by acceleration in the
latest configuration is illustrated which shows a remarkable
improvement compared to the one obtained by the X-IVAS
scheme.

2 Semi-Lagrangian formulation

Semi-Lagrangian schemes can be classified into two groups
based on the way the problem variables are stored in the for-
mulation: theEulerian storage (ES) group and theLagrangian
storage (LS) group. However, the keyword semi-Lagrangian
almost always points to ES–SL schemes in the literature. The
ES–SL schemes are extensions of the Courant–Isaacson–
Rees [4] method for hyperbolic equations. Sawyer [29] and
Robert [26] made seminal contributions to ES–SL schemes.
ES–SL schemes are unconditionally stable and therefore
allow for large time steps. The solution is defined on a mesh
and the nodal values are stored. Lagrangian particles are used
as an auxiliary tool to compute the advective time evolution
of the variables. For each time step (say tn to tn+1) particles
are initially placed at the mesh nodes and are transported
backwards in time (for tn+1 − tns) along the pathlines pass-
ing through these nodes at time tn+1. The tn solution at the
terminal positions are then assigned to the tn+1 nodal values.
The backward trajectories seldom end at existing nodes. The
ES–SL schemes provide models for the a priori unknown
pathlines and to determine the tn solution at the terminal
positions.

The simplest first-order ES–SL scheme traces back a
straight line characteristic and use piecewise-linear inter-
polation of the tn solution. Min and Gibou [22] proposed
a second-order scheme by numerically tracing back curved
characteristics and using higher order polynomial interpola-
tion. Dupont and Liu [7] combined a first-order SL scheme
with the back and forth error compensation and correction
(BFECC) method [6] to obtain a second-order uncondition-
ally stable scheme. Selle et al. used a similar approach to
create a second-order scheme [30] using the MacCormack
method [20] instead of the BFECC method. The initial con-

dition and the solution evolution in the ES–SL schemes are
known up to the spatial resolution of a fixed mesh. Hence,
the overall accuracy of the ES–SL schemes is subjected to
numerical erosion.

On the contrary, a majority of the solution variables are
stored with the particles in the LS–SL schemes and their
advective evolution is computed in a Lagrangian manner.
Necessarily implicit variables (NIV) like the pressure are
defined on the mesh and are stored at the nodes. Implicit cor-
rections (e.g., action of viscosity) and the evolution of NIV
(e.g., pressure) are computed on the mesh. For each time step
(say tn to tn+1) particles are transported forward in time (for
tn+1 − tns) along the pathlines passing through their respec-
tive positions at time tn . The solution variables carried with
the particles are updated by interpolating (usually piecewise-
linear) implicit corrections (if any) at the updated locations.

The LS–SL schemes have their origin in the Particle-in-
Cell (PIC) method [8,11]. However the PIC method is an
ES–SL scheme (solution is stored on the mesh) and it is not
suitable to simulate incompressible flows. Thematerial-point
method [31] (MPM) is an improvement of the PIC method
wherein each particle is endowed with a fixed point mass,
a position, a stress and specific material parameters. In the
MPM, the pathlines are approximated by tracing forward a
simple straight line characteristic (see Zhang et al. [33] and
Gelet et al. [9]).

The X-IVAS scheme is a LS–SL scheme wherein the
streamlines computed using the tn solution are used to
approximate the pathlines. Unlike in the MPM, here par-
ticles carry with them only the intrinsic material and flow
properties. This permits the user to insert or remove parti-
cles without affecting the extrinsic flow properties (e.g., total
mass). Several benchmark CFD and FSI examples were sim-
ulated [13]with the SL–PFEMusing theX-IVAS scheme and
taking very large time steps, e.g., 10–15 times the standard
Courant–Friedrichs–Lewy (CFL) stability limit [3]. Therein
the simulation results of multi-fluid incompressible flows
were compared [13] with those obtained with OpenFOAM®

(openfoam.org). For similar accuracy and using a desktop
computer for the simulations, the SL–PFEM using the X-
IVAS scheme was reported [13] to be twice faster than
OpenFOAM®. The latter uses the Finite Volume Method
(FVM) for discretisation and the Volume Of Fluid (VOF)
method for capturing the multi-fluid interfaces. Gimenez
et al. did [10] similar performance studies for incompressible
flow simulations using the SL–PFEM on parallel computers.
They reported strong scalability of the SL–PFEM at par with
OpenFOAM® (using the solver pimpleFoam); however,
a three-fold gain in speed (wall-time) was reported for the
former for a chosen level of accuracy.

Celledoni et al. showed [2] that second-order ES–SL
schemes are effectively second-order approximations to stan-
dard exponential integrators. A similar connection between
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the X-IVAS scheme (a LS–SL scheme) and exponential inte-
grators was pointed out [23] by the first author, albeit using
heuristic arguments. Exponential integrators are designed to
integrate stiff initial value problems with large time-steps.
This connection explains why the SL schemes admit very
large time-steps without deteriorating the solution accuracy.

3 Semi-Lagrangian particle finite element method

Notation Vectors are written using bold italic font andmatri-
ces are written using bold upright font. The independent
variables in Lagrangian kinematics are {λ, t}, where λ rep-
resents a label to identify particles and t represents the time
elapsed after labeling. The primary dependent variable is the
fluid particle trajectory denoted as X(λ, t). The independent
variables in Eulerian kinematics are {x, t}, where x denotes
the spatial coordinates. The primary dependent variable is
the fluid velocity u(x, t).

Consider the Eulerian description of the incompressible
Navier-Stokes equations.

∂

∂t
u + (u · ∇)u − ν�u + ∇p = f (1)

∇ · u = 0 (2)

where ν is the kinematic viscosity and p(x, t), f (x, t) are the
pressure (scaled by the density) and the external acceleration
fields, respectively. The effective acceleration field a(x, t)
in the fluid domain is obtained from the momentum balance
equation of the flow.

a =
[

∂

∂t
+ u · ∇

]
u = ν�u − ∇p + f (3)

Note that the functional dependence on the independent
variables is suppressed in Eqs. (1), (2) and (3) for brevity.

The fundamental principle of kinematics relates the
Eulerian description of the flowwith the Lagrangian descrip-
tion as follows.

d

dt
X(λ, t) = u(X(λ, t), t) (4)

d2

dt2
X(λ, t) = a(X(λ, t), t) (5)

X-IVAS scheme The basic idea is to update the fluid particle
position and velocity within a time-step tn ≤ t ≤ tn+1 using

d

dt
Xh(λ, t) = uh(Xh(λ, t), tn) = AnXh(λ, t) + bn (6)

d

dt
Uh(λ, t) = ah(Xh(λ, t), tn) = CnXh(λ, t) + dn (7)

where uh(x, t) and ah(x, t) denote spatially continuous
piecewise linear approximations of the velocity and accel-

eration defined on a background simplicial mesh. Note that
uh and ah at time t = tn are used. It follows that uh(x, tn)
and ah(x, tn) can be expressed locally as linear functions of
x, i.e. uh(x, tn) = Anx + bn and ah(x, tn) = Cnx + dn .
The matrices An , Cn and the vectors bn , dn are spatially
piecewise constant and depend on the time tn . The parti-
cle trajectory and its velocity computed in this manner are
denoted as Xh(λ, t) and Uh(λ, t), respectively.

Nielson and Jung presented [24] formulas in 2D and 3D
to compute the closed-form analytical solution of tangent
curves for piecewise linear vector fields defined over simpli-
cial meshes. Thus, the Nielson–Jung formulas can be used
to compute the analytical solution of (6). Idelsohn et al. pre-
sented [16] a procedure to compute the analytical solution of
(6) and (7) in 2D. However the Nielson–Jung formulas and
the calculation procedure described by Idelsohn et al. to com-
pute the analytical solution are not numerically stable; loss
of significance occurs due to subtractive cancellations near
removable singularities [12,23]. Recently, the first-author
presented [23] numerically stable formulas in 2D and 3D
for the closed-form analytical solution of (6) and (7). How-
ever, due to ease of implementation numerical sub-stepping
procedures based on simple finite difference schemes (e.g.
forward Euler) are often used to integrate Eqs. (6) and (7).

We briefly describe the algorithm (see Table 1 for an out-
line) to implement the SL–PFEM using the X-IVAS scheme.
First the Lagrangian advection (see [23, Sect. 3] for details)
of the particles: Xh(λ, tn) → Xh(λ, tn+1) andUh(λ, tn) →
Uh(λ, tn+1) are done using Eqs. (6) and (7). Then we project
the data advected with particles onto a background finite ele-
ment (FE) mesh. The data include the particle velocities,
identities2 and other problem dependent intrinsic variables.
Using the particle velocities projected onto the FE mesh as
the solution at the start of the time intreval tn ≤ t ≤ tn+1,
we solve the Stokes equations on the background FE mesh.
For instance using the backward Euler time integration the
semi-discrete Stokes system to be solved is

ûh(x, tn+1) = Ph Uh(λ, tn+1) (8)

uh,n+1 − ûh,n+1

�tn
− ν�uh,n+1 + ∇ph,n+1 = f h,n+1 − ah,n

(9)

∇ · uh,n+1 = 0 (10)

where Ph is a projection operator from the particles to the
FE mesh, uh,n+1 = uh(x, tn+1), ûh,n+1 = ûh(x, tn+1),
ph,n+1 = ph(x, tn+1), ah,n = ah(x, tn) and f h,n+1 =
f h(x, tn+1). We refer to earlier papers [16,17,19] on the

2 In multi-fluid flows, the interface between multiple fluids is recon-
structed [1] on the FE mesh using the advected particle identities.
Appropriate enrichments are determined [1] for the pressure FE shape
functions about the interface.
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Table 1 Algorithm to
implement the SL–PFEM using
the X-IVAS scheme

1. Compute uh(x, tn), ph(x, tn) → ah(x, tn) using the weak form of Eq. (3).

2. Integrate Xh(λ, tn) → Xh(λ, tn+1) using Eq. (6).

3. Integrate Uh(λ, tn) → Uh(λ, tn+1) using Eq. (7).

4. Transfer Uh(λ, tn+1) → ûh(x, tn+1) using Eqs. (11) and (12).

5. Integrate ûh(x, tn+1), ah(x, tn) → uh(x, tn+1), ph(x, tn+1) using Eqs. (9) and (10).

6. Update Uh(λ, tn+1), ûh(x, tn+1), uh(x, tn+1) → Uh(λ, tn+1) using Eq. (13).

7. End of time step. Execute step 1 for next time step.

SL–PFEM for several alternate time integration strategies
for the Stokes system to be solved on the background mesh.

Usually projection is an implicit operation which incurs
a notable cost of inverting a global matrix. To avoid this
cost an explicit kernel smoothing operator is used instead
of the projection operator in Eq. (8). Thus, ûh(x, tn+1) is
approximated as the kernel smoother of the set of discrete
data Uh(λ, tn+1) stored with the particles.

ûh(x, tn+1) =
∑
λ

Kh(x, λ)Uh(λ, tn+1) (11)

Kh(x, λ) =
∑
a

Na(x)
Wa(Xh(λ, tn+1))∑
λ̄ W

a(Xh(λ̄, tn+1))
(12)

where Na(x) and Wa(x) are the standard FEM shape func-
tion and an appropriate weighting function associated with
the FEM node with index a. λ and λ̄ denote particle identity
indices. We have used Wa(x) = Na(x) in the simulations.

Finally the particle velocities are updated by the increment
uh,n+1 − ûh,n+1 evaluated at the particle positions.

Uh(λ, tn+1) = Uh(λ, tn+1)

+ uh(Xh(λ, tn+1), tn+1) − ûh(Xh(λ, tn+1), tn+1)

(13)

Remark The kernel smoothing technique introduces numer-
ical diffusion when data is transfered from the particles to
the mesh. However, it must be noted that the particle data
is not completly overwritten. Note that in Eq. (13) only the
increment uh,n+1 − ûh,n+1 is transfered back to the particle
which serves as a hedge against numerical diffusion.

4 Seakeeping simulation of the WAM-V using the
SL–PFEM

Experimental testing of the WAM-V prototype revealed an
operability problem—at high speeds the hull generates an
intense water spray (see Fig. 1). Beyond a critical speed the
spray leads to reduced visibility and the operator (or the

Fig. 1 Spray generated by theWAM-V hull at 21 knots [25]. Courtesy
of Prof. Mehdi Ahmadian, VirginiaTech, USA

reconnaissance equipment) will get drenched. Both repre-
sent operational and also safety hazards, especially in cold
climates where there is a heightened risk of marine ice for-
mation.

Computer simulations are highly valuable to evaluate a
wide range of ideas prior to construction and prevent the cost
of purchasing components. The results of such simulations
assist engineers in the decisionmakingprocess towards better
hull design that control and mitigate the spray formation.

The inflatable hull of the WAM-V is designed such that it
displaces just a few feet below the waterline. It is reasonable
to assume that the waterline never reaches the sub-structure
connecting the hulls during themotion of theWAM-V.There-
fore we just simulate the response of the free surface of the
water due to the action of the WAM-V hull. A qualitative
understanding of the physical conditions leading to spray
generation can be obtained by simulating the action of just
one hull.

The domain is a 3D box with straight walls (see Fig. 2)
with dimensions: 9, 3 and 2 m along the x , y and z axes,
respectively. The coordinates (0, 0,−1) and (9, 3, 1) repre-
sent two diagonally opposite corners of the domain. The face
with coordinates (0, 0,−1), (9, 0,−1), (9, 0, 1) and (0, 0, 1)
represents the plane of symmetry of theWAM-V. The geom-
etry of the hull considered in the simulations corresponds
to those of the 12 feet WAM-V. The 3D space of the fluid
domain is obtained by subtracting the volume occupied by
the catamaran-type hull of the WAM-V from the volume of
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Fig. 2 The domain dimensions, location of the hull and the waterline

the containing 3D box. The draft of the hull, i.e. the displace-
ment below the steady waterline is taken as 4 inches.

The problem domain is discretized by a mesh of 490 778
nodes and 3 080 211 four-node tetrahedral elements. On an
average twenty particles (material points that transport intrin-
sic properties of the fluid) per element were used in the
simulations.

A pre-defined rigid body oscillatory motion is imposed
as a transient boundary condition to model the pitch of the
WAM-V hull. The pitch axis is parallel to the y-axis and
passes through the point (6, 0, 0). The angle of rotation (in
radians) about the pitch axis is taken as

θ = −0.06 sin2(5t) (14)

The background mesh is deformed every time step such
that its internal boundary always conforms to that of the
WAM-Vhull. Themeshdeformation schemeused is basedon
a Laplacian solver which is commonly used in the implemen-
tation of the Arbitrary Lagrangian–Eulerian formulations.
This enables us to impose the no-slip velocity boundary con-
ditions at the internal boundary in a straight-forward manner.
The computer code used in this work was developed in the
C++ programming environment KRATOS® [5]. KRATOS®

is an open-source multi-physics software framework which
provide a collection of tools useful to perform tasks that are
common to all FEM codes.

Water wave motion is generated by imposing the solution
of a deep-water second-order Stokes wave in a narrow strip
of water at the inlet and on the walls of the outlet.

a = 0.05 m, k = 4π

3
, g = 9.8 m/s2, ω = √

gk (15)

ux (x, z, t) = aω exp(kz) cos[k(x −Ut) − ωt] +U (16)

uz(x, z, t) = aω exp(kz) sin[k(x −Ut) − ωt] (17)

where a is the amplitude of the wave, k is the angular
wavenumber, g is the acceleration due to gravity and ω is
the angular frequency. Further U is the velocity with which
the WAM-Vmoves relative to water and ux , uz represent the

Fig. 3 Detail of the spray generated by the 12 ft WAM-V hull at
25 knots and time = 3.57 s. The isocontour corresponding to the air–
water interface and the water particles in the air-elements are displayed.
a XZ plane view b YZ plane view

spatial inlet velocity components of the water in an inertial
reference frame that moves with the WAM-V. The narrow
strip at the inlet where the wave velocity is imposed has a
width of 0.2 m. This periodic velocity condition causes a dis-
turbance which is propagated in the rest of the domain and
whose motion is governed by the Navier–Stokes equations.

Three caseswere studiedwhich correspond to three differ-
ent speeds of the WAM-V, viz.U = 15 knots,U = 20 knots
and U = 25 knots, respectively. The total physical time of
simulation was chosen to be 4 s using 800 time steps of
0.005 s each. All the three cases took nearly 24 h each to
perform the computations using a workstation with an Intel®

Core™ i7− 3820 CPU and 32 GB RAM. The computations
were performed in parallel using four (available) cores and
a single thread per core. Due to the very large mesh size
(3 million elements) and particle collection (60 million par-
ticles), the memory requirements of these simulations are
high; nearly 17 GB of RAM.

Figure 3 illustrates the details of the spray generated by the
12 ft WAM-V hull moving at 25 knots. Eight snapshots are
shown in Fig. 4 which correspond to a time interval (3.47 s–
3.82 s) near the end of the simulation. In this sequence of
snapshots we can see the initiation of the spray generation, its
gradual development and a skewed separation from the axis
of theWAM-V hull (cf. Fig. 1). Near the end of this snapshot
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Fig. 4 Simulation of the spray generated by the 12 ft WAM-V hull
moving at 25 knots using the SL–PFEM. The isocontour corresponding
to the air–water interface and the water particles in the air-elements are

displayed. a t = 3.47 s, b t = 3.67 s, c t = 3.52 s, d t = 3.72 s, e
t = 3.57 s, f t = 3.77 s, g t = 3.62 s, h t = 3.82 s

sequence we can see the process start over again. The spray
generation (with respect to the location) at regular intervals
is caused due to the presence of waves and the imposed pitch
of the hull. The differences in the results obtained usingU =
15 knots and U = 20 knots (not shown here) are in the
height and intensity of the spray, which as expected increased
gradually with the velocity.

We see that the SL–PFEM is suitable for the seakeeping
simulation of the WAM-V under spray generating condi-
tions. Conventional CFD software tools are not suitable to
reproduce spray generating conditions for this challenging
problem. This is an example where particle-based incom-
pressible flow simulation tools (e.g. SL–PFEM) stand out
and deliver superior results.
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Fig. 5 Particles that compose the spray in an air-element. The water
particles are shown as blue circles; the air particles are seen as white
circles

In these simulations the water–air interface evolves in a
very complicated manner. At any particular instant of time,
all elements of the background mesh are labelled as water-
element, air-element or interface-element. Each particle has
an identity which is either air (label: +1) or water (label:
−1). Within each element and at every time-step the par-
ticles transfer their identities to the element nodes. These
contributions are weighted based on their location within the
element and are assembled at the nodes. After the assembly,
each node has an identity between−1 and +1. Following this
line, a continuous piecewise linear approximation of the oth-
erwise discrete identity data (on the particles) is obtained on
the background mesh. The water–air interface is defined as
the piecewise linear (planar) surface where the continuous
piecewise linear approximate identity takes a value 0. The
boundaries of the interface are determined at the resolution
of the background mesh.

In due course, situationsmay arise where there are regions
within an air-element that are filled with water particles.
There will also be interface-elements wherein we will find
water particles on the air-side of the interface. These par-
ticles compose the spray generated in the simulations (see
Fig. 5). Should the pockets of water particles be large enough
then it creates a situation where there are one or more
water-elements surrounded by air-elements. These islands
of water-elements are seen as water splash in the simula-
tions which represent violent separation and/or merger of
the interface. Naturally, such representation of water spray
and its intensity depends on the number of particles cho-
sen in the simulation. Nevertheless, the number of particles
that compose the spray is not a representation of the mass
of water in the spray. Recall that particles represent material
points that carry with them only the intrinsic properties of
the flow. So a smaller number of particles just mean that the
spray representation is sampled at a coarser level of detail.

Other possible physical conditions which may generate
spray are not modelled in the simulations. For instance, the
viscous action of air motion may separate water particles
from the interface or decompose existing water splash into
water spray. Additionally, this phenomenon can happen at
multiple scales wherein entities which can be classified as
water spray at a coarse scalemay be classified aswater splash
at a fine scale (which in turn can be decomposed into spray).
This cascade will continue until surface tension forces comes
to prominence and protect the integrity of the water droplets.
Reproducing such physical conditions is out of the scope of
the current implementation of the SL–PFEM.

Remark For a wide class of engineering applications the X-
IVAS scheme usually admits very large time steps in the
Lagrangain advection stage, e.g. 10–15 times the one given
by the CFL condition. However in the simulations presented
here we had to use small time steps (of the same order as
the CFL limit) to control the accuracy of the solution. The
reason for this limitation is discussed in the next section.

5 Trajectory approximation for Stokes waves

Consider a second-order Stokeswave in deep sea andposition
the 2D coordinate system at the height of the mean sea level.
The solution of the free surface η(x, t) is

η(x, t) = a cos(kx − ωt) + 1

2
a2k cos[2(kx − ωt)] (18)

Substituting U = 0 in the Eqs. (16) and (17) we obtain
the solution of the velocity components.

Consider the initial time step in the X-IVAS scheme and
let the initial velocity and pressure be given by substituting
t = 0 in the exact solution. Figure 6 illustrates the stream-
lines of the initial velocity field originating at three distinct
positions on the surface of the Stokes wave. Two of these ini-
tial positions are chosen as the crest and trough of the wave
and the third point is chosen midway. In the X-IVAS scheme
the computed trajectories are identical to the streamlines. The
exact trajectories (pathlines) of particles initially located at
these three points are also shown.

For the Stokes wave we see that the streamlines are not
a good approximation to the pathlines. Recall that in the X-
IVAS scheme we first compute tangent curves (streamlines)
of the velocity vector field and choose them as the trajectories
of the particles.

Xh(λ, t) = Xh(λ, tn) +
∫ t

tn
uh(Xh(λ, ξ), tn)dξ (19)

Then we increment particle velocities by an amount equal
to the line integral of the acceleration vector field along the
streamlines.
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Fig. 6 Trajectory approximation in the X-IVAS scheme. The velocity
field in the initial configuration is shown in the background as a vector
plot

Uh(λ, t) = Uh(λ, tn) +
∫ t

tn
ah(Xh(λ, τ ), tn)dτ (20)

Therefore the updates in the particle position and its veloc-
ity within a time-step are decoupled in the X-IVAS scheme.
When the velocity field has a significant temporal variation
within a time step, the trajectory computed usingEq. (19)will
have a significant error. In the Stokes wave propagation prob-
lem, transporting particles along the streamlines (see Fig. 6)
with large time steps will lead to significant errors in the con-
figuration of the fluid domain. Now consider an alternative
scheme for the Lagrangian advection: update the fluid parti-
cle position and velocity within a time-step tn < t < tn+1

using solutions to the following explicit second-order system
of equations.

d2

d2t
Xh(λ, t) = ah(Xh(λ, t), tn) = CnXh(λ, t) + dn (21)

Unlike in the X-IVAS scheme the solution of the above
equation admits correction to the trajectories caused due to
the updates in the particle velocities within a time-step.

Uh(λ, t) = Uh(λ, tn) +
∫ t

tn
ah(Xh(λ, ξ), tn)dξ (22)

Xh(λ, t) = Xh(λ, tn) + (t − tn)Uh(λ, tn)

+
∫ t

tn

∫ τ

tn
ah(Xh(λ, ξ), tn)dξdτ (23)

Figure 7 illustrates the trajectories driven by the initial
acceleration field and originating at the considered three ini-
tial positions. Clearly the approximation in Fig. 7 stands out
as a higher fidelitymodel to the pathlines. Numerically stable
formulas to compute the closed-form analytical solution of
Eq. (21) will be done during the implementation of theMarie
Skłodowska-Curie action—FastFlowSim3.

3 http://cordis.europa.eu/project/rcn/200435_en.html
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Trajectory driven by acceleration in the latest configuration

x

y

free surface

pathline →

← trajectory computed using explicit acceleration

Fig. 7 Trajectory driven by the acceleration field (shown in the back-
ground as a vector plot) in the initial configuration

6 Conclusions

In the seakeeping simulation of the WAM-V, we have seen
that the semi-Lagrangian particle finite element method is a
suitable CFD tool for the analysis of incompressible flows
subjected to challenging physical conditions, e.g. violent
interface motions, spray generating conditions etc. Due to
the Lagrangian treatment of the advective processes and the
Lagrangian data storage strategy in the SL–PFEM, the inter-
faces are accurately tracked. Further, the computational task
associated to advective transport is mutually exclusive and
hence scalable on parallel computers.

However, seakeeping simulations often involve water
wave motion. Examining a second-order Stokes wave prop-
agating on the surface of a deep sea, we have seen that the
streamlines are not a good approximation to the pathlines.
In such situations the use of large time steps in the X-IVAS
scheme will result in significant errors in the fluid config-
uration. The particle trajectories driven by the acceleration
in the initial configuration of the second-order Stokes wave
are shown to be a better approximation to the pathlines.
For seakeeping simulations with the SL–PFEM, this latter
time-integration scheme seems to be a promising alterna-
tive to mitigate the small time-step limitation of the X-IVAS
scheme.
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