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INTRODUCTION

The analysis of shells, arches or frames experiencing large displacements and rotations is of
considerable interest in many fields of civil, mechanical and aeronautical engineering. Several
researchers have put much effort in the last few years to develop efficient finite element
formulations which give accurate numerical solutions at a reasonable computer cost.'”!% One of
the first general formulations to treat axisymmetric shell and one-dimensional (1D) structural
problems was proposed by Wood and Zienkiewicz.* They used a total Lagrangian approach with
¢-linear 2D solid elements. However, such elements present ill-conditioning problems when used
in the context of very thin structural applications. These problems have today been overcome by
the development of new families of degenerated 1D axisymmetric and arch elements, which in most
cases allow for shear deformation effects.®111%14 Recent contributions on the subject using an
updated Lagrangian approach have been presented by Hughes®-? for 3D and 2D shell problems,
and Cook'? for the case of axisymmetric shells only. On the other hand, total Lagrangian
formulations have also been recently suggested by Batoz and Jameaux'? for beams and arches, and
Surana'*-*? for general and axisymmetric shell cases.

In a previous paper,’* the authors have presented an alternative total Lagrangian finite element
formulation for the large displacement/large rotation analysis of 3D shell problems whose main
features are: (a) degenerated 3D sheil elements are used, (b) shear deformation effects are taken into
account, (c) a local set of axes, based on the principal curvature directions, is used for the definition
of strains and stresses, (d) zero elongation of the normal vector is implicity assured and () no
restriction on the magnitude of the shell curvature is made. Accuracy of the formulation was
checked on a wide range of examples.

The formulation presented in this paper can be considered as a special case of the more general
one presented in Reference 15 for axisymmetric shell, arch and frame structures. The paper shows
how the formulation can treat the three types of structures mentioned in a simple unified manner.
Different alternatives for choosing the finite element interpolation to be used are presented and
explicit forms of the most relevant finite element matrices are given. The accuracy of the
formulation is checked in a series of examples where comparisons with results obtained with
alternative formulations are shown. Finally, the formulation is used to analyse a problem of the
laying of a waste-water marine pipeline, which shows the ability of the formulation to deal with this
kind of practical problem.
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GECOMETRIC DESCRIPTION

From now onwards, all details of the mathematical formulation will be presented in a unified
manner for axisymmetric shells, arches and frames. We have to note that, throughout the analysis,
the middle line of the structure will be assumed to be curved. However, the detailed form of the
expressions for frames can be derived directly from those corresponding to arches, making in all
terms the radius of curvature, R, equal to infinity. :

A global co-ordinate system is chosen such that the plane which contains the middle line of the
arch (or frame) coincides with the global plane xz. For axisymmetric shells the middle line of a
generic meridional section is considered (see Figure 1).

Let a and n be unit vectors tangent and normal to the middle line at a generic point O,
respectively. Parameters r and ¢ are defined as the arc iength measured along the middle fine and
the angle between vector a and the global x axis, respectively {see Figure 2).

The components of vectors a and n can be written in matrix form as

lax| |cose | || — §IN ¢
a—[aj*[sinqb]’ n—[nj[ cosq&} t

Vectors a and n define at each point of the middle line a local co-ordinate system x'z' (see Figure 2).
The position of a point P of the structure can be defined by a vector r such that, in matrix form,

X
r—[ }:ro—}—m 2
z

where 1, is the position vector of the corresponding point O over the middle line and ¢ is the
distance between points O and P (see Figure 2).
From equations (1) and (2) can be found, using the relationships shown in Figure 2,

oz} | foroor | o
[ﬁ{r,t):l_[ar’é’z}T R (3)
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Figure 1. Different kinds of one-dimensional structures
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Figure 2. Geemetric description

where T and R are defined by

_{ax, 2 _ cOS ¢ sin ¢ | ¥=/R) 0
T“[a(x,z)]“[—sinqscosqb]’ R‘[ 0 1} @

The middle line can be now approximated in an isoparametric form as
ro =3 N{&)r,, ()
1

where ry, is the position vector of node i of a mesh of one-dimensional finite elements discretizing

the middle line of the structure (Figure 3a), N {&)is the standard shape function of node i (Reference

16), ¢ the normalized isoparametric co-ordinate and n, the number of nodes of the element.
The second normalized co-ordinate 7t is defined as

Arches/Frames Axisymmerric shells
hl - ho + 2I Zr
_—— [ 6
T p T 3 (6)

where h is the thickness of the structure, and distances k, and h, can be seen in Figure 3(a). From
equation (2), (5) and (6) can be finally obtained

r=§Nl-(§)r0,.+ (r§+ h_)n {7

where h=0 or k= (hy — h,)/2 for axisymmetric shells and arches, respectively.
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Transverse section
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Figure 3. Discretization of the middle line into finite elements: (2} isoparametric 1D three-noded element; (b) normalized
integration domain

Equation (7} transforms the area corresponding to an element into a square in the system &, T {see
Figure 3b).

KINEMATIC DESCRIPTION

The deformation of the structure is based on the foliowing two main assumptions: {a} normals to
the middle line before deformation remain straight but not necessarily normal to the middle line
alter deformation; (b) the length of the normal vector does not change during deformation.

ssumption {a) allows to express the displacement vectoru of a generic point P, at a distance ¢
from the corresponding point O over the middie line, as

u=uy 4y {8)

where 1, is the displacement of point O and u, is the displacement vector of the end of the normal
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Figure 4. Kinematic description

vector in O (see Figure 4). The vector of Jundamental displacements is defined now as

p= [u(}= Yo, u’l: wrl ]T (9)

where u, and w are the components of u, in the global systemn xz and ', w are the components of
u, in the local system x'z’.

On the other hand, assumption (b) allows to express the displacements » and w/ as

uy —sinf
‘= = 10
h [w;:' L:osﬂml:i (10)

where § is the angle rotated by the normal vector during deformation. Equation {10) is the basis for
obtaining alternative approximate (i.. linearized) expressions for the rotation components of the
displacement vector of equation (9). In this work the full form of equation (10} has been taken.

Finite element interpolation

There are several options for defining the finite element interpolation to be used. Among these
we can note the following three options.

Option 1. The four components of vector p of equation (9) are interpolated, Le.
p=Y Np; with N,=N], (11
i=1

where p; are the nodal values of p and X, is the 4 x 4 unit matrix.

Option 2. The ‘fundamental displacement’ vector is redefined as

ﬁ*[HO, wo:ulr wl]T (12)

[P .
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where u, and w, are the components of vector u, in the global system xz given by

u; = - sinflcos ¢p — (cos & — 1}sin ¢

o 13
w, = —sinBsin¢ + (cos 0 — 1}cos ¢ (13
Vector p can now be interpolated as
f’: Z Nir’i {14)
i=1
This option has been used by Surana in the context of axisymmetric shells.!?
Option 3. The vector of displacements is defined as
a = [ug,, wg, 017 (15)
Vector a can be interpolated as
a=Y Na, with N,=N]I, (16)

Use of one or other option leads to different finite element forms. It can be easily checked that
option 1, defined by equation (11), leads to simpler mathematical expressions for the finite element
matrices, and that option has been chosen in this paper.

STRAIN FIELD

Let ' = {1, w'}" be the vector containing the components of the displacement vector of a point P
in the local system x'z’, defined in the corresponding point O over the middle line (see Figure 4}, t.e.

u=ua-+wn {17)
The vector of displacement gradients in P is defined by g with

Arches/Frames Axisymmetric shells

2] -
£2 s

From now onwards superscripts A and AS will be used to specify the value of vectors and matrices
for arches/frames and axisymmetric shells, respectively. In equation (i8)

au’ au’
et ox' 1 RESE oz’
gl ‘ﬁ[gz]— awr v glm[g4]— a'W', {19)
ox' oz
and _
gs =% p=x, tsing (see Figure 2) (20)

The Green strain vector £ {associated to the local directions x'z') at P is defined by

Arches/Frames Axisymmetric shells

Rk ]_[ g, +3(gi +g3) ] 245 _ g1 £t 21
£ — el = =
Yz g, +gs+ 9193+ G294 &y s +%Q:§ @
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It is shown in Appendix I that

g=Lp {22)
where p is the fundamental displacement vector defined above and the strain operator L is given by
Arches/Frames Axisymmerric shells
d d
C,Td— zC,[A+Izd—:! LA
r r
LA = LA = (23)
0 1, 1 ¢ I
—0,—cos ¢, ——sin ¢
pop P
with
1]0O —1 i
A= — C. = 24
R |: 1 0} ’ ! 24)
R

{for frames A=0and C,=1}
At this point a decision about the finite element interpolation to be used should be taken. As
previously mentioned, option 1 has been chosen for deriving the expressions shown next.
Substitution of equation (11) in equations (22} yields

g=L 21 Nipi= Z M;p; (25)
i= i=1

where M; = LN, or L*°N; for arches and axisymmetric shelis, respectively.
The full (nonlinearized) incremental form of equation {25) can be easily derived as

bg= 3 Midp, 26)
i=1
On the other hand, from the definition of p (see equations (9) and (10)) it can be found:
R
=10 0 —cosh, ‘?;o,- = Cida, @7
0 0 —siné; ‘
Substitution of equation (27} in (26) yields
sg="Y MCda,= Y Gda, (28)
i=1 =
where matrix G; can be explicitly obtained as
Arches/Frames
~ | -
! dN; N, .
. dn, . i —zC,‘:?cos 9;~—Esm Bi}
Tdr aen aN; ., N,
G = I —tC,] ——sin6;+—-cos §;
ax3 } dr R (29)
- ___é,_ —_—
0 | — N;cos ;
| 2x2 i = N;sin 8, B
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Axisymmetric shells

oA
G = £ (30)
$x3 N, tN; . .
— 0, ——— [cosgcosf, —sin dsinf,]
p P
From equations {21) it can be easily found
o = Adg (31
where matrix A 1s given by
Arches/Frames Axisymmetric shells
T+ 0 0 A
AA_[( gl) gZ :| AAS—': 0 :| {32)
g5 (I+g4 (L+g) g, 0 1+g;s
Finally, substituting equation (28) in (31) it can be obtained
Ge=AY Goa,=Y Boa, (33)
i=1 i=1

An explicit form of matrix B; for arches and axisymmetric shells is given in Table L

R

Table I. Matrix B, for arches/{rames and axisymmetric skells {option 1)

Arches/Frames | 1‘
|
dN,; . } dN; ] i
C,F[{lJrglJCOSé*ngmM I Crd—rI(1+91)Sln¢+ngOS¢] P —Cal(l+g.)4,+ g,B,]
' |
B - L :
dn, _ T i —1C{gs A+ {1 +g)] ~
Crglgscos g — (1 4 gu)sin 6] ! G llgasing + {1+ ga)cos ¢ |~ NL(1+g,)cos0,
| | +gysing,)
|
Axisymmetric shells
B
BAS e o —
! . | | I3
“(E 4+ gs) § o | ——(1 4+ g5){cos ¢ cos 6, — sin P sin 4,)
] H
| i
dw; 1
A== cos 8, ——sin §, C =
dr t
1——
R
B [ a Ni o .
=8 ; + ——CO0s U; =X -1
. in 7 o p=x-—tsin¢

(For frames 1/R =0 in the above relations}
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CONSTITUTIVE EQUATIONS

We will not go into details of the different constitutive equations which could be used for nonlinear
analysis of the structures studied in this paper. It will simply be assumed that an increment
relationship between the second Piola-Kirchhoff stress vector, o, and the Green strain vector of
equation (21) can be found in the form

oo =Dde (34)
where ¢ 1s given by (see Figure 5)
Arches/Frames Axisymmetric shells
C'—A = [Gx’ Ix’z’]T O-AS = {ze, Txrzts J}"]T (35)
For linear elastic materials, matrix D is given by
1 0 ¥
1 0 £ :
A—E A5 — 0 =" 36
D R D T 3 0 (36
21+ v)
v 0 |

Other different forms of matrix D for nonlinear matenal behaviour can be found in Reference 17.

DISCRETIZED EQUILIBRIUM EQUATIONS
The discretized finite element equations are obtained via the virtual work expression in its
Lagrangian form.'® A typical equations for the ith node is usually written as

ii(a)= J. BlodV —R;(a)=0 (37
14

where V is the volume of the structure, ;(a) is the residual force vector and R;(a) is the equivalent
nodal force vector due to exterior loads. For conservative loading R (a) = R,. Typical examples of
vector R; are the following,

Arches / Frames
P\C

Axisyrnmetric Sheil . T O

Figure 5. Definition of focal second Piola- Kirchhoff stresses
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Point loads

Ri:ﬂi[fx,-sfz;) Mi}T (38)

where f, and f, are the point load components in the global directions x, z, respectively, acting at
node i, M, is the external bending moment applied at that node and ;= 1 and f§; = 2rx; for arches
and axisymmetric shells, respectively. Note that for axisymmetric shells the components of vector
R, refer to its circumferential values uniformly distributed along a circumference of radius x;.

Distributed loads
Ri = J‘ ENi'txa NEI;': O}Tﬁdr (39)
1 ey

where ¢, and r, are the load intensities, acting per unit length of the middle line along directions x
and z, respectively, and 2 = 1 and 2nx for arches and axisymmetric shells, respectively. Again, for
axisymmetric shells the components of the load refer to circumferential values.
Self-weight

R = — J [0, N, 01T pgdV (40)

¥

where p is the material density and g the value of gravity (assumed to act in opposite direction to the
Z axis).
Obtention of the tangent matrix

Equation (37} is a nonlinear system of equations which can be solved using any of the existing
procedures developed for that purpose.'® In this work a standard Newton—Raphson algorithm has
been chosen. This gives for the nth displacement increment

Aa" = — K(a")§(a") (41

from which the value of a"*! can be found as a"*! =a" + Aa".
A typical submatrix of the tangent matrix relating nodes i and j, is obtained by:'®

| d _
Ky, ()= 2@ 7 j B! adV} ~ 2 R @)
4 da; éa; | J, da;
Equation (42) yields, for conservative loading,
0
Ky {a)= ——{J BfadV} = Kb+ K7+ K (43)
4 da; | ],
where
Kf}zj BIDBdV (44)
¥
K{ = L GISG,dv {45)
and
00 0
K{’=0 for i#] K»=]0 0 0 (46)
0 0 H,
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In equations (44), (45) and (46) all matrices and constants have been defined before except matrix §
and H, which are given by

ArchesjFrames Axisymmetric shells
st [ o<k, T"'"Iz} gas=| 5" 0 47)
4x4 _cx'z’Iz 0 Sx5 0 O-y’
A AS A aG53i
Hi = =1+ g, )0G23,0, + Gya,1,) H =H{ + (1 +gs5) a0, v

+8:{G 3,0, + G33,7,,) i

— 93G5, T (48)

+(1+94)G 5,10

where Gy ;,,..., G5, are the components of the last column of matrix G; and
3Gss, N ; .
?@ﬁl =—*(cos ¢sinf; + sin pcos ;) (49)
i P

NUMERICAL INTEGRATION AND FINITE ELEMENT CHOSEN

Allintegrals have been evaluated using a Gauss—Legendre numerical integration rule. It is easy to
shown that the differential of volume can be expressed in the normalized system &, t by the

following expression:
t\B] [dxy\*  [dzo 22
dV=h —— = | —= — d 50
o) (5) +(52) ] aes .

where the index 0 denotes points of the middle line, ¢ is the co-ordinate along the thickness
direction, /1 the thickness of the element and

b(r) = width of the transverse section at the fibre of co-ordinate t, for arches and frames (see
Figure 3a);
b{t) = 2np for axisymmetric shells.

Equation (50) transforms the integration domain into the normalized square of Figure 3(b).

With regard to the type of element to be used, any of the one-dimensional elements recently
developed to deal with ‘thick’ formulations for the type of structures presented in this paper could
be adequate. For the examples presented in next section an isoparametric one-dimensional three-
noded element (Figure 3a) has been chosen with the following reduced integration scheme: (a)
reduced integration (2 Gauss—Legendre integration points for all terms of matrix K ;) along the ¢
direction over the middle line of the structure; (b) two-point rule for the Integration along the
thickness (1) direction.

EXAMPLES

Example 1. Expansion bellow under end circular point load

The first cxaniple chosen to test the formulation is the analysis of a segment of an expansion
bellow under circular point Toad acting at both ends. Figure 6 shows the cross-section of the
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Figure 8. Clamped shallow circular arch.
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Figure 9. Clamped shallow circular arch: numerical results
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segment analysed. The problem has been studied with two meshes of 3 and 6 parabolic
axisymmetric shell elements also shown in Figure 6, together with the material properties used in
the analysis. Results for the load-deflection curve have been obtained by applying equal
increments of the vertical displacement, &, at the end A. It can be seen in Figure 7 that numerical
results obtained with the mesh of only 3 parabolic elements are very accurate in comparison with
those obtained by Nayak' and Surana,'! shown in the same figure, using a considerable higher

number of elements.

Example 2. Clamped shallow circular arch under vertical point load

The geometry of the arch, material properties and two finite element meshes, of three and five
isoparametric parabolic one-dimensional elements, respectively, used in the analysis are shown in

a) inland building of o branchime

concrete weights

b} Tramsportation

A
]
=)

B A A e B N A S

c)laying by filling the pipeline with water

JIH

Figure 10. Different phases in the laying of marine pipelines from the sea surface by the method of continuous filling with
water

i
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Figure 11. Deformed shape of the pipeline at various stages of the laying operation (0 < L < 12m)
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Figure 12. Deformed shape of the pipeline at various stages of the laying operation (15m < L < 30 m)
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Figure 13. Deformed shape of the pipeline at various stages of the laying operation (70m < L < 95m)
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Figure 14. Deformed shape of the pipeline at varjous stages of the laying operation (105m < L < 120m)
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Example 3. Analysis of the deformation of a waste-water
marine pipeline during laying operations

Marine pipeline laying operations are typical examples of large deflection problems, in which
large rotations are involved, that can be easily treated with the arch formulation presented in this
paper. The problem studied here is the analysis of the deformation of a polyethylene waste-water

length of pipeline. Ten isoparametric parabolic one-dimensional elements have been used in the
analysis.

The problem has been solved by incrementing the amount of water filling the pipeline in a way
such that the results obtained at the end of each water increment have been taken as the starting

position of the pipeline at the onset of the first water increment. To solve the problem of contact
between pipeline and sea floor, a trial solution iterative scheme has been used.?®?! Numerjcal
results for the deformation of the pipeline at different laying stages have been plotted in
Figures 11-14. It has been checked that the numerical model simulates well many real phenomena,
which occur in the practice of this type of problems, like the small lifting of the floating portion of

for the adequate design of the laying operation. Results obtained for similar problems, like that of

the prediction of deflections and internal forces in steel pipelines during lay barge instaliation,?9-21 -
show that the formulation could be successfully used for obtaining accurate information to

establish the optimal conditions for a wide range of marine pipeline laying problems.

CONCLUSIONS

A geometrically nonlinear finite clement formulation based on a total Lagrangian approach for
axisymmetric shells, arches and frames has been presented. The formulation allows for large
displacement-large rotations of the structure. Shear deformation effects have also been taken into
account. It has been shown how the formulation can be presented in a unified manner to treat
simultaneously the three types of structures.

The discussion of the different alternatives for choosing the finite element interpolation
parameters has shown that the interpolation based on the local components of the rotation of the
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obtained compare very favourably with those obtained using other existing alternative formul-
ations. Finally, the formulation presented seems very adequate 10 analyse the deformation of
marine pipelines during laying operations.

APPENDIX I: COMPUTATION OF THE L OPERATOR

Let P be the point in which the L operator is to be calculated, and O the corresponding point over
the middle line in which vectors ag and ng and the local system of co-ordinate x'z" are defined (see
Figure 15).

Let Q be another point laying over the normal n at a distance t* from its corresponding point M
over the middle line.

Finaliy let

ﬁ’Q = ﬁ:u*'f*ﬁfm (53}

be the displacement vector of point Q in the sysiem x'z' associated at point 0.
It is easy to show, using equations (3) and (4), that

re@,w)] _[@ )] g
[g!7 gZ]P —[a(xl, Z')]pm[ a(r, t) ]PR (52)
—c| % _| %%
8: = Cr‘: ar ]P and gz——[ 3t 1‘, (53)

where subscript P denotes values at point P.
On the other hand, we can write

Le.

—f -
Uy = UpBy + Wil

{54)

o - L, r
u,, = i, Bg + Wi, Ty = Uy, AT Wy,0

Reference line

Figure 15
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and consequently

o [ad

U, 2[ TJ'“M =Touty (55)
N,

= ag I L4

ulu=[ng]£a’ n]u1M=T0[as .'ﬂ]l!IM (56)

where u,, denote components in the global system xz,u}, denote components in the global system
a,n (associated at point M), and Ty, is the transformation matrix T defined in equation 4
particulatized at point O,

Substituting in (51), (55) and (56) in {53) it can be obtained

u )
g, = c,’ro%ri'+ C,z[Au’l + 12%‘]
(57)
g:=Iu}
where u, is the global (xz) displacement of point O, u' is the local (x'z'}displacement due to rotation
of the normal in point 0, and matrix A is shown in equation (24). From equations (57) the LA
operator for arches of equation (23} is automatically deduced.
For axisymmetric shells, we need to eXpress g5 of equation (19) in function of vector p. From the
expression

U =wia+win or u, =T (58)

is possible to obtain, using explicit forms of matrix T in (4),

Uy =COS ¢u} — sin gw (59
and consequently
U u 4 U f .
g5=—=—9—ﬂ=—2+—(cos¢u’l-51n¢w’1) (60
p I poop

From equations (60) the operator, L of equation (23) can be automatically deduced.,
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