
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2011; 66:221–229
Published online 17 February 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/fld.2254

Running unstructured grid-based CFD solvers
on modern graphics hardware

Andrew Corrigan, Fernando F. Camelli, Rainald Löhner∗,† and John Wallin

CFD Center, Department of Computational and Data Sciences, M.S. 6A2, College of Science, George Mason
University, Fairfax, VA 22030-4444, U.S.A.

SUMMARY

Techniques used to implement an unstructured grid solver on modern graphics hardware are described.
The three-dimensional Euler equations for inviscid, compressible flow are considered. Effective memory
bandwidth is improved by reducing total global memory access and overlapping redundant computation,
as well as using an appropriate numbering scheme and data layout. The applicability of per-block shared
memory is also considered. The performance of the solver is demonstrated on two benchmark cases: a
NACA0012 wing and a missile. For a variety of mesh sizes, an average speed-up factor of roughly 9.5×
is observed over the equivalent parallelized OpenMP code running on a quad-core CPU, and roughly 33×
over the equivalent code running in serial. Copyright q 2010 John Wiley & Sons, Ltd.

Received 29 December 2008; Revised 3 August 2009; Accepted 17 October 2009

KEY WORDS: unstructured grids; graphics hardware

1. INTRODUCTION

Over the past few years graphics processing units (GPUs) have seen a tremendous increase in
performance, with the latest GeForce 200 series and Tesla 10 series NVIDIA GPUs now achieving
nearly one teraflop of performance, or roughly an order of magnitude higher performance than
high-end CPUs [1, Section 1.2]. In addition to this high computational performance, the latest
modern graphics hardware offers increasing memory capacity, as well as support for 64-bit floating
point arithmetic. Together with CUDA [1], which exposes GPUs as general-purpose, parallel,
multi-core processors, GPUs offer tremendous potential for applications in computational fluid
dynamics.

In order to fully exploit the computational power of such hardware, considerable care is required
in the coding and implementation, particularly in the memory access pattern. GPUs have general-
purpose global memory, which is not automatically cached and exhibits high latency in comparison
with the instruction throughput of GPUs. Furthermore, with earlier CUDA-enabled GPUs, there
were stringent requirements for achieving optimal effective memory bandwidth, with a large loss
of performance when these requirements went unmet. With the data-dependent memory access
of unstructured grid-based solvers, this loss of performance is almost assured. However, with due
care, structured grid-based solvers can meet these requirements due to the regular memory access
patterns of such solvers, as described in the work of Brandvik and Pullan [2, 3], Elsen et al. [4],
and Tölke [5]. Further work on regular grid solvers includes that of Phillips et al. [6], who have

∗Correspondence to: Rainald Löhner, CFD Center, Department of Computational and Data Sciences, M.S. 6A2,
College of Science, George Mason University, Fairfax, VA 22030-4444, U.S.A.

†E-mail: rlohner@gmu.edu

Copyright q 2010 John Wiley & Sons, Ltd.

222 A. CORRIGAN ET AL.

developed a two-dimensional compressible Euler solver on a cluster of GPUs, and Thibault and
Senocak [7], who have implemented a three-dimensional incompressible Navier–Stokes solver for
multi-GPU systems.

So far, the implementation of optimized unstructured grid-based solvers for modern graphics
hardware has been relatively rare, perhaps due to these stringent requirements. Recently Klöckner
et al. [8] have implemented discontinuous Galerkin methods over unstructured grids. They achieve
the highest speed-up in comparison to a CPU code in higher order cases, due to higher arithmetic
intensity that hides indirect addressing latencies. The present effort is directed toward the more
commonly used unstructured grid-field solvers based on low-order finite volume or finite element
solvers.

An alternative means of accessing GPU memory is via texture memory, which offers automatic
caching intended for memory access patterns that exhibit two-dimensional spatial locality, and
has been effectively used, for example, in the CUDA SDK [9]. However, this type of memory is
inappropriate for the indirect memory access of three-dimensional unstructured grid solvers.

Implementing CFD solvers on graphics hardware predates CUDA. In fact, just prior to its first
release, Owens et al. [10] comprehensively surveyed the field of general-purpose computation
on graphics hardware (GPGPU), which included a number of primarily structured grid-based
solvers, such as those of Harris [11], Scheidegger et al. [12], and Hagen et al. [13]. However,
the architecture has changed substantially and many of the limitations of GPGPU via traditional
graphics APIs such as OpenGL are no longer an issue.

The most recent CUDA-enabled GPUs have looser requirements for achieving high effective
memory bandwidth. Roughly speaking, memory no longer needs to be accessed in a specific order
by consecutive threads. Rather, high effective memory bandwidth can be achieved as long as
consecutive threads access nearby locations in memory, which is called coalescing. Thus, if an
appropriate memory access pattern is obtained, one can expect that modern GPUs will be capable
of achieving high effective memory bandwidth and in general high performance for unstructured
grid-based CFD solvers. The purpose of this work is to study techniques that achieve this.

The remainder of the paper is organized as follows: Section 2 describes the solver considered:
a three-dimensional finite volume discretization of the Euler equations for inviscid, compressible
flow over an unstructured grid. Section 3 considers the techniques used to achieve high performance
with modern GPUs for unstructured grid solvers. After giving an overview of the code, techniques
are described to reduce total memory access by overlapping redundant computation, increase
effective memory bandwidth by using an appropriate numbering scheme, and increase effective
instruction throughput by avoiding divergent branching. This is followed by a discussion of the
issue of employing shared memory with unstructured grid solvers. Performance results are given
in Section 4 that demonstrate an order of magnitude speed-up using a GPU in comparison to an
equivalent parallelized shared-memory OpenMP code running on a quad-core CPU.

2. EULER SOLVER

We consider the Euler equations for inviscid, compressible flow,

d

dt

∫
�
ud�+

∫
�
F ·nd�=0, (1)

where

u=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�

�vx

�vy

�vz

�e

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, F=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�vx �vy �vz

�v2x + p �vxvy �vxvz

�vyvx �v2y+ p �vyvz

�vzvx �vzvy �v2z + p

vx (�e+ p) vy(�e+ p) vz(�e+ p)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2)

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:221–229
DOI: 10.1002/fld

UNSTRUCTURED GRID-BASED SOLVERS ON THE GPU 223

and

p=(�−1)�

[
e− 1

2
‖v‖2

]
. (3)

Here �, vx , vy , vz , e, p, and � denote, respectively, the density, x , y, z velocities, total energy,
pressure, and ratio of specific heats. The equations are discretized using a cell-centered, finite-
volume scheme of the form:

voli
dui
dt

=Ri =− ∑
faces

‖s‖
[
1

2
(fi + f j)−�·�max ·(ui −u j)

]
(4)

where

fi = s
‖s‖ ·Fi ,�max=‖v‖+c, (5)

where voli denotes the volume of the i th element, s denotes the face normal, j is the index of the
neighboring element, � is a parameter controlling the amount of artificial viscosity, and c is the
speed of sound.

3. IMPLEMENTATION ON GRAPHICS HARDWARE

3.1. Overview

The performance critical portion of the solver consists of a loop which repeatedly computes the
time derivatives of the conserved variables, given by Equation (4). The conserved variables are
then updated using an explicit Runge–Kutta time-stepping scheme. The most expensive compu-
tation consists of accumulating flux contributions and artificial viscosity across each face when
computing the time derivatives. Therefore, the performance of the CUDA kernel that implements
this computation is crucial in determining whether or not high performance is achieved, and is the
focus of this section.

3.2. Redundant Computation

The time derivative computation is parallelized on a per-element basis, with one thread per element.
First, each thread reads the element’s volume, along with its conserved variables from global
memory [1, Section 5.1.2.1], from which derived quantities such as the pressure, the velocity,
the speed of sound, and the flux contribution are computed. The kernel then loops over each of
the four faces of the tetrahedral element, in order to accumulate fluxes and artificial viscosity. The
face’s normal is read along with the index of the adjacent element, where this index is then used to
access the adjacent element’s conserved variables. The required derived quantities are computed
and then the flux and artificial viscosity are accumulated into the element’s residual.

This approach requires redundant computation of flux contributions, and other quantities derived
from the conserved variables. Another possible approach is to first precompute each element’s
flux contribution, thus avoiding such redundant computation. However, this approach turns out to
be slower for two reasons. The first of which is that reading the flux contributions requires three
times the amount of global memory access than just reading the conserved variables. The second
is that the redundant computation can be performed simultaneously with global memory access,
as described in [1, Section 5.1.2.1], which hides the high latency of accessing global memory. The
performance difference between each approach is stated in Section 4.

3.3. Numbering Scheme

In the case of an unstructured grid, the global memory access required for reading the conserved
variables of neighboring elements is at risk of being highly non-coalesced, which results in lower
effective memory bandwidth [1, Section 3.1]. This can be avoided however, if neighboring elements

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:221–229
DOI: 10.1002/fld

224 A. CORRIGAN ET AL.

of consecutive elements are nearby in memory. In particular, if for i=1,2,3,4, the i th neighbor of
each consecutive element is close in memory then more coalesced memory access will be achieved,
as implied by the coalescing requirements for graphics hardware with compute capability 1.2 or
higher [1, p.54]. This is achieved here in two steps. The first step is to ensure that elements nearby
in space are nearby in memory by using a renumbering scheme. The particular numbering scheme
used in this work is the bin numbering scheme described by Löhner [14, Section 15.1.2.2]. This
scheme works by overlaying a grid of bins. Each point in the mesh is first assigned to a bin, and
then the points are renumbered by assigning numbers while traversing the bins in a fixed order.
With such a numbering in place, the connectivity of each element is then sorted locally, so that the
indices of the four neighbors of each tetrahedral element are in increasing order. This ensures that,
for example, the second neighbor of consecutive elements are close in memory. We emphasize
that any other scheme that ensures that closeness in space is mirrored by closeness in memory
(advancing front, reverse Cuthill–McKee, space-filling curves, etc.) could have been used as well.

The possibility of divergent branching, and thus lower instruction throughput [1, Section 5.1.2.2],
arises as several special cases have to be considered in order to deal with faces that are on the
boundaries of the computational domain. In the present case, these are marked by storing a negative
index in the connectivity array that refers to the particular boundary condition desired (e.g. wing
boundary, far-field, etc.). This results in possible branching, which incurs no significant penalty
on modern graphics hardware, as long as all threads within a warp (a group of 32 consecutive
threads [1, Appendix A]) take the same branch [1, Section 3.1, p.14]. To minimize this penalty,
in addition to having ensured that only the first face of each element can be a boundary face, the
bin numbering is modified to ensure that boundary elements are stored consecutively in memory,
which means that there can be at most two divergent warps.

3.4. Data-dependent memory access and shared memory

Shared memory is an important feature of modern graphics hardware used to avoid redundant
global memory access among threads within a block [1, Section 5.1.2]. The hardware does not
automatically make use of shared memory, and it is up to the software to explicitly specify how
shared memory should be used. Thus, information must be made available that specifies which
global memory access can be shared by multiple threads within a block. For structured grid-based
solvers, this information is known a priori due to the fixed memory access pattern of such solvers.
On the other hand, the memory access pattern of unstructured grid-based solvers is data-dependent.
With the per-element/thread based connectivity data structure considered here, this information is
not provided, and therefore shared memory is not applicable in this case. However, as demonstrated
by Klöckner et al. [8], in the case of higher order discontinuous Galerkin methods with multiple
degrees of freedom per element, the computation can be further decomposed to have multiple
threads process a single element, thus making shared memory applicable.

4. RESULTS

The performance of the GPU code was measured on a prototype NVIDIA Tesla GPU, supporting
compute capability 1.3, with 24 multiprocessors. The performance of the equivalent optimized
OpenMP CPU code, compiled with the Intel C++ Compiler, version 11.0, was measured on an
Intel Core 2 Q9450 CPU, running either one or four threads.

4.1. NACA0012

A NACA0012 wing in supersonic (M∞ =1.2,�=0◦) flow was used as the first testcase.
The surface of the mesh is shown in Figure 1. The pressure contours are plotted in Figure 2.
Timing measurements when running in single-precision are given in Figure 3 for a variety of
meshes, showing an average performance scaling factor of 9.4× in comparison to the OpenMP
code running on four cores and 32.6× in comparison to the OpenMP code on one core.
Furthermore, the code running on graphics hardware is faster by a factor of 3.9× using redundant

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:221–229
DOI: 10.1002/fld

UNSTRUCTURED GRID-BASED SOLVERS ON THE GPU 225

Figure 1. NACA0012 wing surface mesh.

Figure 2. Pressures obtained at the surface and plane for the NACA00012 wing.

computation in comparison to pre-computed flux contributions. Timing measurements when
running in double-precision are given in Figure 4 for a variety of meshes, showing an average
performance scaling factor of 1.56× in comparison to the OpenMP code running on four cores
and 4.7× in comparison to the OpenMP code on one core. Furthermore, the code running on
graphics hardware is faster by a factor of 1.1× using redundant computation in comparison to
pre-computed flux contributions.

4.2. Missile

A missile in supersonic (M∞ =1.2,�=8◦) flow was used as a second testcase. The flow variables
on the surface are shown in Figures 5 and 6. Timing measurements when running in single-precision

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:221–229
DOI: 10.1002/fld

226 A. CORRIGAN ET AL.

Figure 3. Running time (s) per element per iteration for the NACA0012 wing in single-precision.

Figure 4. Running time (s) per element per iteration for the NACA0012 wing in double-precision.

are given in Figure 7 for a variety of meshes. Overall, the scaling factors observed are similar to
the first testcase: an average performance scaling factor of 9.9× in comparison to the OpenMP
code running on four cores, and 33.6× in comparison to the OpenMP code on one core. As
before, the code running on graphics hardware is faster by a factor 3.4× using redundant compu-
tation in comparison to pre-computed flux contributions. Timing measurements when running in

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:221–229
DOI: 10.1002/fld

UNSTRUCTURED GRID-BASED SOLVERS ON THE GPU 227

Figure 5. Pressures obtained at the surface for the missile.

Figure 6. Mach number obtained at the surface for the missile.

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:221–229
DOI: 10.1002/fld

228 A. CORRIGAN ET AL.

Figure 7. Running time (s) per element per iteration for the missile in single-precision.

Figure 8. Running time (s) per element per iteration for the missile in double-precision.

double-precision are given in Figure 8 for a variety of meshes, showing an average performance
scaling factor of 2.5× in comparison to the OpenMP code running on four cores and 7.4× in
comparison to the OpenMP code on one core. Furthermore, the code running on graphics hard-
ware is faster by a factor 1.63× using redundant computation in comparison to pre-computed flux
contributions.

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:221–229
DOI: 10.1002/fld

UNSTRUCTURED GRID-BASED SOLVERS ON THE GPU 229

5. CONCLUSIONS AND OUTLOOK

A substantial performance gain has been achieved by using effective techniques that take advantage
of the computational resources of modern graphics hardware. Based on these results, it is expected
that current and future GPUs will be well-suited and widely used for unstructured grid-based
solvers. Such an order of magnitude speed-up can result in a significant increase in the scale and
complexity of the problems considered in computational fluid dynamics. However, this performance
gain is less pronounced in the case of double-precision, and it is hoped that future hardware
iterations will improve double-precision performance.

An open standard, OpenCL [15], has emerged as an alternative to CUDA. OpenCL is similar
to CUDA, and therefore the techniques presented here are expected to be of relevance for codes
written using OpenCL.

A more advanced solver is in development which supports fourth-order damping, approximate
Riemann solvers, flux limiters, and edge-based computation.

ACKNOWLEDGEMENTS

The authors thank Sumit Gupta and NVIDIA Corporation for providing hardware for development and
testing.

REFERENCES

1. NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture 2.0 Programming Guide, 2008.
Available from: http://developer.nvidia.com/cuda.

2. Brandvik T, Pullan G. Acceleration of a two-dimensional Euler flow solver using commodity graphics hardware.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
2007; 221:1745–1748.

3. Brandvik T, Pullan G. Acceleration of a 3D Euler solver using commodity graphics hardware. Forty-sixth AIAA
Aerospace Sciences Meeting and Exhibit, AIAA 2008-607, Reno, NV, 2008.

4. Elsen E, LeGresley P, Darve E. Large calculation of the flow over a hypersonic vehicle using a GPU. Journal
of Computational Physics 2008; 227:10148–10161.

5. Tölke J. Implementation of a Lattice Boltzmann kernel using the compute unified device architecture developed
by nVIDIA. Computing and Visualization in Science 2008; DOI: 10.1007/s00791-008-0120-2.

6. Phillips E, Zhang Y, Davis R, Owens J. Cuda implementation of a Navier-stokes solver on multi-gpu desktop
platforms for incompressible flows. Forty-seventh AIAA Aerospace Sciences Meeting Including The New Horizons
Forum and Aerospace Exposition, AIAA 2009-565, Orlando, FL, 2009.

7. Thibault J, Senocak I. Cuda implementation of a Navier–Stokes solver on multi-gpu desktop platforms for
incompressible flows. Forty-seventh AIAA Aerospace Sciences Meeting Including The New Horizons Forum and
Aerospace Exposition, AIAA 2009-758, Orlando, FL, 2009.

8. Klockner A, Warburton T, Bridge J, Hesthaven JS. Nodal discontinuous galerkin methods on graphics processors,
2009. ArXiv.org:0901.1024.

9. Goodnight N. CUDA/OpenGL Fluid Simulation. NVIDIA Corporation, 2007.
10. Owens JD, Luebke D, Govindaraju N, Harris M, Krger J, Lefohn AE, Purcell TJ. A survey of general-

purpose computation on graphics hardware. Computer Graphics Forum 2007; 26(1):80–113. Available from:
http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1467-8659.%2007.01012.x.

11. Harris M. Fast fluid dynamics simulation on the GPU. GPU Gems, Chapter 38. Addison-Wesley: Reading, MA,
2004.

12. Scheidegger C, Comba J, Cunha R. Practical CFD simulations on the GPU using SMAC. Computer Graphics
Forum 2005; 24:715–728.

13. Hagen T, Lie KA, Natvig J. Solving the euler equations on graphics processing units. Proceedings of the 6th
International Conference on Computational Science. Lecture Notes in Computer Science, vol. 3994. Springer:
Berlin, 2006; 220–227.

14. Löhner R. Applied CFD Techniques: An Introduction Based on Finite Element Methods (2nd edn). Wiley:
New York, 2008.

15. Khronos OpenCL Working Group. The OpenCL Specification, Version 1.0, 2008.

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:221–229
DOI: 10.1002/fld

