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Abstract

This study extends the limit analysis techniques used ferctmputation of
strict bounds of the load factors in solids to stability geshs with interfaces,
anchors and joints. The cases considered include the pultapacity of multi-
belled anchors and the stability of retaining walls for nplét conditions at the
anchor/soil and wall/soil interfaces. Three types of walbsorts are examined:
free standing wall, simply supported wall and anchored \ildie results obtained
are compared against available experimental and numelatal The conclusion
drawn confirms the validity of numerical limit analysis fdret computation of
accurate bounds on limit loads and capturing failure modistractures with mul-

tiple inclusions of complex interface and support condisio
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1 Introduction

The use of anchored structures is a widespread engineeramgiqe. Applications
to mention are the anchoring of retaining walls, protectigainst rock-fall or tower
toppling, or stabilisation of caverns and tunnels [32, 2Bowever, the design and
stability analysis of such structures relies (i) on the avai regulations, which may
vary among countries, as it is acknowledged in BS EN 153702a8ndard, (ii) on

experimental results, or on (iii) assumed failure mechamgsimplified geometries [2,
20, 21, 27, 28, 26]. Usually, uniform load transfer from grimuground and cylindrical
or conical failure surface around the anchor are assumee. afbhor may be also
considered as a fixed point with an applied traction on the, \wal a straight failure
line is often assumed as a wall failure mechanism with a Gublériction law. As it

will be shown later in the paper, this may not be the case wihesail weight is taken

into account.



During last decades, the efficient numerical formulatiohthe lower and upper
bound theorems of classical plasticity theory have allog@entists and engineers to
estimate [34] or obtain the strict bounds [14]-[19] for soacademic examples such as
the bearing capacity of foundations or the analysis of aetrand double-bell anchors
[8, 10].

The paper presents some extensions of these formulatiahsvith permit to es-
timate the pull-out capacity of the grouting and to model éhverall anchored wall
system in two dimensions. These problems require the immcius the interface con-
ditions, and the modelling of the tie which may in turn regutie simulation of joints
at the tie end. Therefore, the description of how such featare incorporated in the
discrete formulations developed so far is included in tlopsmf the paper.

The flow of the paper proceed as follows. Section 2 presestsdhe lower and
upper bound formulations used in the computations. In 8edithe necessary exten-
sions dealing with interface modelling are introduced, iar8lection 4 they are applied
to analyse the pull-out capacity of anchors and the staluifitetaining walls. The ob-
tained results are then compared to the outcomes of prdyiomisducted experimental

and numerical studies.

2 Lower and upper bound formulations

The discretised form of the limit analysis problem are pnése next for completeness.
The discrete spaces coincide with those givenin [6, 13,3419]. The reader familiar

with these references may skip this section.



2.1 Lower bound formulation

In the following, it will be assumed that the failure mectamiof a body(? includes
some continuous deformation and a set of discontinuitissiate internal boundaries
I'. The body is subjected to surface loadg and body loads\f, with A being the
load factor. Its maximum valug* that the body can bear without collapsing can be

obtained by solving the following maximisation problem:

A* = max A\
N,oeB

a(v,o) +b(v,o) = M(v), Yv
s.t. 1)
oceB

which corresponds to the lower bound theorem of limit aralis, 4]. The bilinear
formsb(v, o) anda(v, o) represent respectively the dissipation power at the discon
tinuity T and at the remaining domain. The linear form¢(v) is the power of the

external forces. The three quantities are explicitly defing
a(v,0) := / g(v) : odQ
Q\"
b(v,o) := /[[v]] condl’ = /[[v]]@n :odl 2)
r r

L(v) ::/v-fdQ+/ v-gdl,
Q o0
where the operato is a symmetrised dyadic produak®b = 1 (a®b+b® a).
The normal vector: at any pointz € I' located between domaits and2¢ points
from Q¢ towardsQ2¢’, while [v] = v¢ — v° denotes the velocity jump at this point.
A discrete version of the maximisation problem in (1), whimovides a lower

bound\’? of A* may be obtained by using a feasible sub-space of the stré&s§lfe

19] that satisfies the conditions in (1), that is, a statjcatimissible stress field, denoted



by oB. A common choice is to use piecewise linear stresses defimadesh with

N, triangles (tetrahedra in 3D). Figure 1a schematises thaespd ” for two adjacent
elements that have been shrunk to ease the visualisatiosadfrdinuous fields. The
squares in Figure 1a denote the nodal stress values, whileirtties indicate nodal
velocities (element-wise constant at the element inteaiod linear at the edges). The
latter are actually the Lagrange multipliers associated thie equilibrium conditions

in (1), which are then enforced at the element interiordatthie Neumann boundaries,
and at each one of th¥; internal boundaries (edges in 2D, faces in 3D). In compact

form these equilibrium conditions read,

A* = max A

AclB L Xf=0
s.t. 3)

O'Z-LB7e€B, 621,...,Ne,i:17.--,nsd+1

The streser ™ is the result of assembling all the; + 1 nodal valuesriLB’e for
each element, with n4, being the number of space dimensions. Mafixs the result

of assembling all equilibrium conditions.

<| > -

Lower Bound Upper Bound

Figure 1: Discrete spaces considered for the lower and Upperd. Symbols at ver-
tices indicate nodal values of piecewise linear spacedewlgimbols in the middle of

triangles indicate piecewise constant spaces.



2.2 Upper bound formulation

The optimal value\* may be also found as the result of the following minimisation

problem, dual to problem (1):

st.q —e(v) € B* 4)
—[v]@n € B*

The dissipation poweD(v) is defined ad(v) = maxyep (a(v, o) + b(v, o)),
whose expression solely depends on the strain rates andityglamps and is well
known for classical plasticity criteria [7]. The sBt is the dual cone to the sé,
defined byB* = {z|z : o > 0,Vo € B}, so that the membership conditions in (4) are
equivalent to the usual associative rule of the strain rabelsvelocity jumps.

A discrete version of the problem above that allows compu#n upper bound
AUB > X\* may be then obtained by using a normalised velocity fi¢l# such that
((vYB) = 1 and is everywhere kinematically admissible, i.e. satitfiesnembership
conditions in (4). A common choice [6, 13, 15, 19] is the usea gfiecewise linear
velocity field, as shown in Figure 1. The associated Lagramgiipliers to the mem-
bership conditions in (4) represent a set of piecewise ennstresses”? inside the
elements and linear stress€s? at the edges, while the Lagrange multiplier corre-

sponding to constraint{vV?) = 1 is the load factonV”? [6, 19]. After inserting the



aforementioned discretisation in equation (4), this duabfem turns into,

A= m&n D(vYP)
((WYB) =1
s.t. —e(vll-]B’e)eB*, e=1,...,N,,i=1,2 (5)
—[wUB) @ns € B, £=1,...,Nei=1,2
wherev!” denotes the velocity vector at nod®f elemente, and [vV?]; is the
velocity jump at node of edget.

For some common plasticity criteria such as von Mises or dimsensional Mohr-
Coulomb criteria, the set defining the admissible stregsaés (3) and (5) may be
replaced (using convenient linear transformations of tressesr “Z andaV Z [6, 9,
15, 16, 19]) by a Lorentz coné defined byl := {x € R"|x1 > |{z2,...,zn}]|},
which allows to solve the problem above resorting to secaddraconic programming

(SOCP) software [12, 29, 30]. The results in Section 4 haveleyaed such transfor-

mations.

2.3 Mesh adaptivity

The resulting optimal variables of the lower and upper bopireblems, (a2, v=5)
and(oVZ vY5) may be combined to compute elemental and edge contributtidhe

total load gapAX = A\UB — \LB | denoted respectively b \® and A\, and defined



by:
A)\e:/ JUB’ese(vUB)dQ—i—/

AN = / sUBS . [wYP]dr —/ olBn - [vYB]dr
re e

V-O’LB~'UUBdQ—/ olBn  vUB4ar
one

(6)
These gap contributions satisfy the properfies= )", A)\G+ZE AN, AN >0
and A)¢ > 0 [6, 19], which allows us to use these quantities in a mesh tatgp
process: those elements and edges that have larger cdioimbwill be remeshed in
order to successively reduce the total gap and hence capture more accurately the

collapse mechanism.

3 Including interfaces, duplicated edges and joints

This paper aims to extend the previous formulation to maagtic situations encoun-
tered in common structures of civil engineering, witholéxéng the strictness of the
bounds. For this reason, the necessary changes that each these situations must
include for the lower and upper bound formulations will besctébed and justified
separately. These changes do respect the constructioatich#iy and kinematically
admissible spaces in each case, and allow to employ the sfimement process de-

scribed in Section 2.3 for the extended problem.

3.1 Interface conditions

The presented formulations will be extended next to probleth specific frictional

conditions at interfaces that separate two different nedterin the examples consid-



ered in this paper, these correspond to wall-soil and gngegoil interactions. For
clarity these extensions are described for two-dimensianalysis, but they can be

easily generalised to three-dimensional problems.

3.1.1 Lower bound

Let us consider two triangular elementsand B, with different material properties. In
this case, additional yield criteria at the interface andildarium conditions between
the interface and the elements must be included. This isnaglished by adding an
edgel between elementd and B, with nodal stresses?!, o1, as represented with
squares in Figure 2a. The optimisation problem is then cemphted with (i) mem-
bership conditions for the new nodes of the edge , and (ii)liijum condition be-
tween one of the elements, for instance elemé&nand the inserted edge Due to
the equilibrium condition between elemefitand B, the equibrium between element
B and interfacd is ensured. More specifically, point (i) is defined as a mestipr

condition for the two additional nodal stress varialtdso as,
oleBr, i=1,2 (7)

with 5; being the set of admissible stresses at the interface, lileequilibrium

conditions between elements and those in point (ii) read
(e —oP)yn=0, i=1,2 (8)
(e —oln=0, i=1,2 (9)

The nodal velocities at the two edges betwdesnd B, indicated in Figure 2a with

circles, correspond in fact to the Lagrange multiplier®aisged with these constraints:
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Figure 2: Discrete spaces considered for the lower (a) apérnip) bound problems

when modelling interfaces.

the velocities at one edge are associated with equationi(i® those at the other edge
correspond to equation (9).

Some examples of the admissible normal and shear compouoiethits tractions
that will be used in the results section are given in Figurl & worth noting that by
using suitable transformation ef!, all of them can be defined as second order cones
with additional constraints in cases (b) and (d). More djtily, for each case shown

in Figure 3 sef3; is equal to:

(a) Mohr-Coulomb ; (¢) von Mises withoy ~ 0

Mohr-Coulomb p von Mises withoy ~ 0
n-afngo n-a{ngo

Set(a) corresponds to standard friction with Coulomb law. Sefbinis the same
as (a), but removing any resistance under tension, and retaitiegohesion at the
interface. In this case, the interface can have some nanstezar component even

in the absence of tension. Cag¢ corresponds to the case of perfect smooth sliding

without shear component, and cdd¢is a more realistic sliding case where no tension

10



is permitted.

or or

ON ON

@) (b) (© (d)
Figure 3: Interface conditions: Rough interface, equaldib groperties (a), Rough

with no tension (b), smooth interface (c), and smooth withersion (d).

3.1.2 Upper bound

The upper bound problem uses a set of linear stresses at gles,asthich has been
denoted bysY2. When the edge becomes the interface between two domams, th
definition of specific plasticity criteria is achieved by fusiposing the interface ad-

missibility set for those stress variables at interface

sVBlepB, i=1,2 (10)

3

Figure 2b depicts by squares the nodal stresses of thedogeetige, which replace
the stresses at the internal edges between elemieatsl B. Therefore, no additional
variables are required in the upper bound formulation. ttusth be pointed out that
the nodal stress! corresponds in fact to the Lagrange mulitpliers of the dasive

conditions for the velocity jumps at the interface.

11



3.2 Duplicated edges

In two-dimensional analyses, it may become useful to moaelduperimposed do-
mains which are connected to a common edge. Those edgestimaat two elements
on one side, and one element on the other side will be cdlipdicated edges-igure
4 illustrates this situation, where an elemehon the left is connected to elemerits
andB’ on the right. This situation may help to simulate for ins@acoil domain with
a superimposed tie of an anchor that overlaps the soil witheing actually attached

to it, but connected to an anchor and to a wall at each end.

3.2.1 Lower bound

The equilibrium equation between the three element® and B’ must equalise the
tractions on elementl to the sum of the tractions oB and B’. Given a vectom
normal to the common edge, this equilibrium is equivaletii&following nodal equa-

tions:

(0 —of —cB)yn=0,i=1,2 (11)

K2 3 K2

This equation will be added to the constraints in problem @hce there is one
equilibrium equation per common node, each duplicated eztgeres two nodal veloc-
ities, as indicated with circles in Figure 4a. These velesitorrespond to the Lagrange

multipliers of equations (11).

3.2.2 Upper bound

The dissipation power at the edge corresponds to the suneqfder dissipated be-

tween elementsl and B, and the dissipated power between elemehend B’. For-

12
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Figure 4: Discrete spaces considered for the lower (a) apérnip) bound problems

when modelling duplicated edges.

mally, the total dissipation power at the edge corresporttiécsum of two integrals

along the common edge:

be(s,v) = / s47B L (vP — UA)dI‘+/ sAB L (vB —vM)dr
re e

Therefore, each duplicated edge requires two superimploseat stress spaces,
s4~B ands*~5', indicated by two pairs of squares in Figure (4)b. By impgdimat

each one of the four nodal variables is admissible, that is:

s?iB eB

77:: 1727
s?iB, €eB

the admissibility of the corresponding velocity jumpg$—v? andv;“—v?’ is ensured,

and therefore the strictness of the upper bound is guardnié® nodal velocities are

indicated with circles in Figure 4b.

13



3.3 Modédlingthejoints

In some particular cases, it appears to be convenient tegiisd the collapse due to
the relative rotation of two domains. For instance, in thamegles shown in Section
4.2, the bearing capacity of the tendon of an anchor is medels independent of the
angle that the tendon adopts with respect to the groutintheoangle it makes at the
wall attachment. This situation corresponds to the maupbif a revolute joint without
rotational dissipation, as depicted in Figure 5.

The modelling of such joint is characterised by i) transladl equilibrium at the
contact point, and ii) a rotation of the adjacent elementiadoa single common point.
The conditions in i) and ii) correspond respectively to thwédr and the upper bound

conditions of admissibility, which will be detailed next.

vy S
o) o} vy vl
(a)

Figure 5: Rotational joint and discrete spaces consideyetht lower (a) and upper

(b) bound problem.

3.3.1 Lower bound

The point-wise or node-to-node equilibrium conditionsted €dge between elements

A and B, which for general continua is contained in equation (3)stine in this case

14



replaced by the following integral equilibrium equation:
/(UA —oBndl' =0

Therefore, instead of imposing equilibrium everywherenglthe edge, only the
total load at each side of the joint is enforced to be in efuidim. As a result, a
unique Lagrange multiplier or velocity node is defined foclsioints, as indicated by
vz in Figure 5a with a single circle, instead of the two circleewn in Figure 1a. The
admissibility of the stresses at the joint is given by the &dihility sets of the nodal
stressesr! ando 2. If the yield criteria for these nodal stresses are diffefesm
what is set for the tractions at the nodes, then, an addltioodal stress variable is
required, with also an additional corresponding equilibriequation similar to the one

considered at the interfaces in egn. (9).

3.3.2 Upper bound

A kinematically admissible field is such that the velocitiesnply with the joint kine-
matics, that is, the nodal velocities correspond to twoeaelent rotations around the
centre of the joint. Such conditions are imposed by enfortiat the nodal velocity
jumps located on the different sides from the centre of th# jmode pairs 1 and 2 in
Figure 5b) are equal in magnitude and opposite in sign. Mia#tieally, this condition

reads,
[[’U]]l + [[’U]]g =0 (12)

where[v]; = v — vP corresponds to the velocity jump at node paifhe constraint

in (12) has an associated traction (Lagrange multipliea) ih given bys jn, with s

15



being the nodal stress of the joint. The latter has been septed with a single square
in Figure 5.

If velocity jumps at the mid-point of the joint are not allodighe stress tensat;
is a free variable. If instead, the joint can collapse duedn-admissible tractions, a
membership condition; € 5; must be added. When the kinematic condition in (12)

is included, the dissipation energy at the joint is evaldai®
b(sy, vUP) = / 57 (o] + [v]2)@ndl
T¢

3.3.3 Joint with multiple elements

After applying the remeshing process described in SectiBnthe joint conditions
described above must be preserved for the whole initial eldfi@ing the joint. In
other words, the joint must be equally and uniquely modekeg@rdless of the number
of elements that meet at the joint. In the lower bound problamnique velocity
node will be always required, and a single equation equajiie stress resultants at
each side will be imposed. However, the kinematic conditimrthe multiple elements
requires a set of constraints, such that the velocity junipiseajoint are linear along
the joint and zero at its centre, as illustrated in Figure Gré/precisely, if the joint
is defined byN; edges, the following constraints for the velocities mustrbposed

when solving the upper bound problem:

[['vﬂ{:[[vﬂé*l, I=2...,N;
'v{ o]t
%:H%“ I=2,...,Ny
[v]i = —[v]5”

16



Each one of these(IN; — 1) + 1 vector equations has an associated Lagrange
multiplier or stress variable. Consequently, while thedowound problem requires
one single nodal velocity, the upper bound problem will need; — 1) + 1 stress
variables. It is also assumed in the numerical examplesitdesicin Section 4 that the
velocity constraints given above will be satisfied exaethyd that therefore such nodal

stresses are unbounded (no dissipation energy will be atedtor).

NG [vs
A
.A 'Uéjv [[’UAHQ

qu o
O 'Ul 'Ul H’UBH .
q B’
® o
vg U3 H'UB]]Q

(a) (b)

Figure 6: Representation of velocity spaces in upper bouobl@m (a) and kinemati-

cally admissible velocity jumps (b) for joint formed by 2 exig

4 Numerical Results

4.1 Pull-out capacity of multi-bell anchors

The pull-out capacity of anchors may be limited by failuraijhe tendon itself (struc-
tural failure) ii) at the tendon-grouting interface (slaae), iii) at the grout-ground
interface (shear), iv) within the grout column (crushingoarsting), or v) within the
soil or rock supporting the bond (interface tendon-grout).

This section studies the dependence of pull-out capacihodzontal anchors in-

17



stalled using drilling techniques under a static load. Sihe analysis is focused on the
anchor-soil interaction, the strength of the grout and ¢@nate assumed much higher
than soil and soil-grouting interface. This effectivelyane that failure mechanisms i),
i) and iii) above are disregarded.

A comparison has been made between the single- and the doelbknchors in-
stalled in cohesive and cohesive-frictional soils withgh@and smooth interfaces. The
modelling geometries and FE meshes used for computatiershakvn in 7. For sand,
the ground-grout interface resistance may depend on samgitglepermeability and
homogeneity [22, 24], while in clays, the boring techniquaynbe determinant [22].
For simplicity, the same interface conditions as thosetferdoils with some tension
limitations shown in Figure 3 are assumed. A reference sikdyy = 1kN/m?* and

cohesion in clay equal to= 1k Pa are employed.

5 0.05 0.30 0.25

(@ (b)
Figure 7: Geometry and boundary conditions of horizontahans with single- and

double-bell.

The pull-out capacity of the single- and double-bell anstare given in Tables 1
and 2, respectively, for different interface conditiond amaterial properties of the soil.
No relevant differences in the mechanism and pull-out ciphave been observed
when the anchors have been pulled from the left or the rigbtvéver, the load capacity
decreases in all cases if the interface is smooth. Furthesnior clay soils, the no-

tension condition (indicated by “NT”) also reduces the fut capacity. Figures 9 and

18
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Figure 8: Typical structured (a) and unstructured (b) FEhaegor anchor pull-out

problem.
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@ (b)

Figure 9: Dissipation power at collapse for simple bell aah sand with smooth (a)

and rough (b) interface conditions.

(b) (c)

(@)

Figure 10: Dissipation power at collapse for anchor in clagterface conditions:
smooth (a), cohesive with no tension (b) and fully adhesiye (

10 show the different mechanisms for sand and clay soilpetively, using different
interface conditions. The latter do not affect the profiletls# dissipation power in

sand, but they do alter the resulting mechanism in clay.

These results show that the failure mechanisms dependisagrily on the material

19



properties of the soil. For sand material, the slip-lines extended up to the upper
surface (see Figures 11b and 11d), whereas for clay matendl at the modelled
depth, the mechanism is localised around the anchor (seedsid 1a and 11c). For
the latter case, whether the anchor has one or two bells duieshange the results
substantially (see Figures 11a and 11c).

In the recent years, several authors have also analyseditheup capacity of hor-
izontal and inclined anchors placed on horizontal and stappfaces. This anchors
have been analysed using the limit equilibrium method dialements [3, 11], or limit
analysis [8, 10, 33].

The pull-out capacity in sand soils is measured by the diinetess factof” = %,
with v being the soil densityj the distance from the anchor to the soil surface, and
pn = T/B the maximum applied pressure, whefeis the maximum load and
the width of the anchor. The published studies for a platdvanf8, 10] did not find

substantial differences for rough and smooth soil. Basecksults obtained in those

references the following formula has been suggested:

d
F =1+ & tan(9) (13)

In contrast, the results obtained in the present study siggstrong dependence
of the pull-out capacity of the anchor on the soil-groutintgrface. This is probably
due to the different shapes of the anchors considered andiffeesnce in pull-out
direction. Nonetheless, the values of factbobtained from the results given in Tables
1,2ford =5, B =0.3,y = 1are summarised in Table 3. It should be noted that the
values ofF’ obtained are betweehand4 times higher than those furnished by formula

(13), probably due to differences in the geometry and thenlary conditions.
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The pull-out capacity in clays has been analysed for ingtam¢17, 18, 33], and
has been expressed as a function of the so-called dimeesbteakdown factav,
asT = A ¢ N,, with A being the area of the anchor anthe shear strength of the clay.
The resulting values oW, obtained in this study are also given in Table 3 for the clay

material. The factoV. may be computed using the following formula [18]:

d
N, = Ny + 22 (14)
C
with N.g = % . For vertical plates in uniform clays and f@f B > 10, the authors

=0

in [18] obtained the valu&/., = 11.86, which is somehow comparable /. = 16.86
obtained herein. This value agrees with the smooth and dehdll case, but slightly
disagrees with the other cases. Nonetheless, since theragebmetry used in this
study does not correspond to a plate anchor, it is not exgeélets formula (14) fully
matches the values obtained here. It is also worth pointiighat the number of bells
has a stronger effect in clay soils than in sand soils.

Tests for London clays have been described in [1], wheregk@erimentally con-
firmed that the ultimate load is linearly proportional to th@mber of bells. It has
been verified that such linear relation exists. Figure 12vshihe dissipation power
for a three and four bell anchor, together with the pull-capacity of anchors under
different interface conditions as a function of the numbfdvadls. It has been verified
that for non-smooth interface conditions, the ultimateazdly depends more strongly
on the total length of the anchor than on the number of betiteréstingly, when the
interface conditions are smooth, the geometry of the bellsatribute to the bearing

capacity.
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Clay (c = 1kPa,¢ = 0°) | Sand ¢ = 20°) | Sand ¢ = 40°)

LB UB LB UB LB UB
Smooth 1.70 1.75 0.88 0.93 | 3.38 3.76
Smooth + NT| 1.31 1.43 0.88 0.93 | 3.36 3.79
Rough 2.67 2.75 1.35 1.38 | 461 4.92
Rough + NT | 2.15 2.26 1.35 138 | 461 4.95
NT 2.23 2.32 1.35 1.40 | 4.61 4.91

Table 1: Pull-out capacities of horizontal single-bell laois (for1/2 of the anchor).

NT=no tension.

Clay (c = 1kPa,¢ = 0°) | Sand ¢ = 20°) | Sand ¢ = 40°)

LB UB LB uB LB uB
Smooth 2.32 2.43 1.01 1.06 | 3.51 3.88
Smooth + NT| 1.81 2.01 1.01 1.06 | 3.51 3.89
Rough 2.67 2.79 1.35 140 | 4.61 4.95
Rough + NT | 2.09 2.42 1.28 149 | 461 4.95
NT 2.23 2.34 1.35 141 | 461 4.96

Table 2: Pull-out capacities of horizontal double-belltzors (for1/2 of the anchor).

NT=no tension.
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Single-bell Double-bell
Clay (N) | ¢ =20°(F) | ¢ =40° (F) || Clay (N) | ¢ =20° (F) | ¢ =40° (F)
Smooth 114 12.0 47.6 15.8 13.9 49.2
Rough 18.1 18.1 63.3 18.2 18.3 63.7

Table 3: Breakdown factoN, = % in clay materials and pull-out capacity factor

F = B%d in sand.T' the double of the average values in Tables 1 and 2.

4.2 Stability analysisof retaining wall

The stability of the wall supporting an excavation made ihesive-frictional soil is
investigated in terms of the ratio between the maximum depthe excavation prior
to collapse ) and the total height of the walhj. Figure 13 depicts the three situations
considered: (i) a free standing wall, (ii) a simply suppdntell, and (iii) an anchored
wall. The motivation behind case (ii) is the modelling of dvadf of a shored retaining
wall with intermediate struts.

The same total heigh? = 30m and widthi¥ = 80m of the domain are used in
all three cases. These dimensions have been considerectlawggh so that no special
techniques at the boundaries (i.e. [25]) must be used farlatmg the infinite domain.
The wall embedment depth= 16m is used everywhere. For each geometry and ratio
d/h, the limit stability factor)\, defined as the ratio between the maximum value of the
gravity acceleration and the applied valyg| = 23kN/m?, that is,\ = %, has
been computed. The maximum ratigh that a wall can withstand before collapsing

corresponds to the case whemapproaches.
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It should be noted that the variable body fortg has been in fact applied to a
reduced domain (soil on the right side of the wall), whilelie remaining domain a
constant weighg is considered. The use of a variable weight in reduced repakes
the optimisation problem computationally less expendiamtapplying the loadg to
the whole domain without compromising the accuracy of thadyesis.

For the cases considered hefig|| = 23kN/m? is employed, and a soil with
cohesionc = 10kPa and internal friction angled = 22°. The wall is modelled as
a material with a high value of the cohesian=€ 1e5kPa), such that no dissipation
is detected within the wall. The geometries and assumeddaoyirtonditions for the

three systems considered are shown in Figure 13.

4.2.1 Stability of free standing wall

The FE meshes employed for the analysis together with thetires collapse patterns
and dissipation plots are given in Figure (14)a. Table 4 g stability factor\
described above, where the limit valuedfh that best brackets the bound= 1 has
been written in bold.

No substantial difference is detected between the roughhendough/no tension
(rough + NT) conditions. However, the stability ratigh is reduced from approxi-
mately0.6 to 0.488 if the wall/soil interface is changed from rough to smootindie
tions. It canbe deduced therefore that the stability of te@ding walls relies signifi-

cantly on the wall/soil friction.
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W/S Interface = rough W/S Interface = rough + NT W/S Interface = smooth
d/h | LB UB Err(%)| d/h | LB UB Err(%)| d/h | LB UB Err(%)
0.6130.951 0.988 1.908 0.613]0.902 0.962 3.219 0.5000.944 0.965 1.100
0.606/0.981 1.016 1.753 0.606/0.953 0.994 2.10§ 0.494/0.964 0.995 1.587
0.600/1.011 1.051 1.94Q 0.600({0.985 1.027 2.087 0.488|1.003 1.026 1.134
0.5941.043 1.084 1.928 0.594{1.018 1.061 2.068 0.481]1.034 1.058 1.147
0.588/1.076 1.118 1.914 0.588/1.052 1.096 2.048 0.475/1.067 1.091 1.11Z
0.5811.110 1.154 1.943 0.581{1.087 1.133 2.072 0.4691.100 1.125 1.124
0.5751.143 1.191 2.057 0.5751.123 1.171 2.09Z7 0.4631.135 1.161 1.137

Table 4: Limit values of the stability factor for differedit & ratios of free standing wall

4.2.2 Stability of simply supported wall

Stability of simply supported retaining wall is assessethis section. The support

which prevents wall from moving horizontally is installed front of the wall ath/4

distance from its top. The vertical movement of the suppgrélement is not restricted

and its attachment to the wall is modelled by moment freet jd@scribed in Section

3.3.

The example of the final FE mesh obtained after completionev&tiaptive remesh-

ing process together with the resulting collapse pattendsdissipation plots is given

in Figure 14b. Additionally, the magnified area of momermefall/support joint at

collapse is shown in Figure 15a. The collapse load multiplier the differenti/h ra-

tios are given in Table 5. As it can be observed in Figure Jbfdilure mechanism in

this case is completely different from the one for the fremding wall. Furthermore,
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W/S Interface = rough

W/S Interface = rough + NT

WIS Interface = smooth

d/h | LB UB Emr(%)| d/h | LB UB Ermr(%)| d/h | LB UB Err(%)
0.8630.865 0.988 6.638 0.8750.779 0.897 7.041 0.794/0.875 0.973 5.303
0.8560.910 1.036 6.475 0.8690.822 0.941 6.75Q 0.788/0.910 0.962 5.35§
0.850{0.957 1.085 6.268 0.8630.865 0.988 6.63§ 0.7810.946 1.055 5.447
0.8441.005 1.136 6.119 0.856/0.910 1.036 6.474 0.775/0.983 1.099 5.572
0.8381.055 1.189 5971 0.850/0.957 1.085 6.268 0.769/1.021 1.144 5.681]
0.8311.106 1.244 5.872 0.844/1.005 1.136 6.119 0.763[1.061 1.191 5.773
0.8251.159 1.300 5.734 0.8381.055 1.189 5.971 0.756/1.102 1.240 5.892

Table 5: Limit values of the stability factor for differesit/ ratios of simply supported

wall

from the actual values of the critical ratiy / in Table 5, it can be concluded that the

wall/soil friction does not have such a strong influence andtability of the simply

supported wall, as was observed for the case of the freeiatanall.

4.2.3 Stability of anchored wall

Stability of a tied-back retaining wall is investigated. élatively shallow single-bell

anchor is installed di/4 depth, with length and width equal fon. x 0.3m. The full

set of problem dimensions and boundary conditions is shavAigure 13c. With such

shallow anchor installation it is likely that prior to theagit-soil interface failure, the

soil mass in front of the anchor fails with the shear planshésy the ground surface.

Therefore, it is aimed here to verify this numerically, astgd the overall anchored
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wall stability analysis.

Two anchor placement cases are considered: the anchorii®ped ath and2h
distance away from the wall. The moment free connection@#tichor tie to the wall
is implemented by overlapping it with soil/wall interface was described previously.
The tie itself does not interact with the soil to avoid itswfercing effect, and has been
modelled with the solid elements, but using moment-frertjodbnditions described in
Section 3.3.

The resulting collapse patterns and the adapted meshelvandgrgFigure 16, with
Figure 15b showing the moment-free/duplicated edgesfaterin action at collapse.
The actual bounds of the gravity acceleration are sumnthiis€ables 6 and 7 for an
anchor length equal th and2h, respectively. The interface conditions between the
grouting and the soil are the same as for the wall/soil iatazfin all cases.

The effects of interface conditions are reflected in the paligsipation plots pre-
sented in Figure 16. In the smooth case, practically nophsisin is appearing at the
wall/soil interfaces apart from that at the bottom of thelWsge Figure 16c¢). The col-
lapse mechanism exhibits only one single failure line betwthe anchor and the top
surface of the soil. Instead, when using the rough intergacelitions, two failure lines
are observed. This difference in collapse patterns is stggdy the values in Table
6-7, which show a substantial reduction in the limit valuelgh when the interface
conditions are changed from rough to smooth.

The distance between the wall and the anchor is also a relpaaameter. While
the limit values ofd/h increase when the distance is doubled, the mechanism is also

qualitatively different. When the length equals, two independent failure areas are
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WIS Interface = rough

W/S Interface = rough + NT

WIS Interface = smooth

d/h | LB UB Emr(%)| d/h | LB UB Em(%)| d/h| LB UB Err(%)
0.7940.874 0.987 6.072 0.794/0.857 0.969 6.134 0.606/0.858 0.967 5.973
0.7880.905 1.022 6.072 0.7880.887 1.004 6.187 0.6000.881 0.997 6.177
0.781{0.936 1.058 6.118 0.781/0.918 1.039 6.183 0.594/0.905 1.023 6.12Q
0.7750.968 1.094 6.111 0.775/0.949 1.075 6.225 0.5880.930 1.047 5.91§
0.7691.000 1.131 6.147 0.7690.981 1.112 6.259 0.581|0.956 1.081 6.13§
0.7631.032 1.169 6.224 0.7631.013 1.149 6.29Q 0.5750.982 1.112 6.20§
0.7561.065 1.208 6.291 0.756/1.047 1.187 6.267 0.5691.011 1.139  5.953

Table 6: Limit values of the stability factor for differedit/ ratios of an anchored wall.

The anchor is placed at a distaricéom the wall and isl meter long and0cm wide.

W/S Interface = rough

W/S Interface = rough + NT

WIS Interface = smooth

d/h | LB UB Emr(%)| d/h | LB UB Em(%)| d/h| LB UB Err(%)
0.8380.769 0.915 8.670 0.8250.834 0.991 8.603 0.6380.872 1.031 8.35%
0.8310.802 0.955 8.708 0.8190.870 1.032 8.517 0.631/0.893 1.062 8.64§
0.8250.837 0.995 8.624 0.8130.907 1.075 8.476 0.625/0.914 1.087 8.64§
0.8190.873 1.036 8.539 0.806/0.945 1.119 8.43Q 0.6190.936 1.108 8.41§
0.813(0.910 1.079 8.497 0.8000.984 1.164 8.380Q 0.6130.959 1.141  8.667
0.8060.948 1.123 8.45Q0 0.794/1.024 1.211 8.367 0.606/0.982 1.170 8.73§
0.8000.987 1.168 8.399 0.788/1.065 1.255 8.19Q 0.6001.008 1.196 8.530

Table 7: Limit values of the stability factor for differedit/ ratios of an anchored wall.

The anchor is placed at a distar&efrom the wall and id meter long and0cm wide.
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Maximum stability ratio {/h)
Wall Type FEM [31] Experimental Computed[2] Presentwork
Free standing wall 0.62 0.60 0.55 0.600
Simply supported wall  0.81 0.80 0.73 0.85
Anchored walll 0.75 0.70 0.73 0.775

Table 8: Maximum stability ratiod/h obtained for different retaining wall types and
methodologies. The values for the present work are takem avibugh wall/soil in-
terface with no traction and length of the anchorh. The other values have been

extracted from [31].

generated: one surrounding the rigid wall, and anothereatdp of the anchor.

The stability factors obtained for the retaining wall haeeb compared with those
reported in [31], p. 149. Table 8 presents the details of trepgarison, where the
results obtained here are for a rough wall/soil interfadd wo-tension (which are the
ones that were found to match better the reported result®) dstailed information on

interface conditions used in [31] have been provided).

5 Conclusions

Modelling of interfaces and joints in the framework of cortgdional limit analysis
has allowed us to obtain pull-out capacities of anchors aalilgy limits of multi-
anchored walls. The formulation presented has been vesifiéar on two-dimensional

cases, but the methodologies described are equally aplgitegeneral three-dimensional
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problems.

Moreover, other geometrical configurations of the anchaeveltl such as multiple
or non-horizontal anchors can be also analysed using theotiepresented here. The
cases treated in this paper are have been limited by bellesivea(*dead”) anchors,
i.e. those that are not pre-stressed. However, the inclusi@active anchors can be
foreseen by adding the necessary initial pre-stress inrtblea system. Although the
distribution of this stress may be non-trivial, the subsedlcomputational analysis
poses no major theoretical difficulties. Therefore, it iggested to pursue in the future
the studies of active and other anchor types such as expendak anchors.

The focus of this paper has been on anchor/wall systemshélinit analysis ex-
tensions described here are also applicable to the othensgsuch as slope stability,
tunnel stabilisation, or securing of caverns. The examgedysed have demonstrated
that formulations that preserve the strictness of the bswamd efficient for not only
classical academic problems, but more importantly for ttedlems of practical inter-

est.
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Dyi, = 0 NN .,

(b) Single-bell anchor. Clay soil with rough interfad®,{,q. = 150).

(c) Single-bell anchor. Sand (= 40°) with rough interface Dy,qz = 0.1).

(d) Double-bell anchor. Clay soil with rough interfac® {,q- = 500).

(e) Double-bell anchor. Sangh (= 40°) with rough interface Dynqz = 0.1).

Figure 11: Detail of the final meshes (left) and dissipatiower (right) for single- and
double-bell anchors. For clarity, the anchor and the tieeH@sen removed from the

figures.
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Figure 12: (a): Contour plots of the dissipation power inyctsil using three and
four bell anchors and rough interface. For clarity the amslamd the ties have been
removed from these figures. (b): pull-out capacity of anshiorclay as a function of

the number of bells for different interface conditions.

(@) (b)

(©

Figure 13: Dimensions and boundary conditions of free sten@), simply supported

(b) and an anchored wall (c).
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Dy = 0 | N NN .,

(©
Figure 14: Dissipation power (left column) and meshes aftiptive process (right)
of free standing wallD,,,... = 0.025 (a) and simply supported wall (b). In both cases

the wall/soil interface is rough + no tensiaf,,,,, = 0.1.



@ (b)

Figure 15: (a): Detail of the rigid block (red, left) connedtto the wall (blue) through
a joint in the simply supported wall. (b): Detail of the anchwall connection with a
duplicated edge at the left side and a joint in the tie, whengua wall/soil interface
with rough+no tension condition (notice the wall/soil segien, while the wall/achor

connection stays intake).
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(b) Anchored wall with no traction at interfaces, length n€aor= h, Dy,q. = 0.5.

(e) Anchored wall with rough interfaces, length of anchoRh, Dyqe = 0.1.

Figure 16: Anchored wall. Dissipation energy (left colunand meshes after adaptive

process (right).



