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Abstract

This study extends the limit analysis techniques used for the computation of

strict bounds of the load factors in solids to stability problems with interfaces,

anchors and joints. The cases considered include the pull-out capacity of multi-

belled anchors and the stability of retaining walls for multiple conditions at the

anchor/soil and wall/soil interfaces. Three types of wall supports are examined:

free standing wall, simply supported wall and anchored wall. The results obtained

are compared against available experimental and numericaldata. The conclusion

drawn confirms the validity of numerical limit analysis for the computation of

accurate bounds on limit loads and capturing failure modes of structures with mul-

tiple inclusions of complex interface and support conditions.
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1 Introduction

The use of anchored structures is a widespread engineering practice. Applications

to mention are the anchoring of retaining walls, protectionagainst rock-fall or tower

toppling, or stabilisation of caverns and tunnels [32, 23].However, the design and

stability analysis of such structures relies (i) on the national regulations, which may

vary among countries, as it is acknowledged in BS EN 1537:2000 standard, (ii) on

experimental results, or on (iii) assumed failure mechanism of simplified geometries [2,

20, 21, 27, 28, 26]. Usually, uniform load transfer from grout to ground and cylindrical

or conical failure surface around the anchor are assumed. The anchor may be also

considered as a fixed point with an applied traction on the wall, and a straight failure

line is often assumed as a wall failure mechanism with a Coulomb friction law. As it

will be shown later in the paper, this may not be the case when the soil weight is taken

into account.
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During last decades, the efficient numerical formulations of the lower and upper

bound theorems of classical plasticity theory have allowedscientists and engineers to

estimate [34] or obtain the strict bounds [14]-[19] for someacademic examples such as

the bearing capacity of foundations or the analysis of a single- and double-bell anchors

[8, 10].

The paper presents some extensions of these formulations that will permit to es-

timate the pull-out capacity of the grouting and to model theoverall anchored wall

system in two dimensions. These problems require the inclusion of the interface con-

ditions, and the modelling of the tie which may in turn require the simulation of joints

at the tie end. Therefore, the description of how such features are incorporated in the

discrete formulations developed so far is included in the scope of the paper.

The flow of the paper proceed as follows. Section 2 presents the core lower and

upper bound formulations used in the computations. In Section 3 the necessary exten-

sions dealing with interface modelling are introduced, andin Section 4 they are applied

to analyse the pull-out capacity of anchors and the stability of retaining walls. The ob-

tained results are then compared to the outcomes of previously conducted experimental

and numerical studies.

2 Lower and upper bound formulations

The discretised form of the limit analysis problem are presented next for completeness.

The discrete spaces coincide with those given in [6, 13, 14, 15, 19]. The reader familiar

with these references may skip this section.

3



2.1 Lower bound formulation

In the following, it will be assumed that the failure mechanism of a bodyΩ includes

some continuous deformation and a set of discontinuities atsome internal boundaries

Γ. The body is subjected to surface loadsλg and body loadsλf , with λ being the

load factor. Its maximum valueλ∗ that the body can bear without collapsing can be

obtained by solving the following maximisation problem:

λ∗ = max
λ,σ∈B

λ

s.t.















a(v,σ) + b(v,σ) = λℓ(v), ∀v

σ ∈ B

(1)

which corresponds to the lower bound theorem of limit analysis [5, 4]. The bilinear

formsb(v,σ) anda(v,σ) represent respectively the dissipation power at the discon-

tinuity Γ and at the remaining domainΩ. The linear formℓ(v) is the power of the

external forces. The three quantities are explicitly defined by

a(v,σ) :=

∫

Ω\Γ

ε(v) : σdΩ

b(v,σ) :=

∫

Γ

JvK · σndΓ =

∫

Γ

JvK⊗̄n : σdΓ

ℓ(v) :=

∫

Ω

v · fdΩ +

∫

∂Ω

v · gdΓ,

(2)

where the operator̄⊗ is a symmetrised dyadic product:a⊗̄b = 1

2
(a⊗ b+ b⊗ a).

The normal vectorn at any pointx ∈ Γ located between domainsΩe andΩe′ points

fromΩe towardsΩe′ , while JvK = ve′ − ve denotes the velocity jump at this point.

A discrete version of the maximisation problem in (1), whichprovides a lower

boundλLB of λ∗ may be obtained by using a feasible sub-space of the stress field [14,

19] that satisfies the conditions in (1), that is, a statically admissible stress field, denoted
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by σLB. A common choice is to use piecewise linear stresses defined on a mesh with

Ne triangles (tetrahedra in 3D). Figure 1a schematises the spacesσLB for two adjacent

elements that have been shrunk to ease the visualisation of discontinuous fields. The

squares in Figure 1a denote the nodal stress values, while the circles indicate nodal

velocities (element-wise constant at the element interior, and linear at the edges). The

latter are actually the Lagrange multipliers associated with the equilibrium conditions

in (1), which are then enforced at the element interiors, at the the Neumann boundaries,

and at each one of theNξ internal boundaries (edges in 2D, faces in 3D). In compact

form these equilibrium conditions read,

λ∗ = maxλ

s.t.















AσLB + λf = 0

σ
LB,e
i ∈ B, e = 1, . . . , Ne, i = 1, . . . , nsd + 1

(3)

The stressσLB is the result of assembling all thensd + 1 nodal valuesσLB,e
i for

each elemente, with nsd being the number of space dimensions. MatrixA is the result

of assembling all equilibrium conditions.

Lower Bound

v

σ

Upper Bound

Figure 1: Discrete spaces considered for the lower and upperbound. Symbols at ver-

tices indicate nodal values of piecewise linear spaces, while symbols in the middle of

triangles indicate piecewise constant spaces.
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2.2 Upper bound formulation

The optimal valueλ∗ may be also found as the result of the following minimisation

problem, dual to problem (1):

λ∗ = min
v

D(v)

s.t.































ℓ(v) = 1

−ε(v) ∈ B∗

−JvK⊗̄n ∈ B∗

(4)

The dissipation powerD(v) is defined asD(v) = maxσ∈B (a(v,σ) + b(v,σ)),

whose expression solely depends on the strain rates and velocity jumps and is well

known for classical plasticity criteria [7]. The setB∗ is the dual cone to the setB,

defined byB∗ = {z|z : σ ≥ 0, ∀σ ∈ B}, so that the membership conditions in (4) are

equivalent to the usual associative rule of the strain ratesand velocity jumps.

A discrete version of the problem above that allows computing an upper bound

λUB > λ∗ may be then obtained by using a normalised velocity fieldvUB such that

ℓ(vUB) = 1 and is everywhere kinematically admissible, i.e. satisfiesthe membership

conditions in (4). A common choice [6, 13, 15, 19] is the use ofa piecewise linear

velocity field, as shown in Figure 1. The associated Lagrangemultipliers to the mem-

bership conditions in (4) represent a set of piecewise constant stressesσUB inside the

elements and linear stressessUB at the edges, while the Lagrange multiplier corre-

sponding to constraintℓ(vUB) = 1 is the load factorλUB [6, 19]. After inserting the

6



aforementioned discretisation in equation (4), this dual problem turns into,

λ∗ = min
v

D(vUB)

s.t.































ℓ(vUB) = 1

−ε(vUB,e
i ) ∈ B∗, e = 1, . . . , Ne, i = 1, 2

−JvUBKξi ⊗̄nξ ∈ B∗, ξ = 1, . . . , Nξ, i = 1, 2

(5)

wherevUB,e
i denotes the velocity vector at nodei of elemente, andJvUBKξ is the

velocity jump at nodei of edgeξ.

For some common plasticity criteria such as von Mises or two-dimensional Mohr-

Coulomb criteria, the set defining the admissible stressesB in (3) and (5) may be

replaced (using convenient linear transformations of the stressesσLB andσUB [6, 9,

15, 16, 19]) by a Lorentz coneL defined byL := {x ∈ R
n|x1 ≥ ‖{x2, . . . , xn}‖},

which allows to solve the problem above resorting to second order conic programming

(SOCP) software [12, 29, 30]. The results in Section 4 have employed such transfor-

mations.

2.3 Mesh adaptivity

The resulting optimal variables of the lower and upper boundproblems,(σLB,vLB)

and(σUB,vUB) may be combined to compute elemental and edge contributionsto the

total load gap∆λ = λUB − λLB , denoted respectively by∆λe and∆λξ, and defined
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by:

∆λe =

∫

Ωe

σUB,e : ε(vUB)dΩ +

∫

Ωe

∇ · σLB · vUBdΩ−

∫

∂Ωe

σLBn · vUBdΓ

∆λξ =

∫

Γξ

sUB,ξ · JvUBKdΓ−

∫

Γξ

σLBn · JvUBKdΓ

(6)

These gap contributions satisfy the properties∆λ =
∑

e∆λe+
∑

ξ ∆λξ,∆λe ≥ 0

and∆λξ ≥ 0 [6, 19], which allows us to use these quantities in a mesh adaptivity

process: those elements and edges that have larger contributions will be remeshed in

order to successively reduce the total gap∆λ and hence capture more accurately the

collapse mechanism.

3 Including interfaces, duplicated edges and joints

This paper aims to extend the previous formulation to more realistic situations encoun-

tered in common structures of civil engineering, without relaxing the strictness of the

bounds. For this reason, the necessary changes that each oneof these situations must

include for the lower and upper bound formulations will be described and justified

separately. These changes do respect the construction of statically and kinematically

admissible spaces in each case, and allow to employ the same refinement process de-

scribed in Section 2.3 for the extended problem.

3.1 Interface conditions

The presented formulations will be extended next to problems with specific frictional

conditions at interfaces that separate two different materials. In the examples consid-
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ered in this paper, these correspond to wall-soil and grouting-soil interactions. For

clarity these extensions are described for two-dimensional analysis, but they can be

easily generalised to three-dimensional problems.

3.1.1 Lower bound

Let us consider two triangular elements,A andB, with different material properties. In

this case, additional yield criteria at the interface and equilibrium conditions between

the interface and the elements must be included. This is accomplished by adding an

edgeI between elementsA andB, with nodal stressesσI
1, σI

2, as represented with

squares in Figure 2a. The optimisation problem is then complemented with (i) mem-

bership conditions for the new nodes of the edge , and (ii) equilibirum condition be-

tween one of the elements, for instance elementA, and the inserted edgeI. Due to

the equilibrium condition between elementA andB, the equibrium between element

B and interfaceI is ensured. More specifically, point (i) is defined as a membership

condition for the two additional nodal stress variablesσI
1,σ

I
2 as,

σI
i ∈ BI , i = 1, 2 (7)

with BI being the set of admissible stresses at the interface, whilethe equilibrium

conditions between elements and those in point (ii) read

(σA
i − σB

i )n = 0, i = 1, 2 (8)

(σA
i − σI

i )n = 0, i = 1, 2 (9)

The nodal velocities at the two edges betweenA andB, indicated in Figure 2a with

circles, correspond in fact to the Lagrange multipliers associated with these constraints:
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Figure 2: Discrete spaces considered for the lower (a) and upper (b) bound problems

when modelling interfaces.

the velocities at one edge are associated with equation (8) while those at the other edge

correspond to equation (9).

Some examples of the admissible normal and shear componentsof the tractions

that will be used in the results section are given in Figure 3.It is worth noting that by

using suitable transformation ofσI
i , all of them can be defined as second order cones

with additional constraints in cases (b) and (d). More specifically, for each case shown

in Figure 3 setBI is equal to:

(a) Mohr-Coulomb ; (c) von Mises withσY ≈ 0

(b)















Mohr-Coulomb

n · σI
in ≤ 0

; (d)















von Mises withσY ≈ 0

n · σI
in ≤ 0

Set(a) corresponds to standard friction with Coulomb law. Set in(b) is the same

as (a), but removing any resistance under tension, and retaining the cohesion at the

interface. In this case, the interface can have some non-zero shear component even

in the absence of tension. Case(c) corresponds to the case of perfect smooth sliding

without shear component, and case(d) is a more realistic sliding case where no tension
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is permitted.

σN

σT

(a)

σN

σT

(b)

σN

σT

(c)

σN

σT

(d)

Figure 3: Interface conditions: Rough interface, equal to soil properties (a), Rough

with no tension (b), smooth interface (c), and smooth with notension (d).

3.1.2 Upper bound

The upper bound problem uses a set of linear stresses at the edges, which has been

denoted bysUB . When the edge becomes the interface between two domains, the

definition of specific plasticity criteria is achieved by just imposing the interface ad-

missibility set for those stress variables at interfaceI:

s
UB,I
i ∈ BI , i = 1, 2 (10)

Figure 2b depicts by squares the nodal stresses of the interface edge, which replace

the stresses at the internal edges between elementsA andB. Therefore, no additional

variables are required in the upper bound formulation. It should be pointed out that

the nodal stresssIi corresponds in fact to the Lagrange mulitpliers of the associative

conditions for the velocity jumps at the interface.
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3.2 Duplicated edges

In two-dimensional analyses, it may become useful to model two superimposed do-

mains which are connected to a common edge. Those edges that connect two elements

on one side, and one element on the other side will be calledduplicated edges. Figure

4 illustrates this situation, where an elementA on the left is connected to elementsB

andB′ on the right. This situation may help to simulate for instance a soil domain with

a superimposed tie of an anchor that overlaps the soil without being actually attached

to it, but connected to an anchor and to a wall at each end.

3.2.1 Lower bound

The equilibrium equation between the three elementsA, B andB′ must equalise the

tractions on elementA to the sum of the tractions onB andB′. Given a vectorn

normal to the common edge, this equilibrium is equivalent tothe following nodal equa-

tions:

(σA
i − σB

i − σB′

i )n = 0, i = 1, 2 (11)

This equation will be added to the constraints in problem (3). Since there is one

equilibrium equation per common node, each duplicated edgerequires two nodal veloc-

ities, as indicated with circles in Figure 4a. These velocities correspond to the Lagrange

multipliers of equations (11).

3.2.2 Upper bound

The dissipation power at the edge corresponds to the sum of the power dissipated be-

tween elementsA andB, and the dissipated power between elementsA andB′. For-
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Figure 4: Discrete spaces considered for the lower (a) and upper (b) bound problems

when modelling duplicated edges.

mally, the total dissipation power at the edge correspond tothe sum of two integrals

along the common edge:

bξ(s,v) =

∫

Γξ

sA−B · (vB − vA)dΓ +

∫

Γξ

sA−B′

· (vB′

− vA)dΓ

Therefore, each duplicated edge requires two superimposedlinear stress spaces,

sA−B andsA−B′

, indicated by two pairs of squares in Figure (4)b. By imposing that

each one of the four nodal variables is admissible, that is:














sA−B
i ∈ B

sA−B′

i ∈ B

, i = 1, 2,

the admissibility of the corresponding velocity jumpsvA
i −vB

i andvA
i −vB′

i is ensured,

and therefore the strictness of the upper bound is guaranteed. The nodal velocities are

indicated with circles in Figure 4b.
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3.3 Modelling the joints

In some particular cases, it appears to be convenient to disregard the collapse due to

the relative rotation of two domains. For instance, in the examples shown in Section

4.2, the bearing capacity of the tendon of an anchor is modelled as independent of the

angle that the tendon adopts with respect to the grouting, orthe angle it makes at the

wall attachment. This situation corresponds to the modelling of a revolute joint without

rotational dissipation, as depicted in Figure 5.

The modelling of such joint is characterised by i) translational equilibrium at the

contact point, and ii) a rotation of the adjacent element around a single common point.

The conditions in i) and ii) correspond respectively to the lower and the upper bound

conditions of admissibility, which will be detailed next.

σ
A
2

vJ

v
B
2

A B

v
B
1

v
A
1

v
A
2

sJ

A B

(b)(a)

σ
A
1

σ
B
1

σ
B
2

Figure 5: Rotational joint and discrete spaces considered for the lower (a) and upper

(b) bound problem.

3.3.1 Lower bound

The point-wise or node-to-node equilibrium conditions at the edge between elements

A andB, which for general continua is contained in equation (3), must be in this case
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replaced by the following integral equilibrium equation:

∫

(σA − σB)ndΓ = 0

Therefore, instead of imposing equilibrium everywhere along the edge, only the

total load at each side of the joint is enforced to be in equilibrium. As a result, a

unique Lagrange multiplier or velocity node is defined for such joints, as indicated by

vJ in Figure 5a with a single circle, instead of the two circles shown in Figure 1a. The

admissibility of the stresses at the joint is given by the admissibility sets of the nodal

stressesσA
i andσB

i . If the yield criteria for these nodal stresses are different from

what is set for the tractions at the nodes, then, an additional nodal stress variable is

required, with also an additional corresponding equilibrium equation similar to the one

considered at the interfaces in eqn. (9).

3.3.2 Upper bound

A kinematically admissible field is such that the velocitiescomply with the joint kine-

matics, that is, the nodal velocities correspond to two independent rotations around the

centre of the joint. Such conditions are imposed by enforcing that the nodal velocity

jumps located on the different sides from the centre of the joint (node pairs 1 and 2 in

Figure 5b) are equal in magnitude and opposite in sign. Mathematically, this condition

reads,

JvK1 + JvK2 = 0 (12)

whereJvKi = vA
i − vB

i corresponds to the velocity jump at node pairi. The constraint

in (12) has an associated traction (Lagrange multiplier) that is given bysJn, with sJ
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being the nodal stress of the joint. The latter has been represented with a single square

in Figure 5.

If velocity jumps at the mid-point of the joint are not allowed, the stress tensorsJ

is a free variable. If instead, the joint can collapse due to non-admissible tractions, a

membership conditionsJ ∈ BJ must be added. When the kinematic condition in (12)

is included, the dissipation energy at the joint is evaluated as,

b(sJ ,v
UB) =

∫

Γξ

sJ : (JvK1 + JvK2)⊗̄ndΓ

3.3.3 Joint with multiple elements

After applying the remeshing process described in Section 2.3, the joint conditions

described above must be preserved for the whole initial edgedefining the joint. In

other words, the joint must be equally and uniquely modelledregardless of the number

of elements that meet at the joint. In the lower bound problem, a unique velocity

node will be always required, and a single equation equalising the stress resultants at

each side will be imposed. However, the kinematic conditionfor the multiple elements

requires a set of constraints, such that the velocity jumps at the joint are linear along

the joint and zero at its centre, as illustrated in Figure 6. More precisely, if the joint

is defined byNJ edges, the following constraints for the velocities must beimposed

when solving the upper bound problem:

JvKI1 = JvKI−1

2
, I = 2, . . . , NJ

JvKI1
JvKI

2

=
JvKI−1

1

JvKI−1

2

, I = 2, . . . , NJ

JvK11 = −JvKNJ

2
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Each one of these2(NJ − 1) + 1 vector equations has an associated Lagrange

multiplier or stress variable. Consequently, while the lower bound problem requires

one single nodal velocity, the upper bound problem will need2(NJ − 1) + 1 stress

variables. It is also assumed in the numerical examples described in Section 4 that the

velocity constraints given above will be satisfied exactly,and that therefore such nodal

stresses are unbounded (no dissipation energy will be accounted for).
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Figure 6: Representation of velocity spaces in upper bound problem (a) and kinemati-

cally admissible velocity jumps (b) for joint formed by 2 edges.

4 Numerical Results

4.1 Pull-out capacity of multi-bell anchors

The pull-out capacity of anchors may be limited by failure i)in the tendon itself (struc-

tural failure) ii) at the tendon-grouting interface (slippage), iii) at the grout-ground

interface (shear), iv) within the grout column (crushing orbursting), or v) within the

soil or rock supporting the bond (interface tendon-grout).

This section studies the dependence of pull-out capacity ofhorizontal anchors in-
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stalled using drilling techniques under a static load. Since the analysis is focused on the

anchor-soil interaction, the strength of the grout and tendon are assumed much higher

than soil and soil-grouting interface. This effectively means that failure mechanisms i),

ii) and iii) above are disregarded.

A comparison has been made between the single- and the double-bell anchors in-

stalled in cohesive and cohesive-frictional soils with rough and smooth interfaces. The

modelling geometries and FE meshes used for computations are shown in 7. For sand,

the ground-grout interface resistance may depend on sand density, permeability and

homogeneity [22, 24], while in clays, the boring technique may be determinant [22].

For simplicity, the same interface conditions as those for the soils with some tension

limitations shown in Figure 3 are assumed. A reference soil densityγ = 1kN/m3 and

cohesion in clay equal toc = 1kPa are employed.
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Figure 7: Geometry and boundary conditions of horizontal anchors with single- and

double-bell.

The pull-out capacity of the single- and double-bell anchors are given in Tables 1

and 2, respectively, for different interface conditions and material properties of the soil.

No relevant differences in the mechanism and pull-out capacity have been observed

when the anchors have been pulled from the left or the right. However, the load capacity

decreases in all cases if the interface is smooth. Furthermore, for clay soils, the no-

tension condition (indicated by “NT”) also reduces the pull-out capacity. Figures 9 and
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(a) (b)

Figure 8: Typical structured (a) and unstructured (b) FE meshes for anchor pull-out

problem.

(a) (b)

Figure 9: Dissipation power at collapse for simple bell anchor in sand with smooth (a)

and rough (b) interface conditions.

(a) (b) (c)

Figure 10: Dissipation power at collapse for anchor in clay.Interface conditions:

smooth (a), cohesive with no tension (b) and fully adhesive (c)

10 show the different mechanisms for sand and clay soils, respectively, using different

interface conditions. The latter do not affect the profile ofthe dissipation power in

sand, but they do alter the resulting mechanism in clay.

These results show that the failure mechanisms depend significantly on the material
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properties of the soil. For sand material, the slip-lines are extended up to the upper

surface (see Figures 11b and 11d), whereas for clay material, and at the modelled

depth, the mechanism is localised around the anchor (see Figures 11a and 11c). For

the latter case, whether the anchor has one or two bells does not change the results

substantially (see Figures 11a and 11c).

In the recent years, several authors have also analysed the pull-out capacity of hor-

izontal and inclined anchors placed on horizontal and sloppy surfaces. This anchors

have been analysed using the limit equilibrium method, finite elements [3, 11], or limit

analysis [8, 10, 33].

The pull-out capacity in sand soils is measured by the dimensionless factorF = pu

γd
,

with γ being the soil density,d the distance from the anchor to the soil surface, and

pu = T/B the maximum applied pressure, whereT is the maximum load andB

the width of the anchor. The published studies for a plate anchor [8, 10] did not find

substantial differences for rough and smooth soil. Based onresults obtained in those

references the following formula has been suggested:

F = 1 +
d

B
tan(φ) (13)

In contrast, the results obtained in the present study suggest a strong dependence

of the pull-out capacity of the anchor on the soil-grouting interface. This is probably

due to the different shapes of the anchors considered and thedifference in pull-out

direction. Nonetheless, the values of factorF obtained from the results given in Tables

1, 2 ford = 5, B = 0.3, γ = 1 are summarised in Table 3. It should be noted that the

values ofF obtained are between2 and4 times higher than those furnished by formula

(13), probably due to differences in the geometry and the boundary conditions.
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The pull-out capacity in clays has been analysed for instance in [17, 18, 33], and

has been expressed as a function of the so-called dimensionless breakdown factorNc

asT = A c Nc, with A being the area of the anchor andc the shear strength of the clay.

The resulting values ofNc obtained in this study are also given in Table 3 for the clay

material. The factorNc may be computed using the following formula [18]:

Nc = Nc0 +
γd

c
(14)

with Nc0 = T
Ac

∣

∣

∣

γ=0

. For vertical plates in uniform clays and ford/B > 10, the authors

in [18] obtained the valueNc0 = 11.86, which is somehow comparable toNc = 16.86

obtained herein. This value agrees with the smooth and double-bell case, but slightly

disagrees with the other cases. Nonetheless, since the anchor geometry used in this

study does not correspond to a plate anchor, it is not expected that formula (14) fully

matches the values obtained here. It is also worth pointing out that the number of bells

has a stronger effect in clay soils than in sand soils.

Tests for London clays have been described in [1], where it isexperimentally con-

firmed that the ultimate load is linearly proportional to thenumber of bells. It has

been verified that such linear relation exists. Figure 12 shows the dissipation power

for a three and four bell anchor, together with the pull-out capacity of anchors under

different interface conditions as a function of the number of bells. It has been verified

that for non-smooth interface conditions, the ultimate capacity depends more strongly

on the total length of the anchor than on the number of bells. Interestingly, when the

interface conditions are smooth, the geometry of the bells do contribute to the bearing

capacity.
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Clay (c = 1kPa, φ = 0◦) Sand (φ = 20◦) Sand (φ = 40◦)

LB UB LB UB LB UB

Smooth 1.70 1.75 0.88 0.93 3.38 3.76

Smooth + NT 1.31 1.43 0.88 0.93 3.36 3.79

Rough 2.67 2.75 1.35 1.38 4.61 4.92

Rough + NT 2.15 2.26 1.35 1.38 4.61 4.95

NT 2.23 2.32 1.35 1.40 4.61 4.91

Table 1: Pull-out capacities of horizontal single-bell anchors (for1/2 of the anchor).

NT=no tension.

Clay (c = 1kPa, φ = 0◦) Sand (φ = 20◦) Sand (φ = 40◦)

LB UB LB UB LB UB

Smooth 2.32 2.43 1.01 1.06 3.51 3.88

Smooth + NT 1.81 2.01 1.01 1.06 3.51 3.89

Rough 2.67 2.79 1.35 1.40 4.61 4.95

Rough + NT 2.09 2.42 1.28 1.49 4.61 4.95

NT 2.23 2.34 1.35 1.41 4.61 4.96

Table 2: Pull-out capacities of horizontal double-bell anchors (for1/2 of the anchor).

NT=no tension.
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Single-bell Double-bell

Clay (Nc) φ = 20◦ (F ) φ = 40◦ (F ) Clay (Nc) φ = 20◦ (F ) φ = 40◦ (F )

Smooth 11.4 12.0 47.6 15.8 13.9 49.2

Rough 18.1 18.1 63.3 18.2 18.3 63.7

Table 3: Breakdown factorNc = T
Ac

in clay materials and pull-out capacity factor

F = T
Bγd

in sand.T the double of the average values in Tables 1 and 2.

4.2 Stability analysis of retaining wall

The stability of the wall supporting an excavation made in cohesive-frictional soil is

investigated in terms of the ratio between the maximum depthof the excavation prior

to collapse (d) and the total height of the wall (h). Figure 13 depicts the three situations

considered: (i) a free standing wall, (ii) a simply supported wall, and (iii) an anchored

wall. The motivation behind case (ii) is the modelling of onehalf of a shored retaining

wall with intermediate struts.

The same total heightH = 30m and widthW = 80m of the domain are used in

all three cases. These dimensions have been considered large enough so that no special

techniques at the boundaries (i.e. [25]) must be used for simulating the infinite domain.

The wall embedment depthh = 16m is used everywhere. For each geometry and ratio

d/h, the limit stability factorλ, defined as the ratio between the maximum value of the

gravity acceleration and the applied value‖g‖ = 23kN/m3, that is,λ =
‖gmax‖

‖g‖ , has

been computed. The maximum ratiod/h that a wall can withstand before collapsing

corresponds to the case whenλ approaches1.

23



It should be noted that the variable body forceλg has been in fact applied to a

reduced domain (soil on the right side of the wall), while in the remaining domain a

constant weightg is considered. The use of a variable weight in reduced regionmakes

the optimisation problem computationally less expensive than applying the loadλg to

the whole domain without compromising the accuracy of the analysis.

For the cases considered here,‖g‖ = 23kN/m3 is employed, and a soil with

cohesionc = 10kPa and internal friction angleφ = 22◦. The wall is modelled as

a material with a high value of the cohesion (c = 1e5kPa), such that no dissipation

is detected within the wall. The geometries and assumed boundary conditions for the

three systems considered are shown in Figure 13.

4.2.1 Stability of free standing wall

The FE meshes employed for the analysis together with the resulting collapse patterns

and dissipation plots are given in Figure (14)a. Table 4 gives the stability factorλ

described above, where the limit value ofd/h that best brackets the boundλ = 1 has

been written in bold.

No substantial difference is detected between the rough andthe rough/no tension

(rough + NT) conditions. However, the stability ratiod/h is reduced from approxi-

mately0.6 to 0.488 if the wall/soil interface is changed from rough to smooth condi-

tions. It canbe deduced therefore that the stability of freestanding walls relies signifi-

cantly on the wall/soil friction.
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W/S Interface = rough W/S Interface = rough + NT W/S Interface = smooth

d/h LB UB Err (%) d/h LB UB Err (%) d/h LB UB Err (%)

0.613 0.951 0.988 1.908 0.613 0.902 0.962 3.219 0.500 0.944 0.965 1.100

0.606 0.981 1.016 1.753 0.606 0.953 0.994 2.106 0.494 0.964 0.995 1.582

0.600 1.011 1.051 1.940 0.600 0.985 1.027 2.087 0.488 1.003 1.026 1.134

0.594 1.043 1.084 1.928 0.594 1.018 1.061 2.068 0.481 1.034 1.058 1.147

0.588 1.076 1.118 1.914 0.588 1.052 1.096 2.048 0.475 1.067 1.091 1.112

0.581 1.110 1.154 1.943 0.581 1.087 1.133 2.072 0.469 1.100 1.125 1.124

0.575 1.143 1.191 2.057 0.575 1.123 1.171 2.092 0.463 1.135 1.161 1.132

Table 4: Limit values of the stability factor for differentd/h ratios of free standing wall

4.2.2 Stability of simply supported wall

Stability of simply supported retaining wall is assessed inthis section. The support

which prevents wall from moving horizontally is installed in front of the wall ath/4

distance from its top. The vertical movement of the supporting element is not restricted

and its attachment to the wall is modelled by moment free joint described in Section

3.3.

The example of the final FE mesh obtained after completion of the adaptive remesh-

ing process together with the resulting collapse patterns and dissipation plots is given

in Figure 14b. Additionally, the magnified area of moment-free wall/support joint at

collapse is shown in Figure 15a. The collapse load multipliers for the differentd/h ra-

tios are given in Table 5. As it can be observed in Figure 14b, the failure mechanism in

this case is completely different from the one for the free standing wall. Furthermore,
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W/S Interface = rough W/S Interface = rough + NT W/S Interface = smooth

d/h LB UB Err (%) d/h LB UB Err (%) d/h LB UB Err (%)

0.863 0.865 0.988 6.638 0.875 0.779 0.897 7.041 0.794 0.875 0.973 5.303

0.856 0.910 1.036 6.475 0.869 0.822 0.941 6.750 0.788 0.910 0.962 5.356

0.850 0.957 1.085 6.268 0.863 0.865 0.988 6.638 0.781 0.946 1.055 5.447

0.844 1.005 1.136 6.119 0.856 0.910 1.036 6.475 0.775 0.983 1.099 5.572

0.838 1.055 1.189 5.971 0.850 0.957 1.085 6.268 0.769 1.021 1.144 5.681

0.831 1.106 1.244 5.872 0.844 1.005 1.136 6.119 0.763 1.061 1.191 5.773

0.825 1.159 1.300 5.734 0.838 1.055 1.189 5.971 0.756 1.102 1.240 5.892

Table 5: Limit values of the stability factor for differentd/h ratios of simply supported

wall

from the actual values of the critical ratiod/h in Table 5, it can be concluded that the

wall/soil friction does not have such a strong influence on the stability of the simply

supported wall, as was observed for the case of the free standing wall.

4.2.3 Stability of anchored wall

Stability of a tied-back retaining wall is investigated. A relatively shallow single-bell

anchor is installed ath/4 depth, with length and width equal to1m× 0.3m. The full

set of problem dimensions and boundary conditions is shown in Figure 13c. With such

shallow anchor installation it is likely that prior to the grout-soil interface failure, the

soil mass in front of the anchor fails with the shear plans reaching the ground surface.

Therefore, it is aimed here to verify this numerically, as part of the overall anchored
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wall stability analysis.

Two anchor placement cases are considered: the anchor is positioned ath and2h

distance away from the wall. The moment free connection of the anchor tie to the wall

is implemented by overlapping it with soil/wall interface as was described previously.

The tie itself does not interact with the soil to avoid its reinforcing effect, and has been

modelled with the solid elements, but using moment-free joint conditions described in

Section 3.3.

The resulting collapse patterns and the adapted meshes are given in Figure 16, with

Figure 15b showing the moment-free/duplicated edges interface in action at collapse.

The actual bounds of the gravity acceleration are summarised in Tables 6 and 7 for an

anchor length equal toh and2h, respectively. The interface conditions between the

grouting and the soil are the same as for the wall/soil interface in all cases.

The effects of interface conditions are reflected in the power dissipation plots pre-

sented in Figure 16. In the smooth case, practically no dissipation is appearing at the

wall/soil interfaces apart from that at the bottom of the wall (see Figure 16c). The col-

lapse mechanism exhibits only one single failure line between the anchor and the top

surface of the soil. Instead, when using the rough interfaceconditions, two failure lines

are observed. This difference in collapse patterns is supported by the values in Table

6-7, which show a substantial reduction in the limit value ofd/h when the interface

conditions are changed from rough to smooth.

The distance between the wall and the anchor is also a relevant parameter. While

the limit values ofd/h increase when the distance is doubled, the mechanism is also

qualitatively different. When the length equals2h, two independent failure areas are
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W/S Interface = rough W/S Interface = rough + NT W/S Interface = smooth

d/h LB UB Err (%) d/h LB UB Err (%) d/h LB UB Err (%)

0.794 0.874 0.987 6.072 0.794 0.857 0.969 6.134 0.606 0.858 0.967 5.973

0.788 0.905 1.022 6.072 0.788 0.887 1.004 6.187 0.600 0.881 0.997 6.177

0.781 0.936 1.058 6.118 0.781 0.918 1.039 6.183 0.594 0.905 1.023 6.120

0.775 0.968 1.094 6.111 0.775 0.949 1.075 6.225 0.588 0.930 1.047 5.918

0.769 1.000 1.131 6.147 0.769 0.981 1.112 6.259 0.581 0.956 1.081 6.136

0.763 1.032 1.169 6.224 0.763 1.013 1.149 6.290 0.575 0.982 1.112 6.208

0.756 1.065 1.208 6.291 0.756 1.047 1.187 6.267 0.569 1.011 1.139 5.953

Table 6: Limit values of the stability factor for differentd/h ratios of an anchored wall.

The anchor is placed at a distanceh from the wall and is1 meter long and30cm wide.

W/S Interface = rough W/S Interface = rough + NT W/S Interface = smooth

d/h LB UB Err (%) d/h LB UB Err (%) d/h LB UB Err (%)

0.838 0.769 0.915 8.670 0.825 0.834 0.991 8.603 0.638 0.872 1.031 8.355

0.831 0.802 0.955 8.708 0.819 0.870 1.032 8.517 0.631 0.893 1.062 8.645

0.825 0.837 0.995 8.624 0.813 0.907 1.075 8.476 0.625 0.914 1.087 8.646

0.819 0.873 1.036 8.539 0.806 0.945 1.119 8.430 0.619 0.936 1.108 8.415

0.813 0.910 1.079 8.497 0.800 0.984 1.164 8.380 0.613 0.959 1.141 8.667

0.806 0.948 1.123 8.450 0.794 1.024 1.211 8.367 0.606 0.982 1.170 8.736

0.800 0.987 1.168 8.399 0.788 1.065 1.255 8.190 0.600 1.008 1.196 8.530

Table 7: Limit values of the stability factor for differentd/h ratios of an anchored wall.

The anchor is placed at a distance2h from the wall and is1 meter long and30cm wide.
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Wall Type

Maximum stability ratio (d/h)

FEM [31] Experimental Computed [2] Present work

Free standing wall 0.62 0.60 0.55 0.600

Simply supported wall 0.81 0.80 0.73 0.85

Anchored wall 0.75 0.70 0.73 0.775

Table 8: Maximum stability ratiosd/h obtained for different retaining wall types and

methodologies. The values for the present work are taken with a rough wall/soil in-

terface with no traction and length of the anchor= h. The other values have been

extracted from [31].

generated: one surrounding the rigid wall, and another at the top of the anchor.

The stability factors obtained for the retaining wall have been compared with those

reported in [31], p. 149. Table 8 presents the details of the comparison, where the

results obtained here are for a rough wall/soil interface with no-tension (which are the

ones that were found to match better the reported results, asno detailed information on

interface conditions used in [31] have been provided).

5 Conclusions

Modelling of interfaces and joints in the framework of computational limit analysis

has allowed us to obtain pull-out capacities of anchors and stability limits of multi-

anchored walls. The formulation presented has been verifiedso far on two-dimensional

cases, but the methodologies described are equally applicable to general three-dimensional
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problems.

Moreover, other geometrical configurations of the anchoredwall such as multiple

or non-horizontal anchors can be also analysed using the methods presented here. The

cases treated in this paper are have been limited by belled passive (“dead”) anchors,

i.e. those that are not pre-stressed. However, the inclusion of active anchors can be

foreseen by adding the necessary initial pre-stress in the anchor system. Although the

distribution of this stress may be non-trivial, the subsequent computational analysis

poses no major theoretical difficulties. Therefore, it is suggested to pursue in the future

the studies of active and other anchor types such as expandable rock anchors.

The focus of this paper has been on anchor/wall systems, but the limit analysis ex-

tensions described here are also applicable to the other systems such as slope stability,

tunnel stabilisation, or securing of caverns. The examplesanalysed have demonstrated

that formulations that preserve the strictness of the bounds are efficient for not only

classical academic problems, but more importantly for the problems of practical inter-

est.
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clay. Géotechnique, 61(3):235–246, 2011.

[34] N Zouain, Herskovits J, L A Borges, and Feijóo RA. An iterative algorithm for
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Dmin = 0 Dmax

(b) Single-bell anchor. Clay soil with rough interface (Dmax = 150).

(c) Single-bell anchor. Sand (φ = 40◦) with rough interface (Dmax = 0.1).

(d) Double-bell anchor. Clay soil with rough interface (Dmax = 500).

(e) Double-bell anchor. Sand (φ = 40◦) with rough interface (Dmax = 0.1).

Figure 11: Detail of the final meshes (left) and dissipation power (right) for single- and

double-bell anchors. For clarity, the anchor and the tie have been removed from the

figures.
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(a) (b)

Figure 12: (a): Contour plots of the dissipation power in clay soil using three and

four bell anchors and rough interface. For clarity the anchors and the ties have been

removed from these figures. (b): pull-out capacity of anchors in clay as a function of

the number of bells for different interface conditions.
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Figure 13: Dimensions and boundary conditions of free standing (a), simply supported

(b) and an anchored wall (c).
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Dmin = 0 Dmax

(b)

(c)

Figure 14: Dissipation power (left column) and meshes afteradaptive process (right)

of free standing wall,Dmax = 0.025 (a) and simply supported wall (b). In both cases

the wall/soil interface is rough + no tension,Dmax = 0.1.
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(a) (b)

Figure 15: (a): Detail of the rigid block (red, left) connected to the wall (blue) through

a joint in the simply supported wall. (b): Detail of the anchor/wall connection with a

duplicated edge at the left side and a joint in the tie, when using a wall/soil interface

with rough+no tension condition (notice the wall/soil separation, while the wall/achor

connection stays intake).
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Dmin = 0 Dmax

(b) Anchored wall with no traction at interfaces, length of anchor= h, Dmax = 0.5.

(c) Anchored wall with rough interfaces, length of anchor= h, Dmax = 0.1.

(d) Anchored wall with smooth interfaces, length of anchor= h, Dmax = 0.1.

(e) Anchored wall with rough interfaces, length of anchor= 2h, Dmax = 0.1.

Figure 16: Anchored wall. Dissipation energy (left column)and meshes after adaptive

process (right).
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