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Abstract. This paper presents the Multi-Disciplinary Optimization (MDO) of a business jet includ-
ing static aeroelastic effects. Two different CFD tools (AETHER by Dassault Aviation and PUMA
by NTUA) are coupled with a CSM model (VPS software by ESI). Single discipline as well as cou-
pled multi-disciplinary sensitivity derivatives (SDs) are computed by means of adjoint methods. Both a
purely discrete and a hybrid continuous(fluid)/discrete(structure) adjoint formulations are presented. The
computed SDs are verified against finite differences.

1 INTRODUCTION

Modern aircraft design is an increasingly complex process due to stricter regulations, environmental
constraints and a continuous need for lower operational costs. Design includes aerodynamics, structural
mechanics, control, aeroacoustics and heat transfer, to name just the most important disciplines. There
is a large literature on simulation tools for these disciplines, the use of which has led to efficient and
increasingly versatile aircraft. A major challenge for future design workflows, especially those relying
on numerical optimization techniques, is the exploitation of trade-offs between the involved disciplines
which is expected to reduce the development effort, resulting in superior new designs.

Among the variety of optimization techniques used by the aeronautics industry, a significant amount
of interest has surfaced in gradient-based techniques relying upon the adjoint method [1, 2, 3], since
the latter computes gradients for aircraft performance metrics at a cost independent of the number of
design parameters. However, adjoint formulations that account for the interaction between disciplines,
are not yet mature enough and this is where recent research focuses on [4, 5]. The development of
adjoint methods in an MDO context gives the opportunity to obtain feasible designs at a fraction of
the development cost compared to traditional methods, iteratively solving single-discipline optimization
problems. The latter are more costly yielding inferior results, since the multi-disciplinary feasibility must
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a posteriori be enforced for each candidate design.
In this work, adjoint methods for tackling the problem of aircraft wing design while also considering

the wing’s structure flexibility are developed. These make use of coupled high-fidelity computational
tools (for the Reynolds-Averaged Navier-Stokes, RANS, equations for the fluid and a Finite Element,
FE, solver for the wing structure) to support flexible wing optimization. The developed methods are
used for the shape optimization of a Generic Business Jet (GBJ) flexible wing provided by Dassault
Aviation.

The rest of this paper is as follows. Section 2 describes the two different CFD solvers, namely
AETHER and PUMA, used in this paper. Comparisons of the GBJ aerodynamic performance predictions
by them are made. Section 3 describes the adjoint formulations for both CFD tools. AETHER employs
discrete adjoint based on Automatic Differentiation (AD), while PUMA continuous adjoint. Section
4 describes the approach used for parameterizing the shape of the GBJ. A surrogate parameterization
model provides an opaque layer of abstraction between the actual CAD model of the geometry and the
optimization process. Section 5 describes the Computational Structural Mechanics (CSM) model used,
by the VPS software, as well as the Fluid-Structure Interaction (FSI) technique for both the primal and
adjoint workflows. In Section 6, the sensitivity derivatives predicted by the adjoint methods, with and
without accounting for wing structure flexibility,0 are compared with finite differences (FDs). Section 7
presents the outcome of the optimization runs.

2 CFD TOOLS

Two CFD tools are used. The first one is code AETHER, namely the in-house software of Das-
sault Aviation. AETHER is based on the Streamline Upwind Petrov-Galerkin (SUPG) Finite Element
approach for solving the RANS equations on simplicial meshes [6, 7]. A fully implicit iterative time-
marching procedure based on the GMRES algorithm leads to a robust and efficient solution scheme.
AETHER runs on CPU clusters using domain decomposition and the MPI protocol.

The second CFD tool is software PUMA [8] developed by the PCOpt/NTUA. PUMA is a GPU-
enabled (U)RANS solver, employing the vertex-centered approach of the finite volume method on un-
structured meshes consisting of tetrahedra, pyramids, prisms and hexahedra. Inviscid fluxes are dis-
cretized using either Roe’s upwind approximate Riemann solver or a central scheme with a blend of
second- and fourth-order dissipation terms for second-order spatial accuracy. It employs a multi-stage
Runge-Kutta scheme with residual smoothing, for which the linear system is solved by a preconditioned
Krylov-based solver. PUMA runs on clusters of GPUs on different computational nodes, by decom-
posing the flow domain into overlapping subdomains. GPUs on the same node exchange data through
the shared on-node memory using the capabilities of the CUDA API, while the MPI protocol is used
otherwise.

A comparison of the cL vs. cD curves for a cruise speed of M = 0.82 and a flight altitude of 41 000 ft,
as computed by the two CFD tools, is presented in Fig. 2. The two curves match each other and the
comparison is very satisfactory given that the two RANS solvers rely upon different methods (FE vs.
FV) and meshes. AETHER used a tetrahedral mesh created by in-house Dassault Aviation tools with
approximately 16 Mi nodes while PUMA used a hybrid mesh of 9 Mi nodes, Fig. 1. In either code,
turbulence is modeled by means of the Spalart-Allmaras model [9].
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Figure 1: Cut across the volume mesh around the GBJ used by PUMA (left). Hexahedra and prisms are
used for creating high aspect ratio cells to capture the boundary layer physics. Tetrahedra fill the rest of
the domain, while pyramids are used to transition between the different element types. Close-up view of
the mesh in the nacelle-pylon-fuselage area (right).
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cD

AETHER
PUMA

Figure 2: Comparison of the cL vs. cD curves predicted by AETHER and PUMA.

3 ADJOINT FORMULATIONS

The two CFD tools (PUMA and AETHER) employ different adjoint approaches. In the discrete
adjoint approach, the expression of the objective or constraint function J is augmented by the discrete
residual of the flow (index F) equations RRRF

n , multiplied by the vector of adjoint variables ΨΨΨ
F
n , with

n=1, . . . ,MF , with MF the number of the flow equations. Boldface symbols denote vectors with size
equal to that of the computational mesh. By differentiating the expression of Jaug w.r.t. the design
parameters bi, i=1, . . . ,ND the following expression arises

δJaug

δbi
=

δJ
δbi

+[ΨΨΨF
n ]

T δRRRF
n

δbi
(1)

Throughout this paper, repeated indices imply summation, unless otherwise stated. Since both J and
RRRF

n are functions of the flow variables WWW F
m, m=1, . . . ,MF and nodal coordinates xxxF

k , k=1, . . . ,3, their
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variations w.r.t. bi are

δJ
δbi

=
∂J

∂WWW F
m

δWWW F
m

δbi
+

∂J
∂xxxF

k

δxxxF
k

δbi
,

δRRRF
n

δbi
=

∂RRRF
n

∂WWW F
m

δWWW F
m

δbi
+

∂RRRF
n

∂xxxF
k

δxxxF
k

δbi
(2)

By combining Eq. 1 with Eq. 2 and re-arranging terms, one obtains

δJaug

δbi
=

(
∂J

∂WWW F
m
+[ΨΨΨF

n ]
T ∂RRRF

n

∂WWW F
m

)
δWWW F

m

δbi
+

(
∂J

∂xxxF
k
+[ΨΨΨF

n ]
T ∂RRRF

n

∂xxxF
k

)
δxxxF

k
δbi

(3)

Variations in the flow variables are eliminated by satisfying the discrete adjoint equations (i.e. [ ∂RRRF
n

∂WWW F
m
]T ΨΨΨ

F
n =

−[ ∂J
∂WWW F

m
]T ), while the second term on the r.h.s. of Eq. 3 provides the sensitivity derivatives’ expression.

The discrete adjoint approach, used by AETHER [10] is based on the AD tool TAPENADE [11]. The
Spalart-Allmaras turbulence model is also included in the AD process, hence, RRRF also accommodates
the residual of the discretized Spalart-Allmaras model equation.

In order to compute SDs using continuous adjoint, J is augmented by the integrals of the flow equa-
tions RF multiplied by the adjoint variables ΨF . No boldface symbols are used since the adjoint devel-
opment is agnostic to any domain discretization. Development starts from

δJaug

δbi
=

δJ
δbi

+
∫

ΩF

Ψ
F
n

δRF
n

δbi
dΩ

︸ ︷︷ ︸
T1

+
∫

ΩF

Ψ
G
`

∂2

∂x2
k

(
δxF

`

δbi

)
dΩ

︸ ︷︷ ︸
T2

(4)

where n=1, . . . ,MF , k, `=1, . . . ,3 and ΩF is the CFD domain. A Laplacian mesh deformation model is
assumed and this is also included in Jaug through T2; this introduces three extra adjoint fields ΨG

m. By
applying the divergence theorem on T1 and T2 and further developing δJ

δbi
one obtains

δJ
δbi

=
∫

SObj

BJ→F
m

δW F
m

δbi
dS+

∫
SObj

BJ→G
k

δxF
k

δbi
dS

T1 =
∫

ΩF

C F→F
m

δW F
m

δbi
dΩ+

∫
ΩF

C F→G
k

δxF
k

δbi
dΩ+

∫
S

BF→F
m

δW F
m

δbi
dS+

∫
S

BF→G
k

δxF
k

δbi
dS

T2 =
∫

ΩF

C G→G
k

δxF
k

δbi
dΩ+

∫
S

BG→G
k

δxF
k

δbi
dS

(5)

where S stands for the boundary of Ω, SObj the surface on which J is defined, m= 1, . . . ,MF and
k = 1, . . . ,3. Combining Eqs. 5 and satisfying (a) the adjoint flow equations C F→F

m = 0 with appro-
priate boundary conditions, i.e. BJ→F

m + BF→F
m = 0 and (b) the adjoint grid displacement equations

C F→G
k +C G→G

k = 0, the derivatives of J w.r.t. bi are computed as

δJ
δbi

=
∫
S

(
BJ→G

k +BF→G
k +BG→G

k
) δxF

k
δbi

dS (6)

In the adjoint PUMA code, the Spalart-Allmaras turbulence model is fully differentiated [12, 13].
Possible numerical stability issues of the adjoint solver due to the presence of unstable modes in the
primal solution, are circumvented using the Recursive Projection Method (RPM) [14].
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4 GBJ SHAPE PARAMETERIZATION

The shape of the airframe is parameterized using the geometry generation tool GANIMEDE (Ge-
ometry ANd Inherent MEsh DEformation, [15, 16]), by Dassault Aviation. GANIMEDE handles both
local and global design variables. By local design variables modifications at the control point level are
meant, such as coordinates’, tangent and curvature values. Global design variables redefine several con-
trol points enabling to modify characteristics such as thickness, twist and camber of wing sections. As
the geometry changes during the optimization, GANIMEDE generates new surface meshes by involving
the CAD modeler and creating connectivity by projecting the initial surface mesh onto the new geometry.
Quite often, the need to take geometric constraints into account emerges occasionally. For manufactur-
ing reasons, one might want to impose specific relations between some geometric entities. From the
operational point of view, for many aircraft, including very large commercial transport concepts, a span
constraint has to be imposed in the design process. Another case of interest for imposing constraints
exists when retrofitting an aircraft. All geometric constraints are directly handled by the GANIMEDE
modeler. This results to a cost reduction compared to the alternative of delegating this task to the opti-
mizer by imposing additional constraints, since the gradient of these geometric quantities is no longer
needed.

Since GANIMEDE is not available for use outside Dassault Aviation, NTUA has developed a sur-
rogate shape parameterization model, working directly on the aircraft’s surface mesh, based on meshes
corresponding to shape perturbations for each design parameter, provided using GANIMEDE. By doing
so, the dependence on GANIMEDE is restricted only to the pre-processing phase, while shape modifica-
tions during the optimization are undertaken by the surrogate model.

Let zzzD be the coordinates of the surface mesh nodes for the datum shape and bi ∈
[
b−i ,b

+
i

]
, i=

1, . . . ,ND the design parameters with initial (datum) value of bD
i . Let zzz−i , i= 1, . . . ,ND be the surface

mesh nodes coordinates corresponding to the design parameter vector with all parameters equal to their
datum values, excluding though the ith one which is set to b−i , also, let zzz+i be the coordinates for the
positive perturbation of the ith design parameter. The zzzi values for any value of the ith design parameter
are given by

zzzik = zzzD
k +aaaikb2

i + cccikbi, with i=1, . . . ,ND and k=1, . . . ,3 (7)

(no summation for repeated indices). The coefficients aaa and ccc are computed by solving the following
system of equations for each surface mesh node, design parameter and Cartesian coordinate

aaaik
(
b−i
)2

+ cccikb−i = zzz−ik− zzzD
k

aaaik
(
b+i
)2

+ cccikb+i = zzz+ik− zzzD
k

(8)

The surface mesh nodal coordinates xxx for a simultaneous modification of several design parameters
results from superimposing the various zzz values for all i=1, . . . ,ND, i.e.

xxxk = zzzD
k +

ND

∑
i=1

(
zzzik− zzzD

k
)
, for k=1, . . . ,3 (9)

In what follows, 4 design parameters (b1 to b4) are used to control the wing twist spanwise distribu-
tion, another 4 (b5 to b8) to control the wing trailing edge camber distribution along its span and the
last one (b9) to control the horizontal tail plane (HTP) rotation angle. Since this model is analytically
differentiated, it can readily be incorporated into the adjoint method.
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Figure 3: Effect of the design parameters on the airframe shape. The datum contour of the wing is
shown with the blue line. The yellow line corresponds to the altered shape outline. Alteration of the 1st

(bottom-right), 8th (top-right) and 9th (bottom-left) design parameters.

5 FLUID-STRUCTURE INTERACTION (FSI)

The purpose is to introduce wing flexibility effects into the analysis and optimization of an aircraft.
The CFD tools and their adjoint counterparts represent only one discipline involved in the MDO problem.
The other discipline concerns the structural response of the wing under aerodynamic and gravitational
loading. This is handled by a FE linear elasticity solver, part of the VPS (Virtual Performance Solution)
software of ESI, which is the CSM component of the MDO workflow presented.

Given the positions xxxS
k of the NS FE model nodes on the flight shape, and denoting by yyyS

k the positions
of the same nodes in the unloaded state (jig shape), the nodal structural displacements are given as
UUUS

k =xxxS
k − yyyS

k , k = 1, . . . ,3. The discrete system of the linear elasticity equations along the k direction is
expressed as

Kk`UUUS
` = fff S

k + fff G
k , with k, `=1, . . . ,3 (10)

where K stands for the stiffness matrix, fff S
k for the aerodynamic load along the Cartesian direction k

applied on the structure nodes and fff G
k for the gravitational load due to the structure weight (including

also the lumped fuel load). Starting from the wing’s flight shape, a FE model, consisting of shell elements
(for the wing’s skin and webs of spars and ribs) and beam elements (for the caps of spars and ribs), is set
up. Then, the jig shape of the wing is computed iteratively by a quasi-Newton method, assuming K to be
a function of yyyS.

The CSM mesh differs from the surface CFD mesh. The tool for transferring information along the
non-matching interfaces has been developed by ESI, based on Radial Basis Functions (RBFs) [17]. The
structural displacements of the CFD surface mesh nodes are given as UUUF

k = HUUUS
k , k = 1, . . . ,3, where

matrix H contains the weights with which each of the NS nodes of the CSM model contributes to the
displacement of the NF CFD surface mesh nodes. Aerodynamic load transfer along the FSI is done using
the transpose of H, and this ensures conservation of force, moment and virtual work along the FSI [18].

The aeroelastic analysis of the aircraft is performed using a fixed-point iteration scheme with dy-
namic relaxation [19], sketched in Fig. 4. In order to compute sensitivity derivatives of the aerodynamic
performance metrics, while accounting for wing flexibility, the adjoint technique of Section 3 has been
extended. Eq. 1 now includes an additional term containing variations in the discrete CSM residual ( δRRRS

δbi
)
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multiplied by the CSM adjoint variables ΨΨΨ
S, i.e.

Figure 4: The aeroelastic fixed-point iteration involving the CFD and CSM tools.

δJaug

δbi
=

δJ
δbi

+[ΨΨΨF
n ]

T δRRRF
n

δbi
+[ΨΨΨS

k ]
T δRRRS

k
δbi

, with n=1, . . . ,MF and k=1, . . . ,3. (11)

In this work, the wing structure is assumed to remain unaffected by changes in the design parameters.
Moreover, the wing’s datum flight shape (with nodal coordinates xxxF0) is parameterized and will be re-
ferred to onward as the “reference” shape. Let yyyF

k denote the coordinates of the wing skin nodes in the
unloaded (jig shape) state. Then, the actual flight shape of the wing (when static aeroelastic equilibrium is
obtained) is given as xxxF

k = yyyF
k +UUUF

k , k= 1, . . . ,3. Due to the assumption made, dddF
k = xxxF0

k −yyyF
k , k= 1, . . . ,3

remain constant and the variation of the flight shape coordinates reads

δxxxF
k

δbi
=

δxxxF0
k

δbi
+

δUUUF
k

δbi
, with k=1, . . . ,3 (12)

The objective or constraint function J, the aerodynamic loads on the CFD surface mesh nodes fff F

and the residuals of the flow equations RRRF are now functions of the flow variables WWW F , the reference
shape nodal coordinates xxxF0 and the displacements induced by the wing flexibility UUUF. Moreover, the
residuals of the CSM equations RRRS depend on the structural displacement of the CSM nodes UUUS and the
aerodynamic loads transferred to the CSM model fff S. Eq. 11 then, becomes

δJaug

δbi
=

(
∂J

∂WWW F
m
+[ΨΨΨF

n ]
T ∂RRRF

n

∂WWW F
m

)
δWWW F

m

δbi
+[ΨΨΨS

k ]
T ∂RRRS

k

∂UUUS
`

δUUUS
`

δbi

+

(
∂J

∂UUUF
`

+[ΨΨΨF
n ]

T ∂RRRF
n

∂UUUF
`

)
δUUUF

`

δbi︸ ︷︷ ︸
T3

+[ΨΨΨS
k ]

T ∂RRRS
k

∂ fff S
`

δ fff S
`

δbi︸ ︷︷ ︸
T4

+

(
∂JJJ

∂xxxF0
`

+[ΨΨΨF ]T
∂RRRF

n

∂xxxF0
`

)
δxxxF0

`

δbi

(13)

with m,n = 1, . . . ,MF and k, ` = 1, . . . ,3. The multiplier of the variation of UUUF is the so-called adjoint
structural displacements vector (UUUF,adj) on the CFD surface mesh nodes, while that of the variation of
fff S represents the adjoint aerodynamic loads ( fff S,adj) on the CSM model nodes. Taking this into account,
as well as the equations connecting UUUF to UUUS and fff S to fff F , terms T3 and T4 in Eq. 13 become

T3 = [UUUF,adj
m ]T

∂UUUF
m

∂UUUS
`︸ ︷︷ ︸

[UUUS,adj
` ]T

δUUUS
`

δbi
, T4 = [ fff S,adj

k ]T
∂ fff S

k

∂ fff F
q︸ ︷︷ ︸

[ fff F,adj
q ]T

δ fff F
q

δbi
(14)
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The final expression of the discrete adjoint equations for the coupled CFD+CSM system of equations is

[ΨΨΨF
n ]

T ∂RRRF
n

∂WWW F
m
+[ fff F,adj

k ]T
∂ fff F

k

∂WWW F
m
=− ∂J

∂WWW F
m
, [ΨΨΨS

k ]
T ∂RRRS

k

∂UUUS
`

=−[UUUS,adj]T − [ fff F,adj
q ]T

∂ fff F
q

∂UUUF
k

∂UUUF
k

∂UUUS
`

(15)

with m,n = 1, . . . ,MF and k, `,q = 1, . . . ,3. Eqs. 15 are solved using the same iterative scheme used for
the primal aeroelastic solution. Once ΨΨΨ

F and ΨΨΨ
S have been computed, the sensitivity derivatives of J

w.r.t. bi are obtained as

δJ
δbi

=

(
∂J

∂xxxF0
k

+[ΨΨΨF
m]

T ∂RRRF
m

∂xxxF0
k

+[ fff F,adj
` ]T

∂ fff F
`

∂xxxF0
k

)
δxxxF0

k
δbi

(16)

with m = 1, . . . ,MF and k, `= 1, . . . ,3, where the variations in xxxF0
k are computed by analytically differen-

tiating Eq. 9.
In the continuous adjoint of PUMA, the aeroelastic adjoint development is largely similar. Eq. 4 is

further extended by a discrete part containing the structural adjoint variables and variation in the residuals
of the discrete CSM equations (“hybrid” continuous-discrete FSI adjoint), i.e.

δJaug

δbi
=

δJ
δbi

+
∫

ΩF

Ψ
F
n

δRF
n

δbi
dΩ

︸ ︷︷ ︸
T1

+
∫

ΩF

Ψ
G
m

∂2

∂xFk 2

(
δxF

m

δbi

)
dΩ

︸ ︷︷ ︸
T2

+[ΨΨΨS
m]

T δRRRS
m

δbi
(17)

The last term is processed as in the previous case. The first three terms of the r.h.s. of Eq. 17 are processed
by taking into account Eq. 12. Thus, the corresponding equations read

δJ
δbi

=
∫

SObj

BJ→F
k

δW F
m

δbi
dS+

∫
SObj

BJ→G
k

δxF0
k

δbi
dS+

∫
SObj

BJ→G
k

δUF
k

δbi
dS

T1 =
∫

ΩF

C F→F
m

δW F
m

δbi
dΩ+

∫
ΩF

C F→G
k

δxF
k

δbi
dΩ+

∫
S

BF→F
m

δW F
m

δbi
dS+

∫
S

BF→G
k

δxF0
k

δbi
dS+

∫
S

BF→G
k

δUF
k

δbi
dS

T2 =
∫

ΩF

C G→G δxF
k

δbi
dΩ+

∫
S

BG→G
k

δxF0
k

δbi
dS+

∫
S

BG→G
k

δUF
k

δbi
dS

(18)

Integrals containing variations in UF are discretized and then combined with those containing variations
of UUUF arising from the last term of Eq. 17, effectively leading to the discrete expression of the adjoint
structural displacements on the CFD surface mesh. The adjoint boundary conditions on the CFD domain
are also different, since now the third integral in the second of equations Eq. 18 has to be discretized and,
then, combined with terms arising from the variations of fff SSS hidden in the variations of RRRS. Thus, the
adjoint field equations are exactly the same as in the single-discipline case and the only difference (from
the adjoint to the CFD point of view) is the new discrete expression of adjoint boundary conditions.
Compared to the single-discipline case, the final expression of SDs is augmented only by a term same as
the last term of Eq. 16.
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6 VERIFICATION OF SENSITIVITY DERIVATIVES

The SDs computed by the adjoint of AETHER and PUMA, with and without aeroelastic effects, are
compared to central FDs. Moreover, in order to quantify the accuracy loss due to the commonly used
”frozen” turbulence assumption, the adjoint sensitivities are also computed by neglecting variations in
turbulent quantities w.r.t. the design parameters. It is shown that, when including the turbulence model in
the adjoint, the accuracy of SDs is significantly improved for both CFD tools and, hence, this approach
is followed in all optimization runs, see Fig. 5.
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Figure 5: SDs of cL w.r.t. (a) design parameters controlling the wing twist distribution (and the HTP
rotation) and (b) design parameters controlling the wing’s trailing edge camber distribution along its
span. The SDs computed by the adjoint of PUMA (continuous) and AETHER (discrete) are compared
with FDs.

7 OPTIMIZATION RESULTS

Two optimization runs have been performed for optimizing the GBJ geometry, by considering or
neglecting wing structure flexibility. The shape parameterization model is the one described in Section 4.
Flow conditions correspond to Minf=0.82, angle of attack of 2.5° and a flight altitude of 41 000 ft. In both
cases, the SLSQP algorithm [20] is used to drive the search of the design space and PUMA is used as the
primal and adjoint CFD tool. Both optimization runs target in minimizing the drag coefficient (cD), with
the lift coefficient (cL) greater than or equal to that of the datum geometry (with a 0.01 threshold) and the
absolute value of the pitching moment coefficient (|cM|) less than 0.001, to get a trimmed configuration.
The convergence history of the rigid wing optimization is presented in Fig. 6a. In the second optimization
run, the structural response of the wing structure was taken into account in the evaluation of both the
aerodynamic performance metrics and the corresponding sensitivity derivatives, by means of the coupled
adjoint workflow of Section 5. The hybrid continuous(flow)-discrete(structure) approach employed in

9
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the PUMA + VPS workflow is used. The optimization convergence history is presented and results are
commented in Fig. 6b.
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Figure 6: (a) Convergence of the rigid wing optimization. A solution satisfying both aerodynamic con-
straints is obtained after 12 cycles with ∼ 5% reduction in cD, compared to the datum shape. Re-
evaluating this design with an aeroelastic tool, the cD reduction was 4.7% and the pitching moment
constraint was violated. (b) Convergence of the flexible wing optimization. A solution satisfying both
constraints was obtained after 15 optimization cycles with ∼ 3% reduction in cD, compared to the da-
tum shape. Since, the wing structural response was taken into account, this is a feasible design w.r.t.
aeroelastic criteria.

The design parameters corresponding to the rigid optimum are compared to those of the flexible
optimum in Fig. 7. It is seen that, when flexibility is taken into account, the twist parameters are not
varied significantly, since large variations lead to constraint violation. In Fig. 8, the pressure coefficient
fields on the suction side of the datum, single-discipline optimum and multi-disciplinary optimum are
compared. For the former, drag reduction is mostly achieved by reducing the shock intensity. This not
so evident in the latter. Moreover, it can be seen that the loading of the wing at the winglet area is
significantly increased for the flexible optimum.

8 CONCLUSIONS

The development of the adjoint method for computing aeroelastic sensitivities of a business jet flexible
wing was presented. Two CFD codes (AETHER and its discrete adjoint and PUMA and its continuous
adjoint) were coupled with a CSM FE model for the wing structure (VPS). Optimization runs show that
neglecting aeroelastic effects during the optimization leads to potentially infeasible designs. Thus, the
importance of the MDO approach for this class of optimization problems is convincingly demonstrated.
The cost of computing coupled SDs is roughly 3x the cost of performing a single-discipline aerodynamic
analysis and sensitivity derivative computation. Differences caused by the ”frozen” turbulence assump-
tion in an adjoint code are also demonstrated. On-going work focuses on the extension of the MDO
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(a) (b)

Figure 7: Comparison of the optimal set of (a) twist (parameters 1,2,3,4 and 9) and (b) trailing edge
camber (parameters 5,6,7,8) design parameters located from the rigid and flexible optimizations.

(a) (b) (c)

Figure 8: Comparison of the pressure coefficient iso-areas along the suction side surface of the wing of
the (a) datum, (b) rigid and (c) flexible optimal airframe.

framework to include variations in the structural model properties into the optimization process.
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