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Abstract. We are interested in thermo-mechanical problems arising in the context of a prac-
tically relevant manufacturing process called sintering. These models can be defined using a
non-linear material model, namely the Skorohod-Olevsky Viscous Sintering (SOVS) constitutive
model. This SOVS model is used to predict macroscopic sintering behavior, such as shrinkage
and density evolution. Also, it relies on material properties such as temperature-dependent
viscosity and surface tension. However, high-fidelity simulations of coupled, macroscopic,
thermo-mechanical models are computationally intensive. Furthermore, developing reduced-
order models addressing the non-linearities is challenging due to the history dependence and
presence of internal variables. Performing parametric studies, optimization, real-time control,
or parameter estimation for such problems, thus, becomes infeasible. In order to accelerate sin-
tering simulations for such multi-query scenarios, a surrogate model is vital. Here, we present
a non-intrusive reduced-order modelling framework based on proper orthogonal decomposition
and Gaussian process regression. Furthermore, we discuss the performance of such a surrogate
model using different metrics for the two-parameter Arrhenius-type viscosity function.

1 INTRODUCTION

Sintering is a manufacturing process where powdered material is consolidated into a solid
at high temperatures with or without applied pressure [7]. It is mainly used for manufacturing
ceramics, metal-oxides, and metals with high melting points. Lately, there has been a growing
interest in controlling the sintering process in view of its ability to manufacture materials with
desirable functional properties [16], applications in 3D printing [15], etc. Usually, this process
is controlled based on heuristic knowledge and experimental trial and error. However, this can
lead to complications such as shape distortion and cracks, resulting in a waste of time, energy,
and material. Predicting the shrinkage behavior and stress state of the material during the
whole sintering process is thus important to avoid such issues and control the (final) properties
of the sintered product. This demands predictive computational sintering models [1].

Sintering is, in general, a multi-scale, multi-physics process. It can be simulated at dif-
ferent length scales [25]. At the atomistic scale, molecular dynamics simulations [2] can be
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used to model material diffusion during sintering. However, these methods require enormous
computational effort and are infeasible for scales beyond tens of nanometers. At the micro-
or meso-scale, numerical methods, such as the discrete element method, the kinetic Monte
Carlo method, and phase-field methods [23], are suitable for the thermo-mechanical modelling
of the sintering process. In particular, these methods are useful to predict microstructure
morphology evolution during sintering but fail to connect this to macroscopic behavior, which
entails predicting shrinkage, distortions, etc., that are relevant to a variety of industrial prob-
lems. However, only macro-scale (process) parameters can be controlled during the sintering
process. The finite element-based continuum-based models, in conjunction with phenomeno-
logical constitutive laws, such as the Skorohod-Olevsky Viscous Sintering (SOVS) model [20],
are well-known to be better equipped in predicting the macroscopic sintering behavior and
investigating shape distortion and stress concentrations. Given this knowledge and the over-
arching goal of designing microstructures, estimating important microstructural parameters,
or controlling (macroscopic) process parameters for the desired macroscopic response, in this
work, we study coupled macroscopic continuum-based models.

In the past, attempts have been made to use the macro-scale, coupled, multi-physics model
for the design and optimization of the process parameters, material, and geometry; see [8, 9].
It is generally regarded that a single finite element simulation of a coupled (single-scale) macro,
multi-physics model, governed using the SOVS constitutive law, is computationally expensive.
Also, extensive studies pertaining to design, optimization, and process control require numerous
such simulations. Aiming to significantly reduce computational efforts, in [26], a methodology
has been proposed to accelerate the simulation of viscous sintering at the macroscopic level.
However, the proposed finite element simulation, despite being faster than the state-of-the-
art approaches, remains computationally expensive for multi-query design and optimization.
Furthermore, in [29], the authors employ principal component analysis and Gaussian process
autoregressive models to develop reduced-order microstructure representation and accelerate
the prediction of microstructure evolution, which is usually computed using expensive phase-
field models. However, such a technique has not yet been employed at the macro-scale for the
thermo-mechanical coupled problem governed by the SOVS constitutive model. Hence, there is
a need to: (i) speed up the (macro-scale) sintering model simulations in a multi-query scenario,
and (ii) accelerate the inverse estimation of hard-to-measure sintering (process) parameters,
such as viscosity and surface tension.

In order to overcome the aforementioned limitations in the scope of sintering, in this work,
we resort to projection-based model order reduction (MOR) techniques that have been shown
to provide significant speed-ups for several other challenging, industrially relevant applications;
see [4, 19, 27]. As is well known, the efficacy of the reduced-order model is determined by
the computational cost’s independence from the full-order dimension in the online phase. The
classical MOR techniques [21] fail to achieve this for non-linear problems with affine or non-affine
parametric dependence as they still involve expensive full-order assembly in the online phase.
Hyper-reduction techniques [11, 17, 27] address this issue. Recently, such hyper-reduction
techniques have also been employed to accelerate relevant problems in the scope of additive
manufacturing; see [6, 19]. However, these hyper-reduction techniques are, in general, problem-
dependent and intrusive in nature and, hence, require a thorough understanding and access
to various components of the numerical method used for full-order simulations. Moreover,
several works [5, 8, 9] often rely on commercial software, for predictive modelling. Herein, one
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does not have access to all the details of the underlying numerical methods. Intrusive MOR
techniques, as mentioned above, which rely on access to the underlying numerical method
and assembled matrices, are impractical in these scenarios. To this end, many non-intrusive
MOR techniques, such as Physics-informed machine learning techniques [3], regression-based
approaches like POD-GPR [12], deep neural network-based methods, e.g., Deep-HyROMnet
[4], etc., have recently been proposed to develop a surrogate model in a purely data-driven way.
Such methods are essential in the scope of predictive modelling of manufacturing processes
like sintering and can leverage the existing modelling knowledge that builds on (not so openly
accessible) commercial codes.

In this work, we are interested in the sintering of a 3D ZnO powder compact, since it is widely
used in many electrical and electronic applications like varistors, piezoelectric devices, etc. [22].
This process is governed by a coupled thermo-mechanical model, together with the SOVS model
that can easily be extended to coupled systems and used for modelling advanced sintering
techniques, such as field-assisted sintering, spark plasma sintering, ultra-fast high-temperature
sintering, etc. [9]. In past works, different temperature-dependent material viscosity functions,
defining the SOVS model, have been proposed, and have subsequently been used for analyzing
the deformation, stress, strain, and density evolution of the material undergoing sintering.
For instance, initial revisions of the SOVS model propose polynomial viscosity functions that
capture the viscosity evolution well in a certain temperature range. Arrhenius-type viscosity
functions, as in [24], which are based on (empirical) data fitting, capture thermal activation
phenomena of the sintering process, and are applicable for wider temperature ranges. Here, for
exhaustive design and optimization studies, we parametrize the Arrhenius-type temperature-
dependent viscosity function using two parameters and develop a non-intrusive reduced-order
model using POD-GPR for enabling multi-query investigations in the context of sintering.

2 MODEL FORMULATION FOR SINTERING

The sintering process is modeled using a continuum mechanics-based macroscopic model
with the SOVS constitutive law. It is governed by a coupled system of partial differential
equations where we simultaneously solve for the displacement, temperature, and density fields.

2.1 Governing conservation equations: strong form

Given a 3D material domain Ω and a time domain τ ≡ [0, tf ], where tf is the final time, the
evolution of the relative density field ρ : Ω× τ → [0, 1] is governed by the continuity equation,

ρ̇+ ρė = 0, (1)

where ė is the volumetric strain rate and ρ̇ is the temporal derivative of the relative density.
The temperature field T : Ω× τ → R is governed by the transient heat conduction equation,

∂T

∂t
−∇ · (αT∇T ) = 0, (2)

where αT is the thermal diffusivity of the material being sintered. The linear momentum
balance is described by:

∇ · σ = 0, (3)
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where the Cauchy stress tensor, denoted by σ, depends on the displacement field u : Ω×τ → R3.
This balance equation is used to solve for the displacement field in a quasi-static sense. The
acceleration of the material displacement and the thermal expansion of the material is ignored
in this work. Furthermore, additional body forces or external forces are not considered.

2.2 Constitutive model

The linear viscous model formulation of the SOVS model is typically used to describe free
sintering (i.e., without any applied pressure) or sintering of non-crystalline (amorphous) ma-
terial. The sintering behavior is described by the decomposition of the strain into elastic and
viscous (inelastic) components:

ε = εel + εin. (4)

The corresponding strain rates follow:

ε̇ = ε̇el + ε̇in. (5)

The volumetric strain rate in the mass-balance equation, i.e., (1), is given by ė = tr(ε̇in). The
stress σ relates to the elastic strain by Hooke’s law,

σ = λ1∇ · uI + 2λ2ε
el, (6)

where λ1, and λ2 are Lamé parameters. As per the SOVS constitutive model, the stress is
related to the inelastic strain rate as follows [8]:

σ = 2η0

[
ϕε̇in +

(
ψ − 1

3
ϕ

)
ėI

]
+ σsI, (7)

where η0 is the (temperature-dependent) viscosity of a fully dense material. The sintering stress
σs, normalized shear viscosity ϕ, and bulk viscosity ψ depend on the relative density:

σs =
3αs

rp
ρ2, ϕ = ρ2, ψ =

2

3

ρ3

(1− ρ)
, (8)

where αs is the surface tension and rp is the median radius of the powder particles.

2.3 Weak form and solution methodology

The weak form of the transient conduction, governed by (2), with a scalar test function δT
and using the Backward-Euler scheme for its time-integration takes the following form:∫

Ω

(
T (n+1) − T (n)

)
δTdΩ + αT∆t

∫
Ω

∇T (n+1) · ∇δTdΩ = 0, (9)

where ∆t is the time-step, and T (n) and T (n+1) are the temperature field at the previous and
present time-step, respectively. Building on (9) and the weak formulation of the mechanical
part of a slightly different problem in [13], the weak form of the global coupled system, i.e., the
thermo-mechanical problem at hand, is given by:∫

Ω

σ(u, T, [history]) : ε(δu)dΩ +

∫
Ω

(
T (n+1) − T (n)

)
δTdΩ

+αT∆t

∫
Ω

∇T (n+1) · ∇δTdΩ = 0, (10)
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where δu is a vector test function.
To solve the above non-linear system for u and T , we use an outer Newton solver. The

assembly of the residual vector and the tangent stiffness matrix is not trivial as the Cauchy
stress evaluation is not straightforward due to the strain-rate dependence of the stress in the
SOVS model. Internal variables, such as stress, relative density, and strains from previous time
instants are stored as history parameters. An implicit scheme is used to evaluate these variables
at the present time step. Unlike displacement and temperature, which are evaluated at the nodal
points, these history parameters are evaluated at the quadrature points. In order to evaluate
the increment of the stress at each quadrature point, an inner Newton solver is employed to
solve for the increments in the elastic component of the strain and the volumetric strain rate.
For more details of the inner Newton solver implementation and incremental updates of the
internal variables, see [26].

3 SURROGATE MODEL

In this section, we discuss the details of the reduced-order modelling framework used in
this work. To reduce the computational burden of the sintering simulations in the multi-query
context, a reduced-order model is constructed using Proper Orthogonal Decomposition (POD)
and Gaussian Process Regression (GPR) [12]. We refer to such a reduced-order model as POD-
GPR in the sequel. In the following subsections, we briefly discuss POD and GPR techniques,
and how they are used together to construct an efficient reduced-order model.

3.1 Proper Orthogonal Decomposition

Given a parametrized PDE, the solution manifold denoted by M = {u(·;µ) : µ ∈ P}
is composed of all the solutions of the PDE for different parameter values µ in the parameter
space P . Generally, an exact solution of the PDE of interest is unavailable, and a finite-element
approximation is considered the truth solution. The number of degrees of freedom of the finite
element approximation, Nh, is typically required to be very large for an accurate solution
approximation. Using the POD algorithm, a low-dimensional basis for the solution manifold
is constructed. To generate this reduced basis, a collection of solution snapshots at a discrete
parameter set is first used to construct the snapshot matrix S = [u(µ(1))|u(µ(2))|....|u(µ(Np))].
Subsequently, given an inner product matrix X, we employ the singular value decomposition of
the matrixX1/2S = UΣZT, whereU and Z are orthogonal matrices, andΣ is a diagonal matrix
containing the singular values in the decreasing order. The Schmidt-Eckart-Young theorem
states that the truncation of X−1/2U to the first L columns results in the minimum projection
error in the Euclidean norm amongst all possible L-dimensional basis, i.e., the first L columns
of X−1/2U denoted by V = argminW∈RNh×L

∑Np

i=1 ||u(µ(i)) − WWTXu(µ(i))||2X [21]. Given
the reduced basis, the approximate solution vector for any (new) parameter value is given
as ũ(µ) =

∑L
l=1 Vl(urb(µ))l. The coefficients urb(µ) can be evaluated by solving a reduced

problem; see Chapter 3, [21] for the mathematical representation of a classical reduced-order
model. However, for nonlinear problems, assembly of this reduced problem is of full-order
dimension and, thus, expensive; see Chapters 3, 10, and 11 in [21]. In this work, we circumvent
this problem using a regression model trained with the dataset

{(
µ,VTXu(µ)

)
∀µ ∈ Ptr

}
,

where Ptr is the training parameter space. Here, we use Gaussian process regression to build
separate regressors for each coefficient.
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3.2 Gaussian Process Regression

Gaussian process regression (GPR) [28] is a non-parametric probabilistic regression model. In
GPR, we assume a Gaussian process (GP) prior characterized by mean and covariance functions.
The mean function is usually chosen to be either zero or the mean of the training dataset; see
Section 4.1 for more details. The selection of the covariance function, also called the kernel
function, encodes a desired structure to the GP model. The Radial Basis Function (RBF) kernel
is the most widely used covariance function for the GP. It results in very smooth (infinitely
differentiable) functions. However, the POD coefficients for which we build the regressors are
not necessarily smooth and, hence, we use a different kernel function - Matern functions. The
class of Matern functions is a generalization of the RBF kernel with an additional positive
parameter ν that controls the smoothness of the function. We obtain rougher functions from
GP with the Matern kernel using lower values of ν, with ν → ∞ recovering the RBF kernel.
The GP using the Matern kernel with ν = 5/2 produces functions that are twice differentiable.
Here, we use the automatic relevance determination (ARD) Matern 5/2 kernel given by:

kθ(x, x
′) = σ2

f

(
1 +

√
5r +

5

3
r2
)
exp

(
−
√
5r
)
, with r =

√√√√ d∑
m=1

(xm − x′m)

ℓ2m
,

where d is the dimension of the input parameter space and θ = (σf , ℓ1, ..., ℓd) are the hyper-
parameters of the kernel function. These hyperparameters are obtained by maximizing the
log-marginal-likelihood. Using a different length scale ℓm for different input parameters enables
us to automatically determine the relevance (ARD) of these parameters.

Due to its probabilistic nature, GPR provides empirical confidence intervals for its prediction
which can be used to aid in the active data selection. With this in mind, instead of using the
data from the entire training parameter space, we choose the training data based on an active
learning strategy; see [12] for the related details. This is done by hierarchically increasing the
training data for all L GPR models π̂GP : µ → RL. Using the empirical standard deviation,
sd[(π̂GP(µ))l], provided by these GPR models, an error indicator of the approximate solution
can be evaluated as follows:

η(µ) =

√√√√ Nh∑
k=1

L∑
l=1

V2
klsd[(π̂GP(µ))l]2, (11)

and subsequently used to inform on the new training sample selection as described below:

µM+1 = arg max
µ∈Ptr

η (µ) . (12)

To summarize, using POD to obtain the basis and GPR to compute the coefficients corre-
sponding to the extracted (dominant) basis, we have all the ingredients to construct a fast and
sufficiently accurate approximation to the high-fidelity solution.

4 NUMERICAL EXPERIMENTS

In this section, we describe the performance of POD-GPR in accelerating the evaluation of
the displacement field during the sintering process of the 3D ZnO compact. We investigate

6



Rahul Dhopeshwar, Harshit Bansal, Hao Shi, Diletta Giuntini, Karen Veroy

Figure 1: Domain, mesh, and initial relative density distribution.

the results for a two-parameter viscosity function; see Section 4.1 for the parametrization. All
the computations presented here are performed on an Intel Core i7-10750H CPU @ 2.6GHz
with 32GB of RAM using Python 3.6.9. The full-order FE simulations are performed using the
FEniCS library [18], and GPy [10] was used for training the Gaussian process model.

Remark 4.1 In this work, we restrict our discussion to a non-intrusive reduced-order model
constructed to accelerate the evaluation of the displacement field. Similar reduced-order models
can be constructed for other fields, such as temperature, density, stress, etc.

4.1 Problem Setup

A box-shaped powdered compact of 2 µm ZnO particles with dimensions D = 16 mm, W
= 4 mm, and H = 2 mm is sintered; see Figure 1 for the schematic illustration. We consider
the sintering of the 3D compact with a non-uniform density distribution. In particular, the
initial relative density of the compact varies linearly in the z-direction with ρ = 0.38 on the
top surface and ρ = 0.54 on the bottom surface. The initial temperature of the compact is
uniformly set to 500 K. The heating behavior during the sintering process is modeled as a
constant temperature boundary condition on all the boundaries of the computational domain.
This temperature profile increases linearly in time from 500 K to 1500 K in 500 seconds,

t = 850s t = 1650s t = 2500s

(a) A = 120 Pa.s/K, Q = 14430 J/mol

(b) A = 209 Pa.s/K, Q = 12011 J/mol

(c) A = 399 Pa.s/K, Q = 14866 J/mol

Figure 2: Displacement and density at t = 850s (first column), t = 1650s (second column),
t = 2500s (third column) for different parameter values. The color bar reflects density values.
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and then the temperature is held at 1500 K for additional 2500 seconds. For the mechanical
boundary conditions, the material is fixed at the origin. Furthermore, we consider symmetry
boundary conditions at x = 0 and y = 0 planes. The following material properties of ZnO -
Lamé parameters: λ1 = 127.62 GPa, λ2 = 51.62 GPa, surface tension: αs = 1.27 N/m, and
thermal diffusivity: αT = 2 mm2/s - are used in the conducted numerical experiments. The
viscosity in the SOVS model is considered a function of the temperature. For the sintering of
the ZnO particulate ceramic, we use an Arrhenius-type viscosity function [24] of the form

η0 (T ) = ATe(
Q
RT ), (13)

where R = 8.314 J/(mol.K) is the universal gas constant. Here, we consider the pre-exponential
factor A ∈ [80Pa.s/K, 400Pa.s/K] and the activation energyQ ∈ [12kJ/mol, 16kJ/mol] as model
parameters. The relative density and displacement for different values of (A,Q) at different
times are shown in Figure 2. It can be observed that as the material sinters it shrinks, but
the rate of sintering depends on the relative density. The shrinkage is faster at a lower density
which is at the top surface and, hence, the material bends upwards. The parameter-dependent
viscosity also affects the rate of the sintering. At higher values of viscosity, the sintering rate
is slower. Furthermore, the viscosity increases with an increase in either A or Q.

We prepare a dataset of solutions evaluated at 200 different values of (A,Q) sampled using
the Halton sequence sampling procedure [14] with bases 2 and 3, respectively, and the finite
element method. This pseudo-random sampling procedure samples the parameter space more
evenly compared to the random sampling from a uniform distribution. The obtained dataset is
then split into two - one for the training (120 parametric solutions) and the other for the testing
(80 parametric solutions). Each solution has 50 snapshots corresponding to different times with
constant time intervals (here, 50s). The snapshot matrix required for computing the POD basis
is constructed with these 120× 50 snapshots. We treat time as a parameter for the POD-GPR
i.e., the dimension of the input parameter space d is 3 (i.e., A, Q, t). Hence, the Cartesian
product of the 120 training full-order model parameter values with the time values forms the
training parameter space, Ptr, for the POD-GPR. We choose L = 20 which corresponds to the

(a) (b)

Figure 3: (a) Decay of POD projection error of the training data with the dimension of POD
basis (b) Average error decay with the number of training points for the GPR.
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(a) 50 GPR training points.

(b) 100 GPR training points.

(c) 200 GPR training points.

Figure 4: Online GPR coefficient prediction versus the actual POD coefficient.

relative projection (L∞) error below 1e-5; see Figure 3a. Before training the GPR model we
scale and translate the input parameter values and the coefficients such that they have zero
mean and unit variance. Subsequently, the mean function for the GPR model is chosen to
be zero. The GPR model is trained along with the active learning strategy until the average
relative H1 error goes below an error tolerance εGP = 5× 10−4.

4.2 Numerical Results

Figure 3b shows a general decaying trend of the average relative error on the test dataset as
the number of training data points for the GPR is increased. With just 420 training points from
the parameter pool of 120× 50 training dataset, the average relative error for the approximate
solution generated by the POD-GPR model is below 5e-4. Figure 4 shows the comparison of the
GPR prediction against the true POD coefficients. For brevity, the comparison is shown only
for a particular model parameter value versus time. It can be seen that with an increase in the
number of the GPR training points, the GPR model predicts the coefficients more accurately
and the empirical standard deviation of the prediction decreases. Also, the active learning
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strategy chooses training points that prioritize improving the prediction of the coefficients
corresponding to the most dominant POD basis over the coefficients corresponding to the
(relatively) less dominant basis. Table 1 summarizes the offline computational time required
for constructing the reduced-order model using POD-GPR. In total, 4.91 hours are needed in
the offline phase. The reduced-order model thus generated is able to compute the approximate
solution for any new parameter value in 38.8 ms which is 1675 (= 65 s/38.8 ms; see Table 1)
times faster. The offline cost will increase as the full-order simulations get more expensive, but
the online time can still remain low resulting in even more speed-ups than the one reported
above. Nevertheless, for a wider parameter range, the reduced-order model might need more
POD basis functions and more GPR training points, leading to potentially higher online costs.

Table 1: Offline and Online costs.

Cost of computing 200 full-order solutions 65s× 200 = 3.61h
Cost of computing POD basis 38.6 s

GPR training time 78 min
Online time to evaluate solution at new parameter value 38.8 ms

5 CONCLUSIONS

In this work, we successfully accelerated the sintering simulations in a multi-query scenario
achieving a speed-up of about 1700× in the online phase compared to the full-order simula-
tions. This acceleration will aid in performing design, optimization, process control, and inverse
estimation where numerous simulations for different parameter values are required. Since POD-
GPR is completely data-driven and does not require access to the underlying numerical methods
used for simulations, it can be used in conjunction with any commercial FEM software. Also,
the active learning strategy employed in this work enables faster GPR training, since it requires
less number of training points. However, POD-GPR requires numerous full-order computations
for both construction of the POD basis and the training of the GPR model. Furthermore, the
amount of training data required for the GPR increases drastically with the dimension of the
input parameter, thus making this method unsuitable in the high-dimensional parameter space.
In the future, we will address these aforementioned issues. Moreover, we will develop a reduced-
order model for much more realistic values of the activation energy, and validate the predicted
viscosity function against the one obtained in the lab experiment.
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