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Summary: The behavior of reinforced concrete structures under severe demands, as strong ground 
motions, is highly complex; this is mainly due to the complexity of concrete behavior and to the strong 
interaction between concrete and steel, with several coupled failure modes. On the other hand, given the 
increasing awareness and concern on the worldwide seismic risk, new developments have arisen in 
earthquake engineering; nonetheless, some developments are mainly based on simple analytical tools that 
are widely used, given their moderate computational cost. This research aims to provide a solid basis for 
validation and calibration of such developments using computationally-efficient continuum 
mechanics-based tools. Within this context, this paper presents a model for 3-D simulation of cyclic 
behavior of RC structures. The model integrates a bond-slip model developed by one of the authors and the 
damage variables evolution methodology for Concrete Plastic Damage Model (CDPM) developed by some 
authors. In the integrated model, a new technique is derived for efficient 3-D analysis of bond-slip of two or 
more crossing reinforcing bars in beam-column joints, slabs, footings, pile caps and other similar members. 
The analysis is performed by implementing the bond-slip model in a user element subroutine of Abaqus and 
the damage variables evolution methodology in the original CDPM in the package. Two laboratory 
experiments consisting of a column and a frame subjected to cyclic displacements up to failure are 
simulated with the proposed formulation. 
 
Keywords: Concrete Plastic Damage Model, Bond-Slip Model, Numerical Simulation, Concrete 
Structures, Cyclic Behavior. 
 

1. Introduction 

Under severe seismic excitation, structural behavior of buildings and other constructions is highly complex. 
It involves, among other issues, soil-structure interaction, large strains and displacements, damage, 
plasticity, and near-collapse behavior. Moreover, in reinforced concrete structures, there are several 
coupled degradation and failure modes: cracking, crushing and spalling of concrete, yielding, bond-slip and 
pull-out of tensioned reinforcement, and yielding, buckling and rupture of compressed reinforcement. 
Therefore, in earthquake engineering, advanced numerical simulations based on continuum mechanics are 
strongly necessary; conversely, oversimplified models are commonly used, as a result of their moderate 
computational cost. Furthermore, another circumstance makes the situation more alarming: given the 
increasing awareness and concern on the huge worldwide seismic risk, earthquake engineering has recently 
experienced substantial advances; new design and analysis strategies have been proposed (CBD, PBD, 
pushover analysis, IDA, among others), leading to relevant developments. These developments rely on 
extensive testing and numerical simulation; nonetheless, as discussed before, an important number of 
numerical analyses are mainly conducted by using simplified models. Therefore, there is a strong need of 
verifying the reliability of the new developments by comparison with analyses performed using more 
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advanced simulation tools. Being aware of this circumstance, the authors have started a long-term research 
activity aiming to clarify this issue and to provide accurate and reliable models that are based on continuum 
mechanics. In previous works [López-Almansa et al. 2014; Bashar et al. 2017], the authors have proposed a 
new methodology for calculating the damage variables of Concrete Damage Plastic Models (CDPM); this 
methodology had been implemented in Abaqus, thus generating a model for simulation of the structural 
behavior of RC frames. It has proven satisfactory for describing monotonic experiments on RC frames; 
cyclic performance is only verified on plain concrete. The model does not contemplate sliding between 
reinforcement bars and the surrounding concrete (perfect bond); therefore, it might be not completely 
suitable for earthquake engineering, since sliding can be highly relevant in cyclic behavior. This paper 
extends the capabilities of this model by incorporating a formulation for describing reinforcement bond-slip 
developed by one of the authors [Murcia-Delso 2013; Murcia-Delso et al. 2013; Murcia-Delso, Shing 
2015a, 2015b]; this formulation had been verified with monotonic and cyclic pull-out tests, as well as 
large-scale tests of bridge pier-shaft systems. The resulting integrated model is aimed to reproduce 
accurately and reliably, although with a rather moderate computational cost, the cyclic behavior of 2-D RC 
frames under severe degradation conditions.  
 
Given the accuracy and reliability of the proposed model, it can be utilized for calibration of more 
simplified algorithms. As well, its numerical efficiency make it suitable for research, typically nonlinear 
dynamic analysis of concrete buildings undergoing strong ground motion excitation. A study for 
reproducing with the proposed model the hysteretic behavior of connections between RC columns and 
building waffle slabs is currently in progress. 
 
2. State of the art  

2.1. Concrete Plastic Damage Models 

Nonlinear concrete response can be represented using plasticity or damage theory. However, none of these 
formulations alone is able to describe adequately this phenomenon. Plastic models [Chen, Chen 1975; Lin 
et al. 1987] do not capture stiffness degradation [Grassl, Jirasek 2006], and damage models are not suitable 
for description of irreversible deformations and inelastic volumetric expansion in compression [Mazars 
1984]. Given these circumstances, it has been been widely accepted that coupling between damage and 
plasticity models is essential [Nguyen, Korsunsky 2008]. Coupled models consider plasticity with isotropic 
hardening and damage; regarding damage, works [Lee, Fenves 1998; Burlion et al. 2000; Salari et al. 2004; 
Krätzig, Pölling 2004] use same values of compression and tension damage, conversely, studies [Carol et 
al. 2001; Voyiadjis et al. 2008] consider differences among them. In addition, fracture propagation can be 
represented by embedded crack models, where standard FEM interpolations are enriched with strain or 
displacement discontinuities [Belytschko et al. 1988; Simo, Oliver 1994; Jirásek, Zimmermann 2001]. 
These models can be used for high strain localization problems (fracture).  
 
Coupled damage and plasticity models differ mainly in the coupling method and the damage evolution law. 
In the implicit methods [Luccioni et al. 1996; Nguyen, Houlsby 2004; Salari et al. 2004], coupling and 
damage evolution law are embedded in yield and damage criteria. Other researchers describe coupling 
using a single function. In this context, [Lee, Fenves 1998; Lemaitre 1992] use a yield function; inside it, 
damage can be measured either following some criteria (e.g. a threshold based on the equivalent plastic 
strain [Lemaitre 1992]) or obtained imposing damage variables laws. [Faria et al. 1998] use a damage 
loading function where damage evolution law shall be imposed. 
 
A major problem in implementation of any Plastic Damage Model is the calculation of the damage 
variables that govern damage evolution. A number of researchers have proposed methodologies for 
selecting such variables: 
 
 [Mazars, Pijaudier-Cabot 1989]. The damage variables are obtained from parameters derived from 

experiments on specimens and beams. It is concluded that damage formulations describe adequately 
the behavior of reinforced concrete, and agreement with experimental results is achieved.  

 [Birtel, Mark 2006]. Tension and compression damage variables are calculated by assuming constant 
ratios between compressive plastic and crushing strains, and between tensile plastic and cracking 
strains, respectively. These fixed ratios are calibrated with an experimental curve. 
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 [Häussler-Combe, Hartig 2008]. A damage evolution function is used. It depends on four material 
parameters to be calibrated with experimental results. 

 [Yu et al. 2010]. This work focuses on confined concrete. A linear expression of damage variable vs. 
stress is proposed for the compressive descending branch (compressive damage). As well, modified 
linear expressions in terms of confining pressure and stress invariants are suggested. 

 [Al-Rub, Kim 2010]. This work focuses on plain concrete. Tensor damage variables that are separated 
into compressive and tensile parts are proposed. The evolution of damage variables is derived by 
identification with loading–unloading uniaxial test results. Two different damage evolution laws for 
tension and compression are proposed. 

 [Zheng et al. 2012]. The function developed by [Mazars, Pijaudier-Cabot 1989] is used to analyze the 
damage evolution. Damage constants also have to be calibrated from experiments. 

 [López-Almansa et al. 2014]. Damage variables are determined by an iterative empirical procedure 
aiming to fit experimental results.  

 
After these investigations, some of the authors proposed [Alfarah et al. 2017] a new approach for obtaining 
damage variables. This methodology is based on the formulation by Lubliner and Lee/Fenves [Lubliner et 
al. 1989; Lee, Fenves 1998], which is the base for the Abaqus plastic damage model for concrete. After 
integration of concrete fracture and crushing energy, the proposed approach obtains closed-form 
expressions of the damage variables in terms of the corresponding strains. No calibration with experimental 
results is required and a strategy aiming to avoid mesh-dependency is incorporated.  
 
This approach can consider any concrete constitutive law, either empirical (e.g. like formulations 
commonly recommended by design codes) or directly based on particular experiments. A particular 
algorithm using laws based on European recommendations was derived and implemented in the software 
package Abaqus [Abaqus 2013]. This algorithm was used for describing cyclic experiments on plain 
concrete and monotonic tests on full-scale RC frames. The objective of this research is to validate this 
model under cyclic loading and enhance its performance for simulation of RC frames by incorporating a 
bond-slip model. 
 

2.2. Bond-slip Models 

Bond-slip is a rather complex phenomenon since involves the interaction of the reinforcement steel and the 
surrounding concrete under severe loading conditions, which severely deform the reinforcing bars and 
damage the concrete surrounding the bars. A number of numerical models have been proposed to simulate 
bond-slip behavior; they can be classified depending on their scale [Cox, Herrmann 1998]: 
 
Rib scale. The detailed geometry of the interface, including bar ribs, is modelled, and concrete and steel are 
discretized with continuum elements [Maekawa et al. 2003, Daoud et al. 2012]. These models can provide 
very high accuracy, although with a high computational cost. 
 
Bar scale. Ribs are not directly included in the simulation; the contact surface is idealized as smooth. 
Concrete and steel can be discretized with different types of elements (e.g. solid for concrete and truss or 
beam for steel). The interaction forces (cohesion, friction and bearing) are represented by tangential (bond) 
and normal stress; particular attention is usually paid to the tangential component. Bond-slip is represented 
through relation between bond stress and bar slip implemented in zero-thickness interface element. [Lowes 
et al. 2004] developed a four-node zero-thickness bond-slip element to be used for two-dimensional 
modelling; other studies using this model have been reported. Broadly speaking, bar scale models have 
good balance between computational cost and ability to reproduce accurately bond behavior. 
  
Structural Element scale. The bond-slip effects are either incorporated in the formulation of the element 
or taken into consideration through zero-length springs. [Monti, Spacone 2000] introduced the 
beam-column model with bond-slip proposed by [Monti et al. 1997] into the force-based fiber-section 
element developed by [Spacone et al. 1996]. [Zhao, Sritharan 2007] proposed a law to relate bar stress and 
slip at end of anchorage in footing-column or beam-column connections; this law has been calibrated with 
experimental results and used as a constitutive relation for steel fibers in a zero-length fiber-section element 
to simulate end rotation of RC columns. These models have low computational cost and, therefore, are 
suitable for simulation of full-scale structures; conversely, they do not study explicitly the bond behavior, 
merely reflect the additional flexibility provided by bond-slip. 
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Rib scale models are too computationally expensive for the practical simulation of full-scale actual 
structures, and element scale models can be an attractive option for large-scale simulation but cannot 
capture strength reduction due to bond degradation (because of slip, concrete spalling or steel yielding) and 
cannot be implemented in continuum elements. Bar scale models are the most appropriate for 
implementation in continuum elements under seismic excitation, as they represent efficiently interaction 
between two materials and predict different deterioration modes. A number of models of this type have 
been proposed:  
 
 [Gan 2000]. A double-node zero-thickness contact element is used to connect steel bar elements with 

the surrounding concrete. The monotonic and cyclic behavior of this element is governed by a 
bond-slip law originally proposed by [Eligehausen et al. 1983] and later modified by [Gan 2000] 
according to experimental observations. This contact element was implemented in Finite Element 
Code TRIX99 and used to perform 2-D cyclic analysis for shear walls. 

 [Ožbolt et al. 2002]. These researchers proposed a monotonic bond-slip law based on experimental 
results [Eligehausen et al. 1983; Malvar 1992]. This law was implemented in the finite element code 
MASA using a zero-width element. Concrete and steel are discretized with solid and truss elements, 
respectively. This model was been verified with pull-out tests and simply-supported RC beams. 

 [Lowes et al. 2004]. A four-node zero-thickness bond-slip element is used for two-dimensional 
monotonic and cyclic modelling. The model is characterized by a normalized bond stress-slip law and 
a relation between the maximum bond strength and stress-strain state of concrete and steel. 

 [Rabczuk et al. 2005]. A 2-D two-double-node interface element, bond behavior is described in terms 
of radial stress-strain relation. This element was implemented in FE package Abaqus using user 
subroutine; it was used in the simulation of a prestressed RC beam subjected to static load. 

 [Murcia-Delso, Shing 2015a]. These researchers developed a general 3-D bond-slip model 
accounting for bond deterioration due to cyclic slip reversals, concrete splitting, and bar yielding in 
tension. This model is an extension, to represent different bond deteriorations, of the semi-empirical 
cyclic bond-slip law proposed by [Murcia-Delso 2013; Murcia-Delso et al. 2013] which is similar to 
that proposed by [Eligehausen et al. 1983]. This model was implemented in a four-node zero-thickness 
interface element with linear shape functions and two integration points.  

 
2.3. Integration of  CPDM and Bond-slip Models 

A few researchers have attempted to integrate concrete damage-plastic behavior and bond-slip of 
reinforcement for practical 3-D continuum simulation of RC structures subjected to seismic loads: 
 
 [Car et al. 2002]. These researchers proposed a constitutive model based on assuming that stress 

transfer from concrete to steel depends on concrete damage and steel strength. Slip is represented by an 
irrecoverable inelastic steel strain. 

 [Deaton 2013]. Proposed a general model to study the 3-D cyclic behavior of non-seismic RC 
beam-column joints. Concrete behavior was represented by a damage model originally developed by 
[Vecchio, Collins 1986] and implemented in the FE analysis program DIANA. Bond-slip was 
described with an interface model “line-to-solid” that follows a built-in stress-slip hysteretic law. 
Verifications with experimental results showed the inability of the bond model to represent the actual 
hysteretic behavior; concrete model showed good capacity to represent the capacity envelope but not 
the dissipated energy. 

 [Ali et al. 2013]. Studied the cyclic behavior of composed concrete–steel shear walls. The original 
CDPM that is implemented in Abaqus was used to simulate concrete behavior; bond-slip is described 
with contact conditions. Comparison with experimental results, pointed out the lack of capturing the 
pinching effect (due to bond degradation and cracks opening-closing) and the strength degradation. 

 [Murcia-Delso 2013]. The 3-D bond-slip model was used together with the original CDPM that is 
implemented in Abaqus. It is calibrated with pull-out tests and utilized to simulate 3-D cyclic behavior 
of RC columns supported on enlarged pile shaft foundations; satisfactory agreement was obtained. 
Discrete cracks were introduced at column base to simulate opening and closing of wide flexural 
cracks at this location and circumvent limitations of the CDPM in Abaqus to handle the large stiffness 
degradation required to accurately represent cyclic response of cracks.  
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3. Calculation of Damage Variables for Concrete Plastic Damage Model 

As discussed in Section 2, calculating the evolution of damage variables in Concrete Plastic Damage 
Models is a crucial issue. This section summarizes the algorithm proposed by [Alfarah et al. 2017] for 
obtaining the damage variables and its implementation in Concrete Damage Plastic Models.  
 
In the considered CPDM [Lubliner et al. 1989; Lee, Fenves 1998], stiffness degradation in the uniaxial 
cyclic behavior is described as: 
 

𝐸𝐸 = (1 − 𝑑𝑑) 𝐸𝐸0  (1) 
 
In equation (1), E0 is the initial (undamaged) elastic stiffness, E is the reduced tangent stiffness and d is a 
scalar degradation variable, which is a function of stress state and compression and tension damage 
variables dc and dt, respectively: 
 

1 − 𝑑𝑑 = (1 − 𝑠𝑠t𝑑𝑑c) (1 − 𝑠𝑠c𝑑𝑑t)  (2) 
 
In equation (2), sc and st are dimensionless coefficients accounting for stress state and stiffness recovery 
effects, being given by 
 

𝑠𝑠c =  1 − ℎc (1 − 𝑟𝑟∗(𝜎𝜎11))  (3) 
𝑠𝑠t =  1 − ℎt 𝑟𝑟∗(𝜎𝜎11)  (4) 

 
In equations (3) and (4), σ11 is the first principal uniaxial stress (positive for tension), r* is a stress state 
parameter being 𝑟𝑟∗(𝜎𝜎11) = 1 for tension and 𝑟𝑟∗(𝜎𝜎11) = 0 for compression, and ℎc and ℎt are weighting 
factors ranging between 0 and 1. Factor ℎc accounts for re-closing of cracks after tension-compression 
reversal; ℎt represents recovery of crushed concrete after compression-tension reversal. In this work, ℎt = 0; 
i.e. crushed concrete does not experience any recovery. Regarding ℎc, ℎc = 0.9 is assumed in the main 
concrete bodies (90% of the stiffness in compression is recovered once cracks close), and lower values are 
taken in the zones where widely-opened cracks and bond-slip effects concentrate. Equations (3) and (4) 
show that 𝑠𝑠c and 𝑠𝑠t range between 0 and 1. Further explanation on the effect of sc and st and the constitutive 
equations of the 3-D model can be found in [Alfarah et al. 2017; Alfarah 2017].  
 
The methodology to obtain the damage evolution proposed by [Alfarah et al. 2017] is based on assuming 
that compressive and tensile damage variables are the portions of normalized energy dissipated by damage: 
 

 𝑑𝑑c  =
1

 𝑔𝑔c
� σc dεcch
εcch

0
  𝑑𝑑t  =

1
 𝑔𝑔t

� σt dεtck
εt
ck

0
 (5) 

 
In equation (5), εcch and εtck are crushing and cracking strain defined as the inelastic compressive and tensile 
strain, respectively [Alfarah et al. 2017]. Normalization coefficients gc and gt represent the energies per unit 
volume dissipated by damage along the entire deterioration process:  
 

 𝑔𝑔c  = � σc dεcch
∞

0
  𝑔𝑔t  = � σt dεtck

∞

0
 (6) 

 
Equations (5) and (6) show that dc and dt range between 0 (no damage) and 1 (destruction). Figure 1 
describes the meaning of gc and gt. 
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(a) Compression (gc) (b) Tension (gt) 

Figure 1. Portions of energy dissipated by damage [Alfarah et al. 2017] 
 
Noticeably, the energies per unit area and per unit volume are related by  𝑔𝑔c  =  𝐺𝐺ch / 𝑙𝑙eq  and  𝑔𝑔t  =
 𝐺𝐺F / 𝑙𝑙eq;  𝐺𝐺ch and  𝐺𝐺F are material parameters defined as crushing and fracture energies by unit area and 
 𝑙𝑙eq is the characteristic length of the finite element, which depends on the mesh size, the type of element 
and the crack direction [Oliver 1989; Krätzig, Pölling 2004]. In this paper, an idealized behavior of single 
band of cracks is assumed; therefore, the characteristic length is taken as the average of the brick (solid) 
element size. 
 
Compressive and tensile damage evolution laws are defined according to [Alfarah et al. 2017] in equations 
(7) and (8). 

 𝑑𝑑c  = 1 −
1

2 + 𝑎𝑎c
�2 (1 + 𝑎𝑎c) exp�−𝑏𝑏c εcch� − 𝑎𝑎c exp�−2 𝑏𝑏c εcch�� (7) 

 𝑑𝑑t  = 1 −
1

2 + 𝑎𝑎t
�2 (1 + 𝑎𝑎t) exp�−𝑏𝑏t εtck� − 𝑎𝑎t exp�−2 𝑏𝑏t εtck�� (8) 

 
In equations (7) and (8), ac, at, bc and bt are dimensionless coefficients given by 
 

ac = 2 (𝑓𝑓cm  𝑓𝑓c0⁄ ) − 1 + 2 �(𝑓𝑓cm  𝑓𝑓c0⁄ )2 − (𝑓𝑓cm  𝑓𝑓c0⁄ ) (9) 
at = 2 (𝑓𝑓tm  𝑓𝑓t0⁄ ) − 1 + 2 �(𝑓𝑓tm  𝑓𝑓t0⁄ )2 − (𝑓𝑓tm  𝑓𝑓t0⁄ ) (10) 

𝑏𝑏c =
𝑓𝑓c0 𝑙𝑙eq
𝐺𝐺ch 

 �1 +
𝑎𝑎c 

2
� 𝑏𝑏t =

𝑓𝑓t0 𝑙𝑙eq
𝐺𝐺F 

 �1 +
𝑎𝑎t 
2
� (11) 

 
In equations (9), (10) and (11), fc0 and ft0 are the compressive and tensile stresses that correspond to zero 
crushing (εcch = 0 ) and to onset of cracking (εtck = 0 ), respectively; fcm and ftm are the maximum 
compressive and tensile stress, respectively. 
 
Implementing the damage evolution algorithm in the CPDM requires the concrete compression and tension 
stress-strain relation to be determined. The concrete uniaxial law described in [Alfarah et al. 2017] is used 
in this study; then, coefficients ac, at, bc and bt are determined: 
 

𝑎𝑎c = 7.873 𝑎𝑎t = 1 𝑏𝑏c =
1.97(𝑓𝑓ck  +  8)

𝐺𝐺ch
𝑙𝑙eq 𝑏𝑏t =

0.453𝑓𝑓ck
2/3

  𝐺𝐺F
𝑙𝑙eq (12) 

 
In equation (12), fck is the characteristic value of the compressive strength and GF is calculated in (13) in 
(N/mm) according to [CEB-FIP 2010]. Gch is obtained in equation (13) assuming that the ratio between 
crushing and fracture energies is proportional to the square of the ratio between compressive and tensile 
strengths [Oller 1988]:  
  

𝐺𝐺F = 0.073 𝑓𝑓cm0.18 𝐺𝐺ch = �
𝑓𝑓cm
𝑓𝑓tm

�
2

𝐺𝐺F (13) 

 
Stresses in equation (13) are expressed in MPa. The abovementioned concrete uniaxial law provides the 
behavior of the CPDM under uniaxial loading in any direction. Extending the behavior to multiaxial stress 
conditions is controlled by the CPDM parameters defining the shape of the yield surface and the plastic 
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potential [Lubliner et al. 1989; Lee and Fenves 1998]. The selection of these parameters is described in 
[Alfarah 2017; Alfarah et al. 2017]. Regarding the confinement effect, is not represented by different 
concrete constitutive laws, but by the direct consideration of the transverse compression exerted by the 
stirrups; noticeably, such transverse reinforcement bars are explicitly modelled. 
 
After parameters ac, at, bc and bt, damage variables dc and dt are determined by equations (7) and (8) in 
terms of crushing and cracking strain, respectively.  
 
The major output of the algorithm are curves of compressive / tensile stress and damage variables vs. 
crushing / cracking strain, respectively. These plots constitute the input of the implementation in any model 
describing the global structural behavior. This algorithm is suited for software package Abaqus [Abaqus 
2013]. 
 
4. Bond-slip Model 

The 3-D interface model proposed by [Murcia-Delso, Shing 2015a] is used to represent the bond relation 
between the longitudinal reinforcement bars and the surrounding concrete. This model is assigned to a 2-D 
interface element connecting steel and concrete representing a fraction of the perimeter of the bar. Their 
interaction is represented in the longitudinal direction by the relation between an equivalent bond stress and 
the bar slip. The stress-slip constitutive law uses the phenomenological law proposed by [Murcia-Delso et 
al. 2013] which is based on concepts originally developed by [Eligehausen et al. 1983]. This law was 
extensively verified by pull-out tests on bars embedded in well confined concrete. 
 
Figure 2 displays the three components of interaction stress (σ1, τ2, τ3) and relative displacement (S1, S2, S3) 
during sliding. 
 

 
Figure 2. Stress and relative displacement components at bar-concrete interface [Murcia-Delso, Shing 

2015a] 

The bond resistance τ2 in the model proposed by [Murcia-Delso, Shing 2015a] is decomposed into bearing 
and friction components: 

τ2 =  ρn�ρb,s  ρb,c τb + ρf,s ρf,c τf� (14) 

In equation (14), τb and τf are the full bearing and friction resistance of an elastic bar under monotonic 
pull-out action. Such resistances are multiplied by reductions factors. ρb,s and ρf,s account for the influence 
of yielding of bar in tension, ρb,c and ρf,c represent the effect of slip history, and ρn takes into consideration 
splitting cracks and is a function of S1. 
 
Figure 3 shows the considered monotonic and cyclic bond stress versus bar slip curves. These curves are 
defined piecewise using polynomial functions [Murcia-Delso, Shing 2015a] in terms of three parameters: 
the peak bond strength τmax, the slip at the pick bond strength Speak and the clear spacing between the bar ribs 
SR. 
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Figure 3. Bond stress-versus-slip law: (a) monotonic response; (b) cyclic response [Murcia-Delso, Shing 
2015a] 

One of the main features of this model is the consideration of the reduction of bearing and friction 
resistance because of the diminution of the bar contact area due to yielding in tension [Shima et al. 1987; 
Liang, Sritharan 2014]. Reduction factors that account for steel yielding in tension are expressed as follows:  
 

ρb.s(εs) =

⎩
⎨

⎧
1           for εs ≤ εy

εsh − εs
εsh − εy

          for εy < εs < εsh  

0           for εs > εsh ⎭
⎬

⎫
 (15) 

  

ρf.s(εs) = �
1                  for εs ≤ εsh
εu − εs
εu − εsh

       for εs > εsh  � (16) 

 
In equations (15) and (16), εy, εsh and εu are yielding, hardening and ultimate strains, respectively. 
 
Reduction factors due to the slip history are given by: 

ρb.c = 1.2 e−2.7(𝑆𝑆m̅ax 𝑆𝑆R⁄ )0.8 ≤ 1  
(17) 

 

ρf.c = 1 − min�
𝑆𝑆max+ + 𝑆𝑆max−

𝑆𝑆R
, 1� �1 − e−0.45(𝑆𝑆cum 𝑆𝑆R⁄ )0.75� (18) 

 
In equations (17) and (18), 𝑆𝑆max+  and 𝑆𝑆max−  are the maximum absolute values of slip in positive and negative 
directions, respectively. 𝑆𝑆cum is the cumulated slip after slip exceeds Speak for the first time. 𝑆𝑆m̅ax is equal to: 

𝑆𝑆m̅ax = 0.75 max(𝑆𝑆max+ , 𝑆𝑆max− ) + 0.25 (𝑆𝑆max+ + 𝑆𝑆max− ) (19) 

In this work, the normal displacement S1 is assumed to be very small due to the well confined conditions in 
the region where it is expected that slip occurs. Therefore, the reduction factor that accounts for splitting 
cracks is equal to 1: ρn = 1. 
 
The interface element has two additional components perpendicular to the bar longitudinal axis, one normal 
and one transverse tangential. The stress-displacement relations in the normal direction represent the 
splitting stresses introduced by the wedging action of the bar ribs. Assuming that the resultant bond force 
has a fixed angle of inclination of 60º as proposed in [Murcia-Delso, Shing 2015a], the normal stress is 
proportional to the bond stress. For the transverse tangential direction, a penalty stiffness is introduced to 
restrain the rotation of the bar about its longitudinal axis. 
 
5. Proposed Implementation Approach  
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5.1. General considerations 

This section describes the two main original contributions of the present study to integrate the damage and 
bond-slip models. Next subsection presents a new modeling scheme to implement the bond-slip model 
developed by [Murcia-Delso, Shing 2015] in a FEM analysis, and last subsection describes a new smeared 
strategy to simulate the reclosing of cracks after tension-compression reversals. 
 

5.2. Modeling Scheme for Bond-Slip  

The bond-slip model was originally implemented in an interface element in the FEM package Abaqus using 
the user element subroutine UEL. This interface element can connect truss or beam elements representing 
reinforcing bars with solid elements representing surrounding concrete, as shown in Figure 4.a. The 
modeling scheme proposed by [Murcia-Delso, Shing 2015] required the same discretization for steel, 
interface and concrete elements. This technique is efficient when longitudinal reinforcement consists of 
parallel bars, but can complicate the mesh when there are crossing bars with non-parallel directions. Figure 
4.b describes the basis of the new modeling scheme proposed herein. 
 

 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
(a) Modeling scheme used 

in [Murcia-Delso, 
Shing 2015]  

(b) Proposed modeling scheme 

Figure 4. Modeling schemes with bond-slip interface model 

Figure 4.b shows that the proposed technique is based on assigning, for each interface element, a pair of 
tie-constraint conditions; this being defined as two surfaces having the same degrees of freedom in all the 
contact points. The softest and stiffest surfaces are slave and master, respectively. The first tie-constraint (1) 
connects concrete nodes (master surface) with the interface nodes on the concrete side (slave surface). The 
second constrain (2) ties bar nodes (master surface) and the interface nodes on the bar side (slave surface). 
Hence, the relative displacement between the concrete and the bar is equal to the relative displacement at 
the interface element.  
 
Figure 5 illustrates the modeling scheme for two perpendicular crossing bars. Figure 5.b and Figure 5.c 
show, respectively, that Bar 1 (CD) and Bar 2 (AB) are connected to four interface elements each.  
 

Removed 
part (hole) 

4 interface 
elements 

Concrete 

Bar elements 

Tie constraint (2) 
 

Tie constraint (1) 
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(a) Two bars crossing 
within a solid element 

(b) Four inteface elements 
attached to Bar 1 (CD) 

(c) Four inteface elements 
attached to Bar 2 (AB) 

Figure 5. Application of the proposed modeling scheme for two orthogonal longitudinal crossing bars 

By using tie constraints, the proposed technique does not require that interface and solid elements have the 
same discretization. This strategy aims to overcome meshing problems and convergence difficulties. It is 
particularly suitable for regions with non-parallel longitudinal reinforcement bars, such as beam-column 
and slab-column joints, structural walls, foundations, and connections among these elements.  
 

5.3. Simulation of cracks at member ends 

As discussed in section 3, the reclosing of cracks after tension-compression reversals is governed by the 
parameter hc, representing the percentage of compression stiffness recovery in the reclosed cracks. Low 
values of ℎc reduce the concrete strength after reversing; subsequently, the relative displacement between 
concrete and steel will be higher, thus simulating bond degradation and poor quality concrete. The influence 
of ℎc in the concrete stress-strain cyclic behavior is further explained in [Alfarah et al. 2017]. 
 
In actual structures, highly uneven behavior is expected, due to the irregular distribution of bond-slip 
effects and to the poorer performance in the casting joints. For both reasons, in any framed structure, 
significantly less reclosing of cracks is expected at the member ends and the nearby segments. To enhance 
the opening-closing simulation of widely opened cracks in the casting joint region, Murcia-Delso [2013] 
introduced discrete cracks at the member ends. In the current study, an alternative solution is proposed by 
using small values of hc near the member ends; Figure 6 displays a frame modelled with different values of 
hc. The darkest shadowed zones represent casting discontinuity, and little or no stiffness is expected upon 
cracks reclosing, therefore hc = 0.01. The lightly dark zones correspond to the rest of regions where 
bond-slip is introduced and hc = 0.1 is selected. Finally, in the not-shadowed regions no significant 
bond-slip effect is expected, and hc = 0.9 is chosen. Noticeably, in each of these cases, the results have 
exhibited little sensitivity to variations of hc reaching 100%. 
.  
 

Interface 
element 

Tie constraint 
connecting 
interface to 

concrete 

Tie constraint 
connecting 
interface to 

rebar  

Interface 
element 

Tie 
constraint 
connecting 
interface to 

concrete  

Tie constraints 
connecting 
interface to 

rebar  
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Figure 6. Zones of framed structures with different cracks opening-closing behavior 

 
In practical applications, the darkest shadowed areas in Figure 6 can correspond to the first and last rows of 
finite elements in the discretization of each column; the lightest shadowed segments can comprise the zones 
where bond-slip is modelled. Both shadowed regions correspond to the plastic hinge length. In this study, 
such length is selected according to [Paulay and Priestley 1992]. For cantilever RC columns, it is given by 
Lp = 0.08 L + 0.002 Db fy, where L is the column height, and Db and fy are the longitudinal rebar diameter and 
the steel yield point (MPa), respectively. For RC frames, Lp is half of the section depth.  
 
6. Simulation of cyclic tests of RC structures 

6.1. Bridge Column 

Several RC columns have been tested by [Tanaka 1990] to study the effect of lateral confinement on their 
ductility. Main differences are the type of transverse reinforcement, its anchorage detailing, the axial force, 
and the mechanical and geometric parameters. Column unit 6 [Tanaka 1990] has been analyzed with the 
proposed model. Figure 7 describes the tested column and the experimental mockup. 

hc close to 1 

hc close to 0 

intermediate values of hc  
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(a) Loading arrangements 

 
(b) Vertical section  (c) Horizontal section 

Figure 7. Experiment on the bridge RC column [Tanaka 1990] 
 
Figure 7.b and Figure 7.c display the geometry of the column, dimensions are in mm. The column was 
loaded with constant force 0.1 f’c/Ag and a cyclic lateral displacement protocol was imposed by hydraulic 
jacks as shown in Figure 7.a. Concrete mechanical parameters were determined from standard cylinder 
tests. The characteristic value of compressive strength is 32 MPa and the average value of secant 
deformation modulus is 27.65 GPa; Poisson ratio and shear deformation modulus were estimated as 0.2 and 
11.52 GPa, respectively. Steel parameters were obtained from coupon tests. Table 1 displays the most 
relevant information regarding reinforcement steel. In Table 1, bars HD20 and D12 correspond to 
longitudinal and transverse reinforcement, respectively. fu is the steel ultimate stress, Es is the modulus of 
elasticity, εsh is the strain corresponding to the hardening onset, and εu is the ultimate strain. 
 

Table 1. Reinforcement steel parameters for the bridge column 
Bar Id. Db (mm) fy (MPa) fu (MPa) Es (GPa) εsh εu 
HD20 20 511 675 200 0.0165 0.14 
D12 12 325 429 200 0.015 0.14 

 
Figure 8 displays the imposed displacement law.  
 

x 
z 

x 
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Figure 8. Imposed displacement law for the bridge column experiment 
 
The results of the experiment showed stable hysteretic behavior, good energy dissipation and limited 
strength reduction up to the final stage. Substantial crushing of compressed cover concrete (spalling) was 
first observed near peak load during the first cycle. During the final stage, the visible damage was concrete 
crushing and slight buckling of longitudinal reinforcement bars. 
 
The bond-slip model [Murcia-Delso, Shing 2015a] has been used in the simulation using the analyzed with 
the proposed model described in section 5. Figure 9 depicts the element discretization. Figure 9.a describes 
the concrete discretization with 3-D 8-node hexahedron solid elements (C3-D8R). Figure 9.b and Figure 9.c 
represent the steel and interface elements; steel is discretized with 2-node truss elements (T3-D2). 
Bond-slip effect is considered for the column longitudinal bars at the base of the column and development 
region in the footing, as shown in Figure 9.b; full bond conditions are assumed for the other segments of 
longitudinal bars as well as for transverse reinforcement because minimal bar slip is expected for these bars. 
  

 

(a) Column discretization (b) Steel and interface 
elements 

(c) Plan view of steel and 
interface elements 

Figure 9. Finite element discretization of the bridge column  
 
Steel behavior is described with a classical plastic model; isotropic hardening is used for stirrups, and 
nonlinear isotropic/kinematic hardening for longitudinal bars. Concrete behavior is simulated by 
implementing the methodology described in section 3 [Alfarah et al. 2017] in Abaqus code [Abaqus 2013] 
using the particular algorithm described in [Alfarah et al. 2017].  
 
Figure 10.a displays plots of ratio εc

pl / εcch vs. εcch, where εc
pl refers to plastic compressive strain. Figure 

10.b displays analogous plots for the tensile behavior (εt
pl / εtck vs. εtck). 
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(a) Compression (b) Tension 

Figure 10. Variation of ratios between plastic and crushing / cracking strains for the bridge column 
experiment 

 
Figure 10 highlights that, in the proposed methodology, damage and plastic energy absorptions are not 
related, since ratios εc

pl / εcch and εt
pl / εtck do not approach zero when damage variables dc and dt are close 

to 1 [Alfarah et al. 2017]. Figure 10.a points out that the average of εc
pl / εcch is approximately equal to 0.88; 

this magnitude is termed b and is a required parameter in the implementation of the algorithm [Alfarah et al. 
2017]. Table 2 displays the considered values of the parameters. 
 

Table 2. Parameters for simulation of the first experiment 
fck 

(MPa) 
fcm 

(MPa) 
ftm 

(MPa) 
 Gch 

 (N/mm) 
GF 

(N/mm) b ac at 
leq 

(mm) bc bt 

24 32 2.51 22.14 0.136 0.889 7.873 1 50 142.65 1381.74 
 
Figure 11 displays comparisons between experimental and numerical hysteresis loops calculated with the 
proposed model. In Figure 11.a, the numerical results are obtained by using hc = 0.9 in all the body, and 
generating a discrete crack at the footing-column interface; normal friction contact condition is assumed at 
that interface. In Figure 11.b, the approach to represent concrete discontinuity described in subsection 5.3 is 
applied by assigning ℎc = 0.01 to the first row of elements above the footing, ℎc = 0.1 to the elements where 
bond-slip is considered (Figure 9.b), and ℎc = 0.9 for the rest of the model (Figure 6). These values have 
been selected to provide the best fit with the experiment.  
 

  
(a) Experiment and proposed formulation 

with a discrete crack 
(b) Experiment and proposed formulation 

with reduced ℎc (subsection 5.3) 

Figure 11. Experimental and numerical force-displacement response of the bridge column test 
 
Figure 11 shows that the proposed model provides a satisfactory agreement with test results, capturing 
initial stiffness, strength and stiffness degradation, and pinching. Plots from Figure 11.a show that the 
model with discrete crack is able to reproduce the main aspects of cyclic behavior; the analysis ended 
prematurely due to the large nonlinearity and the important separation between both blocks. The model 
with reduced ℎc (Figure 11.b) captured suitably the dissipated energy from the experiment with difference 
−1.66 %; conversely, the model with discrete crack (Figure 11.a) overestimated that energy by 22.88 %.  
 
Figure 12 displays comparisons between pairs of plots obtained by numerical simulation with the proposed 
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model and with a similar model assuming perfect bond between the reinforcement and the surrounding 
concrete. In Figure 12.a a discrete crack is introduced in the proposed model (as in Figure 11.a), and in 
Figure 12.b reduced values of ℎc are considered (as in Figure 11.b).  
 

  
(a) Proposed formulation with a discrete 

crack vs. perfect bond 
(b) Proposed formulation with reduced ℎc 

(subsection 5.3) vs. perfect bond 

Figure 12. Numerical force-displacement response of the bridge column test 
 
Figure 12 highlights the relevance of bond-slip. Comparison between Figure 12.a and Figure 12.b shows 
that differences are more significant in the smeared model.  
 
Comparison between Figure 11 and Figure 12 shows that the models with perfect bond reproduce 
satisfactorily the envelope behavior but lack to capture the unloading and reloading branches. The discrete 
crack model response in Figure 12.a exhibits some pinching due to the added flexibility at the column 
bottom; conversely, the smeared model response in Figure 12.b shows higher energy dissipation.   
 
Experimental observations revealed buckling in the longitudinal reinforcement bars at column bottom 
[Tanaka 1990]. Figure 13 presents numerical (Figure 13.a and Figure 13.b) and experimental (Figure 13.c) 
representations of this failure. Figure 13.a displays the buckling that is detected at the last cycle, Figure 13.b 
shows the final damage state and Figure 13.c depicts the observed damage. Comparison between numerical 
and experimental results highlights the accuracy of the proposed formulation. 
  

  
  

(a) Buckling in the longitudinal 
bars 

(b) Final damage state (c) Final state 
[Tanaka 1990] 

Figure 13. Final state of the bridge column  
 

6.2. Building  Frame  

This experiment [Pires 1990] consists in imposing a quasi-static cyclic displacement law to a laboratory 
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single-bay, single-story 2-D RC frame. Figure 14.b describes the tested frame, and Figure 14.a and Figure 
14.c display beam and columns sections, respectively. Figure 14.b shows that both columns were loaded 
with constant forces and that displacement was imposed to the top left joint. Noticeably, given the absence 
of distributed loads on beam, there was no initial cracking. 

 

 

(a) Beam section 

 
(b) Tested frame (c) Column section 

Figure 14. RC frame experiment [Braz-César et al. 2008a, 2008b] 
 
Mechanical parameters of materials are based on nominal values. The characteristic value of the concrete 
compressive strength is 20 MPa (C20/25, [EN 1992 2004]), and the steel yield point is 400 MPa for the 
longitudinal reinforcement and 500 MPa for the stirrups [EN 10080 2006]. As described in Figure 14.c, in 
the critical end segments (“confinement sections”), closer stirrup spacing was used; the lengths of these 
segments are 40 cm in beam and 30 cm in columns. 
 
Figure 15 displays the imposed displacement law.  
 

 

Figure 15. Imposed displacement law for the frame experiment 
 
This frame had been previously simulated by [Braz-César et al. 2008a, 2008b] by using concentrated and 
distributed plasticity models. 
 
Analogously to bridge column experiment [Tanaka 1990], this test is simulated by implementing the 
damage variables algorithm and the bond-slip model [Murcia-Delso, Shing 2015a] in Abaqus code [Abaqus 
2013] using the modeling scheme described in section 5.  
 
Table 3 displays the calculated values for the parameters of the damage variables methodology. 
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Table 3. Parameters for simulation of the frame experiment 
fck 

(MPa) 
fcm 

(MPa) 
ftm 

(MPa) 
Gch 

(N/mm) 
GF 

(N/mm) b ac at 
leq 

(mm) bc bt 

20 28 2.222 21.12 0.133 0.97 7.873 1 21.6 56.57 541.45 
20 28 2.222 21.12 0.133 0.94 7.873 1 37 96.91 927.48 

 
This experiment is simulated using bond-slip elements where bars are expected to slip. Figure 16 displays 
the frame discretization; Figure 16.a shows the overall discretization, Figure 16.b presents a general view of 
steel and interface elements and Figure 16.c depicts a more detailed view of the right beam-column joint. 
As shown in Figure 16.b, bond-slip elements are assigned to the longitudinal bars along the column 
foundation, inside beam-column joints, at the column top and bottom ends, and at beam-ends. Noticeably, 
the proposed modeling scheme (section 5) allows that bar elements intersect in the same solid element 
without need to generate perpendicular holes nor to use double nodes. Regarding the approach described in 
subsection 5.3, similarly to Figure 6, ℎc = 0.01 for the bottom and top row of elements inside the columns; 
then, ℎc = 0.1 for the elements where bond-slip is considered (Figure 16), and ℎc = 0.9 for the rest of the 
model. The results from this approach are compared with those after introducing discrete cracks right above 
the footings. 

  

 

 

a) Frame discretization b) Steel and interface elements  c) Interface elements at the 
right beam-column joint 

Figure 16. Finite element discretization of the frame experiment  

Analogously to Figure 11, Figure 17 displays comparisons between experimental and numerical hysteresis 
loops obtained with the proposed model. Plots from Figure 17 provide similar conclusions than Figure 11. 
 
 

  
(a) Experiment and proposed formulation 

with a discrete crack 
(b) Experiment and proposed formulation 

with reduced ℎc (subsection 5.3) 

Figure 17. Experimental and numerical force-displacement response of the frame test 
 
Similarly to Figure 12, Figure 18 displays comparisons between numerical hysteresis loops obtained with 
the proposed model and assuming perfect bond. Figure 18 allows deriving parallel observations than Figure 
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12. 
 

  
(a) Proposed formulation with a discrete 

crack vs. perfect bond 
(b) Proposed formulation with reduced ℎc 

(subsection 5.3) vs. perfect bond 

Figure 18. Numerical force-displacement response of the frame experiment 

 
7. Conclusions 

An integrated continuum FEM model is proposed for monotonic and cyclic simulation of RC frames. The 
model combines the methodology proposed by some of the authors for calculating the damage variables of 
CPDM and the 3-D interface bond-slip model developed by one of the authors. A new technique to 
integrate the interface model in a continuum FEM model of regions with crossing bars is presented in this 
paper. The proposed model is used to simulate two experiments consisting in imposing cyclic displacement 
laws to an RC column and a frame. These experiments are also simulated with the same model although 
assuming perfect bond conditions. 
 
Obtained results show that the proposed model is able to predict the actual behavior of highly damaged RC 
elements and frames, capturing strength reduction, stiffness degradation and pinching. This model uses 
only a reduced number of parameters, and the authors believe that no calibration with experimental results 
is required; more research is currently in progress to further validate this statement. Comparison with the 
results obtained assuming perfect bond points out the high relevance of bond-slip in the hysteretic behavior 
and the energy dissipation capacity.  
 
The proposed integrated model can constitute a practical tool for accurate simulation of highly damaged 
medium-size RC structures, both in research and in conventional analyses. It can be also used to calibrate 
more simplified models. 
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List of symbols 

Roman letters  
 
ac / at / bc / bt: dimensionless coefficients in equations (9), (10) and (11) 
b: εc

pl/εcch ratio (Table 2 and Table 3) 
Db: reinforcement bar diameter 
d / dc / dt: damage variable / compression damage variable / tension damage variable 
E / E0: modulus of deformation / undamaged modulus of deformation 
Es: steel modulus of elasticity 
f / fcm / ftm / fc0 / ft0 / fck: stress strength / concrete compressive stress strength / concrete tensile stress strength 

/ limit stress of linear compressive branch / limit stress of linear tensile branch / characteristic value of 
concrete compressive strength 

fy / fu: steel yield point / ultimate stress 
G / Gch / GF: flow potential / crushing energy per unit area / fracture energy per unit area 
gc / gt: compressive / tensile energies per unit volume dissipated by damage along entire deterioration 

process 
ℎc / ℎt: weighting factors accounting for stiffness recovery 
leq: mesh size (finite element characteristic length) 
r*: stress state; for uniaxial stress r*(σ11) = 1 for tension and r*(σ11) = 0 for compression 
S1 / S2 / S3: relative normal displacement / longitudinal slip / transverse slip 
Speak /𝑆𝑆max+  / 𝑆𝑆max−  / 𝑆𝑆cum: peak slip / maximum positive slip / maximum negative slip / cumulated slip 
SR: clear spacing between bar ribs 
sc / st: coefficients accounting for stress state and stiffness recovery effects 
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Greek letters 
 
εs / εy / εsh / εu:  axial steel strain / yielding steel strain / hardening steel strain / ultimate steel strain 

εcch / εtck: crushing compressive strain / cracking tensile strain 
εc
pl / εt

pl: plastic compressive / tensile strain 
ρb,s / ρf,s: reduction factor in bar bearing resistance accounting for steel yielding in tension / reduction factor 

in bar friction resistance accounting for steel yielding in tension 
ρb,c / ρf,c: reduction factor in bar bearing resistance accounting for slip history / reduction factor in bar 

friction resistance accounts for slip history 
ρn: reduction factor accounting for opening of splitting cracks 
σ1: normal bond stress 
σ / σ11: normal stress / first principal uniaxial stress  
τ2 / τmax / τb / τf: longitudinal shear bond stress / peak bond strength / due to bar bearing resistance/ due to 
friction resistance 
τ3: transverse shear bond stress 
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