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Abstract

One of the major difficulties in meshing 3D complex geometries is to deal with non-proper geometrical definitions

coming from CAD systems. Typically, CAD systems do not take care of the proper definition of the geometries for the

analysis purposes. In addition, the use of standard CAD files (IGES, VDA, . . .) for the transfer of geometries between

different systems introduce some additional difficulties.

In this work, a collection of algorithms to repair and/or to improve the geometry definitions are provided. The aim

of these algorithms is to make as easy as possible the generation of a mesh over complex geometries given some

minimum requirements of quality and correctness. The geometrical model will be considered as composed of a set of

NURBS lines and trimmed surfaces.

Some examples of application of the algorithms and of the meshes generated from the corrected geometry are also

presented in this work.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Mesh generation using structured and unstructured

grids is still nowadays one of the bottlenecks in the

practical application of the finite element method (see

[4,9,11,14]).

Geometrical models created for finite element mesh

generation purposes are typically created by the mesh

generation software or imported from an external CAD

system. In both cases, the geometrical model must sat-

isfy a series of quality constraints.

Normally, geometrical models are constructed as a

set of NURBS lines and trimmed surfaces (see [1,3,6–8]).

These entities can be mathematically correct and suit-

able for other uses like visualization or CAM but, in

many cases, they are not good enough for meshing op-

erations. In these cases, it is necessary to adapt/repair

the geometrical entities by changing their mathematical

description while maintaining the same geometrical

shape. The final entities should be better suited for the

mesh generation operations (see [5,10]).

The algorithms proposed in this paper are considered

as a set of filters that will be applied to a geometry

definition just after being imported or created. The al-

gorithms are:

• collapse of entities,

• correction of the list of knots,

• reparametrization,

• conversion to similar cubic entity,

• union of curves,

• reorientation of the boundary of the surfaces,

• collapse of small angles.
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With the help of these algorithms, it is possible to

automate the process of importing geometry from CAD

and mesh on it while maintaining an acceptable level

of quality criteria. This process should be performed

without the need of manual intervention.

To understand better what follows, a short descrip-

tion of the NURBS lines and surfaces entities is given. A

deeper description can be found in [2,12].

1.1. NURBS lines

A NURBS line is a geometrical entity, described as a

parametric line in the 3D space, that is defined with a set

of knots, a set of control points, and a set of weights if it

is rational (Fig. 1).

The knots are a list of non-decreasing numbers

u0; . . . ; uLþn that begin in the lower range of the pa-

rameter space (usually 0.0) and finish in the high range

of it (usually 1.0). A knot has multiplicity r if its value is

repeated r times inside the list of knots. The initial and

the end knots must have multiplicity r ¼ nþ 1, where n

is the degree of the curve.

The control points ~PP1; . . . ;~PPL are a list of points in the

3D space that are part of the NURBS definition. The

line will interpolate the first and the last point and will

smoothly approximate the other points.

The weights x1; . . . ;xL are a set of non-negative real

numbers, one for every control point. They allow the

shape of the curve to change and also to have an exact

representation of conic curves like circles or ellipses.

The number of knots, Nk must be equal to Nk ¼ Np þ
nþ 1, where Np is the number of control points.

The evaluation of a NURBS curve for a given value

of the parameter u can be done in a recursive manner.

First, it is necessary to identify the interval ½uI ; uIþ1� in

the list of knots that contains the value of u ðu 2 ½uI ;
uIþ1�Þ. Next, the following recursive expression can be

applied:

~PPk
i ðuÞ ¼

ð1� ak
i Þxk�1

i�1
~PPk�1
i�1 ðuÞ þ ak

i x
k�1
i

~PPk�1
i ðuÞ

xk
i

with

k ¼ 1; . . . ; n� r

i ¼ I � nþ k þ 1; . . . ; I þ 1

~PP 0
i ðuÞ ¼ ~PPi

x0
i ¼ xi

���������
ð1Þ

ak
i ¼

u� ui�1

uiþn�k � ui�1

xk
i ¼ ð1� ak

i Þxk�1
i�1 þ ak

i x
k�1
i

then:

~ssðuÞ ¼ ~PPn�r
Iþ1 ðuÞ

1.2. NURBS surfaces

A NURBS surface is the extension of the NURBS

line to one additional dimension in the parametric space.

Most of the properties of the NURBS curves applies

here. There is a list of knots for every parametric direc-

tion u and v. The control points are a set of Pij points

with i 2 ½1; . . . ; Lu� and j 2 ½1; . . . ; Lv� (Fig. 2).
The evaluation of the surface can be made in different

ways:

• To evaluate first the NURBS curve corresponding to

one of the parametric directions u (maintaining v

constant) and obtain a NURBS line. Then, to evalu-

ate the resulting NURBS curve in the second direc-

tion v.

Fig. 1. Example of a quadratic NURBS line with four control

points evaluated for a given value of u.

Fig. 2. NURBS surface with the corresponding control poly-

gon.
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• Recursive evaluation: similar to the expression (1)

given for the NURBS curve.

• Evaluation by means of the b-spline base. This tech-

nique is also usable for curves.

The evaluation with the b-spline base is done by de-

fining a base of b-splines, Ni, as a recursive function in

the following recursive way:

N 0
i ðuÞ ¼

1 if ui�1 6 u < ui
0 if not:

�

Nn
i ðuÞ ¼

u� ui�1

ui�n�1 � ui�1

Nn�1
i ðuÞ þ uiþn � u

uiþn � ui
Nn�1

iþ1 ðuÞ

Then, the following expression is applied:

~ssðu; vÞ ¼
P

i

P
j xij~PPijNm

i ðuÞNn
j ðvÞP

i

P
j xijNm

i ðuÞNn
j ðvÞ

ð2Þ

2. Collapse of entities

The standard CAD exchange formats (IGES,

VDA, . . .) do not contain the topological connection

between the different surface patches defining a closed

geometry. These files just contain the mathematical de-

scription of the patches. Nevertheless, in order to pro-

ceed with a correct mesh generation it is necessary to

check the correctness of the 3D geometry by ensuring,

for example, that it is defined by a completely closed

surface. In addition, many mesh generation algorithms

need to know the neighboring relation between patches

in order to advance in their work. For this reason, it is

necessary to obtain the topological connection between

the different surface patches.

An important additional difficulty is that, very often,

the boundary curves defining neighboring patches are

very similar, but not identical. Normally, the corre-

sponding pairs of curves are close enough for the dif-

ferent visualization or CAM operations, but not for the

necessary operations for the analysis. This makes the

task of identifying neighbor patches very difficult.

In order to solve this difficulty it is necessary to define

a geometrical tolerance. When two different geometrical

entities are separated by a distance smaller than the

prescribed tolerance they are considered to be identical

and they are collapsed. This tolerance can be specified

by the user or can be obtained in an automatic way as a

certain percentage of the total size of the geometrical

model.

Given a geometrical tolerance �, the collapse criteria

for the different geometrical entities are the following:

• Two points are collapsed into a single one if:

k~PP1 �~PP2k < �

where ~PPi is the vector of coordinates of point i.

• Two curves are collapsed if they share their end

points and the maximum distance between them is

smaller than �. In addition, they are also collapsed

if a curve belongs to the interior of another one. This

last property means that, in addition to the first crite-

rion, its end points ~PPi accomplish

distð~PPi; LÞ < �

where ~LLðtÞ is the second curve. In the latter case, the

final result of the collapse operation is not a single

curve but a group of curves as shown in Fig. 3.

• Two patch surfaces are collapsed if they share their

boundary curves and a similar maximum distance

criterion is accomplished.

• Two volumes are considered as equivalent if they

share their boundary surfaces.

The computation of the maximum distance between

different curves or surfaces is made in an approximated

way as follows: a fixed number of points ~PPi are chosen in

the interior of the curve or surface depending on their

geometrical characteristics. The distance point-curve or

point-surface di is computed for each of the selected

points. Then, dmax is approximated as dmax ¼ maxðdiÞ.
In general, a big number of control points and a high

degree of the line or surface formulations will imply a

bigger geometrical complexity. For this reason, the

number of selected points will be related to the two

mentioned values.

In the computation of the di values the ~PP 0
i point is

obtained as the mapping of the original point over the

Fig. 3. The collapse procedure reduces the initial four curves to

only three.
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geometrical entity and di ¼ k~PPi �~PP 0
i k. The mapping op-

eration is the transformation of an original point to the

closest point contained into a geometrical entity like a

curve or surface. This procedure is described in [12].

The collapse operation is also useful to eliminate

small details of the geometry that can be of no relevance

for the analysis. If some lines or surface patches are

smaller than the tolerance, they can disappear and their

neighbor entities are reconnected. This operation is

normally called feature reduction. From the practical

point of view, many details that are crucial for the design

task, can be totally irrelevant for the analysis. This op-

eration can save a lot of elements and degrees of free-

dom in the final finite element mesh. In Fig. 4 a

graphical example of this possibility is shown.

3. Correction of the list of knots

The list of knots is a set of non-decreasing real values

that belong to the parametric space and are used for the

definition of a NURBS. A more detailed definition of

knot can be obtained in [2].

In the formulation of a NURBS curve or surface the

list of knots cannot contain any knot with a multiplicity

higher than the degree of the mathematical entity. Nev-

ertheless, in many cases the standard exchange files

contain this type of error. In these cases, it is necessary

to correct the list of knots by eliminating the overdefined

knot and the associated weights and points. In this way,

if we have a n degree NURBS curve defined by L points

with the following list of knots:

k0; . . . ; ki; kiþ1; . . . ; kiþnþp; . . . ; kLþn with

ki ¼ kiþ1 ¼ � � � ¼ kiþnþp ð3Þ

~PP1; . . . ;~PPL ð4Þ

x1; . . . ;xL ð5Þ

the list (3) will be reduced to:

k0; . . . ; ki; kiþ1; . . . ; kiþn; kiþnþpþ1; . . . ; kLþn

and the list of control points (4) and weights (5) to:

~PP1; . . . ;~PPiþ1;~PPiþpþ2; . . . ;~PPL ð6Þ

x1; . . . ;xiþ1;xiþpþ2; . . . ;xL ð7Þ

Note that the new list will have L� p control points and

that the resulting curve will be an approximation to the

original one, being the original one a mathematically

incorrect representation of a curve.

4. Reparametrization

A very desiderable property for the mesh generation

algorithm is to use the arc length as the defining pa-

rameter over the curve or surface. This property is not

normally available in the NURBS curves or surfaces.

This can be partially corrected by using a constant dis-

tance between each pair of consecutive control points.

Nevertheless, in order to obtain the best possible quality

during the mesh generation process it is convenient to

improve the parametrization from the very beginning.

The corresponding changes that are produced in the

curves or surfaces during the improvement of their

parametric definition are named reparametrization.

A major problem arises when there are big discrep-

ancies between the spacing of distances between the

control points and the spacing between the corre-

sponding associated points of the curves or surfaces.

This problem can be detected by a comparison between

the modulus of the derivatives in the following way:

1

F
<

d~LL
dt

���
t¼ki�

����
����

d~LL
dt

���
t¼kiþ

����
����
< F ð8Þ

where the ki in (8) represents an interior knot and F is a

maximum acceptable parameter that, for acceptable

parametrizations, can have values between 4 and 5. In

this formula, ~LLðtÞ represent the curve.

The first step of the correcting process consists of

decomposing the curve into the addition of the set of the

equivalent B�eezier curves. This can be done by inserting

multiple knots until a multiplicity equal to the order of

the mathematical entity is reached. The process of in-

serting knots is described in [2].

From the geometrical and the parametrization points

of view, the defined curve is completely equivalent to the

Fig. 4. Saving of elements when unnecessary details are elimi-

nated.
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original one. If we have a n degree curve and L defining

points with the following values:

k0; . . . ; ki; . . . ; kLþn

~PP1; . . . ;~PPL
ð9Þ

new knots are inserted with the same value of the already

existing knots into (9) until they all have a multiplicity of

the same order as the curve

k0; . . . ; k0|fflfflfflfflffl{zfflfflfflfflffl}
nþ1

; . . . ; ki; . . . ; ki|fflfflfflfflffl{zfflfflfflfflffl}
nþ1

; . . . ; kLþn; . . . ; kLþn|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
nþ1

ð10Þ

After inserting these knots, the number of control

points of the curve will increase. The new number of

points will B�eezier equal to the sum of the difference

between the original multiplicities and the order of each

of the original knots.

Taking the list of points and grouping them in sets of

nþ 1 points, it is possible to build successive B�eezier
curves with the same degree than the original curve and

the same continuity between successive B�eezier curves.

These new curves will not depend on the list of knots

and, therefore, their shape will not change if any of the

knots is moved. Consequently, the increments between

each groups of knots can be recomputed in order to

obtain a better parametrization. A possible modification

based in the chord length parametrization consists in

creating the following new list:

k0; . . . ; kn; . . . ; ki; . . . ; kiþn; . . . ; kL0 ; . . . ; kL0þn ð11Þ

k0 ¼ � � � ¼ kn ki ¼ � � � ¼ kiþn kL0 ¼ � � � ¼ kL0þn ð12Þ

kiþnþ1 � kiþn ¼
lc
ltot

ð13Þ

where lc in (13) is the length of the corresponding B�eezier
curve and ltot is the total length.

The new curve parametrized in this way will have the

same geometrical shape than the original one but with a

different parametric definition. Fig. 5 shows the typical

improvement than can be obtained with the described

algorithm.

5. Conversion to similar cubic entity

In some cases, the correction described in the last

section is not enough for ensuring a good parametriza-

tion. Typically, these cases arise when one or more

control points are repeated, or else when the orders of

magnitude of the distances between points have big

discrepancies between them.

In these cases it is acceptable to use a new curve or

surface not identical to the original one but with a good

enough approximation. We should keep in mind that the

exchange of CAD files is always carried out with different

geometrical tolerances. Hence, it seem logical to allow

geometrical changes below the limits of this tolerance.

The process consists of computing a set of points ~PPi
belonging to the interior of the curve. These points will

be the base of an interpolation algorithm that will be

used for the definition of the new curve with the re-

quired approximation to the original one. The criteria

for the selection of the number of points LI is obtained

by correlating the number of control points L with the

accepted tolerance. A new cubic curve can be interpo-

lated from the new set of points using different proce-

dures like the one described in [2]. Fig. 6 shows an

Fig. 5. Comparison between the derivatives of the curve before

and after the reparametrization.

Fig. 6. Conversion of a NURBS to an approximated interpo-

lant cubic NURBS.
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example of this type of conversion. In this case, the

discrepancy between both curves is high due to a point

with C0 continuity.

6. Union of curves

It is possible to convert a set of connected NURBS

curves into a single curve. Normally, it is advantageous

to keep the number of curves as small as possible be-

cause it can make the mesh generation task easier.

Typically, the presence of extremely small segment lines

can increase the complexity of the mesh generation.

The criteria for joining different curves are the fol-

lowing:

1. Enough degree of continuity between the different

segments must exist. Typically, a C1 continuity is con-

sidered as enough.

2. None of the segments can support any individual sur-

face patch. The set of segments to be joined must be-

long to the boundaries of the same surface patches.

Fig. 7 shows different examples of these situations.

Before the union can proceed, the different curves

must have the same degree. Hence, the degree of all the

segments will be increased until they reach the maximum

value n. Next, the different control points will be joined

and a new list of knots will be computed starting from

the original ones in the following way:

kA;0; . . . ; kA;LAþn curve A ð14Þ

kB;0; . . . ; kB;LBþn curve B ð15Þ

The new list will be:

akA;0; . . . ; akA;LAþn ; akA;LAþn þ bkB;0; . . . ; akA;LAþn

þ bkB;LBþn ð16Þ

a ¼ lA
lA þ lB

b ¼ lB
lA þ lB

ð17Þ

where lA and lB in (17) are the respective lengths of the

curves.

7. Subdivision of curves

Some of the algorithms related with the mesh gen-

eration task solve small non-linear systems of equations

that involve the derivatives of the analytical expression

defining the curves. The presence of strong changes of

these derivatives inside the curve can produce conver-

gence difficulties in the solution of the mentioned sys-

tems. Due to this reason, it is very convenient to

maintain a C1 continuity over the whole curve (in

practice, small angle discontinuities can also be al-

lowed). Hence, it is convenient to subdivide (cut) the

original curves at points not satisfying the required

continuity.

This subdivision is made through the insertion of

additional knots at the required cutting points until a

multiplicity equal to the order of the curve is reached.

The new curves will be:

k0; . . . ; ki; . . . ; ki|fflfflfflfflffl{zfflfflfflfflffl}
nþ1

; . . . ; kLþn

Fig. 7. Different criteria for accepting (or not) the union of curves.
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k0
ki
; . . . ;

ki
ki

curve A

kiþnþ1 � kiþnþ1

kLþn � ki
; . . . ;

kLþn � kiþnþ1

kLþn � ki
curve B

The control points will be simply spread depending on

the number of knots corresponding to each curve.

8. Reorientation of the boundary of the surfaces

Some of the mesh generation algorithms require a

proper orientation of all the boundary curves. A curve
~LLðtÞ that belongs to the boundary of a surface with a

normal vector ~NN is considered as well oriented if the

vector ~VV defined by

~VV ¼ ~NN � d~LL
dt

always points towards the interior of the surface.

In some cases, the information imported from a

CAD system does not satisfy the mentioned criterion.

It is then convenient to check this possibility and to

change the corresponding orientation when necessary

(Fig. 8).

Nevertheless, some times it is not easy to identify the

interior of a surface. In this work, we use the fact that

for non-trimmed surfaces the curves must belong to the

boundary of a NURBS surface. For trimmed surfaces, it

is necessary to look for any of the trimming curves

placed on the surface.

A boundary line of a NURBS surface patch is well

oriented if:

d~LLðtÞ
dt

� d
~SSðu; vÞ

du
> 0 ~LL 2 v ¼ 0 ð18Þ

d~LLðtÞ
dt

� d
~SSðu; vÞ

du
< 0 ~LL 2 v ¼ 1 ð19Þ

where ~SSðu; vÞ is the parametric surface. If the curve lays

on u ¼ 0 or 1 the corresponding similar expressions will

be used.

An additional convenient check consists of comput-

ing the normal vector to the surface in its center and

to compute the approximated normal vector to the

boundary curves. The approximate normal vector can

be computed as:

~NNL ¼
X
i

~LLðtiÞ � ~CC �~LLðti þ DtiÞ � ~CC ð20Þ

where ~CC is the center of the surface. The boundary

curves will be well oriented if:

~NN � ~NNL > 0

9. Collapse of small angles

A very common problem in files imported from CAD

systems is that some of the surfaces contain almost null

angles that make impossible the generation of a proper

mesh. In those cases, it is convenient to collapse part of

the lines that define these angles until converting the

angles into bigger ones allowing to place acceptable

mesh elements.

The collapsing angle will be computed depending on

the given tolerance �. In general, the resulting criterion

should guarantee that the size of the resulting curve is in

agreement with the rest of the contiguous curves (see

Fig. 9).

10. Examples

The algorithms presented in previous sections have

been implemented into the GiD pre/postprocessing sys-

tem [13] developed at CIMNE. The following exam-

ples are a set of representative applications of these

Fig. 8. Criterion of signs and orientations of the trimming lines

of a trimmed surface.

Fig. 9. Collapse of a too small angle. The collapse will be ac-

cepted if L is bigger than a minimum value.
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algorithms for the preparation of different geometries in

order to be meshed. Typically, the geometry has been

defined using a CAD system and the corresponding in-

formation has been introduced into GiD using standard

CAD files (IGES, VDA, . . .). In all cases, the use of the

presented algorithms has carried out the improvements/

reparations needed to allow meshing of the geometry

without the necessity of any additional operation.

10.1. Geometry of a set of casting teeth

This example (see Figs. 10 and 11), corresponds with

the generation of a finite element mesh over the solid

model of a casting set of teeth. The number of surface

patches used for the geometry definition is around 400.

In this particular case, before the mesh generation it has

been necessary to correct the geometry in order to create

a closed volume (without gaps). The final obtained mesh

has around 40,000 elements.

10.2. Tarazona cathedral

Figs. 12 and 13 represent a structural analysis model

with a non-linear damage material model of the Tara-

zona cathedral. In this case, it has been necessary to

correct many of the surfaces used to describe the fine

Fig. 10. Geometry of a set of casting teeth for construction

machines. This set is the one used in the casting process.
Fig. 11. Fotorrealistic render of the previous geometry.

Fig. 12. Geometry of the Tarazona cathedral (Spain).
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details of the shape in some parts of the geometry. The

final mesh has around 40,000 elements.

10.3. Sheet stamping processes

This is a typical case corresponding with a sheet

stamping analysis (see Fig. 14). The geometry has been

modeled using traditional CAD systems and before

proceeding to the classical mesh generation operations it

has been necessary to use all the correction algorithms

presented in these pages. Some of the problems that

usually appear in this type of geometries are:

• some surfaces are too small and must disappear,

• other surfaces have a bad mathematical description,

• some of them are correctly defined but with some

properties that are not suitable for meshing on them,

• some of the geometrical details are very small and

produce extremely complex geometries.

Fig. 14 shows a typical mesh for this type of cases

with around 400,000 finite elements.

10.4. Aluminium casting

These type of geometrical models have the same

problems as the previous one. However, they are more

complicated to improve due to the inherent complexity

of their surface patches (see Figs. 15 and 16).

11. Conclusions

CAD models are not always best suited as starting

points for mesh generation. CAD models and the

Fig. 14. Analysis of sheet stamping processes.

Fig. 15. Mesh of an aluminium casting model.

Fig. 13. Mesh of the cathedral.
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corresponding exchange files are more suited for design

and CAM operations than for the analysis task. For this

reason, it is normally necessary to repair the CAD

models in order to make them suitable for mesh gener-

ation.

The proposed algorithms have shown to be efficient

in dealing with three different problems:

• The elimination of some small features that are nec-

essary for the design but are not important for the

numerical analysis.

• The correction of some mistakes and accuracies that

are found in many geometrical interchange files.

• The change in the mathematical definition of some

entities in order to make them better suited for mesh

generation.

All these algorithms can be executed automatically as

a filter to the imported or created geometry reducing the

human interaction to a minimum and facilitating a lot

the mesh generation task.

An academic version of the GiD pre/postprocessing

system, where the algorithms presented in this paper

have been implemented, can be freely downloaded at

http://gid.cimne.upc.es.
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