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ABSTRACT 

In recent years, there has been growing interest in understanding the impact of internal, two-phase flow-
induced vibration (FIV) on pipeline fatigue life, particularly in the oil and gas industry. The complex gas-
liquid internal interactions can produce what is known as slug flow. Slug flow can be defined as significant 
periodic changes in gas or liquid volumes in pipeline sections, which introduce pressure fluctuations resulting 
in FIV. To this end, the University of Tulsa conducted a series of experimental tests aimed at replicating 
pipeline behavior under loadings from slug flow. A novel in-house image-processing technique was used to 
extract data on internal two-phase flow interaction and provide benchmarking data for numerical modeling. 
This technique utilized binary square fiducial markers to track pipe response and color segmentation to 
distinguish the gas-liquid interface. The resulting data, which included measurements of volume fraction, was 
compared with traditional conductance probe measurements to identify any discrepancies in the current 
experimental recording systems. The project's goal is to provide a comprehensive data set to support the 
evaluation of current design and analysis methodologies, as well as numerical tools. 

Keywords: Computer Vision; Fluid-Structure Interaction; Machine Learning; Multiphase-Flow; Experimental 
Testing; Slug Loading. 

NOMENCLATURE 

∆𝑦	 Vertical	change in marker position [m]	

∆𝑡	 Change in time [s] 

∆𝑣	 Change	in	marker	velocity	[m/s]	

∆𝐿!→# 	 Length	between	probes	[m]	

𝐿 Slug length [m] 

𝜏∗ Temporal lag during cross-correlation [-] 

𝑓 Frequency [Hz] 

𝑛 Number of occurrences [-] 
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1. INTRODUCTION 

Recently, the offshore oil and gas industry has begun to pay more attention to the impact of long-term fatigue 
caused by internal, flow-induced vibrations (FIV), particularly related to slug flow. As the life of offshore 
assets progresses, the gas-to-liquid ratio flowing in production risers typically increases, leading to more 
frequent slugging events. A slug event can be defined as a significant periodic change in gas or liquid volumes 
in pipeline sections, introducing pressure fluctuations that result in substantial pipe vibrations. The change in 
gas-to-liquid production ratio, combined with complex geometries such as lazy wave risers or scarp-crossing 
pipelines, has raised concerns about slugging-induced fatigue consuming excessive fatigue capacity in 
production systems. In fact, for several lazy wave risers and pipelines with scar-crossing sections in shallow 
water, slugging-induced fatigue has already been identified as a governing design case for the flowline integrity 
(Mesa et al., 2022). However, modeling the fluid-structure interaction (FSI) in these systems is challenging 
due to the complex two-phase fluid behavior and dynamic structural response (Porter et al., 2022). Even state-
of-the-art methodologies for numerically investigating FIV in pipes require benchmarking against the results 
of experimental studies to ensure their validity (Miwa et al., 2015). 

This paper focuses on a computer vision technique that supports extracting experimental data for validating 
numerical modeling. While traditional recording systems provide excellent discrete data sources, they fall short 
of coupling the entire test section interaction and correlating the flow parameters with the structural response. 
In this paper, we study slug characterization using an in-house computer vision methodology that supports 
evaluating the relationship between flow parameters and structural response through experimental testing. 

2. EXPERIMENTAL CAMPAIGN 

The experimental campaign presented in this study was performed at the Tulsa University Fluid Flow Projects 
(TUFFP), a low-pressure flow loop with a 6-inch internal diameter (Porter et al., 2022). The experimental 
facility consists of two separate delivery systems for fluid phases, air (gas phase) and water (liquid phase). The 
flow loop starts with a roughly 37-meter horizontal developing section after the mixing inlet, followed by a 1-
meter corrugated hose. The roughly 10-meter of flexible test section follows and is also horizontal. A 
corrugated, U-shaped hose is attached to the test section outlet to divert the fluid into the return line and help 
absorb system vibrations safely. The corrugated hoses before and after the test section also serve to decouple 
the flexible test section motion from the rest of the system.  

The test section, as shown in Figure 1, is made of flexible, transparent polycarbonate material. The material's 
flexibility magnifies deflections and vibrations during experimentation, making differences in structural 
response more distinguishable. The pipe's transparency enables non-intrusive measurement of the liquid 
distribution inside. The test section boundary conditions are simply-supported to simulate typical offshore 
pipelines (Mesa et al., 2022) and model the more conservative results in terms of vibration and fatigue (Kansao 
et al., 2008). The test section is designed to simulate the behavior of a horizontal pipe. However, the weight of 
the pipe can cause it to sag, which in turn can cause flow stratification and make it difficult to obtain accurate 
flow data. To overcome this issue, a spring support has been installed at the center of the test section. The 
spring support allows for deflection due to soil stiffness while preventing self-weight deflection. This 
simplifies the internal flow interaction, making it easier to obtain accurate data without the need for complex 
scaling adjustments. The spring support design also provides a more realistic coupling of flow characteristics 
and vibrational relationship, resulting in a more accurate simulation of real-world conditions. 

To enhance the accuracy and reliability of the computer vision results and the data collected by the cameras, a 
blue backdrop has been constructed behind the test section. The blue color provides a strong contrast to the 
white and black markers used to track the pipe motion, as well as the yellow/green fluorescent dye added to 
the water. In addition, an awning has been constructed over the entire test section to ensure that changes in 
lighting do not significantly affect the accuracy of the computer vision data. 
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Figure 1 - Experimental 10-meter flexible, polycarbonate, 6-inch ID, pipe test section. 

3. COMPUTER VISION METHOD 

As mentioned, previous experimental campaigns depend on commonly used instrumentation such as 
accelerometers, load cells, or strain gauges to measure the pipe response. The main disadvantage of these 
measurement systems is that they are discrete and can only provide information at specific locations decoupling 
the system response. Furthermore, the correlation between the internal two-phase flow and the system response 
had to be done separately, which can introduce other challenges. In this study, we deploy an image processing 
technique that detects a particular binary square fiducial marker type allowing for continuous system response 
tracking and simultaneous correlation of the internal flow with the overall system response. 

The binary square fiducial marker deployed in this study is the ArUco marker. ArUco markers were deployed 
at the top of the pipe (tracking purposes), and blue backdrop (reference datum). Augmented Reality University 
of Cordoba (ArUco) markers were developed specifically for detection in images and videos (Garrido-Jurado 
et al., 2014). An example of an ArUco marker installed on the test section is shown in Figure 2, which greatly 
resemble the standard QR codes encountered daily.  

The ArUco marker's inner binary codification allows them to display robust detection within images or videos, 
even when angled or partially obscured. This creates a significant improvement in the consistency of pipe 
tracking compared to the image processing techniques used in previous studies. For example, (Mesa et al., 
2022) tracked pipe motion using color segmentation to identify red markers affixed to the pipe. The contrast 
of the red color to the background of the video allows the authors to identify the location of the centroid of the 
square in each video frame. However, not only did the region of interest (ROI) for tracking the markers require 
manual initialization for each video, but there was much inconsistency in the color contrast, and therefore the 
marker identification.   
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Figure 2 - ArUco marker example from the test section. 

In this study, we installed 26 ArUco markers along the top of the test section, spaced approximately every 0.5 
meters. Another set of 26 markers was installed on a blue backdrop directly above the pipe markers. The large 
number of pipe markers allows for linearizing the non-linear pipe curvature during deflection. The backdrop 
markers serve as reference line markers, which have two functions: providing a reference datum for measuring 
deflection and a straight line that is captured in the video data and used to correct camera rotation. We 
developed an algorithm using a combination of in-house programming and open-source packages. The 
OpenCV (Bradski, 2000) Python library was used to manipulate the video frames and detect markers. The 
algorithm searches each frame for marker detection by identifying their unique black-and-white pixel 
sequences. An example of a frame before and after detection is shown in Figure 3. 

The corner locations of the ArUco markers are used to determine the centroid of the marker, which is then 
expressed as an x-y pixel location. For this study, only y-pixel displacement is significant since the pipe 
deflections are mainly in the y-direction and boundary conditions restricted axial displacement. The x and y 
pixel locations of the centroid are stored in a Python dictionary until all frames for a given video have been 
analyzed. The data is then converted to a data frame, where consistency checks are performed on the marker 
detection. Although markers are typically detected in all frames, data may be linearly interpolated to ensure 
continuity in case of temporary obscuration. Knowing the pixel displacement and the size of the markers allows 
for conversion to actual displacement in units of length. The actual pipe deflection is determined by subtracting 
the displacement from the reference datum of the pipe markers during an empty test (no gas or liquid flowing). 

The range of markers positioned to be captured by each individual camera is intentionally selected so that each 
camera along the test section has at least one shared pipe marker with the subsequent camera. The deflection 
of the markers creates a time series signal for each camera, which should be identical for the shared markers. 
However, the delays in the start time of each camera cause the signals for the shared markers to become out of 
sync. To solve this issue, the delays in the start time of each camera are analyzed using a cross-correlation 
algorithm that detects the delay (in terms of the sampling frequency) between each camera by analyzing the 
signals. The time series deflection data is corrected accordingly so that all the extracted videos are time-
synchronous within one frame. The result is an accurate time series of the deflection for each marker on the 
pipe. To visualize how the pipe deflection data is digitized and synchronized, a complete digital reconstruction 
of the test section is shown in Figure 4. Each point in the figure represents a pipe marker, and the colors 
distinguish which camera the data came from. The digital reconstructions can be used to validate that marker 
data was captured and synchronized correctly and could allow for future numerical finite element method 
(FEM) simulation and theoretical solution validations. 
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Figure 3 - Original frame from the video (top) and frame after performing marker detection (bottom). 

 

Figure 4 - Digital reconstruction of pipe motion via marker data (not to scale). 

The in-house algorithm calculates the velocity (m/s) and acceleration (m/s2) from the data using Equations (1) 
and (2), respectively. 

𝑣 = ∆&
∆'

                                                                 (1)                     

𝑎 = ∆(
∆'

                                                                  (2)	  

Where ∆𝑦 is the vertical change in marker position (m), and ∆𝑡 is the change in time (s). 

Computer vision techniques were used to extract fluid parameters as well, which had been done in only a 
handful of previous studies and in a limited capacity. For example, Ahmed (2011) investigated the internal 
flow characteristics by designating each pixel value in every video frame as either zero or one based on its 
gray level, effectively binarizing the image into locations of gas or liquid based on pixel contrast. Mohmmed 
et al. (2016) also employed this thresholding process to binarize images and used foreground and blob 
extraction to identify a region of interest (ROI) for motion tracking. The foreground and blob identified passing 
slugs as the ROI and tracked the ROI location in each subsequent frame, enabling the calculation of slug 
characteristics such as translational velocity and length by utilizing the known framerate.  
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In this study, color segmentation is the primary image processing technique utilized to identify gas and liquid 
locations within a video frame. Unlike the binarization method used by other authors, color segmentation 
identifies areas of an image based on their color or hue. This technique was chosen for its ability to accurately 
identify gas and liquid locations, even in complex flow regimes. Initially, the location of the pipe is detected 
using the ArUco markers, as shown in the previous section. Accurate detection of the markers is crucial to 
ensure that the algorithm can adjust its ROI for liquid detection in each frame, as the test section constantly 
changes location. Once the marker locations are known, a smaller image containing the pipe section between 
each set of markers is cropped from the larger image, such as in Figure 5, which shows a cropped image of the 
pipe section between two markers. 

 

Figure 5 - Example of a cropped image from the pipe section between markers. 

For each pixel in Figure 5, the computer contains data on hue, saturation, and value (HSV). This metadata in 
the image tells the computer what color to display at a given pixel in the image array. The cropped image can 
be "color segmented" by applying a "mask" to the array of pixel color values. Again, a combination of in-
house programming and OpenCV (Bradski, 2000) is used to read, manipulate, and alter the frames from the 
video. In color segmentation, a mask is a filter that is applied to an image to extract specific colors or color 
ranges. By applying a mask to filter the yellow/green color, an array of ones and zeros denoting liquid and gas 
is created. This process is called binarizing the image, and the result is shown in Figure 6. The blue color is 
used for a background because it is on the opposite end of the hue spectrum from the yellow/green color of the 
liquid, which provides a more accurate binarization of the image by clearly separating the liquid and gas 
regions. 

 

Figure 6 - The cropped image in Figure 5 after being binarized. 

The slug characteristics can be extracted using the liquid holdup signal from two points (“virtual probes”) 
along the test section. We created 17 virtual liquid-level probes, each roughly 0.3 meters apart and centered 
between each set of ArUco markers and used a threshold value of 0.9 to distinguish between slugs and liquid 
film. We filtered the binarized signal to exclude small waves or bubbles within a continuous slug/film unit to 
accurately capture slug lengths and frequencies. Figure 7 shows an example of signal processing using the 
video feed, where the red lines represent the liquid-gas interface detected by the algorithm, and the black 
rectangles show the locations of the virtual liquid-level probes. The algorithm also displayed the word "SLUG" 
on the output video along with the interface line and probe rectangles for manual verification. 
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Figure 7 - Film (top) and slug (bottom) detection from video data. 

From these signals, slug translational velocity, length, frequency, and average film holdup can be calculated. 
Slug translational velocity (m/s) is calculated using a cross-correlation algorithm to determine the lag between 
the signals of two adjacent probes with a know distance. Slug translational velocity is calculated using Equation 
(3). 

𝑣' =
∆𝐿!→#
𝜏∗

	 (3) 

Where ∆𝐿!→# is the distance between two adjacent probes (m), and 𝜏∗ is the temporal lag calculated via cross-
correlation. The slug length (m) can then be calculated by knowing the time interval for the slug to pass the 
probe, as shown in Equation (4). 

𝐿) = 𝑣'∆')	 (4) 

Where ∆') is the time interval the slug is at the probe (s). Finally, the slug frequency (Hz) can be calculated in 
Equation (5) by counting the number of slugs identified in the signal processing. 

𝑓) =
𝑛
𝑡
	 (5) 

Where 𝑛 is the total number of slugs that pass the probe during the test and 𝑡 is the total test duration (s). It is 
important to note that the methodology applied in this study does have the capability to distinguish between 
slugs and pseudo-slugs. 

4. SYSTEM RESPONSE EXTRACTION VIA COMPUTER VISION   

In this section, we use computer vision methodology to extract data on the pipe response and internal slug 
characteristics. Table 1 shows the experimental test matrix discussed in this paper. To facilitate data analysis 
and assess the benefits and limitations of the computer vision method, we maintained a constant liquid 
superficial velocity of 0.3 m/s while varying the superficial gas velocity from 2.0-15.0 m/s. 
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Test Case VSG (m/s) VSL (m/s) 

Case 1 2.0 0.3 

Case 2 4.0 0.3 

Case 3 15.0 0.3 

Table 1 - Experimental test matrix conditions. 

To ensure the accuracy of our in-house computer vision methodology, we conducted benchmarking of liquid 
holdup (volume fraction) using conductance probes, as shown in Figure 8. Although these two signals are not 
perfectly synchronized and were manually aligned based on the test case start time and slug passages for 
comparison purposes, both methodologies demonstrate good agreement, with discrepancies observed in the 
maximum predicted liquid holdup magnitude. The computer vision method's inability to account for gas 
entrainment compared to the conductance probe results in an overestimation of the liquid holdup magnitude, 
as seen in Figure 8. As more gas is added, the difference in liquid holdup from the two sources increases, as 
cameras cannot capture the increase in slug aeration. 

Despite tending to over-predict the liquid holdup magnitude, the computer vision methodology is a more 
scalable and robust method than the conductance probes. The signal processing utilized to identify slug or film 
regions is based on a threshold value. The computer vision methodology has the distinct advantage of utilizing 
a consistent value for thresholding.  Additionally, the verification of accurate processing can easily be validated 
by observing the video data.  In contrast, the threshold value for signal processing using conductance probes 
must be constantly adapted to account for the entrained gas in the system.  While there are methods that attempt 
to address this issue, they are challenging to implement and contain a great degree of uncertainty. These 
challenges in processing the signal from conductance probes are further aggravated by the uncertainty in 
normalizing the signal (using empty and full signal values) and due to the high degree of noise in the signal.  
The difference in signal noise between the methodologies can be seen clearly in Figure 8. 

Figure 9 shows the time history of pipe midpoint deflection, which was extracted from camera recordings. As 
seen in Figure 9, the magnitude of deflection tends to decrease as the gas superficial velocity increases. The 
displacement time history shows that at low gas velocities, the slugs and bubbles behave more like a regular 
slug train. In contrast, a more complex internal interaction occurs at high gas velocities, resulting in a more 
erratic slug train. 

As previously mentioned, one of the major advantages of the computer vision methodology is its ability to 
extract not only internal flow data but also overall pipe response in a synchronized manner. Figures 10, 11, 
and 12 demonstrate this capability by depicting instances where the method detected a slug and the 
corresponding pipe frequency analysis (FFT) for that flow condition. The figures show that the dominant 
frequency tends to increase as the gas superficial velocity increases. Moreover, the dominant system response 
frequency corresponds to the slug frequency, and as the gas velocity increases, more frequencies are excited. 
This excitation of multiple frequencies is due to the generation of several slugs with varying characteristics 
(e.g., length, velocity) at higher gas velocities. This effect is observable in Figures 10, 11, and 12, where lower 
gas velocities have one dominant frequency and less sparse excitation, whereas higher gas velocities have 
several dominant frequencies and a more distributed excitation range. 
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Figure 8 - Computer vision extracted data (blue line) and conductance probe (orange line) liquid holdup time series comparison. 

 

Figure 9 - Computer vision extracted deflection for each test case. 
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Case 1 

Case 2 

Case 2 

Case 3 

Case 1 
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(a) 

 

(b) 

Figure 10 Example slug identification instance (a) and FFT response frequency analysis (b) for Case 1. 

 

 

 

(a) 

 

(b) 

Figure 11 Example slug identification instance (a) and FFT response frequency analysis (b) for Case 2. 

 

 

 

 

(a) 

 

(b) 

Figure 12 Example slug identification instance (a) and FFT response frequency analysis (b) for Case 3. 

Table 2 presents a summary of the slug characteristics and corresponding average maximum pipe deflection 
caused by the slugs for all cases investigated in this study. It is observed that as the gas velocity increases, the 
length of the slug and maximum displacement tend to decrease. In terms of total slug count, an increase in gas 
velocity leads to a higher number of observed slugs. Furthermore, as previously discussed, the slug frequency 
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increases with increasing gas velocity. The insights provided in Table 2 are valuable for understanding the 
overall internal and system response, which is typically utilized in the industry to model slug flow and the 
loading it creates. 

Test Case Observed 
Slug Count  

Average Slug 
Length [m] 

Average Slug 
Frequency [Hz] 

Pipe Response 
Frequency [Hz] 

Average Max 
Deflection [m]  

Case 1 7 2.19 0.058 0.060 0.14 

Case 2 6 1.40 0.050 0.052 0.09 

Case 3 27 1.25 0.225 0.180 0.04 

Table 2 - Slug characteristics and system response for investigated conditions. 

5. CONCLUSIONS 

In summary, this paper presents a novel approach that uses computer vision to extract the overall pipe response 
and complex internal flow (slug) from experimental data. The paper focuses on identifying slug events coupled 
with the global system structural response and provides numerous benefits for validating numerical and 
theoretical models. The results of our study demonstrate the effectiveness and usefulness of the approach, 
highlighting its robustness and scalability to a wide range of complex internal flow patterns. 

Furthermore, a detailed analysis of the accuracy of our computer vision methodology revealed good agreement 
with liquid holdup measurements obtained from conductance probes. Although there were some discrepancies 
in maximum predicted liquid holdup values, our method demonstrated robustness and scalability compared to 
the conductance probe signal processing and its limitation to monitor the full system instead of discrete 
locations. This is a crucial factor in ensuring accurate and reliable results for model validations. 

Lastly, we investigated the effects of superficial gas velocity on the system response and observed several key 
findings. Increasing gas velocity resulted in a decrease in the maximum pipe deflection, indicating a stabilizing 
effect on the system. We found that increasing the gas velocity resulted in a corresponding increase in the slug 
frequency, which closely matched the dominant frequency of the pipe response. This suggests that slug 
frequency is a key factor in governing the system response. Finally, we observed that increasing the gas 
velocity led to a higher total count of observed slugs, indicating a greater frequency of slug events. These 
results have important implications for understanding the fluid-structure interaction behavior under varying 
flow conditions and provide valuable insights for numerical modeling validation. 
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