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We introduce in this paper a variational subgrid scale model for the solution of the incompressible Navier–Stokes

equations. With respect to classical multiscale-based stabilisation techniques, we retain the subgrid scale effects in the

convective term and integrate the subgrid scale equation in time. The method is applied to the Navier–Stokes equations

in an accelerating frame of reference and with Dirichlet (essential), Neumann (natural) and mixed boundary conditions.

The concrete objective of the paper is to test a numerical algorithm for solving the non-linear subgrid scale equation and

the introduction of the subgrid scale into the grid scale equation. The performance of the technique is demonstrated

through the solution of two numerical examples: one to test the tracking of the subgrid scale in the convection term and

the other to investigate the effects of considering the subgrid scale transient.
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1. Introduction

Variational subgrid scale techniques are widely used

today for the solution of the incompressible Navier–

Stokes equations. They are also being considered as a

possible way of modelling turbulence phenomena at the

numerical level in a similar way as large eddy simulation

techniques do (Calo 2004, Koobus and Farhat 2004,

Codina et al. 2007). A step in this direction is to consider

the subgrid scale time dependent and to consider its

effect on the non-linear convective term. Without

considering its potential use as a way of modelling

turbulence, this idea leads to important improvements on

the discrete formulation of the problem. From a

theoretical point of view, the use of transient subgrid

scales explains how the stabilisation parameter should

depend on the time step size and makes space and time

discretisations commutative and the tracking of the

subscales along the non-linear process provides global

momentum conservation (Codina 2002, Codina et al.

2007). The paper does not intend to devise a new subgrid

scale model, but rather to develop a numerical algorithm

and to test its convergence and accuracy. The present

subgrid scale model is based on Codina and Blasco

(2002) which was developed for the advection–

diffusion–reaction equation and applied here to the

solution of the stationary and transient Navier–Stokes

equations. It is shown that the method does not only

provide the necessary stabilisation of the formulation

but also enables to obtain more accurate solutions than

the classical GLS approach for an equivalent mesh.

The authors first focus on reviewing how this method fits

into the global picture of stabilisation techniques, which

is done in the next section. After presenting the

governing equations of the problem in the third section,

the Galerkin formulation as well as the time discretisa-

tion are presented in the fourth section. In the fifth

section, the multiscale concept is applied to our problem.

The system of equations for the resolved and subgrid

scales are derived. Then, two possible ways of

approximating the subgrid scale are proposed; the first

one coincides with the usual GLS method for linear

elements, while the second one tracks the effects of the

subgrid scale in all terms of the equations. We also focus

on the numerical implementation of the method which is

done in the sixth section. In the last section, we solve two

numerical examples showing the main characteristics of

the method.

2. Stabilisation techniques

2.1 Classical formulations

The classical stabilised finite element formulations can

be understood in the context of the advection–diffusion–

reaction (ADR) equation:

LðuÞ :¼ 21Duþ a·7uþ su ¼ f in V; ð1Þ

where 1 . 0 and s $ 0 are constant, a is divergence free,

and V is a two or three dimensional domain. This

equation should be provided with boundary conditions.
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Let {K} be a regular finite element partition Ph of the

domain V, with index K ranging from 1 to the number of

elements. The diameter of {K} will be denoted by h. And

let us construct the functional linear spaces from the

previous partition so that the resulting finite element

approximation is said to be conforming. Given two

functions u and v we define ðu; vÞ as the L2-inner product.

Also, jj j_j1, jj j_j0 and jj j_j1 are the L1, L2 and H 1 norms

in V, respectively.

Assuming homogeneous Dirichlet and Neumann

boundary conditions, the discrete Galerkin formulation

of the problem Quarteroni and Valli (1994) consists of

finding uh in the appropriate space Uh such that

aðuh; vhÞ ¼ ðf ; vhÞ vh [ Vh; ð2Þ

where Vh is an appropriate test function space and the

bilinear form a is defined as

aðw; vÞ :¼ 1ð7w;7vÞ þ ða·7w; vÞ þ ðsw; vÞ: ð3Þ

It is well known that the Galerkin method lacks

stability (Johnson 1987, Quarteroni and Valli 1994, Roos

et al. 2007). The effects of the stabilisation techniques

consist of the addition of a stabilisation term Sðuh; vhÞ to

the original equation such that the stabilised system

reads:

aðuh; vhÞ þ Sðuh; vhÞ ¼ ðf ; vhÞ: ð4Þ

We define the residual of the equation as

RðuhÞ :¼ f 2 LðuhÞ: ð5Þ

Table 1 shows the expression of the stabilisation term

Sðuh; vhÞ for the main stabilisation methods used in the

literature, where t is a stabilisation parameter that

can depend on the element size h and the equation

coefficients, and whereð
V0

ð·ÞdV :¼
X
K

ð
K

ð·ÞdV

is the integral over all the elements.

2.2 Multiscale concept

Conceptually, the subgrid scale (SGS) method is based

on enlarging some finite element space by adding

information about the part of the solution of a variational

problem that cannot be resolved by the computational

grid. The first motivation for considering such an

enrichment is to take into account phenomena that take

place at scales smaller than that of the discretisation but,

nevertheless, relevant to the overall response of the

physical system under study. This is the case of problems

like turbulence (Calo 2004) in fluid dynamics, and strain

localisation (Garikipati and Hughes 1998) or the

homogenisation of composite materials (How and Wu

1997) in solid mechanics. A second motivation has to do

with spurious numerical effects due to the poor

performance of the discrete model when dealing with

the smallest scales that the computational grid is not able

to capture. Perhaps the most egregious example is the

sub-diffusivity introduced by the discretisation of the

convective-dominated diffusion equation that has been

analysed in the previous section. As a consequence, some

stabilisation techniques must be used in order to obtain

meaningful solutions. As mentioned above, it can be

shown that, in essence, many of these techniques can be

explained within the framework of the subgrid scale

method.

The way to recover the stabilised formulation using

the subgrid scale approach is the following. First we

decompose additively the exact solution u into the

resolved scale uh, the one associated with the

computational grid, and a subgrid scale term ~u so that

the exact solution u is their sum:

u ¼ uh þ ~u: ð6Þ

As the SGS method explicitly splits the exact

solution into two components, it is usually referred to as a

two-level multiscale method. In the literature, these two

scales have been referred to using different names; let us

mention the following:

uh : grid scale; coarse scale; resolved scale;

~u : subgrid scale; fine scale; unresolved scale:
ð7Þ

A very interesting feature of the SGS method is that,

on the one hand, a high level of generality and

abstraction of the formulation can be attained. On the

Table 1. Stabilisation term Sðuh; vhÞ of common stabilisation
methods.

Method
Stabilisation term
Sðuh; vhÞ

Non-consistent
Artificial viscosity (AV) 2

Ð
V’
7vh·t7uhdV

Streamline upwind (SU) 2
Ð
V’
ða·7vhÞt ða·7uhÞdV

Consistent
SU Petrov-Galerkin (SUPG) 2

Ð
V’
ða·7vhÞtRðuhÞdV

Galerkin Least-Square (GLS) 2
Ð
V’
LðvhÞtRðuhÞdV

Douglas–Wang (DW) 2
Ð
V’
L* ðvhÞtRðuhÞdV

Variational Multiscale
Algebraic Models (ASGS) 2

Ð
V’
L* ðvhÞu~dV with

u~ ¼ tRðuhÞ
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other hand, its main specific instances, for example that

based on residual free bubbles, can also be quite

convenient in practice from a computational point of

view. The fact that the subscale degrees of freedom can

be condensed at the element level is appealing not only

in terms of computational cost but also in terms of

respecting the architecture of standard finite element

codes.

Let us consider the abstract linear problem: find u [
U such that

LðuÞ ¼ f ; ð8Þ

where L is some linear differential operator and U is

some suitable function space, which can be decomposed

into a resolved and unresolved component such that

U ¼ Uh% ~U. Consider the additive decomposition of the

test function space V ¼ Vh% ~V, where Vh and ~V are the

test function spaces of the resolved and unresolved

scales, respectively. The weak form of the abstract

problem can be written as a system of equations: find

ðuh; ~uÞ [ Uh £ ~U such that

ðLðuh þ ~uÞ; vh þ ~vÞ ¼ ðf ; vh þ ~vÞ ;ðvh; ~vÞ [ Vh £ ~V:

ð9Þ

By taking successively vh ¼ 0 and ~v ¼ 0 we obtain

the following system:

ðLðuhÞ; vhÞ þ ðLð~uÞ; vhÞ ¼ ðf ; vhÞ ;vh [ Vh;

ðLðuhÞ; ~vÞ þ ðLð~uÞ; ~vÞ ¼ ðf ; ~vÞ ;~v [ ~V:
ð10Þ

The first equation is formally equivalent to

ðLðuhÞ; vhÞ þ ð~u;L*ðvhÞÞ ¼ ðf ; vhÞ ;vh [ Vh; ð11Þ

where L* is the adjoint of L.

Operating formally again and assuming L to be

invertible, we can solve the second equation for ~u:

~u ¼ L21RðuhÞ: ð12Þ

We can now substitute this expression into the

previous one and obtain the equation for the resolved

scale:

ðLðuhÞ; vhÞ þ ðL21RðuhÞ;L*ðvhÞÞ ¼ ðf ; vhÞ ;vh [ Vh:

ð13Þ

Figure 1 illustrates how the subgrid scale effect is

taken into account at the resolved scale level (that is at

the nodes) in the latter equation.

Equation (12) is the solution for the subgrid scale.

Obviously, L21 is unknown. If it were not, then we

would know the exact solution. Thus, an approximation

to the inverse is to be found. The classical (historical)

way to approximate it is to substitute the differential

operator by an algebraic one:

L21 < tK ; ð14Þ

where tK is evaluated in the element K. Such methods are

referred to as Algebraic Subgrid Scale method (ASGS).

For example, Codina and Blasco (2002) justified an

expression for tK using a Fourier analysis and the

associated ASGS stabilisation method models ~u like

~u < c1

1

h2
þ c2

jaj1
h

þ s

� �21

RðuhÞ; ð15Þ

with c1 ¼ 4 and c2 ¼ 2. The expression used in this work

is based on the same arguments but applied to the

Navier–Stokes equations (Codina 2002).

2.3 Beyond the classical approach

The SGS method as presented so far does not consider

certain issues that are important for the realistic

modelling of physical systems. We are especially, but

not exclusively, interested in those that are relevant when

dealing with the Navier–Stokes equations.

The SGS concept can be naturally extended to

consider both time dependency and non-linearities (this

was not the case of the GLS method, although it is

recovered using the SGS concept for the ADR equation

using linear interpolation). In this case, it is crucial

to consider the subgrid scales for the evolution and

consistent linearisation of the unknown. When used

for stabilisation, this has an effect in the quality of the

numerical solution. For the sake of clarity, let us consider

the transient and non-linear cases separately. Another

important issue is the choice of the space where the

Figure 1. Schematic concept of the subgrid scale stabilisation
(SGS).
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subgrid scales are sought. The transient case, non-linear

case, and the choice of the subgrid space are now briefly

discussed. The method presented in this work for the

Navier–Stokes equations retains the transient and non-

linear tracking of the subgrid scale, but does not seek it in

the orthogonal space.

2.3.1 Transient case

For the transient case, our starting problems consists of

solving in a given time interval:

ð›tu; vÞ þ ðLðuÞ; vÞ ¼ ð f ; vÞ: ð16Þ

The corresponding system of equations for the

resolved and subgrid scales is

ð›tuh þ ›t ~u; vhÞ þ ðLðuhÞ; vhÞ þ ð~u;L*ðvhÞÞ ¼ ðf ; vhÞ;

ð›tuh þ ›t ~u; ~vÞ þ ðLðuhÞ; ~vÞ þ ðLð~uÞ; ~vÞ ¼ ðf ; ~vÞ:

ð17Þ

The classical ASGS method does not retain the time

derivative of the subgrid scale in none of the terms of

latter equations, and yields 17. One possibility to take it

into account is to solve the subgrid scale equation by

approximating the inverse of L like in the stationary

case:

›t ~uþ t21
K ~u ¼ f 2 ›tuh 2 LðuhÞ; ð18Þ

and maintain the time derivatives of ~u in the systems of

equations.

2.3.2 Non-linear case

Consider a non-linear differential equation of the form

ðLðu; uÞ; vÞ ¼ ðf ; vÞ: ð19Þ

To solve it numerically, it is customary to consider an

iteration counter i and solve the following linearised

equation for ui:

ðLðui21; uiÞ; vÞ ¼ ðf ; vÞ: ð20Þ

The system of equations for the resolved and subgrid

scales reads:

ðLðui21; uihÞ; vhÞ þ ðLðui21; ~uiÞ; vhÞ ¼ ðf ; vhÞ;

ðLðui21; uihÞ; ~vÞ þ ðLðui21; ~uiÞ; ~vÞ ¼ ðf ; ~vÞ:
ð21Þ

The classical approach simply substitutes ui21 by

ui21
h . The idea is now to consider the whole unknown,

that is ui21
h þ ~ui21 in both equations.

In the context of the Navier–Stokes equations, this

means that the classical approach approximates the term

ui21·7ui by ui21
h ·7ðuih þ ~uiÞ. The correct approach

consists of considering rather the following convection

term: ðui21
h þ ~ui21Þ·7ðuih þ ~uiÞ. This may be a very

important issue when trying to simulate turbulent flows

using the multiscale approach (Codina et al. 2007), as the

convective term is responsible for the existence of

turbulent flow.

2.3.3 Space of the subgrid scale

The accurate modelling of the subscales is another

crucial point for the overall performance of the method.

The idea is to optimise the information furnished by

the subgrid scales. In order to minimise redundancy,

a natural requirement is to model the subscales as

belonging to some function space that is orthogonal, in

some sense, to the finite element part of the solution uh.

This idea has been exploited by Codina in (Codina and

Blasco 2002, Codina 2002). First, the subgrid scale is

written as

~u ¼ tKRðuhÞ þ tKuh;ort: ð22Þ

Then it is required to be orthogonal to all vh [ Vh,

that is

ð~u; vhÞ ¼ 0 ) ðtKuh;ort; vhÞ ¼ 2ðtKRðuhÞ; vhÞ: ð23Þ

The concept of the Orthogonal Subgrid Scale (OSS)

stabilisation is illustrated in Figure 2.

3. Physical problem

We consider the incompressible Oseen and Navier–

Stokes equations in an accelerated frame of reference in

Figure 2. Schematic concept of the orthogonal subgrid scale
(OSS) stabilisation.
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a domain V of Rd with d ¼ 2 or 3 (Batchelor 1970). Let

m be the viscosity of the fluid which is not necessarily

constant, and r its density, assumed to be constant.

Let u be the velocity and p the mechanical pressure.

The velocity strain rate 1ðuÞ and the stress tensor s are

1ðuÞ ¼
1

2
ð7uþ 7utÞ; s ¼ 2pI þ 2m1ðuÞ;

where I is the d-dimensional identity matrix, that is

Iij ¼ dij; i; j ¼ 1; . . . ; d. The traction s·n is the force

acting on a unit fluid surface element with unit outwards

normal n.

3.1 Basic flow equations

The problem consists of finding u and p such that they

satisfy the following equations:

r
›u

›t
þ rðuc·7Þu2 7·½2m1ðuÞ� þ 7p ¼ rf in V;

7·u ¼ 0 in V;

ð24Þ

where f is the force term. The convection velocity uc is a

given divergence-free vector field when the Oseen

equations are considered and uc ¼ u when the Navier–

Stokes equations are considered.

Let U :¼ ½u; p�t and define the differential operator

LðUÞ and force term F as

LðUÞ :¼
rðuc·7Þu2 7·½2m1ðuÞ� þ 7p

7·u

" #
; ð25Þ

F :¼
rf

0

" #
: ð26Þ

Introduce also the matrix M such that

M ¼ diagðrI; 0Þ: ð27Þ

The compact form of the governing equations reads:

M›tUþ LðUÞ ¼ F: ð28Þ

3.2 Boundary conditions

In order to close the Navier–Stokes system of equations,

initial and boundary conditions must be provided. Let us

denote the boundary of V as ›V which we partition as

follows:

›V ¼ GD < GN < GM; ð29Þ

where D, N and M stand for Dirichlet, Neumann and

mixed, respectively. The boundary conditions are:

u ¼ uD on GD;

s·n ¼ tN on GN;

u·n ¼ 0;

s·n2 ðn·s·nÞn ¼ tM on GM;

ð30Þ

where the vector n is the outward unit normal to V. See

Figure 3. Boundary values of uD, tN, uM, tM are assumed

to be known. Some simple examples of boundary

conditions are:

. Equation (301): velocity known at infinity uD ¼

u1 or uD ¼ 0 on walls;
. Equation (302): for uniform flows (or approxi-

mately for high Reynolds number flows),

s·n < 2pn: ð31Þ

Then, if we know that the pressure of the fluid is p1
on GN, we have the following equivalence:

tN ¼ 2p1n , p ¼ p1: ð32Þ

. Equation (303): the mixed boundary condition is

usually used in turbulent flows with tM given by

the so-called wall function (Bradshaw and Huang

1995, Codina and Soto 1999).

4. Galerkin formulation

4.1 Weak form

Let v and q be the velocity and pressure test functions,

respectively. v vanishes on GD and v·n ¼ 0 on GM.

Figure 3. Boundary with Dirichlet, Neumann and mixed
conditions.
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We introduce the following functional spaces:

Vu ¼ {v [ H 1ðVÞdjvjGD
¼ 0; ðv·nÞjGM

¼ 0}; ð33Þ

Vp ¼ L2ðVÞ; ð34Þ

Uu ¼ {v [ H 1ðVÞdjvjGD
¼ ug; ðv·nÞjGM

¼ 0; t [ ð0; TÞ};

ð35Þ

Up ¼ {p [ L2ðVÞj

ð
V

pdV ¼ 0 if GN ¼ Y; t [ ð0; TÞ}:

ð36Þ

The last space is the functional space for the

unknown pressure. If the normal component of the

traction is not prescribed anywhere on the boundary, then

the pressure is only defined up to any additive constant.

This is why we explicitly require its average over V to be

zero.

In order to obtain the weak form, the governing

equations are multiplied by the test functions v and q, and

the viscous and pressure terms of the momentum

equation is integrated by parts. As a result, the natural

boundary condition is the prescription of the traction on

GN. Let us define V :¼ ½v; q�t as well as U ¼ Uu £ Up

and V ¼ Vu £ Vp. We introduce the bilinear form

BðU;VÞ such that

BðU;VÞ :¼ðrðuc·7Þu; vÞ þ ð2m1ðuÞ; 1ðvÞÞ

2 ðp;7·vÞ þ ðq;7·uÞ; ð37Þ

and the linear form LðVÞ such that

LðVÞ :¼ ðrf ; vÞ þ ðtN; vÞGN
þ ðtM; vÞGM

: ð38Þ

The weak form can be written in a compact form as

follows: find U [ U such that

ðM›tU;VÞ þ BðU;VÞ ¼ LðVÞ ;V [ V : ð39Þ

The weak form of the momentum equation can be

recovered by simply taking q ¼ 0 while that of the

continuity equation can be found by taking v ¼ 0.

4.2 Space discretisation

The discrete weak form consists of finding Uh [ Uh such

that

ðM›tUh;VhÞ þ BðUh;VhÞ ¼ LðVhÞ ;Vh [ Vh;

ð40Þ

together with the initial and boundary conditions.

4.3 Time discretisation

The time discretisation is carried out using the

generalised trapezoidal rule, i.e. a finite difference

scheme. Let us introduce a uniform partition of the time

interval ½0; T� and define

unþu :¼ uunþ1 þ ð1 2 uÞun; ð41Þ

dt :¼ t n 2 t n21; ð42Þ

dtu
nþu :¼

unþu 2 un

udt
; ð43Þ

where dt is the time step size and superscript n denotes

the approximated solution at time ndt. The parameter

u [ ½0; 1� determines the order of the scheme. A first

order scheme is obtained by choosing u ¼ 1 (Euler) and a

second order method is obtained with u ¼ 0:5 (Crank–

Nicolson). According to this integration rule, we have to

solve the following equation for the unknown Unþu:

ðrdtu
nþu;vhÞþBnþuðUnþu

h ;VhÞ ¼LnþuðVhÞ ;Vh [ Vh;

ð44Þ

from which we compute the velocity at time step nþ 1 as

unþ1
h ¼ unh þ

unþu
h 2 unh

u
: ð45Þ

For the sake of clarity, we drop the superscript nþ u

and consider always the unknowns at this time.

The temporal term is therefore approximated by:

M›tUh <
1

udt
MðUh 2 Un

hÞ: ð46Þ

5. Stabilised formulation

5.1 Resolved/subgrid scale decomposition

Let us decompose the exact solution U into a resolved

scale Uh and a subgrid scale ~U such that

U ¼ Uh þ ~U; ð47Þ

where ~U belongs to a space ~U that completes Uh in U.

That is U ¼ Uh% ~U. The same sum is performed for the

test function space V ¼ Vh% ~V.

By substituting Equation (47) into Equation (39), we

obtain

ðM›tUh;VhÞ þ BðUh;VhÞ þ ðM›t ~U;VhÞ þ Bð ~U;VhÞ

¼ LðVhÞ ;Vh [ Vh;

ðM›tUh; ~VÞ þ BðUh; ~VÞ þ ðM›t ~U; ~VÞ þ Bð ~U; ~VÞ

¼ Lð ~VÞ ; ~V [ ~V: ð48Þ

Note that the traction s·n present in the right-hand

side includes the resolved as well as the subgrid scale

G. Houzeaux and J. Principe140
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components of the velocity and pressure:

s ¼ 2ðph þ ~pÞI þ 2m1ðuh þ ~uÞ: ð49Þ

The idea now is the following:

(1) Take out the unresolved scale ~U from the

differential operator involved in the bilinear form

B so that

formally; Bð ~U;VhÞ ¼ ð ~U;DðVhÞÞ;

where D is a differential operator: this will be done

next;

(2) Solve the unresolved scale equation for ~U: done in

Section 5.2;

(3) Substitute the result into the modified resolved scale

equation: done in Section 5.3.

The first task is carried out by substituting the integral

over V by the sum of elemental integrals, and by further

integrating by parts over each element K. This explains

why the differential operator D is simply the adjoint of L.

In addition to Equation (6), let us defineð
›V0

ð·ÞdG :¼
X
K

ð
›K

ð·Þ dG; ð50Þ

ð
›V00

ð·ÞdG :¼
X
K

ð
›K

ð·ÞdG2

ð
GN<GM

ð·Þ dG: ð51Þ

We can obtain the following system of equations

equivalent to the continuous problem (39):

ðM›tUh;VhÞ þ BðUh;VhÞ þ ðM›t ~U;VhÞ

þ

ð
V0

~U·L*ðVhÞdV

þ

ð
›V0

~u·½ðuc·nÞvh þ 2m1ðvhÞ·n

þ qhn�dG ¼ LðVhÞ ð52Þð
›V00

ðs·nÞ·~vdGþ

ð
V0

~V·½M›t ~Uþ Lð ~UÞ�dV

¼

ð
V0

~V·½F2M›tUh 2 LðUhÞ�dV ð53Þ

where the adjoint operator L*ðVhÞ is given by

L*ðVhÞ :¼
2rðuc·7Þvh 2 7·½2m1ðvhÞ�2 7qh

27·vh

" #
: ð54Þ

The boundary integral in Equation (53) excludes the

outer boundary as the integration by parts over all the

element boundary generates the integral of the total

traction which cancels with the one already present on

the right-hand side.

5.2 Solution of the subgrid scale equation

The boundary integral in Equation (53) vanishes as the

exact traction is continuous across element boundaries

and we obtain:

M›t ~Uþ Lð ~UÞ ¼ RðUhÞ :¼ F 2M›tUh 2 LðUhÞ

;K [ Ph;
ð55Þ

together with boundary conditions for ~U on ›K, which of

course are unknown.

We are now going to solve this equation for U.

We first assume the differential operator L can be

approximated in such a way that

t21
K < L; ð56Þ

where tK is a square matrix such that

tK ¼
t1I 0

0 t2

" #
ð57Þ

depending on the element K and on the coefficient of

operator L. That is, the differential operator is substituted

by an algebraic operator. This explains why the

approximations that we present in the following are

referred to as algebraic subgrid scale models. Note that

this approximation has been justified in Codina and

Blasco (2002) using Fourier analysis. Therefore, the

subgrid scale equation becomes:

M›t ~Uþ t21
K

~U ¼ RðUhÞ: ð58Þ

Applying the trapezoidal rule to discretise the time

derivative of the subgrid scale, last equation yields:

1

udt
Mð ~U2 ~UnÞ þ t21

K
~U ¼ RðUhÞ; ð59Þ

which leads to the subgrid scale expression:

~U ¼
1

udt
Mþ t21

K

� �21

RðUhÞ þ
1

udt
M ~Un

� �
; ð60Þ

where, according to Codina (2001), the coefficients of

matrix tK are given by

t1 ¼ c1

m

rh2
þ c2r

jucj

h

� �21

; ð61Þ

t2 ¼ c1mþ c2rjucjh; ð62Þ

with c1 ¼ 4, c2 ¼ 2.
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We introduce the following definitions:

t 0
K :¼

1

udt
Mþ t21

K

� �21

; ð63Þ

d :¼
1

udt
M ~Unð¼ dð ~UnÞÞ: ð64Þ

Note that the matrix t 0
K is also diagonal and is

expressed as:

t 0
K ¼

t01I 0

0 t02

" #
; ð65Þ

where we can easily check that t02 ¼ t2. According to these

definitions, the subgrid scale can be rewritten in a compact

form as:

~U ¼ t 0
KðRðUhÞ þ dÞ: ð66Þ

We observe that d can be written

d ¼
d ~u

0

" #
; with d ~u ¼

r

udt
~un; ð67Þ

where d ~u represents the effects of the velocity subgrid

scale of the previous time step. We also observe that if

the time derivative is neglected in the subgrid scale

equation we find that t0K ¼ tK and d ¼ 0 and we obtain

the subgrid scale without convection tracking.

We distinguish two possibilities:

Subgrid scale without time tracking:

~U ¼ tKRðUhÞ: ð68Þ

Subgrid scale with time tracking:

~U¼ t 0
K RðUhÞ þ dð Þ: ð69Þ

5.3 Stabilised resolved scale equation

The boundary integral in Equation (52) is neglected

(Codina 2001). Let us decompose the differential

operator L into two components L1 and L2 such that

L ¼ L1 þ L2 with

L1ðUÞ :¼
rðuc·7Þu

7·u

" #
;

L2ðUÞ :¼
27·½2m1ðuÞ� þ 7p

0

" #
;

ð70Þ

where L2 represents the part of the operator that is

integrated by parts. For the sake of clarity we substitute

the sum of the integrals over the elements K by the

integral over the whole domain V. Therefore, we have

that

M›tUh þ L1ðUhÞ;Vh

� �
þ 2m1ðuhÞ; 1ðvhÞ

� �
2 ðph;7·vhÞ

ð71Þ

þ M›t ~U;Vh

� �
þ ~U;L*ðVhÞ

� �
¼ LðVhÞ: ð72Þ

Substituting the expressions (59) and (66) in the time

derivative term of the subgrid scale in this equation we

obtain the compact form of the resolved scale equation:

ðM›tUh þ L1ðUhÞ;VhÞ þ ð2m1ðuhÞ; 1ðvhÞÞ

2 ðph;7·vhÞ þ RðUhÞ2 t 021

K t 0
KðRðUhÞ þ dÞ;Vh

� �
þ ðt 0

KðRðUhÞ þ dÞ;L* ðVhÞÞ ¼ LðVhÞ: ð73Þ

Let us introduce the following definitions:

rmðuh; phÞ ¼ rf 2 r=ðudtÞðuh 2 unhÞ2 rðuc·7Þuh

þ 7·½2m1ðuhÞ�2 7ph; ð74Þ

rcðuhÞ ¼ 27·uh; ð75Þ

pmðvhÞ ¼ t 021
1 t 0

1

� �
vh2 t 0

1ð2rðuc·7Þvh27·½2m1ðvhÞ�Þ;

ð76Þ

pcðqhÞ ¼ t 0
17qh; ð77Þ

pmðvhÞ ¼ t 0
27·vh; ð78Þ

pcðqhÞ ¼ qh; ð79Þ

where ‘m’ stands for momentum and ‘c’ for continuity.

We can obtain the expanded form of the stabilised

resolved scale equation:

ð2rmðuh; phÞ; pmðvhÞÞ þ ð2m1ðuhÞ; 1ðvhÞÞ

2 ðph;7·vhÞ2 ð7·½22m1ðuhÞ� þ 7ph; vhÞ

2 ðrcðuhÞ; pmðvhÞÞ ¼ r=ðudtÞ ~unh; pmðvhÞ
� �

þ ðtN; vhÞGN
þ ðtM; vhÞGM

;

ð2rmðuh; phÞ; pcðqhÞÞ2 ðrcðuhÞ; pcðqhÞÞ

¼ ðr=ðudtÞ ~unh; pcðqhÞÞ:

ð80Þ

This formulation corresponds to the case of the Oseen

equations in which the convective velocity uc is known.

In the case of the Navier–Stokes equations, the

convective velocity is an unknown of the problem

uc ¼ u. We distinguish two possibilities:

Stabilisation without convection tracking : uc ¼ uh:

ð81Þ

Stabilisation with convection tracking : uc ¼ uh þ ~u:

ð82Þ

The first choice corresponds to that used in classical

stabilisation schemes and misses the subgrid scale
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contribution to the convection. The second choice which

appears as the natural one retains this contribution.

The subgrid scale is then computed from Equation (60).

At this stage we observe that we have one source of

non-linearity: the convective term which appears both in

the resolved scale and subgrid scale equations. Therefore

the problem must be linearised. This aspect is now

treated in the following section.

Let us close this section mentioning the results of the

numerical analysis of this method which can be found in

Codina et al. (2007). As it has been mentioned in the

introduction, the use of transient subgrid scales provides

the correct dependence of the stabilisation parameter with

respect to the time step size (but also introduces a term

on the right-hand side that makes the results of a steady

calculation independent of the time step size) making

the space and time discretisations commutative. If the

linearised problem (with a given advection velocity)

is considered, stability of t
1=2
1 ðruc·7uh þ 7phÞ can be

probed for any h and dt (usually the restriction dt $ Ct1 is

needed). This result is proved using a rather weak norm but

if this restriction is imposed a stronger result can be

derived. The other important aspect of the formulation is

that conservation of momentum is achieved the subscales

are tracked along the non-linear process. We refer to

Codina et al. (2007) for further details.

6. Numerical implementation

The numerical implementation presented here has been

designed to consider the different possibilities for the

approximation of the subgrid scale already mentioned.

The linearisation of the problem is considered next

followed by a description of the proposed algorithm.

6.1 Linearisation

The complete problem defined by Equations (80) and

(60) is highly non-linear. When convection tracking is

considered (Equation (82)), the original quadratic

convective term gives rise to four terms in each equation

when the scale splitting is considered. Although our

linearisation will be a simple one, let us note where these

terms are in the final formulation. The scale splitting of

the convective term leads to

ðv; ruc·7uÞ ¼ ðruc·7uh; vhÞ þ ðruc·7 ~u; vhÞ

þ ðruc·7uh; ~vÞ þ ðruc·7 ~u; ~vÞ: ð83Þ

The first term of the right-hand side is the classical

Galerkin term. The second one has been integrated by

parts and the tracking consists in evaluating the test

function (which is the adjoint operator) using uc.

The third term has been moved to the right-hand side

of the subgrid scale equation and is part of the residual.

The last one was considered in the algebraic approxi-

mation of the subgrid scale equation and it can be seen in

the dependence of the stabilisation parameter t1 on uc. In

turn, the last two terms are used to compute ~u and

therefore affect uc (which is a manifestation of the non-

linearity of the subgrid scale equation). Let us introduce

a linearisation iteration counter i. The equations are

considered at iteration iþ 1 and if no particular mention

is made, the variables are considered at this iteration

without specific notation. We consider two possibilities.

The first possibility is the linearisation using the Picard

method and is defined by:

uc ¼ uih þ ~ui:

As will be explained in the next subsection, as the

subgrid scale ~ui depends on the residual of the finite

element component uih which is computed first and then

used to evaluate ~ui during the formation of the finite

element matrix for the next iteration. The second possibility

consists of a Newton type linearisation of the resolved part

of the convective term in the residual as follows:

uc ¼ uih þ ~ui; ð84Þ

rmðuh; phÞ ( rmðuh; phÞ þ r uiþ1
h ·7

� �
uih 2 r uih·7

� �
uih:

ð85Þ

We will refer to it as the Newton–Raphson method

but we note that it corresponds to a Newton linearisation

only when convection tracking is not considered.

6.2 Final algorithm

The final algorithm is developed to take into account the

different levels of approximation. The simplest one

corresponds to the classical approach in which neither

time nor convection tracking is considered. The second

one, the time tracking of the subscales, consists of

retaining the time derivative of the subgrid scale.

The third one, the convection tracking, consists of adding

the subgrid scale velocity ~u to the resolved scale velocity

when the convection velocity is defined. The last one is

the full scheme ‘without approximation’.

In any of these cases there are some calculations that

need to be performed at each Gauss point. They are: the

calculation of the residuals, the calculation of the test

functions and the evaluation of the stabilisation

parameters. In the first two cases the convection velocity

is simply taken as

uc ¼ uih: ð86Þ

Only in the last two cases the equation for the subgrid

scale equation (60) needs also to be solved. As mentioned

in the previous subsection this is done while the the
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matrix of the system at the next iteration i is being

computed which permits us to reuse the Gauss point

calculations already mentioned. The resulting algorithm

can be described as follows.

At each time step n and linearisation iteration i we

introduce a linearisation index j and a relaxation factor ~a.

The iterative scheme for the subgrid scale is the

following: let the initial guess be ~ui;0 ¼ ~ui21, then

solve the following equation for j ¼ 1; 2; · · · until

convergence is achieved:

~u* ¼
r

udt
þ t21

1

� �21

rm uih; p
i
h

� �
þ

r ~un

udt

� �
; ð87Þ

~ui;jþ1 ¼ ~a ~u* þ ð1 2 ~aÞ ~ui;j; ð88Þ

with

t1 ¼ c1

m

rh2
þ c2r

jucj

h

� �21

; ð89Þ

uc ¼ uih þ ~ui;j: ð90Þ

The complete general algorithm for the algebraic

subgrid scale model with transient subgrid scales and

convection tracking is shown in Algorithm 1. It is

composed of three main iteration loops. The time loop

over index n; the resolved velocity linearisation loop over

index i; and the velocity subgrid scale linearisation loop

over index j. If convection tracking is not considered, the

inner loop is skipped. In Algorithm 114 it is understood that

the momentum residual is evaluated using the shape

functions and that rmðu
i
h; p

i
hÞ is computed simply

multiplying it by the unknowns at the previous iteration.

These residuals are then reused when the system is

assembled.

7. Numerical examples

We present the solution of three numerical examples.

The first example aims at illustrating the subgrid scale

concept with respect to the Galerkin method. Through the

next two examples we propose to study the characteristics

of the stabilisation method with convection and/or time

tracking of the subgrid scale. The purpose is to check the

stabilisation property of the method, its accuracy for

stationary and transient flows, as well as the convergence of

Algorithm 1. In the following we define:

L2 residual of an unknown vector x at iteration i

¼ 100 £

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx i 2 x i21Þ2

x i
2

s
:

In order to concentrate ourselves on the analysis of

the effects of the convection and time tracking of the

subgrid scales, the characteristic length h appearing in the

expressions for the stabilisation parameters t1 and t2

(Equations (61) and (62)), is taken as the minimum

element length for each element (it introduces less

numerical diffusion than if we take the maximum

length). In all examples the Q1=Q1 element is used and

the numerical integration is performed using four Gauss

points.

7.1 Illustrative example

Let us solve a simple example to illustrate the multiscale

concept, and in particular to identify the stabilising

effects and the location of the subgrid scale. We consider

the advection–diffusion–reaction Equation (3) with a

curved advection field. The geometry as well as the

boundary conditions are illustrated in Figure 4.

Algorithm 1 Stabilised Navier–Stokes equations

Set time initial values u0
h and ~u 0.

for time steps n ¼ 1; 2; . . . do
Set linearisation initial values u0

h ¼ unh and ~u 0 ¼ ~un.
i ¼ 0.
while convergence not achieved do
for elements do
for Gauss points do

Set uc using 86 or 90.
Compute residual rmðu

i
h; p

i
hÞ.

Compute t1 using 89.
if convection tracking then

Set linearisation initial values ~u i;0 ¼ ~u i21.
j ¼ 0.
while Convergence not achieved do

Compute ~u i;jþ1 using 87 and 88.
Update uc using 90.
Update residual rmðu

i
h; p

i
hÞ.

Update t1 using 89.
j ¼ jþ 1.

end while
else if Time tracking then

Update ~u i using 87.
end if
Compute continuity residual rcðuhÞ.
Compute test functions: pmðvhÞ, pcðqhÞ, pmðvhÞ,
pcðqhÞ.

Compute terms in 80.
Assemble element matrix and right-hand side in

global system.
end for

end for
Solve linear system for uh and ph.
i ¼ iþ 1.

end while
Update unþ1

h ¼ 1=uuh þ ð1 2 1=uÞun21
h

if Time tracking then
Update ~unþ1 ¼ 1=u~uþ ð1 2 1=uÞ~un21

end if
end for
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The data of the problem are:

1 ¼ 1022; ð91Þ

s ¼ 1024; ð92Þ

a ¼
1

2
½ð1 2 x2Þð1 þ yÞ;2xð4 2 ð1 þ yÞ2Þ�t: ð93Þ

The computational domain is a square domain

V ¼ ð21; 1Þ £ ð21; 1Þ. The Dirichlet boundary con-

ditions for u are

u ¼ u0 ¼ 1 at y ¼ 21; 21 , x , 0; ð94Þ

u ¼ 0 elsewhere: ð95Þ

According to the data, we expect to have parabolic

boundary layers on the left, top and right sides of the

cavity and an exponential boundary layer on the bottom

right part. This is precisely the zone where the subgrid

scale modelling acts.

Figure 5 shows the results obtained on a regular mesh

composed of 10 Q1 elements in each direction. The top

part of the figure shows the results obtained without

stabilisation, that is the Galerkin solution. The top left

figure is the unknown, which exhibits strong oscillation

due to the poor resolution of the exponential boundary

layer. The top right figure is the subgrid scale in

percentage, that is 100 £ j~uj=ju0j obtained on the Gauss

points of the elements, where ~u has been computed using

Equation (15). The value on the nodes was set to zero for

visualisation purposes. The bottom left figure shows the

stabilised solution, using the subgrid scale concept.

Finally, the bottom right figure shows the subgrid scale.

In the case of the Galerkin solution, we observe that ~u

is a good measure of the error of the solution. In the case

of the stabilised solution, we can observe that most of the

subgrid scale is concentrated in the first layer of elements

in the boundary layer where the unknown goes from

almost one to the prescribed value of zero. There, the

percentage of the subgrid scale is around 45% of the

prescribed value of 1.

7.2 Cavity flow

We consider the cavity flow at different Reynolds

numbers and for different mesh sizes. We compare the

results and convergences obtained with the classical

stabilisation method and the subgrid scale approach with

convection tracking. In order to study the convergence

properties of the stabilisation method, all the cases are

solved using the stationary equations, except one case

for which convergence cannot be achieved this way.

The computational domain is V ¼ ð0; 0Þ £ ð1; 1Þ and the

boundary conditions are u ¼ 0 at x ¼ 0, x ¼ 1 and y ¼ 0,

and u ¼ ð1; 0Þ on the rest of the boundary. The density of

the fluid is set to unity and the Reynolds number is

defined as Re ¼ 1=m.

We consider five different regular and structured

meshes with 5 £ 5, 10 £ 10, 20 £ 20, 40 £ 40 and

80 £ 80 Q1=Q1 elements. As the flow is confined

(GN ¼ Y), the pressure was imposed on the bottom left

corner to zero. When not explicitly mentioned, the

subgrid scale equation (87) is solved using a maximum

number of 20 iterations and a convergence tolerance

of the L2-residual of 1028. We are going to study the

following points:

. Effects of the subgrid scales;

. Accuracy;

. Global convergence: with respect to mesh size and

Reynolds number;
. Convergence of the subgrid scale equation;
. Linearisation techniques: Picard versus Newton–

Raphson.

7.2.1 Effects of the subgrid scales

To have a first glance at the subgrid scale approach with

convection tracking, we start with the solution of the flow

at Re ¼ 100 on the 10 £ 10 and 40 £ 40 meshes.

The resolved velocity at the nodes and the subgrid

velocity at the Gauss points is shown in Figure 6. We can

outline two expected results. Firstly, the subgrid scale

level decreases with the mesh size. Remember that when

convection dominates,

~u!
h

2rjucj
RðUhÞ:

Secondly, most of the subgrid scale is located in the

zones of the cavity with the highest gradients. We will

see that this yields a global effect on the solution in the

cavity, as already shown in Section 7.1. We observe that

the subgrid scale points outside of the cavity in the top

left corner, and inside of the cavity in the top right corner.

Figure 4. Illustrative example: geometry and boundary
conditions.
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7.2.2 Accuracy

Now let us look at the results of the simulations in more

detail. We consider the case Re ¼ 100. They exhibit two

clear tendencies of the subgrid scale model with

convection tracking. On the one hand, it is much less

diffusive: the solution converges faster to the finest grid

solution when the grid size increases than the classical

method. Figure 7 shows the solution obtained on the

Figure 5. Illustrative example: effects of the SGS stabilisation. (top) (left) Galerkin solution. (top) (right) subgrid scale 100 £
j~uj=ju0j at the Gauss points calculated from the Galerkin solution. (bottom) (left) Stabilised solution using the subgrid scale method.
(bottom) (right) subgrid scale 100 £ j~uj=ju0j at the Gauss points.

Figure 6. Cavity: solution at Re ¼ 100. (left) 10 £ 10 mesh. (right) 40 £ 40 mesh. (bottom) Velocity u. (top) velocity subgrid
scale ~u.
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horizontal centreline for the 5 £ 5, 10 £ 10 and

80 £ 80 meshes. We observe that both the pressure

and the vertical velocity on the coarse meshes are better

captured when convection tracking is used.

7.2.3 Global convergence

On the other hand, convergence of the stabilisation method

with convection tracking cannot be achieved for two coarse

meshes and high Reynolds numbers. In fact, Table 2 shows

the value of the relaxation factor used to solve the subgrid

scale equation for which the convection tracking

stabilisation converges. The relaxation factor was varied

from 0.1 to 1.0 with steps of 0.1. However, convergence can

be achieved passing through a transient state, for example

using one iteration per time step. In this case, the accuracy

achieved by the convection tracking is even more

noticeable, as shown by Figure 8. It shows the solution

obtained on the 10 £ 10, where convergence has been

achieved using a time step of dt ¼ 1 and one iteration per

time step. The accuracy of the solution obtained with

convection tracking is quite impressive when compared to

results of Ghia et al. (1982).

The convergence histories are compared for two

Reynolds number and different meshes in Figure 9.

We observe better convergence of the stabilisation

without convection tracking. In fact, the convection

tracking introduces an additional non-linearity.

7.2.4 Convergence of the subgrid scale equation

The subgrid scale equation is a non-linear equation to be

solved at each Gauss point (see Equations (87) and (88)).

The iterative algorithm is controlled by a relaxation

factor, a maximum number of iterations as well as a

convergence tolerance. From the user’s point of view, in

order to limit the number of parameters to adjust, we

would like to perform only one iteration without

relaxing, that is to couple the iterative loop of the

resolved and subgrid scales. However, when the

effects of the subgrid scale become important (for

Table 2. Maximum relaxation factor used in subgrid scale
equation for which convergence is achieved.

Reynolds
number 10 100 200 400 600 800 1000

5 £ 5 mesh 1.0 0.7 X X X X X
10 £ 10 mesh 1.0 1.0 0.7 X X X X
20 £ 20 mesh 1.0 1.0 0.9 0.1 X X X
40 £ 40 mesh 1.0 1.0 1.0 1.0 1.0 0.7 X
80 £ 80 mesh 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Note: X ¼ convergence not achieved.

Figure 7. Cavity: solution on the horizontal centreline for the 5 £ 5, 10 £ 10 and 80 £ 80 meshes at Re ¼ 100. (left) vertical
velocity. (right) pressure.

Figure 8. Cavity: vertical velocity on the horizontal centreline
for the 10 £ 10 mesh at Re ¼ 1000.
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coarse meshes or high Reynolds numbers), this is

not possible. Figure 10 shows the convergence

histories of the subgrid scale velocity at Re ¼ 100

for the 10 £ 10 and 80 £ 80 meshes for a tolerance

of 1028, a relaxation factor as indicated in Table 2

and for varying maximum number of iterations.

We observe that it is important to have the subgrid

scale well converged in order to obtain a good global

convergence.

It should be pointed out that the subgrid scale

Equation (87) contains the norm of the convection

velocity and this can seriously damage the convergence.

In fact, let us consider the extreme case of a very high

subgrid scale. This equation reduces to

~u ¼ 2c2r
2 j ~uj

h
ð ~u·7Þuih; ð96Þ

which admits two solutions with opposite signs. This has

been observed in practice.

7.2.5 Linearisation strategy

Figure 11 compares the convergence histories obtained at

Re ¼ 100 using the Newton and Picard linearisation

strategies. We remark that for the coarse mesh, quadratic

Figure 9. Cavity: convergence history. (left) Re ¼ 100. (right) Re ¼ 200.
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Figure 10. Cavity: convergence of the subgrid scale equations for different numbers of maximum iterations in the subgrid scale
equation (1), (5), (20) from left to right. (top) convergence of the velocity and velocity subgrid scale. (bottom) convergence of the
velocity subgrid scale in subgrid scale equation.
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convergence is not achieved with the convection tracking.

This is due to the fact the subgrid scale was not retained in

the additional terms involved in the Newton–Raphson

method (see Equations (84) and (85)) and in this case

the subgrid scale is of the same order as the velocity (see

Figure 6). If the mesh is refined, see Figure 11 (right), this is

almost no longer true as the subgrid scale looses weight

with respect to the resolved scale.

We conclude this numerical example by an obvious

statement: the gain in accuracy is obtained at the expense

of convergence deterioration. Also, the convergence of

the subgrid scale equation is a crucial point in the

convergence of the whole algorithm, when the subgrid

scale is of the same order as the velocity, that is for coarse

meshes and high Reynolds numbers. This convergence

can hardly be obtained in some cases, and, surely, a better

strategy is to be found to solve the subgrid scale equation

(e.g. passing through a false transient state as done for the

solution obtained in Figure 8).

7.3 Flow over a cylinder

Through this example we want to check the behaviour of

the stabilisation method with time and/or convection

tracking in a transient simulation. To this end, we solve

the two-dimensional flow around a circular cylinder at a

Reynolds number Re ¼ 100. The cylinder is located at

position ð0; 0Þ and is located in a rectangle of length 18

and height 24, as shown in Figure 12. The size of the

computational domain was chosen according to obser-

vations of (Behr et al. 1995) concerning the blocking of

the solution when the horizontal walls are too close to the

cylinder. The diameter of the cylinder is d ¼ 1, the inflow

velocity u1 ¼ 1 in the horizontal direction. The density

of the fluid is set to unity so that the Reynolds number is

defined as Re ¼ 1=m. The boundary conditions are zero

velocity on the cylinder, symmetry condition on the top

and bottom walls (i.e. zero tangential traction and normal

velocity), and zero traction at the outflow.

Four meshes are considered. They are respectively

composed of 320, 1280, 5120 and 20,480 Q1=Q1

elements. All meshes are structured and refined near

the cylinder. Two time steps are considered, d ¼ 0:1 and

dt ¼ 0:2 with the second order Crank–Nicolson scheme.

It was not necessary to relax the subgrid scale to achieve

convergence. The maximum number of iterations and

tolerance to solve this equation are 20 and 1028,

respectively. The extra cost to track the subgrid scale

in time and convection is 4:4% of the total element

Figure 11. Cavity: Convergence history at Re ¼ 100. Comparisons of Picard and Newton–Raphson strategies. (left) 10 £ 10 mesh.
(right) 80 £ 80 mesh.

Figure 12. Cylinder: geometry and boundary conditions.
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calculations (including all operations at Gauss points and

assembly).

We first examine the pressure lift for the 1280-

element mesh and dt ¼ 0:2 to compare the results of the

classical approach and the stabilisation method with time

and time þ convection tracking. The pressure lift is

defined as:

pressure lift ¼

Ð
cylinder

2pndG

ru2
1

;

where n is the outward normal to the cylinder. Its

evolution is shown in Figure 13.

We observe that both the time and time þ

convection tracking are less diffusive than the classical

method, in the sense that we obtain a higher amplitude.

We also compared the results to those obtained with a

third order Backward Finite Difference scheme in time

(BDF). Both the time and convection trackings enable to

obtain a better amplitude in the pressure lift.

In order to quantify the results, Tables 3, 4, 5 and 6,

show the amplitude as well as the Strouhal number

obtained for different numerical strategies (the Strouhal

number is defined as fd=u1). The first two tables show

the evolution of these values for different meshes with

dt ¼ 0:2, while the second table shows the evolution of

these values for different time steps with the 20 £ 20

mesh. First we note that nothing is gained in frequency

when using the time and convection tracking. On the

contrary we observe that the amplitude of the pressure lift

Table 3. Amplitude of the pressure lifta for different meshes and dt ¼ 0.2.

Method No tracking No tracking (BFD3) Time tracking Time þ conv. tracking

5 £ 5 0 0 0 0
10 £ 10 0.2608 0.2294 0.2926 0.3288
20 £ 20 0.3398 0.3460 0.3518 0.3686
30 £ 30 0.3243 0.3328 0.3326 0.3435

Note: 0 ¼ Stationary solution.
a (Behr et al. 1995): 0.3706, 0.3659

Table 4. Strouhal of the pressure lifta for different meshes and
dt ¼ 0.2.

Method
No

tracking
No tracking

(BFD3)
Time

tracking
Time þ conv.

tracking

5 £ 5 0 0 0 0
10 £ 10 0.1372 0.1349 0.1352 0.1357
20 £ 20 0.1635 0.1647 0.1630 0.1637
30 £ 30 0.1688 0.1700 0.1687 0.1689

Note: 0 ¼ Stationary solution.
a (Behr et al. 1995): 0.1624, 0.1661

Table 5. Amplitude of the pressure lifta for different dt and
the 20 £ 20 mesh.

Method
No

tracking
No tracking

(BFD3)
Time

tracking
Time þ conv.

tracking

dt ¼ 0.2 0.3398 0.3460 0.3518 0.3686
dt ¼ 0.4 0.3388 0.3842 0.3522 0.3677
dt ¼ 0.8 0.3386 0.4819 0.3358 0.3654

Note: 0 ¼ Stationary solution.
a (Behr et al. 1995): 0.3706, 0.3659

Figure 13. Cylinder: pressure lift on the cylinder. 1280-element mesh, dt ¼ 0:2. (left) complete time evolution. (right) zoom.
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converges much faster to its mesh converged value using

the time tracking and even faster using the time þ

convection tracking. As for the time step tests, they do

not exhibit any important differences.

Figures 14 and 15 show the pressure evolution behind

the cylinder at position ð2:5; 0Þ and on the top of the

cylinder at position ð0; 0:5Þ for the 10£10 mesh.

The zoom at the solution shows that the classical method

exhibits a time-step to time-step pressure oscillations.

Both the time and time þ convection tracking enable to

correct it and to obtain a smooth pressure over the whole

evolution. This point may be crucial when considering

fluid structure interaction for which the nodal value of

the pressure is required to pass the force to the structure

solver. Note that this time decoupling of the pressure

obtained with the classical method disappears when the

mesh is refined.

8. Conclusion

We have revised the derivation of an Algebraic Subgrid

Scale model used to stabilise the Navier–Stokes

equations. This model is a two-level multiscale model,

Table 6. Strouhal of the pressure lifta for different dt and the
20 £ 20 mesh.

Method
No

tracking
No tracking

(BFD3)
Time

tracking
Time þ conv.

tracking

dt ¼ 0.2 0.1635 0.1647 0.1630 0.1637
dt ¼ 0.4 0.1619 0.1677 0.1613 0.1621
dt ¼ 0.8 0.1555 0.1626 0.1550 0.1556

Note: 0 ¼ Stationary solution.
a (Behr et al. 1995): 0.1624, 0.1661

Figure 14. Cylinder: pressure evolution behind the cylinder, at ð2:5; 0Þ. 10 £ 10 mesh, dt ¼ 0:2. (left) complete time evolution.
(right) zoom.

Figure 15. Cylinder: pressure evolution at the to of the cylinder, at ð0; 0:5Þ. 10 £ 10 mesh, dt ¼ 0:2. (left) complete time evolution.
(right) zoom.
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which splits the sought solution into a resolved scale and

a subgrid scale. The subgrid scale is solved by

approximating the inverse differential operator L21 by

an algebraic operator tK , which is evaluated element-

wise. The method presented here is more general than the

classical approach usually used in the literature, in the

following sense:

. the time evolution ›t ~u of the subgrid scale is taken

into account;
. the subgrid scale is maintained in the convection

velocity of the Navier–Stokes equations, i.e.

uc ¼ uh þ ~u.

Through the solution of two numerical examples, we

have shown the following points:

. the convection tracking could notably improve

the solution in the case of the cavity flow.

The convection tracking enables one to gain

accuracy on coarse meshes and for high Reynolds

numbers;
. the time and time þ convection trackings improve

the amplitude of the pressure lift in the case of the

transient flow over a cylinder; in addition, the time

tracking enables to smooth the pressure in time;
. relaxation was compulsory to solve the subgrid scale

equation in the case of the cavity flow, when using

the stationary equations. This was not the case for the

other two flows.

The next points the authors are going to investigate are:

. the effects of the tracking with other elements

(e.g. P1=P1);
. the use of more integration Gauss points to see if

additional accuracy can be obtained.
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