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Abstract. Starting from a discussion on the experimental results obtained from diagonal 

compression tests executed on in-situ masonry panels, the paper presents a constitutive model, 

together with a numerical formulation, to describe the cracking phenomena in rubble masonry 

structures. A classical finite element discretization is assumed with the hypothesis of a 

homogenous continuum material.  The adopted constitutive model identifies three different 

phases: (i) the elastic phase; (ii) the micro-cracking phase, in which the formation of micro-

cracks, spread in the structural members, is accounted assuming a plastic material with a strain 

hardening stable behavior; (iii) the macro-cracks phase, in which the formation of macro-

cracks, developing along the edges of finite elements, are simulated by means of localized 

softening plastic deformation. While the numerical description of spread plasticity in the finite 

element framework is a topic that has been widely addressed in the past, the representation of 

localized plastic deformation and its implementation in a finite element code is an original 

contribution of the authors. From a computational point of view, the value of plastic 

deformations (i.e. crack openings) is found by solving a parametric linear complementarity 

problem (LCP) using mathematical programming algorithms. The main advantage of using an 

LCP method is its ability to deal also with configurations in which instability and a multiplicity 

of solutions are possible (e.g. softening behavior). The numerical simulation of a diagonal 

compression test and the comparison of the results with the experimental evidence are 

presented to validate the model.  
 

1 INTRODUCTION 

The performance of masonry structures under seismic actions is strongly influenced by 

cracking phenomena that must be considered to obtain a reliable evaluation of the structure’s 

capacity. As experimentally observed, masonry shows signs of damage since the early stages 

of loading. From a microscopic point of view, when the tensile damage begins, spread and 

stable micro-cracks start to develop. Once the cracks growth becomes unstable, strain 
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localization occurs, and macro-cracks develop. The initial phase of damage (i.e. micro-

cracking) has an important role in the masonry modelling because affects the analysis results in 

terms of stiffness and ductility. At the same time, the detection of macro-cracks is fundamental 

to understand potential collapse mechanisms. 

In general, there are two main approaches adopted for masonry modelling [1]: (i) the micro-

modelling approach, which usually involves the separate modelling of units, mortar and unit–

mortar interfaces but can involve also a lumped representation of the mortar and unit–mortar 

interface, with potential fracture lines localized at the interfaces; (ii) the macro-modelling 

approach, which does not make distinction between blocks and joints, and masonry components 

are smeared into an averaged continuum; the presence of cracks is introduced by changing the 

mechanical properties of the material. The first approach corresponds to more accurate results 

but computationally intensive analyses, the second one requires less computational effort but 

does not account for kinematic discontinuities. 

In large analyses, the knowledge of the interaction between units and mortar is negligible 

for the global behaviour of the structure. Moreover, when the structural problem concerns 

rubble masonry, the distinction between blocks and joints is not always simple. All this involve 

the tendency to choose a macro-modelling approach in the practice-oriented analyses, 

excluding the possibility to realistically describe the formation and propagation of cracks. 

Starting from the experimental data obtained from in-situ diagonal compression (DC) tests 

performed on rubble masonry walls, this study presents an original constitutive model to 

describe the formation and propagation of cracks in masonry, accounting for both micro and 

macro fractures. A macro-modelling approach is adopted with a homogeneous and isotropic 

material. The hypothesis of isotropy can be acceptable when dealing with rubble masonry. Only 

in-plane behavior is analyzed. The model adopts an innovative finite element structural 

formulation, enriched with the introduction of mathematical programming algorithms [2, 3]. 

Both tension and shear cracks are considered. The initial phase of damage, represented by the 

formation of micro-cracks, is described as irreversible plastic deformations spread all over the 

elements. Macro-cracks are considered instead as inelastic strains localized at the nodes of 

potential cracking paths. Softening behavior is considered through a cohesive crack model.  

The proposed model is used to simulate a DC test to validate the formulation. 

2 EXPERIMENTAL ASPECTS 

Non-linear analysis of existing buildings, particularly for seismic loadings, requires the 

experimental evaluation of the post-peak degradation curve to obtain reliable analytical models. 

Among the available tests, the DC test is usually adopted for the determination of the shear 

strength of masonry walls. The in-situ version of the test is usually executed under load control 

on specimen cut from the existing wall by means of a circular saw or a diamond wire [4].  

A special procedure has been adopted by the LPM Lab of Politecnico di Milano to execute 

several DC tests on the San Filippo Neri historical building in L’Aquila (Italy). The walls tested 

were made of rubble masonry, very common in the historical buildings of central Italy. The 

walls exhibit two external layers which are connected by a central infill, less predictable in 

terms of presence of mortar and size and type of aggregates. This implies a  non-homogeneous 

behavior of the wall section, i.e. it is to be expected that the two external layers move with a 

certain independence one from the other. 



Manuela A. Scamardo, Alberto Franchi and Pietro G. Crespi 

 3 

       

Figure 1: Left, Circular saw cutting the masonry specimen. Right, experimental equipment for the DC test. 

 

Figure 2: Cracking paths on CD01 specimens after the DC test, side 1 and 2. 

 

Figure 3: Cracking paths on CD04 specimens after the DC test, side 1 and 2. 

Some pictures about the setting of the test are reported in Figure 1. The experimental 

equipment was such that the test could be performed by controlling, independently, the two 

jack forces acting on each masonry external layer. 
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Figures 2 and 3 show the damage observed at the end of the tests in two different specimens 

(CD01 and CD04, both sides). The observed damage was generally represented by cracks 

parallel to the compressed diagonal and sliding phenomena in the vertical/horizontal direction. 

The crack path was mainly influenced by the location of mortar joints, which represent the weak 

point of the masonry assemblage. 

Figure 4 shows the load vs. displacement curves. The blue and red curves represent the 

behavior of the two sides of each wall. Significantly different behavior of the two layers have 

been detected for specimen CD01, while CD04  shows a more homogenous behavior. 

Two main facts come out from the observation of the curves: (i) the sharp decrease of the 

elastic constants in the stable part of the behavior; (ii) the irreversibility of deformations, even 

at the first stage of the test. It is evident that the initial phase of damage, manifested through the 

formation of spread micro-cracks, has a fundamental role in the masonry modelling in terms of 

final maximum displacement and σ-ε plot. At the same time, the analysis of macro-cracks 

propagation is necessary to realistically evaluate the mechanical capacity of the structure and 

understand the potential collapse mechanisms. The paper will present an original constitutive 

model that accounts for both micro and macro-cracks. 

 

Figure 4: Load vs. displacement curves: left, specimen CD0; right, specimen CD04 

3 CONSTITUTIVE ASPECTS 

In the following formulation, tensile behavior is considered but shear can be treated 

analogously. The constitutive model has been subdivided in three phases: (i) undamaged linear 

elastic phase (Figure 5a), in which the material is considered elastic until the tension σy is 

reached; the value σy is a portion of the limit tension σt, to  be calibrated according to the 

experimental evidence;  (ii) micro-cracking hardening phase (Figure 5b), in which micro-cracks 

start to propagate following an isotropic hardening law, with hardening parameter hh, until the 

limit tension σt is reached; (iii) macro-cracking softening phase (Figure 5c), in which the 

behavior is described by a stress-crack opening displacement constitutive law, with softening 

parameter hs and fracture energy Gf. Phases (ii) and (iii) are described in detail in the following.  

 



Manuela A. Scamardo, Alberto Franchi and Pietro G. Crespi 

 5 

 
(a) (b) (c) 

Figure 5: Constitutive law phases: (a) undamaged linear elastic phase, (b) micro-cracking hardening phase and 

(c) macro-cracking softening phase. 

3.1 The micro-cracking hardening phase 

The formation of micro-cracks is associated to the “stable” part of the masonry behavior in 

which irreversible plastic deformations start to accumulate while the load increases. The 

representation of plastic deformation is made according to the classical theory of plasticity, with 

the plastic deformation spreading in the finite elements. 

Among all the available yield functions proposed in the literature, a Drucker-Prager (DP) 

criterion [5] has been adopted together with an associated flow-rule. The DP domain is 

characterized by a regular and smooth limit surface, with obvious computational advantages, 

and only two parameters to be defined, i.e. the limit stress in uniaxial tension σt and uniaxial 

compression σc. It should be remarked that the adopted limit values that active the micro-

cracking phase are not the actual limit stresses in tension and compression, but they are lower 

values to be calibrated on the experimental results. Moreover, only the tension-tension stress 

regime of the domain will be considered in this specific case.  

The governing relations are based on the classical approach developed by Maier [6] and 

adopted by several authors [7, 8] where the failure surface is a piecewise linear assemblage of 

linear failure surfaces. An “a posteriori” linearization procedure [9] is adopted, in which the 

stress points can move on the yield surface along a piecewise linearized path, lying within the 

bounds of a given maximum violation of the true yield function and consequently having a 

control on the violation of the flow-rule. The “a posteriori” linearization technique is 

implemented under the framework of Mathematical Programming (MP) theory and algorithms, 

with regard to the Linear Complementary Problem (LCP) as already proposed in [7]. 

Let us consider the yield surface reported in Figure 6,left. For the sake of simplicity and 

without loss of generality, the yield function has been limited to one parameter convex function. 

The elastic domain is defined by the stress points which satisfy the relation φ(σ, σ0) < 0, where 

σ0 is the given parameter. As soon as the stress point reaches the yield surface φ(σ, σ0) = 0 at 

point A (Figure 6, right), an approximate elastic domain is defined by the stress points which 

satisfy the following conditions:  

0( , (1 )) 0  +  σ  (1) 
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T

A A A AR 0 = − n σ  (2) 

where nA is the outward unit normal to the yield surface at point A, RA is the distance of the 

plane with normal nA from the origin and ε is the prescribed tolerance on the violation of the 

yield surface. The stress point can now move in the elastic domain or along the plane φA. If the 

stress point violates the outer limit surface defined by (1), a back-track procedure is applied that 

brings the stress point on the inner curve and compute a new tangent plane. 

The evolution of the yield surface is governed by an isotropic hardening law with hardening 

parameter hh (Figure 7), which represents the initial damage phase where micro-cracks 

develops. 

 

Figure 6: On the left, non-linear failure surface and elastic domain; on the right, stress point reaching the failure 

surface at point A and introduction of a new yield plane. 

 

Figure 7: Elastic-plastic strain hardening model to represent the formation of micro-cracks; hh is the hardening 

parameter and R the resistance associated to the yield plane. 

3.1 The macro-cracking softening phase 

When the value of the limit stress in tension is reached, the macro-cracks start to propagate. 

At this point, in order to provide a good representation of the material behavior, strain softening 

must be considered. After the limit value is reached, the activated inelastic constitutive law is 

described as a linear softening branch, according to the cohesive crack model proposed by 

Hillerborg [10]. 

Two main assumptions are considered: (i) the crack begins to develop when the ultimate 

strength is achieved at one node; (ii) the material in the cracked zone is still able to transfer a 

force dependent on the crack opening displacement. Two parameters must be defined to 

properly describe the softening behavior: the limit tension σt at which the crack starts to open 
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and the critical crack width wc at which the normal stress becomes zero. The following relations 

link the two parameters: 

f

c

t

2G
w =

σ
 

(3) 

t s cσ -h w=   (4) 

where hs is the softening parameter and Gf is the fracture energy. 

While in the micro-cracking phase the damage is spread in the elements and the plasticity 

control is made in terms of actual stresses, in the macro-cracking phase the plastic deformations 

(i.e. the cracks) are considered as localized at the nodes. The adopted failure surfaces are 

defined at each node and involves the nodal forces instead of the actual element stresses.  

The limit tension σt of Figure 5c is then replaced by the limit traction force Rn called 

resistance (Figure 8, left), calculated at the generic node i as: 

n t iR σ A=   (5) 

where Ai is the tributary area of the node i. The tributary area of a node is calculated as the 

product of the tributary length Li of the node with respect to a predefined crack direction and 

the thickness of the finite elements. When at one node the resistance Rn is reached, the cohesive 

crack starts to open. The force at the node begins to decrease following the softening branch. 

The behavior on the softening branch is non-holonomic. If an unloading occurs, the force 

decreases following a vertical elastic unloading/reloading branch, keeping unchanged the 

values of crack width w. When the critical value wc is reached, the behavior becomes holonomic 

and the material is considered as elastic perfectly plastic. The crack is fully developed, and it 

can open and close freely. 

3.1 Traction-shear interaction domain 

For a realistic description of the damage phenomena, the proposed approach considers the 

formation of both tensile cracks and shear cracks (i.e. sliding phenomena). What already 

presented for tension behavior can be easily extended to shear behavior without loss of 

generality.  

At each potential cracking node belonging to a potential crack direction, two independent 

variables are defined: (i) w, i.e. the traction crack width, that is the normal component of the  

plastic deformation, and s, i.e. the shear sliding, that is the tangential component of the plastic 

deformation. A simple maximum stress criterion is adopted both in cases of tension and shear 

behavior.  

The traction-shear domain for a node is represented in Figure 9 where Fn and Ft are 

respectively the traction and shear component of the nodal force and Rn ad Rt are the limit 

traction and the limit shear, calculated as the product of the tributary area of the node and the 

limit stress in tension σt and shear τmax, respectively. The parameters σt and τmax are defined 

independently the one from the other.  

The plastic deformations (i.e. cracks w and s) develop according to the normality rule. For 

the sake of simplicity, no interaction between the two variables w and s is considered and they 

can be activated simultaneously only in the corner point. To make the model closer to reality, 
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a traction-shear interaction may be considered by introducing a different failure domain (e.g. 

Mohr Coulomb criterion). This improvement will be treated in future paper. 

 
 

Figure 8: Left, nodal constitutive nodal law. Right, Traction-shear interaction domain. 

4 THE MACRO-CRACK MODEL 

From a numerical point of view, the macro-cracking model and its implementation in a finite 

element code represent an original contribution of the authors [2, 3, 11].  

Let us consider the FE model in Figure 9 (left) in which a potential cracking path L is 

identified. If a fracture develops along L, the structure is going to be split into two, identifying 

on the bottom side the line L+ and the node I+ and on the top side L- and I-. Focusing the attention 

on the node I+ (Fig. 9, middle), an outward unit normal nI
+ associated to the crack line L+ can 

be defined. The vector force FI
+ at node I+ is equilibrated with the stresses of the adjacent 

elements Qj, Qk and Qm.  The projection of FI
+ on nI

+ must satisfy the following plasticity 

condition at the node I+: 

+
IR +T +T

I In F  (6) 

where RI
+ is the limit tensile force, calculated as the product of the limit tension σt times the 

influence area of the considered node Ai.  

 

Figure 9: Left: FE model of a plane stress problem. The dashed red line L identifies a potential crack path. 

Middle: dal force FI
+ at I+ equilibrated with Qa, Qb, Qc. Right: Opening of the crack at node I. 
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The satisfaction of the yield criteria is ensured by considering suitable imposed localized 

strain nI
-λI

+ that represents the displacement associated to the crack opening and obeys to the 

normality flow rule of plasticity. When the plasticity condition is violated, the crack opens by 

splitting the node I into two: one belonging to L-, which remains fixed, and one belonging to 

L+, which moves in the direction of nI
- opening the crack λI

+, named plastic/crack multiplier 

(Fig. 9, right). The crack opening affects only the bottom half structure (or better, the elements 

of the bottom half structure around the node I+). The same procedure can be repeated for any 

potential cracking node, along any possible direction.  

Let us define a vector λ+ that collects the crack multipliers λI
+ associated to the nodes on the 

crack line L+, with a number of components equal to the number of potentially activable planes. 

A matrix N- is defined which collects, in diagonal form, the outward unit normal vectors nI
- of 

each node (analogously N+ can be defined for the outward unit normal vectors nI
+). The problem 

to be solved is to find the elastic-plastic response of the structure under the external load F0 and 

the prescribed inelastic crack openings N-λ+. 

According to the Colonnetti’s approach [12], the elastic-plastic response of the structure is 

obtained as the superposition of: (i) the linear-elastic response of the structure to the given 

external actions; (ii) the linear-elastic response of the structure subjected to the unknown 

imposed strains N-λ+. For a clear definition of response (ii), a sub-structure has to be defined 

made by the elements, around the considered node, lying on one side of the crack (e.g. for the 

node I, the dark gray elements in Figure 9, middle). Response (ii) is the superposition of: (a) 

the linear-elastic response of the sub-structure, considered with fixed nodes, to the imposed 

displacement N-λ+, in which all the nodal displacements are zero except the crack opening; the 

nodal reactions are called FR,i; (b) the linear-elastic response of the structure subjected to -FR,i. 

Considering the softening behavior and recalling the plasticity condition (6), a plastic 

potential vector Φ+ can be defined on the crack line L+, as: 

+ + + += − + + t +
Φ N F R Hλ 0  (7) 

where F+ is the vector of nodal surface forces along L+, R+ is the vector that collects the 

surface resistances of each node and H is a square matrix with the softening parameter hs < 0 

along the main diagonal, that has as many rows and columns as the total number of yield planes. 

The introduction of the matrix H describes how the original yield surface changes during the 

development of cracks. If a failure plane is activated, the corresponding potential function is 

zero. The governing equations of the structural problem can be expressed as a linear 

complementary problem (LCP) [11]: 

( ) -+ + ++ Φ = A H λ b +R 0  (8) 

together with the so-called complementary conditions: 

+ λ 0 , 0+ +T
Φ λ =  (9) 

In case of irreversible inelastic deformations (i.e. non-holonomic problem), in order to 

capture some critical events like unloading, the conditions (9) must be expressed in rate form 

as follows: 

+
λ 0 , 0+T +

Φ λ =  (10) 

Matrix A and vector b describe the behavior of the structure under imposed strains and given 
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loads, respectively. The Hessian matrix A, which governs the global behavior of the structure, 

is symmetric and semi-definite positive. If softening is considered by the introduction of H, the 

problem may become indefinite. Respect to the standard structural stiffness matrix, the matrix 

A is endowed with sophisticated mathematical features able to easily perform checks about the 

existence and the uniqueness of the solution [13, 14]. Matrix A and vector b can be computed 

in full before the procedure is started as a series of elastic calculations which do not require the 

expensive computation of the inverse of the stiffness matrix K, difficult to be determined in 

case of singular yield functions. 

4 COMPUTATIONAL PROCEDURES 

The LCP that governs the evolution of the system may exhibit an indefinite Hessian matrix 

(i.e. A+H) meaning that a multiplicity of solutions may be admitted on the equilibrium path 

due to softening-related bifurcation phenomena or loss of stability. Commercial finite element 

codes show serious difficulties in managing indefinite problem; MP algorithms have instead 

proved their ability to capture the whole set of possible alternative equilibrium paths and always 

find a solution, if it exists [14]. 

 Solving the LCP (8) together with (9) or (10) is equivalent to solve a parametric linear 

complementary problem (PLCP) by introducing a scalar parameter α called load factor [15]: 

( ) 0+ += + − + Φ A H λ b R  (11) 

The solution of the problem is found in incremental steps, by varying the value of α. Each 

step and the relative α value are automatically defined when a crack multiplier is scaled to the 

next inelastic point or until it reaches a critical value. Since the holonomic solution, represented 

by a system of linear equations, is simpler to be found than the non-holonomic one, the adopted 

procedure assumes basically holonomic behavior and solves ad-hoc defined LCPs only when 

non-holonomic constraints are violated [11]. 

The sequence of solutions follows the evolution of plastic deformation (i.e. the cracking 

evolution) in the structure and the sequence terminates when a “unique” solution is found or an 

unbounded solution (i.e. collapse) is found or α decreases down to zero. The solution of each 

step is computed using a numerical code specifically developed for this purpose and which 

refers to the pivot theory proposed by Lemke [16]. 

5 NUMERICAL SIMULATIONS 

A simulation of the in-situ diagonal compression test of sample CD04 (see paragraph 2) has 

been performed using the proposed constitutive model. The specimen dimensions are 1200 x 

1200 mm with a thickness of 420 mm as the panel tested in the experimental campaign. The 

adopted mechanical parameters are reported in Table 1. Poisson’s ratio ν = 0.2 and fracture 

energy GF = 0.035 N/mm are typical values adopted in other numerical works [17]. The other 

parameters, i.e. Young’s modulus E = 1500 MPa and tensile strength σt = 0.12 MPa, have been 

quantified by calibration of the numerical and experimental results and the obtained values are 

consistent with typical values of historical masonry. The compression strength has been 

calculated as σc = 10·σt. The adopted FE model is reported in Figure 12. 

Figure 13 (left) shows the comparison in terms of load vs. displacement curve. The 

displacements of the experimental curve are calculated as the mean of the displacements of the 
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two layers of wall, while the load as the sum of the loads.  

 

Figure 10: FE model of the masonry panel under diagonal compression 

 

Figure 11: Left, Load vs. displacement curves comparison. Right, Load factor vs. step. 

  

Figure 12: Left, Deformed shape at collapse with traction cracks in red and the slidings in green. Right, 

Experimental crack pattern. 
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In the experimental curve it is possible to observe that the plasticization of the material 

happens already at the first steps of the test (there is no evident change of slope before the 

unloading/reloading and the values of stiffness are very low). The elastic limit in the numerical 

simulation has been set to a very low value (1% of the failure in tension) after which the 

hardening branch starts, allowing a stiffness degradation able to approximate the experimental 

evidence. The numerical simulation catches the right value of the peak-load and the maximum 

displacement. The slope of the curve (PLCP), from the beginning to the peak, represents an 

average stiffness between the two points. A way to make the stiffness closer to the experimental 

one might be to modify the value of the hardening parameter during the loading history to 

reproduce the multi-branch hardening. However, this approach would make more complex the 

mathematical model. 

As reported in Figure 13 (right), the load factor α changes during the evolutive non-

holonomic analysis. The linear elastic behavior is represented by the first step. The flat section 

of the curve right after is the non-linear phase in which the spread plastic deformation is 

collected in the elements. A significant increment of the load factor is recorded when the limit 

tension is reached at the first node and macro-crack starts. The load factor continues to increase 

according to the activation of the non-holonomic softening modes at several nodes. When the 

critical width is reached at the first node, the problem is indefinite, the slope of the curve 

becomes negative and the load factor starts to decrease.  Going forward with the analysis, a 

positive slope is recorded again meaning that the problem, from indefinite, became positive-

definite again. When the load factor becomes zero, the procedure stops.  

The final deformed shape of the structure is reported in Figure 14 (left) where tension cracks 

have developed mainly along the compressed diagonal. Also sliding phenomena in the vertical 

and horizontal direction are evident. As comparison, a picture of the masonry panel after the 

test is reported in Figure 14 (right) and a good agreement in terms of cracks pattern is found. 

6 CONCLUSIONS 

A constitutive model to describe fracture process in masonry has been proposed. The 

formulation takes its cue from the evidence of experimental tests performed on historical 

masonry walls. The model describes the cracking phenomenon as the succession of two phases: 

the micro-cracking hardening phase, with cracks represented by spread plastic deformations, 

and the macro-cracking softening phase, with cracks represented by localized deformations at 

the element edges. A non-standard finite element formulation has been adopted to find the 

solution of the nonlinear structural problem, taking advantage of the ability of mathematical 

programming algorithms to manage the computational instabilities of softening materials. 

The simulation of an the in-situ diagonal compression test has been performed with reference 

to the results of an experimental campaign conducted on a historical masonry compound in the 

city center of L’Aquila (Italy). Some mechanical parameters (i.e. Poisson’s ratio and fracture 

energy) has been chosen according to typical values adopted in other scientific works. Some 

others (i.e. Young’s modulus, tensile and compressive strength) has been quantified by 

calibration of the numerical and experimental results. The numerical simulation was able to 

catch the value of peak-load and the maximum displacement. The cracking pattern showed 

cracks developing mainly along the diagonal directions, together with sliding phenomena in 

vertical and horizontal directions, analogously to what observed after the experimental test. 
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The validation test has given encouraging results; however, further research work is needed 

in order achieve the same results also for complex and large-scale structures. 
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