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Abstract. In this paper a novel numerical approximation of parametric eigenvalue problems
is presented. We motivate our study with the analysis of a POD reduced order model for a
simple one dimensional example. In particular, we introduce a new algorithm capable to track
the matching of eigenvalues when the parameters vary.

1 INTRODUCTION

The study of parametric eigenvalue problems arising from partial differential equations with
multidimensional (possibly stochastic) parameter space, is still the object of very limited re-
search. Starting from the pioneer work presented in [2] it is apparent that the analysis of
parametric eigenvalue problems cannot be simply considered as a generalization of the theory
developed for parametric/stochastic source partial differential equations [6, 9, 7, 5, 8, 18, 3].
Indeed, parametric eigenvalue problems lack a fundamental regularity condition needed for the
analysis of parametric source problems; this is the consequence of possible eigenvalue crossings
occurring when the parameters vary. When a crossing occurs, clearly the eigenvalues involved in
the crossing are not smooth functions of the parameters and the corresponding eigenspaces are
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not even continuous if the eigenvalues are sorted by their magnitude. The question addressed
in this paper concerns the matching of the eigenvalues across their intersections so that a new
sorting of the eigenmodes can be introduced that restores the smoothness of eigenvalues and
eigenspaces with respect to the parameters.

A reduced basis approximation of an isolated eigenmode has been presented and analyzed
in [15], while in [16] the reduced basis model approach is applied to the simultaneous approxi-
mation of multiple eigenvalues. The latter reference can be considered as the state of the art in
reduced order modeling for eigenvalue problems.

A reduced order model for the approximation of eigenvalue problems was considered in [4]
and an algorithm for tracking the matching of the eigenvalues is under development [1]. The
latter takes inspiration from reduced order model techniques for the parametric-in-frequency
Helmholtz equation [14, 11, 12, 10, 13, 17].

The aim of this paper is twofold. On one side, we provide the reader with a convincing
example of the necessity of tracking the matching of the eigenvalues for different parameters
values. Indeed, the lack of prior knowledge of the behavior of the eigenvalues, in terms of
dependence on the parameters and of their possible crossings, may lead to unexpected results.
On the other side, we introduce a greedy algorithm that can be used to successfully match the
eigenmodes and we describe some of its properties.

In Section 2 we describe our abstract problem. In Section 3 we present a one dimensional
example from which it is clear how crucial is to detect the crossings of eigenvalues, and finally
in Section 4 we introduce our matching algorithm.

2 PROBLEM SETTING

Let (H, (•, •)H) and (V, (•, •)V ) be Hilbert spaces such that V ⊂ H ≃ H ′ ⊂ V ′ gives a
standard Hilbert triplet and V is compact subset of H. Moreover, let M ⊂ RP be a P -
dimensional parametric domain, with P ≥ 1, and a, b : V ×V ×M → R two parameter-dependent
bilinear forms such that, for all µ ∈ M, a(•, •;µ) is symmetric and coercive, namely, there exist
a positive constant α such that

a(v, v;µ) ≥ α∥v∥2V ∀ v ∈ V

a(w, v;µ) = a(v, w;µ) ∀w, v ∈ V
(1)

and b(•, •;µ) is equivalent to the scalar product of H, namely, there exist positive constants
cb, Cb such that

cb(w, v)H ≤ b(w, v) ≤ Cb(w, v)H ∀w, v ∈ V. (2)

Given a window of values [λmin, λmax] ⊂ R+ we are interested in the following parametric
eigenvalue model problem: for each µ ∈ M, find eigenvalues λ(µ) ∈ [λmin, λmax] and non-
vanishing eigenfunctions u(µ) ∈ V such that, for all v ∈ V it holds

a(u(µ), v;µ) = λ(µ)b(u(µ), v;µ). (3)
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3 A MOTIVATING EXAMPLE

Let M be the interval [−0.9, 0.9] and consider the following µ-dependent boundary value
problem, with µ ∈ M:{

−div(A(µ)∇u(µ)) = λ(µ)u(µ) in Ω = (0, 1)2

u(µ) = 0 on ∂Ω
(4)

where the diffusion A(µ) ∈ R2×2 is given by the diagonal matrix

A(µ) :=

(
1 0
0 1 + µ

)
.

The weak formulation of (4) reads: for all µ ∈ M, find (λ(µ), u(µ)) ∈ R+ ×H1
0 (Ω), with u(µ)

non vanishing, such that, for all v ∈ H1
0 (Ω) it holds∫

Ω
(A(µ)∇u(µ)) · ∇v dx = λ(µ)

∫
Ω
u(µ)v dx. (5)

Problem (5) is a particular case of the general problem (3) when choosing the spaces V = H1
0 (Ω),

H = L2(Ω), (equipped with the natural inner products (•, •)H1 and (•, •)L2) and the bilinear
forms

a(w, v;µ) :=

∫
Ω
(A(µ)∇w) · ∇v dx,

b(w, v;µ) :=

∫
Ω
wv dx.

(6)

Notice that a(•, •;µ) is symmetric and coercive, with coercivity constant α = (1 + C2
P )

−1, CP

being the Poincaré constant, and b(•, •;µ) coincides with the L2-inner product, i.e., the chain
of inequalities (2) is a chain of equalities with constants cb = Cb = 1.

The analytical eigensolutions to (4) can be explicitly computed by separation of variables,
and they are given by:

λn,m(µ) = π2

4 (m2 + (1 + µ)n2)
un,m = cos

(
mπ
2 x

)
cos

(
nπ
2 y

) ∀m,n ∈ N. (7)

In particular, we underline that the eigenfunctions {un,m}n,m∈N are independent of the parameter
µ ∈ M, in contrast to the eigenvalues {λ(µ)n,m}n,m∈N. This property makes the problem
particularly simple and suitable for our preliminary considerations. Figure 1a shows the exact
eigenvalues corresponding to the formula in Equation (7), while Figure 1b shows the first six
approximating eigenvalues sorted according to their magnitude and denoted λ1,h, . . . , λ6,h.

3.1 Reduced basis approximation of the first eigenvalue

We are interested in computing an approximation to the first eigenpair (λ1(µ), u1(µ)) as µ
varies in the parametric interval M. Consider the uniform decomposition of M

MT = {−0.9 + (j − 1)∆µ, j = 1, . . . , T} = {µj , j = 1, . . . , T}
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(a) Exact eigenvalues λn,m(µ) given by for-
mula (7), for µ ∈ M.

-1 -0.5 0 0.5 1
0

10

20

30

40
1, h

2, h

3, h

4, h

5, h

6, h

X 0.2

Y 21.7649

(b) First six eigenvalues λ1,h, . . . , λ6,h com-
puted by the FEM and sorted according to their
magnitutde, for µ ∈ M.

with ∆µ = 0.1 and T = 19. On a given regular (fine) mesh of Ω, we compute the eigen-

solutions {(λ(j)
1,h, u

(j)
1,h), j = 1, . . . , T} corresponding to MT via the piecewise linear finite el-

ement method (FEM). We collect the T computed eigenfunctions into the snapshot matrix

S1 = [u
(1)
1,h| · · · |u

(T )
1,h ] ∈ RNh×T , where Nh denotes the number of degrees of freedom. By per-

forming the singular value decomposition (SVD), we derive the following representation of the
snapshot matrix:

S1 = UΣZT ,

where U ∈ RNh×Nh , Z ∈ RT×T are unitary matrices and Σ ∈ RNh×T is a rectangular diagonal
matrix.

Theoretically we expect S to have rank one because the first eigenvalue is well separated
by the others and the first eigenspace is independent of µ. Numerically, we observe that the
first singular value is well separated by the others even if it is not the only non vanishing one.
Indeed, for any fixed (relatively large) tolerance tol < 1.e − 3, several singular vectors Ntol

will be considered in the truncated SVD expansion of S1 (see Figure 2). For tol > 1.e − 1,
only the first singular vector will be considered in the singular value decomposition, namely,
Ntol = 1. The reduced basis proper orthogonal decomposition (RB-POD) approximation to the
first eigenpair (λ1(µ), u1(µ)) of (5) is obtained by projection onto the one-dimensional space
spanned by the first singular eigenvector. Looking at the results summarized in Table 1, we
note that the first RB-POD eigenvalue is a good approximation of the first FE eigenvalue λ1(µ),
for µ ∈ {−0.75,−0.25, 0.25, 0.75}. Slightly better approximations are also obtained for Ntol = 2
(see Table 2).

3.2 Reduced basis approximation of the third eigenvalue

We now follow the same strategy as before, with the aim of approximating the third eigen-
pair (λ3(µ), u3(µ)) of problem (5), for µ ∈ M. Denote by S3 the snapshot matrix S3 =

[u
(1)
3,h| · · · |u

(T )
3,h ] ∈ RNh×T collecting the third eigenfunctions u

(j)
3,h with µj ∈ MT . Theoretically,

we expect S3 to have rank 3, because of two eigenvalue crossings (see Figure 1b). The singular
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Figure 2: Singular values of the snapshot matrix S1 for successively refined meshes of Ω with
maximum diameter denoted as h.

h µ FEM based first eigenvalue RB-POD based first eigenvalue

0.1
-0.75 3.09172930 3.09178369
-0.25 4.32853369 4.32853489
0.25 5.56526834 5.56528610
0.75 6.80197424 6.80203730

0.05
-0.75 3.08606437 3.08607518
-0.25 4.32052203 4.32052233
0.25 5.55496589 5.55496949
0.75 6.78940395 6.78941665

0.01
-0.75 3.08432204 3.08432252
-0.25 4.31805168 4.31805169
0.25 5.55178071 5.55178087
0.75 6.78550948 6.78551005

Table 1: Comparison between the FE and RB-POD approximation to the first eigenpair
(λ1(µ), u1(µ)) of problem (5), using a one-dimensional RB space, spanned by the first singular
vector of S1.
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h µ FEM based first eigenvalue RB-POD based first eigenvalue

0.1
-0.75 3.09172930 3.09172950
-0.25 4.32853369 4.32853469
0.25 5.56526834 5.56526837
0.75 6.80197424 6.80197627

0.05
-0.75 3.08606437 3.08606442
-0.25 4.32052203 4.32052230
0.25 5.55496589 5.55496590
0.75 6.78940395 6.78940447

0.01
-0.75 3.08432204 3.08432204
-0.25 4.31805168 4.31805169
0.25 5.55178071 5.55178071
0.75 6.78550948 6.78550950

Table 2: Comparison between the FE and RB-POD approximation to the first eigenpair
(λ1(µ), u1(µ)) of problem (5), using a two-dimensional RB space, spanned by the first two
singular vectors of S1.

values of S3 are depicted in Figure 3, and the approximation results for Ntol = 3 are summarized
in Table 3. Even though the results might look satisfactory, it is important to observe that the
numbers reported in the last column of Table 3 correspond to the second eigenvalue of the 3× 3
reduced model.

Actually, in this case we know the exact solution and, after careful inspection, it was possible
to realize that the approximation of the solution we are interested in, corresponds to the second
eigenvalue of the 3× 3 system. This comes from the fact that the three element of the reduced
basis correspond to the three eigenvalues associated with the three modes belonging to the
third eigenmode. More precisely, looking at Figure 1b, the curve corresponding to λ3,h, is made
of three straight pieces and that’s the reason why we are expecting the rank of the snapshot
matrix to be equal to three. If we now isolate from the figure of the exact values 1a the three
straight lines corresponding to the three selected eigenfunctions, then we see that the curve we
are interested in is always the one related to the second eigenfunction out of those three.

We can deduce that, in general, it is essential to know some information about the structure
of the exact solution. In particular, a fundamental question that needs to be addressed is how
to match computed eigenvalues for different values of the parameter µ.

4 THE MATCHING OF EIGENVALUES

The motivating example of the previous section demonstrates that the reduced order tech-
niques available in the literature are inappropriate for tracking the eigenpair solutions to the
parameter-dependent eigenvalue problem (3). This section describes the crucial ingredient of a
novel algorithm under development, which is able to overcome this obstacle.

The algorithm performs an a priori matching between two sets of eigensolutions. Given two
values of the parameter µi, µk ∈ M, and the corresponding set of eigenpairs

{(λj(µi), uj(µi))}mi
j=1 {(λℓ(µk), uℓ(µk))}mk

ℓ=1
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Figure 3: Singular values of the snapshot matrix S3.

h µ FEM based third eigenvalue RB-POD based third eigenvalue

0.1
-0.75 8.14338931 8.14352843
-0.25 11.78888922 11.78893305
0.25 14.89196477 14.89205929
0.75 19.85303433 19.85335723

0.05
-0.75 8.05008647 8.05010991
-0.25 11.73700317 11.73701402
0.25 14.82575077 14.82577826
0.75 19.76686171 19.76695884

0.01
-0.75 8.02024667 8.02024755
-0.25 11.72081569 11.72081613
0.25 14.80523805 14.80523912
0.75 19.74028492 19.74028861

Table 3: Comparison between the FE and RB-POD approximation to the third eigenpair
(λ3(µ), u3(µ)) of problem (5), when the RB space is spanned by the first three singular vec-
tors of S3.
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for each j = 1, . . . ,mi, we want to find the value of ℓ ∈ {1, . . . ,mk} such that λj(µi) and λℓ(µk)
belong to the same eigenvalue curve λ⋆ : M → [λmin, λmax], i.e.,

λ⋆(µi) = λj(µi), λ⋆(µk) = λℓ(µk). (8)

Notice that this problem may have no solutions if some curve λ⋆ is entering or exiting the window
[λmin, λmax] in the interval identified by µi and µk. For the same reason, in general, mi may be
different from mk.

For this purpose, we adapt to our setting the following idea from [17]. Under the assumption
mi = mk = m, we construct the cost matrix D ∈ Rm×m

Di,k
j,ℓ = |λj(µi)− λℓ(µk)|+ wmin(∥uj(µi)− uℓ(µk)∥, ∥uj(µi) + uℓ(µk)∥) (9)

where w is a suitable positive weight. We aim at finding one value per row and one value per
column of D so that the sum of the selected matrix entries is minimized. In other words, we
look for a permutation σ = (σ1, . . . , σm) : {1, . . . ,m} → {1, . . . ,m} such that λj(µi) and λσj (µk)
belong to the same eigenvalue curve in the sense of equation (8), for j = 1, . . . ,m. This is an
optimization problem for which various solutions methods are available; for instance, a quite
convenient solution strategy involves the use of the Hungarian algorithm.

We make a couple of observations.

• Each entry of the cost matrix (9) has two ingredients: the first measures the distance
between the two sets of eigenvalues, and the second measures the distance between the
two sets of eigenfunctions. The weight w express the relative importance of the second
term with respect to the first one. Even though one might be tempted to consider the first
term, only, i.e., taking w = 0, in the majority of the cases this might lead to the wrong
matching.

• In applications we often get mi ̸= mk, leading to a rectangular cost matrix D. Typically,
this happens when an eigenvalue curve λ⋆(µ), µ ∈ M, attains values that are out of the
window of interest [λmin, λmax]. In this situation, the cost matrix is rectangular, and the
output of the Hungarian matrix is a permutation matching m = min{mi,mk} eigenpairs.

Preliminary computations show that the a priori matching performs generally well with some
exceptions. In particular, in some cases the matching strategy described above might fail,
delivering the wrong eigenpair matching and, moreover, it might not be able to deal with clusters
of eigenvalues, namely, when two or more eigenvalues are close to each other, even if not multiple.
For these reasons, a novel a posteriori matching strategy is under development which is able to
resolve these issues. Starting from an initial discretization M0 of the parameter set M, and
employing the a posteriori indicator, we will be able to build up a greedy algorithm that selects
the areas of M where refinement is needed, delivering a problem-adapted discretization M1 of
M.
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