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Abstract. A D2Q9 model of upwind lattice Boltzmann scheme that captures 45◦ discontinuities
exactly is discussed in this paper.

1 INTRODUCTION

Lattice Boltzmann Method (LBM) is a popular kinetic theory based mesoscopic incompress-
ible Navier-Stokes solver at low Mach number limit. Its popularity is due to the algorithmic
simplicity involving streaming and collision operators. Development of LBM for compressible
flow problems, with dominant hyperbolic convection terms, is non-trivial and is an active area
of research. A novel LBM which is equivalent to an upwind method at macroscopic level is
introduced in [1] for hyperbolic scalar conservation laws with and without stiff source terms.
While the equivalence of that Lattice Boltzmann (LB) algorithm with macroscopic Computa-
tional Fluid Dynamics (CFD) algorithms is an advantage, it is based on a simple D2Q5-plus
model. In this work, the upwind LBM in [1] is extended to D2Q9 model which results in an LBM
that varies based on the way the total flux gets decomposed between coordinate and diagonal-
to-coordinate (45◦ from coordinate) directions, thereby becoming the superset of D2Q5-plus and
D2Q5-cross models. A test problem involving multi-directional discontinuities has been solved
using the D2Q9 model of upwind LBM. It is observed that the scheme captures the 45◦ disconti-
nuity exactly for a specific partition of total flux between coordinate and diagonal-to-coordinate
directions, a remarkable feature of genuinely multi-dimensional modelling.

2 UPWIND LATTICE BOLTZMANN SCHEME

The two dimensional description of upwind LBM developed in [1] based on flux decomposed
equilibrium distribution functions of [2], is as follows. The lattice Boltzmann equation (LBE),

fn

(
x1 + v(1)

n ∆t, x2 + v(2)
n ∆t, t+ ∆t

)
= (1−ω)fn (x1, x2, t)+ωf

eq
n (u (x1, x2, t)) ;n ∈ {1, 2, 3, 4, 5}

(1)
split-up into collision and streaming steps as,

Collision: f∗n = (1− ω)fn (x1, x2, t) + ωfeqn (u (x1, x2, t)) (2)

Streaming: fn

(
x1 + v(1)

n ∆t, x2 + v(2)
n ∆t, t+ ∆t

)
= f∗n (3)
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guarantees exact streaming when v
(k)
n is either 0 or ∆xk

∆t , ∀k ∈ {1, 2}. More specifically, the
discrete velocities take the form,

v
(1)
1 = λ v

(2)
1 = 0 (4)

v
(1)
2 = 0 v

(2)
2 = λ (5)

v
(1)
3 = 0 v

(2)
3 = 0 (6)

v
(1)
4 = −λ v

(2)
4 = 0 (7)

v
(1)
5 = 0 v

(2)
5 = −λ (8)

with λ = ∆x1
∆t = ∆x2

∆t on a uniform structured lattice. The flux decomposed equilibrium distri-
bution functions feqn in (1) are:

feq1 =
g+

1

λ
(9)

feq2 =
g+

2

λ
(10)

feq3 = u− 1

λ

((
g+

1 + g+
2

)
+
(
g−1 + g−2

))
(11)

feq4 =
g−1
λ

(12)

feq5 =
g−2
λ

(13)

Here, u, g1 and g2 are conserved variable and components of flux in x1 and x2 directions respec-
tively, of the two-dimensional hyperbolic scalar conservation law,

∂u

∂t
+
∂g1(u)

∂x1
+
∂g2(u)

∂x2
= 0 (14)

with

g+
k =

{
gk if ∂ugk > 0
0 otherwise

and g−k =

{
−gk if ∂ugk < 0

0 otherwise
, for k ∈ {1, 2} (15)

These give g+
k − g−k = gk and g+

k + g−k = |gk| for k ∈ {1, 2}. In [1], the LBE (1) with re-

laxation factor ω such that 0 < ω < 2, conserved moment
∑5

n=1 fn =
∑5

n=1 f
eq
n = u and

non-conserved moment
∑5

n=1 v
(k)
n feqn = gk(u) for k ∈ {1, 2}, was shown to be equivalent to the

upwind Engquist-Osher scheme [3] for (14) upto second order in time,

u(x1, x2, t+ ∆t)− u(x1, x2, t) = −∆t

∆x

(
g+

1 (x1, x2, t)− g+
1 (x1 − λ∆t, x2, t)

)
− ∆t

∆x

(
g−1 (x1 + λ∆t, x2, t)− g−1 (x1, x2, t)

)
− ∆t

∆x

(
g+

2 (x1, x2, t)− g+
2 (x1, x2 − λ∆t, t)

)
− ∆t

∆x

(
g−2 (x1, x2 + λ∆t, t)− g−2 (x1, x2, t)

)
(16)
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where ∆x = ∆x1 = ∆x2. In particular, for ω = 1, LBE is equivalent, irrespective of the order
in time, to the upwind Engquist-Osher scheme. However, this is limited to D2Q5-plus model as
the flux decomposed equilibrium distribution functions involve splitting of components of flux
vector along x1, x2 directions (or coordinate directions), as shown in figure 1a. In this paper, the
upwind LBM is extended to D2Q5-cross and D2Q9 models by introducing novel modifications
to flux decomposed equilibrium distribution functions.

3 D2Q5-CROSS MODEL OF UPWIND LBM

In two dimensions, any flux has two basis vectors. In terms of canonical bases, the flux is
represented as ~g = g1

~i+ g2
~j, where ~i and ~j are unit vectors in x1 and x2 directions respectively

(or coordinate directions). Further, the flux ~g can be written as a linear combination of any two
independent basis vectors ~ξ and ~η as ~g = gξ~ξ + gη~η. Hence, this representation is not limited
to canonical bases, and thereby, the upwind LBM can be easily extended to D2Q5-cross model
with particles streaming along diagonal-to-coordinate (45◦ from the coordinate) directions by
taking the basis vectors to be vectors that are inclined 45◦ from~i and ~j vectors. The equilibrium
distribution functions for D2Q5-cross model as shown in figure 1b are constructed as follows:

feq1 =
g+
ξ

λ
(17)

feq2 =
g+
η

λ
(18)

feq3 = u− 1

λ

((
g+
ξ + g+

η

)
+
(
g−ξ + g−η

))
(19)

feq4 =
g−ξ
λ

(20)

feq5 =
g−η
λ

(21)

with

g+
l =

{
gl if ∂ugl > 0
0 otherwise

and g−l =

{
−gl if ∂ugl < 0
0 otherwise

, for l ∈ {ξ, η} (22)

These give g+
l − g−l = gl and g+

l + g−l = |gl| , for l ∈ {ξ, η}. The equilibrium distribution

functions satisfy the conserved moment relation,
∑5

n=1 fn =
∑5

n=1 f
eq
n = u. The non-conserved

moments become
∑5

n=1 v
(1)
n feqn = gξ − gη and

∑5
n=1 v

(2)
n feqn = gξ + gη. In order to satisfy non-

conserved moment relations, the following must be ensured: gξ − gη = g1 and gξ + gη = g2.
Hence, gξ = g2+g1

2 and gη = g2−g1
2 . With these equilibrium distribution functions, LBE (1)

is equivalent, upto second order in time, to macroscopic scheme with pure upwinding along
diagonal-to-coordinate directions,
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u(x1, x2, t+ ∆t)− u(x1, x2, t) =

−∆t

∆x

(
g+
ξ (x1, x2, t)− g+

ξ (x1 − λ∆t, x2 − λ∆t, t)
)
−∆t

∆x

(
g−ξ (x1 + λ∆t, x2 + λ∆t, t)− g−ξ (x1, x2, t)

)
−∆t

∆x

(
g+
η (x1, x2, t)− g+

η (x1 + λ∆t, x2 − λ∆t, t)
)
−∆t

∆x

(
g−η (x1 − λ∆t, x2 + λ∆t, t)− g−η (x1, x2, t)

)
(23)

where ∆x = ∆x1 = ∆x2. In particular, for ω = 1, LBE is equivalent, irrespective of the order
in time, to the above macroscopic upwind scheme.

(a) D2Q5-plus model (b) D2Q5-cross model (c) D2Q9 model

Figure 1: Different models of upwind LBM (Text in red: equilibrium distribution functions;
Text in blue: velocities corresponding to equilibrium distribution functions)

4 D2Q9 MODEL OF UPWIND LBM

As seen in the previous section, two dimensional flux has two basis vectors, and hence flux
can be represented as a linear combination of any two basis vectors. However, in order to extend
the scheme to D2Q9 model, it is required to represent the flux in terms of four different vectors
(~i,~j, 45◦ anti-clockwise from ~i, and 45◦ anti-clockwise from ~j). At this point, it is worth noting
that any number of vectors greater than two (extended from any basis set) can span the two
dimensional flux space. Hence, flux can be written as a linear combination of any number of
vectors greater than two (for example four, as ~g = ga~a + gb~b + gc~c + gd~d). Splitting the fluxes
into positive and negative components along each of these four directions as

g+
l =

{
gl if ∂ugl > 0
0 otherwise

and g−l =

{
−gl if ∂ugl < 0
0 otherwise

, for l ∈ {a, b, c, d} (24)
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(which give g+
l − g

−
l = gl and g+

l + g−l = |gl| for l ∈ {a, b, c, d}), the equilibrium distribution
functions as shown in figure 1c are constructed as,

feq1 =
g+
a

λ
(25)

feq2 =
g+
b

λ
(26)

feq3 =
g+
c

λ
(27)

feq4 =
g+
d

λ
(28)

feq5 = u− 1

λ

((
g+
a + g+

b + g+
c + g+

d

)
+
(
g−a + g−b + g−c + g−d

))
(29)

feq6 =
g−a
λ

(30)

feq7 =
g−b
λ

(31)

feq8 =
g−c
λ

(32)

feq9 =
g−d
λ

(33)

The equilibrium distribution functions satisfy the conserved moment relation
∑9

n=1 fn =
∑9

n=1 f
eq
n

= u, and the non-conserved moments become
∑9

n=1 v
(1)
n feqn = ga + gc − gd and

∑9
n=1 v

(2)
n feqn =

gb+gc+gd. To satisfy the non-conserved moment relations, ga+gc−gd = g1 and gb+gc+gd = g2

must be ensured. Therefore,

gc =
g2 + g1

2
− gb + ga

2
and gd =

g2 − g1

2
− gb − ga

2
∀ga, gb ∈ R (34)

With these equilibrium distribution functions, LBE (1) is equivalent, upto second order in time,
to the macroscopic scheme with upwinding along both coordinate and diagonal-to-coordinate
directions,

u(x1, x2, t+ ∆t)− u(x1, x2, t) =

− ∆t

∆x

(
g+
a (x1, x2, t)− g+

a (x1 − λ∆t, x2, t)
)
− ∆t

∆x

(
g−a (x1 + λ∆t, x2, t)− g−a (x1, x2, t)

)
− ∆t

∆x

(
g+
b (x1, x2, t)− g+

b (x1, x2 − λ∆t, t)
)
− ∆t

∆x

(
g−b (x1, x2 + λ∆t, t)− g−b (x1, x2, t)

)
−∆t

∆x

(
g+
c (x1, x2, t)− g+

c (x1 − λ∆t, x2 − λ∆t, t)
)
−∆t

∆x

(
g−c (x1 + λ∆t, x2 + λ∆t, t)− g−c (x1, x2, t)

)
−∆t

∆x

(
g+
d (x1, x2, t)− g+

d (x1 + λ∆t, x2 − λ∆t, t)
)
−∆t

∆x

(
g−d (x1 − λ∆t, x2 + λ∆t, t)− g−d (x1, x2, t)

)
(35)
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with ∆x = ∆x1 = ∆x2. In particular, for ω = 1, LBE is equivalent, irrespective of the order
in time, to the above macroscopic upwind scheme. If ga = g1 and gb = g2, then gc = gd = 0.
This results in g+

c = g−c = g+
d = g−d = 0, and hence 35 becomes 16 resulting in a D2Q5-

plus model. Similarly, if ga = 0 and gb = 0, then gc = g2+g1
2 and gd = g2−g1

2 . This results
in g+

a = g−a = g+
b = g−b = 0, gc = gξ and gd = gη, and hence 35 becomes 23 resulting in a

D2Q5-cross model. Therefore, D2Q9 model is a superset of D2Q5-plus and D2Q5-cross models.

4.1 Numerical diffusion and stability

Chapman-Enskog analysis as in [1] gives the modified PDE,

∂tu+

2∑
k=1

∂xkgk(u) =

∆t

(
1

ω
− 1

2

) 2∑
k=1

∂xk

(
2∑
i=1

∂xi

(
9∑

n=1

v(k)
n v(i)

n feqn

)
− ∂ugk

(
2∑
i=1

∂ugi∂xiu

))
+O(∆t2) (36)

For stability of numerical scheme, it is required to have 0 < ω < 2 and positive-semidefiniteness
of the following matrix consisting of numerical diffusion coefficients of (36).λ

(
∂u (|ga|+ |gc|+ |gd|)

)
− (∂ug1)2 λ∂u

(
|gc| − |gd|

)
− ∂ug1∂ug2

λ∂u

(
|gc| − |gd|

)
− ∂ug2∂ug1 λ

(
∂u (|gb|+ |gc|+ |gd|)

)
− (∂ug2)2

 (37)

Therefore, upon ensuring positive-semidefiniteness of the matrix, following condition on λ is
obtained for stability.

λ ≥ ∂u|gc| (∂ug1 − ∂ug2)2 + ∂u|gd| (∂ug1 + ∂ug2)2 + ∂u|ga| (∂ug2)2 + ∂u|gb| (∂ug1)2

∂u (|ga|+ |gb|) ∂u (|gc|+ |gd|) + ∂u|ga|∂u|gb|+ 4∂u|gc|∂u|gd|
(38)

4.2 Boundary conditions

At boundary, the macroscopic variables u, ga, gb, gc and gd are usually known through Dirich-
let or extrapolation-from-inside boundary conditions. From these, the split fluxes g±a , g

±
b , g

±
c and

g±d can be found. Using these split fluxes, equilibrium distribution functions can be evaluated
at the boundary. Define fneqn = fn − feqn , ∀n ∈ {1, 2, .., 9}, and from the definition of conserved

moment

9∑
n=1

fn =

9∑
n=1

feqn = u, it is inferred that

9∑
n=1

fneqn = 0.

4.2.1 Left boundary

At any point on left boundary, f2, f4, f5, f6, f7 and f8 are known from the computational
domain (refer to 1c), as these particle distribution functions from neighbouring points (from
inside) hop to points on left boundary. Let I be the set of these known particle distribution
functions. The unknowns at left boundary are f1, f3 and f9 (as shown in figure 2a), as these
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particle distributions must come from the outside of computational domain to left boundary.
Let J be the set of these unknown particle distribution functions. Since feqn can be evaluated
∀n ∈ {1, 2, .., 9} and fn is known ∀n ∈ I, fneqn = fn−feqn can be found ∀n ∈ I (as I ⊂ {1, 2, .., 9}).
Then fneqn ,∀n ∈ J can be written as,

fneq3 = −fneq8 − fneq2 + fneq5 + fneq7

3
(39)

fneq1 = −fneq6 − fneq2 + fneq5 + fneq7

3
(40)

fneq9 = −fneq4 − fneq2 + fneq5 + fneq7

3
(41)

satisfying

9∑
n=1

fneqn = 0. Now, fn = feqn + fneqn ∀n ∈ J can be found to be,

f3 =
|gc|
λ

+
u

3
− |ga|+ |gc|+ |gd|

3λ
− f8 −

f2 + f5 + f7

3
(42)

f1 =
|ga|
λ

+
u

3
− |ga|+ |gc|+ |gd|

3λ
− f6 −

f2 + f5 + f7

3
(43)

f9 =
|gd|
λ

+
u

3
− |ga|+ |gc|+ |gd|

3λ
− f4 −

f2 + f5 + f7

3
(44)

(a) Left (b) Right (c) Bottom (d) Top

Figure 2: Boundary conditions (Dark black lines indicate boundaries; red arrows indicate
unknown distribution functions at each boundary)

4.2.2 Right boundary

By following a similar procedure, the unknown distribution functions at right boundary (as
shown in figure 2b) can be found as,

f4 =
|gd|
λ

+
u

3
− |ga|+ |gc|+ |gd|

3λ
− f9 −

f2 + f5 + f7

3
(45)

f6 =
|ga|
λ

+
u

3
− |ga|+ |gc|+ |gd|

3λ
− f1 −

f2 + f5 + f7

3
(46)

f8 =
|gc|
λ

+
u

3
− |ga|+ |gc|+ |gd|

3λ
− f3 −

f2 + f5 + f7

3
(47)
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4.2.3 Bottom boundary

The unknown distribution functions at bottom boundary (as shown in figure 2c) can be found
as,

f3 =
|gc|
λ

+
u

3
− |gb|+ |gc|+ |gd|

3λ
− f8 −

f1 + f5 + f6

3
(48)

f2 =
|gb|
λ

+
u

3
− |gb|+ |gc|+ |gd|

3λ
− f7 −

f1 + f5 + f6

3
(49)

f4 =
|gd|
λ

+
u

3
− |gb|+ |gc|+ |gd|

3λ
− f9 −

f1 + f5 + f6

3
(50)

4.2.4 Top boundary

The unknown distribution functions at top boundary (as shown in figure 2d) can be found
as,

f9 =
|gd|
λ

+
u

3
− |gb|+ |gc|+ |gd|

3λ
− f4 −

f1 + f5 + f6

3
(51)

f7 =
|gb|
λ

+
u

3
− |gb|+ |gc|+ |gd|

3λ
− f2 −

f1 + f5 + f6

3
(52)

f8 =
|gc|
λ

+
u

3
− |gb|+ |gc|+ |gd|

3λ
− f3 −

f1 + f5 + f6

3
(53)

4.2.5 Bottom-left corner

At bottom left corner, the known equilibrium distribution functions are f7, f8, f5 and f6 (refer
to 1c). The unknown equilibrium distribution functions are f1, f3, f2, f4 and f9 (refer to 3a).
Since f4 and f9 do not enter or leave the computational domain, evaluation of them is not
needed. Hence, it can be assumed that fneq9 + fneq4 + fneq5 = 0. Then fneqn for other unknown
equilibrium distribution functions can be written as,

fneq1 = −fneq6 (54)

fneq3 = −fneq8 (55)

fneq2 = −fneq7 (56)

satisfying

9∑
n=1

fneqn = 0. Now, fn = feqn + fneqn can be found to be,

f1 =
|ga|
λ
− f6 (57)

f3 =
|gc|
λ
− f8 (58)

f2 =
|gb|
λ
− f7 (59)
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(a) Bottom-left (b) Bottom-right (c) Top-left (d) Top-right

Figure 3: Corner conditions (Red arrows indicate unknown distribution functions that are
evaluated; blue arrows indicate unknown distribution functions that are not evaluated)

4.2.6 Bottom-right corner

By following the similar procedure, the bottom-right corner conditions (as shown in figure
3b) are found to be,

f2 =
|gb|
λ
− f7 (60)

f4 =
|gd|
λ
− f9 (61)

f6 =
|ga|
λ
− f1 (62)

4.2.7 Top-left corner

The top-left corner conditions (as shown in figure 3c) are,

f1 =
|ga|
λ
− f6 (63)

f9 =
|gd|
λ
− f4 (64)

f7 =
|gb|
λ
− f2 (65)

4.2.8 Top-right corner

The top-right corner conditions (as shown in figure 3d) are,

f6 =
|ga|
λ
− f1 (66)

f7 =
|gb|
λ
− f2 (67)

f8 =
|gc|
λ
− f3 (68)

9
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4.3 Numerical results

The novel D2Q9 model for upwind LBM has been used to simulate a standard test problem
from [4]. The problem is governed by

∂tu+ ∂x1g1(u) + ∂x2g2(u) = 0 with g1(u) = au, g2(u) = bu (69)

on the domain [0, 1]× [0, 1]. Here, a = cos θ, b = sin θ with θ ∈
(
0, π2

)
. Boundary conditions of

the steady-state problem are u(0, x2) = 1 for 0 < x2 < 1 and u(x1, 0) = 0 for 0 < x1 < 1. Exact
solution of the steady-state problem is, u(x1, x2) = 1 for bx1 − ax2 < 0 and u(x1, x2) = 0 for
bx1 − ax2 > 0. The numerical solutions for θ = 0 and π

2 obtained by choosing the fluxes along
diagonal-to-coordinate directions in D2Q9 model as 0 (i.e., gc = gd = 0), thereby replicating
a D2Q5-plus model, are shown in figures 4a and 4b respectively. The numerical solution for
θ = π

4 obtained by choosing the fluxes along coordinate directions in D2Q9 model as 0 (i.e.,
ga = gb = 0), thereby replicating a D2Q5-cross model, is shown in figure 4c. It can be seen from
these results that, for some specific partition of total flux between coordinate and diagonal-to-
coordinate directions, the D2Q9 model captures discontinuities aligned with x1, x2 and diagonal
directions exactly.

(a) 0◦ discontinuity (b) 90◦ discontinuity (c) 45◦ discontinuity

Figure 4: Discontinuities at different angles captured exactly

For discontinuities that are not aligned along x1, x2 and diagonal directions, partition of total
flux between coordinate and diagonal-to-coordinate directions can be made by doing a linear
interpolation (LI) between D2Q5-plus and D2Q5-cross models for the angle of discontinuity.
Figures 5a, 5b and 5c show 30◦ discontinuity captured with D2Q5-plus, LI between D2Q5-plus
and D2Q5-cross, and D2Q5-cross representations of D2Q9 model respectively. It can be seen
that the linear interpolation model has minimal diffusion, as this model ensures that upwinding
happens along 30◦ (upto the error due to LI).
Figures 6a, 6b and 6c show 15◦ discontinuity captured with D2Q5-plus, LI between D2Q5-plus
and D2Q5-cross, and D2Q5-cross representations of D2Q9 model respectively. As expected,
the D2Q5-cross representation of D2Q9 model gives the most diffusion, while the other two are
similar.
All numerical results are obtained for ω = 1, when LBE is exactly equivalent (irrespective of
the order in time) to macroscopic upwind scheme.
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(a) 30◦ discontinuity with
D2Q5-plus representation

(b) 30◦ discontinuity with
LI

(c) 30◦ discontinuity with
D2Q5-cross representation

Figure 5: 30◦ discontinuity with different representations of D2Q9 model

(a) 15◦ discontinuity with
D2Q5-plus representation

(b) 15◦ discontinuity with
LI

(c) 15◦ discontinuity with
D2Q5-cross representation

Figure 6: 15◦ discontinuity with different representations of D2Q9 model

5 CONCLUSIONS

The novel D2Q9 model of upwind LBM for hyperbolic scalar conservation laws captures
discontinuities aligned with x1, x2 and diagonal directions exactly, thereby making LBM com-
petitive with genuinely multi-dimensional CFD algorithms. The numerical results shown are
solved for a linear advection problem, while smooth flux splitting (in D2Q9 model) required for
non-linear problems are being explored, and will be presented in future works.
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