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Summary

The paper presents a novel strategy providing fully computable upper bounds for the energy norm of

the error in the context of three-dimensional linear finite element approximations of the reaction-diffusion

equation. The upper bounds are guaranteed regardless the size of the finite element mesh and the given

data, and all the constants involved are fully computable. The upper bounds property holds if the shape of

the domain is polyhedral and the Dirichlet boundary conditions are piecewise-linear. The new approach is

an extension of the flux-free methodology introduced by Parés and Díez1, which introduces a guaranteed,

low-cost and efficient flux-free method substantially reducing the computational cost of obtaining guaran-

teed bounds using flux-free methods while retaining the good quality of the bounds. Besides extending the

2D methodology, specific new modifications are introduced to further reduce the computational cost in the

three-dimensional setting. The presented methodology also provides a new strategy to obtain equilibrated

boundary tractions which improves the quality of standard techniques while having a similar computational

cost.
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1 INTRODUCTION

The computation of fully computable guaranteed/strict a posteriori error bounds both for the energy norm of the
error or for quantities of interest has been a subject of active research in the past years2,3,4. The fundamental property
of guaranteed error estimation is that the final bounds do not depend on generic non-explicit constants and that
they hold regardless the size of the finite element mesh (they do not neglect higher order terms nor hold only
asymptotically). Moreover, much effort has been devoted to obtain efficient guaranteed bounds5,6,7,8,9,10.

One of the most accurate error estimators currently available is the flux-free error estimator introduced by Parés et
al.11 based on the partition of unity property to localize the error equations in nodal-patches of elements called stars.
This technique has been extensively used in many applications, and even though in its original form only provides
asymptotic bounds for the error it has subsequently been modified to provide guaranteed error bounds12,13,14,15,1.

Flux-free estimators are usually compared with hybrid-flux estimators, which are based on obtaining local equi-
librated tractions to state the error equations in the elements. In general, the flux-free approach provides better
accuracy while the hybrid-flux approach may require lower CPU cost6,13,14,1. As in Parés and Díez1, the objective
of the present work is to provide a novel flux-free strategy - now in a three dimensional setting - that while retain-
ing the accuracy of the standard flux-free approach has a computational cost comparable to the cost of hybrid-flux
techniques.
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Finally, it is shown that the resulting technique also provides a new technique to compute 3D equilibrated bound-
ary tractions to be popular in any equilibrated residual method. One of the most used techniques to compute the
equilibrated boundary tractions is described by Ainsworth and Oden16, Chapter 6. These local fluxes verify the
first-order equilibration conditions which can be decoupled into local problems posed over nodal-centered patches of
elements (patches of elements with a common vertex node called stars). Specifically, the equilibrated tractions are
written in terms of its moments yielding to a system of equations posed in each star where the number of unknowns
of the local problem coincides, in a 3D setting, with the number of faces of the tetrahedra on the star. The new pro-
posed equilibrated technique also solves a local problem in each star but the unknowns are now associated to each
vertex of the faces conforming the star (three per face). The increase in the number of local unknowns (three times
larger) along with a new efficient minimization criterion allow obtaining a very precise set of equilibrated tractions
while not substantially increasing the computational cost.

2 MODEL PROBLEM AND FINITE ELEMENT APPROXIMATION

The three-dimensional steady reaction-diffusion equation reads

−Δu + �2u = f in Ω,
u = uD on ΓD,

(u ⋅ n = gN on ΓN,

(1)

where Ω is an open bounded polyhedral domain whose boundary )Ω = ΓN ∪ ΓD is partitioned into two disjoint
sets ΓN and ΓD. The Dirichlet boundary condition uD is assumed to be continuous and piecewise linear on ΓD,
gN ∈ L2(ΓN), f ∈ L2(Ω) and the datum � is assumed to be a piecewise-constant field. Without loss of generality,
� is also assumed to be non-negative and in order to guarantee the unicity of the solution of (1), either � > 0 in
a non-zero measure subdomain of Ω or ΓD is a non-empty set. For the sake of simplicity, the Dirichlet boundary
conditions are assumed to be piecewise linear so that they are exactly verified using linear finite elements. However,
this assumption can be removed17. Also, the datum � is assumed to be piecewise-constant but this assumption can
also be removed, see Appendix E.

The variational formulation of the problem is stated as follows: find u ∈ U such that

a(u, v) = l(v) for all v ∈ V , (2)

where
a(u, v) = ∫Ω

(
(u ⋅ (v + �2uv

)
dΩ and l(v) = ∫Ω

fv dΩ + ∫ΓN

gNv dΓ,

and U = {u ∈ H1(Ω), u|ΓD
= uD} and V = {v ∈ H1(Ω), v|ΓD

= 0} are the solution and test spaces respectively, H1(Ω)

being the standard Sobolev space.
The finite element approximation of (2) is defined introducing a conforming tetrahedralization of the computa-

tional domain Ω into nel linear shape-regular tetrahedral elements denoted by Ωk, and considering the associated
finite-dimensional spaces Uℎ ⊂ U and Vℎ ⊂ V of piecewise-linear continuous functions over this mesh of charac-
teristic mesh size ℎ. It is further assumed that the mesh is such that the reaction coefficient is constant inside each
element, and in the following, the local restriction to element Ωk of the (constant) reaction coefficient is denoted by
�k = �|Ωk

∈ ℝ. Then, the finite element approximation of u is uℎ ∈ Uℎ such that

a(uℎ, v) = l(v) for all v ∈ Vℎ. (3)

3 GUARANTEED UPPER BOUNDS FOR THE ENERGY NORM: COMPLEMENTARY
ENERGY RELAXATION AND DATA PROJECTION

The standard complementary energy minimization approach18,19 can be used to derive upper bounds for the
energy norm of the error using globally admissible complementary fields20,21,22,23,24. This upper bounds can also be
derived using the dual variational principle proposed by Prager and Synge25,26. Using either of the two previous
approaches, it can be stated that any pair of dual complementary estimates q ∈ [L2(Ω)]3 and r ∈ L2(Ω) verifying
the residual equation

∫Ω

(
q ⋅ (v + �2rv

)
dΩ = l(v) − a(uℎ, v) = R(v) ∀v ∈ V (4)
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yield an upper bound for the energy norm of the error e = u − uℎ ∈ V , where the energy norm of a function v is
defined as |||v||| = a(v, v)1∕2. Specifically,

|||e|||2 ≤ ‖q‖2
[L2(Ω)]3

+ ‖�r‖2
L2(Ω)

, (5)

where ‖⋅‖[L2(Ω)]3 and ‖⋅‖L2(Ω) denote the standard norms of the Lebesgue spaces [L2(Ω)]3 and L2(Ω) respectively, that
is

‖q‖2
[L2(Ω)]3

= ∫Ω

q ⋅ q dΩ and ‖r‖2
L2(Ω)

= ∫Ω

r2 dΩ.

A detailed proof of this result is given by Parés and Díez1 for a 2D setting (valid also for 3D).
Hence, any pair of dual estimates q ∈ [L2(Ω)]3 and r ∈ L2(Ω) verifying (4) provide a guaranteed upper bound for

the energy norm of the error. However ensuring efficiency and accuracy of guaranteed a posteriori error estimators
requires keeping a balance between two aspects in competition: 1) the dual estimates have to be carefully chosen to
avoid a large overestimation in (5) (the optimal estimates being q = (e and r = e) and 2) the dual estimates have to
be fully computable and its computational cost should be affordable and as low as possible.

The best approach in terms of accuracy of the error estimator is to use a dual global formulation to compute the
dual estimates19,27,28. However, this approach is computationally expensive because the methodology to obtain the
dual estimates q and r is global. In practice, most methods aim at finding a pair of dual estimates solving only local
finite dimensional problems. In particular, it is a common practice to use piecewise polynomial fields. That is, for a
given suitable interpolation degree q, the goal is to find q ∈ [ℙ̂q(Ω)]3 and r ∈ ℙ̂

q−1(Ω) verifying (4) where

ℙ̂
q(Ω) = {v ∈ L2(Ω), v|Ωk

∈ ℙ
q(Ωk)},

ℙ
q(Ωk) being the space of polynomials of degree q over Ωk, for k = 1,… , nel.
It is worth noting that a pair of piecewise polynomial dual estimates verifying (4) exist only if the input data f and gN

are piecewise polynomial functions. For non-piecewise polynomial data, guaranteed upper bounds using piecewise
polynomial dual estimates can also be obtained if the data oscillation errors are isolated from the discretization
errors1,29,30. Indeed, denote by Π

q̂
k
∶ L2(Ωk) → ℙ

q̂(Ωk) the L2(Ωk)-orthogonal projector to the space of polynomials
of degree q̂ defined over the element Ωk, and by Π

q̄
 ∶ L2() → ℙ

q̄() the L2()-orthogonal projector to the space of
polynomials of degree q̄ defined over the face  . Then, the following theorem follows.

Theorem 1. Let q ∈ [L2(Ω)]3 and r ∈ L2(Ω) be a pair of dual estimates verifying

∫Ω

(
q ⋅ (v + �2rv

)
dΩ = RΠ(v) ∀v ∈ V , (6)

where the projected residual RΠ(⋅) is defined as

RΠ(v) =

nel∑
k=1

[
∫Ωk

Π
q̂
k
(f − �2

kuℎ)v dΩ +
∑

⊂)Ωk∩ΓN

∫

Πq̄
gNv dΓ − ∫Ωk

(uℎ ⋅ (v dΩ

]
,

q̂ and q̄ being two whole numbers. Then, the following upper bound follows

|||e|||2 ≤
nel∑
k=1

�2k,

for
�k =

√
‖q‖2

[L2(Ωk)]
3
+ �2

k
‖r‖2

L2(Ωk)
+ osck(f ) +

∑
⊂)Ωk∩ΓN

osc (gN). (7)

The oscillation terms are given by

osck(f ) = C0‖f − �2
kuℎ − Π

q̂
k
(f − �2

kuℎ)‖L2(Ωk)
(8)

and
osc (gN) = min

{
C1, C2

}‖gN − Πq̄
gN‖L2(), (9)

for the exactly computable data oscillation constants

C0 = min

{
ℎk

�
,
1

�k

}
, (10)

C2
1
=

||
3|Ωk|

1

�k

√
(2max

x∈
|x − x |)2 + (3∕�k)

2 (11)

and
C2
2
=

||
3|Ωk|C0

(
2max

x∈
|x − x | + 3C0

)
, (12)
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where x denotes the vertex of element Ωk opposite to the face  , |x − x | denotes the ℝ
3 Euclidean norm of the

vector x−x , || is the area of the face  and ℎk = maxx,y∈Ωk
|x− y| and |Ωk| are the diameter and volume of element

Ωk respectively.

This theorem is the extension to the three dimensional setting of Theorem 1 in Parés and Díez1. The proof of the
theorem is not included here since it can be easily obtained following Parés and Díez1 combined with the results
presented by Ainsworth and Vejchodský29,30. However, it is worth noting that the three dimensional extension of
the result incorporates two novelties: 1) the reaction coefficient � is a piecewise constant function over Ω instead of
being just constant and 2) the oscillation term associated to the source data osck(f ) includes the projection of the
reaction term associated to the finite element approximation.

Remark 1. Note that the notation for the data oscillation constants C0, C1 and C2 is simplified since no explicit
dependency on element Ωk and face  is done. However, these constants are not the same for each element, C0

varying in each element Ωk and C1 and C2 being different for each face  of each element Ωk.

Remark 2. In the expressions for C1 and C2 the term maxx∈ |x − x | can be replaced by the diameter of the
tetrahedron Ωk where  lies, ℎk, and still the upper bound property holds.

Remark 3. For q̂ ≥ 1, since the finite element approximation is linear and �k is constant, Πq̂
k
(�2

k
uℎ) = �2

k
uℎ and

therefore osck(f ) reduces to the standard one

osck(f ) = C0‖f − Π
q̂
k
f‖L2(Ωk)

.

Remark 4. For �k = 0, the constants C0 and C2 are simply

C0 =
ℎk

�
and C2

2
=

||
3|Ωk|

ℎk

�

(
2max

x∈
|x − x | + 3

ℎk

�

)
, (13)

and the oscillation error due to the Neumann boundary condition is

osc(gN) = C2‖gN − Πq̄
gN‖L2().

From now on, the subscripts of the L2-norms are simplified to ‖⋅‖[L2(Ωk)]
3 = ‖⋅‖k, ‖⋅‖L2(Ωk)

= ‖⋅‖k and ‖⋅‖L2() = ‖⋅‖ ,
where the local norm of vector and scalar fields in Ωk, which have the same notation, can be disambiguated by
looking into their arguments.

4 LOCAL COMPUTATION OF THE DUAL ESTIMATES q AND R USING A FLUX-FREE
APPROACH: A NOVEL CHEAPER/LOW-COST CONSTRUCTION

The piecewise polynomial dual estimates, q and r, are computed imposing equation (6) using a flux-free subdomain-
based approach13,14. The presented method is novel in the sense that it provides a non-unique explicit/closed
expression for the dual estimates q ∈ [ℙ̂q(Ω)]3 and r ∈ ℙ̂

q−1(Ω) verifying (6). Thus, it only requires solving a small
linear system of equations to optimize the quality of the bounds.

The present work differs from Parés and Díez1 in four main aspects: 1) the new method is valid in a 3D context,
2) the reaction dual estimate r is not necessarily taken to be zero, thus overcoming solvability problems when
considering low data projection degrees in Theorem 1 and also improving the quality of the final bounds, 3) the
reaction term is introduced in the oscillation term (8) allowing to use a lower interpolation degree q for the dual
estimates and therefore reducing the computational cost of the technique and finally 4) three different explicit closed
forms for the dual estimates are given depending on the projection degrees q̂ and q̄.

The remainder of the section is structured as follows. Section 4.1 presents the set of decoupled constrained min-
imization problems that have to be solved (one for each node of the mesh) in order to compute the dual estimates
using the flux-free approach. Section 4.2 details the strong form of the constraints of the local optimization prob-
lems followed by Section 4.3 which provides a particular closed expression for the dual estimates q and r ensuring
that they satisfy the constraints of the optimization problems. These closed formulas allow reducing the constrained
optimization problems given in Section 4.1 into simplified smaller constrained quadratic optimization problems
described in detail in Section 4.4.
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4.1 Flux-free approach: basic equations and notations

Let xi, i = 1,… , nnp, denote the vertex nodes of the mesh and let !i be the support of its associated linear shape
function �i, also referred to as the star associated with node i. Let also V(!i) and ℙ̂

q(!i) denote the local restrictions
of the spaces V and ℙ̂

q(Ω) to the star !i, respectively. Then, one can obtain a pair of dual estimates q ∈ [ℙ̂q(Ω)]3 and
r ∈ ℙ̂

q−1(Ω) verifying (6) by adding a set of local dual estimates qi and ri computed independently for each star of
the mesh. Specifically,

q =

nnp∑
i=1

q
i and r =

nnp∑
i=1

ri, (14)

where qi ∈ [ℙ̂q(!i)]
3 and ri ∈ ℙ̂

q−1(!i) are such that

∫!i

(
qi ⋅ (v + �2riv

)
dΩ = RΠ(�iv) ∀v ∈ V(!i). (15)

Indeed, equation (6) is readily recovered by adding the local star equations (15) and using the partition of unity
property,

∑nnp
i=1

�i = 1. It is worth noting that equation (15) does not have a unique solution. In order to select among
all the solutions one providing high-quality bounds, this equation is complemented with the minimization of the
local norm of the dual estimates qi and ri. That is, the global problem of finding q and r verifying equation (6) and
minimizing the upper bound for the error given in equation (5) is decomposed into the following local constrained
minimization problems

Minimize ‖qi‖2
[L2(!i)]

3 + ‖�ri‖2
L2(!i)

qi∈[ℙ̂q (!i)]
3 , ri∈ℙ̂q−1(!i)

Subject to qi , ri verifying (15).
(16)

Remark 5. It is worth noting that although the dual estimates qi and ri are selected to minimize the local com-
plementary energy given by ‖qi‖2

[L2(!i)]
3
+ ‖�ri‖2

L2(!i)
, there is no certainty that the accumulated estimates q and r

defined in equation (14) will globally minimize the complementary energy used to compute the bounds in (7). As
shown in the existing literature13,12,15,1, the minimization of the local complementary energy given in (16) provides
very good effectivities for the final bound, but simple existing techniques13,12 could be used to further improve the
final bound.

Obviously the flux-free approach can only be used if equation (15) admits at least one solution. A strictly positive
reaction term �k > 0 in any of the elements Ωk conforming the star !i, ensures the solvability of the local equations
(for any ri ≠ 0). However, for �2ri|!i

= 0, the solvability is only directly ensured if the star intersects the Dirichlet
boundary. Note that the condition �2ri|!i

= 0 both includes the case of a zero reaction coefficient �|!i
= 0 or a

particular choice for the reaction estimate of ri = 0. For �2ri|!i
= 0 and a star not intersecting the Dirichlet boundary,

the kernel of the bilinear operator appearing in the l.h.s. of (15) is the one-dimensional space of constants, ℙ0(!i),
and therefore (15) is solvable only if the following compatibility31,16 or star equilibration condition holds

RΠ(�i) = 0. (17)

Since the non-projected residual verifies the Galerkin orthogonality property, that is, R(v) = 0 for all v ∈ Vℎ, the
compatibility condition (17) can be enforced by imposing RΠ(�i) = R(�i). Therefore, to be able to use the flux-free
approach it is sufficient to take q̂ and q̄ greater or equal than 1. However, important computational savings are
obtained when using constant projections and therefore the following solvability assumptions are introduced.

Remark 6 (Solvability assumptions). The computational cost of the a posteriori error estimator decreases for lower
values of q̂ and q̄. However, for q̂ = 0 or q̄ = 0, fulfilling (17) requires careful consideration. In general, minimizing
cost and guaranteeing solvability suggests taking different values of q̂ = 0 and q̄ = 0 in the different elements
and faces on ΓN. Hereafter, the following requirements on the values of q̂ and q̄ on the elements of the mesh and
Neumann faces respectively are introduced:

• for every face  ⊂ ΓN, the choice q̄ = 0 can only be made if either

– �2ri||!i
≠ 0 for all !i such that  radiates from node xi, that is �i

|| ≠ 0 or

– the Neumann boundary data gN is a constant function on 

• for every element Ωk of the mesh, the choice q̂ = 0 can only be made if either

– �2ri||!i
≠ 0 for all !i containing Ωk or
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– the data source f − �2
k
uℎ is a constant function inside Ωk, that is �k = 0 along with f being constant in Ωk.

Finally, it is worth noting that from these requirements, in pure diffusion problems or in problems having a vanish-
ing reaction coefficient in a certain area, it is not possible to use q̂ = 0 or q̄ = 0 if the source data is not piecewise
constant.

To simplify the presentation, it is assumed that the values of q̂ and q̄ are constant in all the mesh. However, com-
bining different values of q̂ and q̄ for some specific faces or elements of the mesh only entails a more involved
implementation. This non-constant approach is strongly recommended in some cases, for instance, when non-
piecewise constant Neumann boundary conditions are given along with zero values of the reaction term. In this
case it is necessary to take q̄ = 1 along the Neumann boundary, involving the use of quadratic tractions at these
faces. The use of linear tractions in the other faces greatly simplifies the computation of the dual estimates in the
stars not intersecting the Neumann boundary.

4.2 Strong form of the constraints of the local constrained optimization problems

The constraint (15) to problem (16) is expressed in its weak form. In the following, the strong form of (15) is preferred
to handle it analytically. Some new notations must be introduced to derive this strong form.

First, the faces of a star !i denoted by F(!i) are separated into two disjoint sets: Zi include the faces not containing
xi as a vertex (or equivalently, the faces where the basis function �i vanishes), and Γi are the faces radiating from
node xi (or equivalently, the faces where �i is not zero), that is

Zi = { ⊂ F(!i) , �i| = 0} and Γi = { ⊂ F(!i) , �i(x) ≠ 0 for some x ∈ }.

Note that if the star is associated with an interior node, Zi = )!i and Γi are its interior faces.
Also, for each face  of the mesh, let n be an arbitrary but fixed unit normal, with the restriction that if  is an

exterior face, n = n, that is, it is outward to )Ω. In addition, given an element Ωk and a face of this element  ⊂ )Ωk,
let n

k
denote the outward unit normal to face  and let �

k
= n ⋅ n


k

account for the sign associated with the arbitrary
choice of n .

The strong form of the local error equation (15) is then written separately in each element of the star Ωk ⊂ !i by
introducing the set of tractions {gi}⊂F (!i)

, where gi is the traction associated with the face  of the star !i in the
direction of n . Introducing the restriction of the dual estimates qi and ri to element Ωk ⊂ !i, q

i
k
= qi|Ωk

∈ [ℙq(Ωk)]
3

and ri
k
= ri|Ωk

∈ ℙ
q−1(Ωk), the constraints given in (15) are equivalent to impose in all elements Ωk ⊂ !i

−( ⋅
(
q
i
k + �i(uℎ

)
+ �2

kr
i
k = �iΠ

q̂
k
(f − �2

kuℎ) − (uℎ ⋅ (�i in Ωk, (18a)
(
qi
k + �i(uℎ

)
⋅ n


k
= �

k
gi on  ⊂ )Ωk, (18b)

along with imposing the following restrictions on the values of the tractions gi at the boundary of the star

gi = 0 on  ⊂ Zi, (19a)

gi = �iΠ
q̄
gN on  ⊂ Γi ∩ ΓN. (19b)

The proof that, for a given set of tractions {gi}⊂F (!i)
verifying (19), any pair of dual estimates fulfilling (18) are a

solution of (15) is given by Parés and Díez1. Even though the aforementioned proof refers to the two-dimensional
set up, the proof is also valid in the three dimensional framework and is therefore omitted here.

The essential point of the new proposed a posteriori error estimator is that, for values of the polynomial degree
of the interior and face projectors, q̂ and q̄, less or equal than one, it is possible to find a set of tractions {gi}⊂F (!i)

for which equation (18) has an explicit solution (closed formula for qi
k

and ri
k
).

Remark 7. Equations (18) do not uniquely determine qi
k
∈ [ℙq(Ωk)]

3 and ri
k
∈ ℙ

q−1(Ωk) in terms of the values of the
tractions gi at )Ω. Indeed, if Φk denotes the space of hyperstatic fluxes28,32

Φk = {q ∈ [ℙq(Ωk)]
3; −( ⋅ q = 0, q ⋅ n|)Ωk

= 0},

then if (qi
k
, ri

k
) is a pair of dual estimates verifying (18), (qi

k
+ qℎs

k
, ri

k
) also verifies (18) for any qℎs

k
∈ Φk, where in the

three dimensional setting dim(Φk) = q(q−1)(2q+5)∕6. Therefore, Section 4.3 provides an explicit closed formula for
one of the particular solutions of (18). This closed formula does not include, for instance, the unknowns associated
to the hyperstatic fluxes to alleviate the cost of (16), but they could be easily included to improve the estimate13.
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FIGURE 1 Notation for the vertices, edges and faces of an element contained in star !i.

TABLE 1 Summary of the cases for which a closed expression for the dual estimates qi
k

and ri
k

is provided.

Case
Neumann BC (19b) source term (18a) local tractions interpolation degree

�iΠ
q̄
gN �iΠ

q̂
k
(f − �2

k
uℎ) gi for qi

k

I q̄ = 0 q̂ = 0 piecewise linear piecewise linear linear q = 2

II q̄ = 0 q̂ = 1 piecewise linear piecewise quadratic linear q = 3

III q̄ = 1 q̂ = 1 piecewise quadratic piecewise quadratic quadratic q = 3

4.3 Closed formula for the dual estimates qi
k

and ri
k

(explicit solution of (18))

Let N = {1, 2,… , nnp} denote the set of indices of the nodes of the finite element mesh, and let N () ⊂ N and
N (Ωk) ⊂ N denote the set of indices of the nodes of face  and element Ωk respectively. Also, let Ωk be a given
tetrahedron in star !i defined by the vertices x

[1]
, x

[2]
, x

[3]
and x

[4]
where the subscripts within brackets, like in x

[1]
, refer

to its local numbering. For simplicity of presentation, it is assumed that x
[1]

coincides with the central node of the star,
that is x

[1]
= xi. Moreover, for each vertex x

[j] the following notations, shown in Figure 1, are considered: �
[j] denotes

its associated linear shape function and 
[j] denotes its opposite face with area A

[j] = |
[j]| and unit outward normal

vector n
[j] (where n

[j] = n
[j]
k

). Also, the edge-vector joining node x[m] to x[n] is denoted by t
[mn] = x[n] − x[m]. It is worth

noting that the shape functions are either denoted by �∗ or by �[∗] depending on them being the shape functions
defined over the whole domain associated to a node using its global numbering or the local shape functions in a
particular element where the subscript refers to the local numbering of its associated node.

The closed expression for the dual estimates qi
k

and ri
k

verifying (18) in the tetrahedron Ωk of star !i depends on
the source term of (18a) and the Neumann boundary conditions given in (18b). Note that, the source data is known
once the value of q̂ is fixed. Also, for a given value of q̄, the boundary conditions associated to (18) are known on
ΓN ∪ Zi. Therefore, the formula for the dual estimates depends on the choice of the projection degree of the input
data, that is, it depends on the values of q̂ and q̄, and on the choice of the free tractions gi for  ⊂ )Ωk ∩ (Γi∖ΓN).
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x
[1]

�
[1]
= �i

x
[2]

x
[3]

x
[4]

�[1]

[3]
= �

31

�[2]

[3]
= �

32

�[4]

[3]
= �

34

FIGURE 2 Notation for the DOFs of the linear tractions on face 
[3]

.

Table 1 summarizes the three different choices for q̂, q̄ and gi considered in this work, and the following subsections
provide the closed formulas for these three cases.

4.3.1 Case I. Piecewise constant projection of the data q̂ = q̄ = 0

In this case, for each element of the star Ωk ⊂ !i, the formulas defining the pair of local dual estimates qi
k

and ri
k

verifying (18) depend on the fixed source data (which for q̂ = 0 is a linear function) and the value of the tractions
gi which are taken to be linear functions on the faces of the tetrahedron (since on the Neumann boundaries they
have to be linear, see (19b) taking q̄ = 0). It is worth noting that equation (19) only fixes the value of gi on the faces
 ⊂ ΓN ∪ Zi and therefore, the final value of the dual estimates qi

k
and ri

k
is only obtained when the values of the

tractions on the free faces (unknowns to be determined) are set.
Specifically, if  ⊂ F(!i), g

i
 is a linear function defined by its values at the vertices of the face N () and therefore

gi =
∑

m∈N ()

�m
i�m, (20)

where, with a slight abuse of notation, the two-dimensional Lagrange basis functions on  are written in terms of
the three-dimensional shape functions �m (without explicitly marking its restriction to face ). That is, if  is the face
joining nodes m1, m2 and m3, then

gi = �
m1

i �m1
+ �

m2

i �m2
+ �

m3

i �m3
. (21)

In particular, for a given element Ωk ⊂ !i and using the notations introduced in Figure 1 (recall that it is assumed
that x

[1]
= xi and therefore 

[1]
⊂ Zi), the linear tractions associated to the four faces of this tetrahedron gi ,  ⊂ )Ωk

are locally expressed as
gi[1]

= 0,

gi[2]
= �[1]

[2]i
�

[1]
+ �[3]

[2]i
�

[3]
+ �[4]

[2]i
�

[4]
,

gi[3]
= �[1]

[3]i
�

[1]
+ �[2]

[3]i
�

[2]
+ �[4]

[3]i
�

[4]
,

gi[4]
= �[1]

[4]i
�

[1]
+ �[2]

[4]i
�

[2]
+ �[3]

[4]i
�

[3]
.

(22)

Therefore, the value of the dual estimates qi
k

and ri
k

on every tetrahedron of the star depends on nine degrees of
freedom associated to the linear tractions gi which are hereafter rewritten to ease the notation as �jl = �[l]

[j]i
= gi[j]

(x
[l]).

Note that the first subscript denotes the local numbering of the face 
[j], the second subscript denotes the local

numbering of the node x
[l] and the superscript referring to the star i is omitted (see Figure 2). These unknowns are

stored in vector �k, namely
�k =

(
�

21
, �

23
, �

24
, �

31
, �

32
, �

34
, �

41
, �

42
, �

43

)T
. (23)
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Once the values of �k are set, the pair of local dual estimates qi
k
∈ [ℙ2(Ωk)]

3 and ri
k
∈ ℙ

1(Ωk) are defined to be

rik = �ir
i1
k + ri0k (24)

where ri1
k

and ri0
k

are two free constant coefficients, and

qi
k = qiL

k + q
iQ
k
, (25)

for
qiL
k =

1

3|Ωk|
(
�k

[1]
�

[1]
+ �k

[2]
�

[2]
+ �k

[3]
�

[3]
+ �k

[4]
�

[4]

)
, (26)

and
qiQ
k

=
F 0

4

(
�

[1]
�

[2]
t
[12]
tT
[12]

+ �
[1]
�

[3]
t
[13]
tT
[13]

+ �
[1]
�

[4]
t
[14]
tT
[14]

+ �
[2]
�

[3]
t
[23]
tT
[23]

+ �
[2]
�

[4]
t
[24]
tT
[24]

+ �
[3]
�

[4]
t
[34]
tT
[34]

)
∇�i,

(27)

where F 0 = Π0
k
(f − �2

k
uℎ) − �2

k
ri1
k

and introducing R| = �
k
gi − �i(uℎ ⋅ n


k

�k
[1]
= A

[2]
R|[2](x[1]

)t
[21]

+ A
[3]
R|[3](x[1]

)t
[31]

+ A
[4]
R|[4](x[1]

)t
[41]
,

�k
[2]
= A

[1]
R|[1](x[2]

)t
[12]

+ A
[3]
R|[3](x[2]

)t
[32]

+ A
[4]
R|[4](x[2]

)t
[42]
,

�k
[3]
= A

[1]
R|[1](x[3]

)t
[13]

+ A
[2]
R|[2](x[3]

)t
[23]

+ A
[4]
R|[4](x[3]

)t
[43]
,

�k
[4]
= A

[1]
R|[1](x[4]

)t
[14]

+ A
[2]
R|[2](x[4]

)t
[24]

+ A
[3]
R|[3](x[4]

)t
[34]
.

(28)

Remark 8. The fluxes qiL
k

and qiQ
k

can be rewritten in compact form as

qiL
k =

1

3|Ωk|
4∑

n=1

�k
[n]
�

[n] , �k
[n]
=

4∑
m=1
m≠n

A
[m]R|[m](x[n])t[mn] and qiQ

k
=

F 0

4
M

q∇�i. (29)

where the matrix Mq is defined as

M
q =

4∑
n=1

4∑
m=2
m>n

�
[n]�[m]t[nm]t

T

[nm]
.

The key point is that these dual estimates qi
k

and ri
k

verify (18) if the following weighted projected equilibration
condition

∫Ωk

[
�iF

0 − �2
kr

i0
k − ∇uℎ ⋅ ∇�i

]
dΩ +

∑
⊂)Ωk

∫

�
k
gi dΓ = 0 (30)

holds. This result is stated in the following theorem and proven in Appendix A.

Theorem 2. Let Ωk ⊂ !i be an element of the star associated to node xi and let qi
k

and ri
k

be the weighted dual
estimates defined by equations (24) and (25).Then, for any choice of the local tractions gi verifying the weighted
projected equilibration condition (30) , qi

k
and ri

k
verify equation (18) for the particular choice q̂ = 0.

Remark 9. A set of local weighted tractions {gi}⊂F (!i)
verifying both (19) and (30) exist if problem (18) (resp. (15))

admits a solution. As mentioned in Remark 6, the values of q̂ = q̄ = 0 < 1 do not ensure that the global compatibility
condition (17) holds, and therefore solvability is only guaranteed if either 1) �2ri||!i

≠ 0, or 2) Γi ∩ ΓD ≠ ∅ or 3) for
every element Ωk ⊂ !i, �k = 0 along with the data source f being a constant function in Ωk so that f − �2

k
uℎ is

constant and, for every face  ⊂ Γi ∩ ΓN the Neumann boundary data gN is a constant function on  . Therefore, one
can only use the more computational efficient choice ri0k = ri1k = 0 in equation (24) if no solvability problems are
found. A simple to implement strategy is to set ri0

k
= ri1

k
= 0 if f − �2

k
uℎ and gN are piecewise constant functions on

the whole mesh and boundary respectively, and otherwise take ri0
k
≠ 0 in all the elements of the mesh. In this case,

the constant ri1k appearing in (24) is optional and can be set to zero to simplify the implementation of the method.
Of course, a more sophisticated approach considering different values of ri0

k
and ri1

k
over the mesh, depending if

solvability issues are encountered, would reduce the computational cost of the local problems to be solved. Finally,
recall that for pure diffusion problems with non piecewise-constant data solvability cannot be ensured and therefore
only Cases II or III may be considered.
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4.3.2 Case II. Mixed piecewise linear/constant projection of the data q̂ = 1, q̄ = 0

In this case, the formulas defining the pair of local dual estimates qi
k

and ri
k

verifying (18) depend on the fixed source
data (which for q̂ = 1 is a quadratic function) and the value of the tractions gi which, as in Case I, are taken to be
linear functions on the faces of the tetrahedron (since on the Neumann boundaries they have to be linear, see (19b)
taking q̄ = 0). Therefore, the value of the dual estimates qi

k
and ri

k
on every tetrahedron of the star depends, as in

Case I, on the nine degrees of freedom stored in vector �k, see equation (23).
Once the values of �k are set, the pair of local dual estimates qi

k
∈ [ℙ3(Ωk)]

3 and ri
k
∈ ℙ

2(Ωk) are defined to be

rik = �ir
iL
k + ri0k , (31)

where ri0
k

is a free constant parameter and riL
k

is a free linear function defined as

riLk = r
[1]
�

[1]
+ r

[2]
�

[2]
+ r

[3]
�

[3]
+ r

[4]
�

[4]
,

and the flux qi
k

is decomposed into a linear plus a cubic part as

q
i
k = q

iL
k + q

iC
k (32)

where qiL
k

is the same flux introduced in Case I, see equation (26), and

qiC
k =

1

4
M

q∇vQ, (33)

for

vQ =
2

5
�iF

1 +
1

10
(F 1

[1]
F 1

[2]
F 1

[3]
F 1

[4]
)

⎛
⎜⎜⎜⎜⎝

4 0 0 0

0 0 −1 −1

0 −1 0 −1

0 −1 −1 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

�
[1]

�
[2]

�
[3]

�
[4]

⎞
⎟⎟⎟⎟⎠
, (34)

and
F 1 = Π1

k(f − �2
kuℎ) − �2

kr
iL
k = F 1

[1]
�

[1]
+ F 1

[2]
�

[2]
+ F 1

[3]
�

[3]
+ F 1

[4]
�

[4]
. (35)

Note that the notation F 1
[j]
= F 1(x

[j]), j = 1,… , 4 has been introduced to simplify the notation.
As in Case I, the key point is that these pair of dual estimates qi

k
and ri

k
verify (18) if the following weighted

projected equilibration condition

∫Ωk

[
�iF

1 − �2
kr

i0
k − ∇uℎ ⋅ ∇�i

]
dΩ +

∑
⊂)Ωk

∫

�
k
gi dΓ = 0 (36)

holds. This result is stated in the following theorem and proven in Appendix B.

Theorem 3. Let Ωk ⊂ !i be an element of the star associated to node xi and let qi
k

and ri
k

be the weighted dual
estimates defined by equations (31) and (32). Then, for any choice of the local linear tractions gi verifying the
weighted projected equilibration condition (36) , qi

k
and ri

k
verify equation (18) for the particular choice q̂ = 1.

Remark 10. The existence of a set of local weighted tractions {gi}⊂F (!i)
verifying both (19b) and (36) is always

ensured if q̂ and q̄ take values larger than one (see Remark 6). Since in this case q̄ = 0, solvability is only ensured if
either 1) �2ri||!i

≠ 0, or 2) Γi ∩ ΓD ≠ ∅ or 3) for every face  ⊂ Γi ∩ ΓN the Neumann boundary data gN is a constant
function on  . Therefore, one can only use the more computational efficient choice ri0

k
= riL

k
= 0 in equation (31) if

either Γi ∩ ΓD ≠ ∅ or if in the case the star intersects the Neumann boundary, the Neumann boundary conditions
are piecewise constant. Finally, as in Remark 9, for pure diffusion problems with non piecewise-constant Neumann
data, solvability cannot be ensured and therefore Case III has to be considered at least on those elements touching
the Neumann boundary.

4.3.3 Case III. Piecewise linear projection of the data q̂ = q̄ = 1

As discussed in Remark 10, the choice q̄ = 0 can only be made if the Neumann tractions gN are piecewise constant
on the faces of the domain or if the reaction coefficient is not zero in the elements containing the Neumann faces
with non-constant tractions. Otherwise it is necessary to set q̄ = 1 at least on the faces of ΓN where the non-constant
tractions are applied. Note that setting q̄ = 1 in the constraints (19b) involves using quadratic equilibrated tractions
over the faces of the star. If  ⊂ F(!i) is the face joining nodes xm1

, xm2
and xm3

, the traction gi is a quadratic function
defined by its values at these vertices and at the corresponding mid-edge nodes xmjml

= (xmj
+ xml

)∕2 (see figure 3).
That is,

gi = �
m1

i �
q
m1

+ �
m2

i �
q
m2

+ �
m3

i �
q
m3

+ �
m1m2

i �q
m1m2

+ �
m1m3

i �q
m1m3

+ �
m2m3

i �q
m2m3

, (37)
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FIGURE 3 Notation of the vertices and mid-edge nodes of a ten node tetrahedral element contained in star !i.

x
[1]

x
[2]

x
[3]

x
[4]

x
[12]

x
[23]

x
[13]

x
[14]

x
[24]

x
[34]

�[1]

[3]
= �

31

�[2]

[3]
= �

32

�[4]

[3]
= �

34

�[12]

[3]
= �

312

�[24]

[3]
= �

324

�[14]

[3]
= �

314

FIGURE 4 Notation for the quadratic tractions on face 
[3]

.

where �q
mj

and �q
mjml

for j, l = 1,… , 4 are the quadratic shape functions associated to the vertices and mid-edge
nodes respectively. For simplicity of presentation the same notation gi is used for the linear tractions from Cases I
and II and the quadratic tractions of Case III, since it can be easily disambiguated by the Case the user considers.

Thus, the local traction gi on a face  can be expressed using six degrees of freedom as shown in Figure 4. Specif-
ically, recalling that gi[1]

= 0 and introducing the simplified notation �[l]

[j]i
= gi

[j]
(x

[l]) = �jl, where the first subscript
denotes the local numbering of the face 

[j], the second subscript denotes the local numbering for the node x
[l] (which

can now be comprised of one or two numbers) and the superscript referring to the star i is omitted, the unknown
coefficients defining the quadratic tractions gi in element Ωk can be stored in the following vector

�
q
k
=
(
�

21
, �

23
, �

24
, �

213
, �

214
, �

234
, �

31
, �

32
, �

34
, �

312
, �

314
, �

324
, �

41
, �

42
, �

43
, �

412
, �

413
, �

423

)T
. (38)
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Remark 11. In this case since q̂ = q̄ = 1, the local problem (15) (or respectively (18) along with (19)) has no solvability
issues even if no reaction term is present in the equation (see Remark 6). Therefore it is possible to set ri

k
= 0 in

equation (18) reducing the problem to find a dual estimate qi
k

verifying the following simplified version of (18)

−( ⋅
(
qi
k + �i(uℎ

)
= �iΠ

1
k(f − �2

kuℎ) − (uℎ ⋅ (�i in Ωk, (39a)
(
q
i
k + �i(uℎ

)
⋅ n


k
= �

k
gi on  ⊂ )Ωk. (39b)

Once the values of �
q
k

are set, for each element of the star Ωk ⊂ !i and using the notations introduced in
Figures 1 and 3, the local equilibrated flux qi

k
∈ [ℙ3(Ωk)]

3 verifying equation (39) is defined adding three different
contributions

qi
k = q

iQq
k

+ qiC
k + qi∇

k . (40)
The contribution q

iQq
k

is a quadratic flux enforcing the quadratic boundary conditions, see equation (39b), given by

qiQq
k

=
1

3|Ωk|
( 4∑
n=1

�
k
[n]
�

[n] +

4∑
n=1

4∑
m=2
m>n

�
k
[nm]
�q

[nm]

)
, (41)

where �k
[n]

is defined in equation (29) and

�
k
[nm]

=

4∑
j=1
j≠n,m

A
[j]

(
R|[j] (x[nm]) −

1

2
R|[j] (x[n]) −

1

2
R|[j] (x[m])

) t
[jn] + t

[jm]

2
. (42)

The cubic flux qiC
k

is the same as in Case II, see equation (33), and the third flux qi∇
k

, introduced to compensate the
divergence of the now quadratic flux q

iQq
k

, is given by

qi∇
k =

1

4
M

qv∇, (43)

for

v∇ =
4

27|Ωk|3
4∑

n=1

4∑
m=n+1

A
[n]A[m](n[m]n

T

[n]
+ n

[n]n
T

[m]
)�k

[nm]
. (44)

As in the previous Cases I and II, the key point is that the dual estimate qi
k

verifies equation (39) if the following
weighted projected equilibration condition

∫Ωk

[
�iΠ

1
k(f − �2

kuℎ) − ∇uℎ ⋅∇�i

]
dΩ +

∑
⊂)Ωk

∫

�
k
gi dΓ = 0 (45)

holds. The proof is similar to the ones given in Appendices A and B and is not given here for brevity.

Remark 12. Is is worth noting that both the quadratic flux qiQq
k

given in equation (41) and the additional term qi∇
k

given in equation (43) can also be defined with respect to the modified �k
[nm]

vectors obtained by replacing the term
(t

[jn] + t
[jm])∕2 by either t

[jn] or t
[jm]. For instance,

�k
[nm]

=

4∑
j=1
j≠n,m

A
[j]

(
R|[j](x[nm]) −

1

2
R|[j] (x[n]) −

1

2
R|[j] (x[m])

)
t
[jn]. (46)

The only requirement being consistency with any desired choice, that is, the same definition has to be used for both
qiQq
k

and qi∇
k

.

4.4 Condensed local constrained minimization problems

The closed formulas for the dual estimates qi
k

and ri
k

given in Section 4.3, ensuring the verification of equation (15)
or its equivalent strong form given by equations (18) and (19), allow alleviating the cost of solving the constrained
optimization problems posed in (16). Specifically, both the original number of unknowns and the number of con-
straints (given by equations (18) and (19)) are greatly reduced, and the problem reduces to solving small constrained
quadratic optimization problems (with very few unknowns and constraints). Indeed, on one hand, the unknowns
of the original constrained optimization problem (16) are the unknowns defining qi ∈ [ℙ̂q(!i)]

3 and ri ∈ ℙ̂
q−1(!i) in

each element of the star. Therefore, for a general value of q the number of degrees of freedom is
(
3
(q + 1)(q + 2)(q + 3)

6
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

dim([ℙq (Ωk)]
3)

+
q(q + 1)(q + 2)

6
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

dim(ℙq−1(Ωk))

)
× ni

el
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where ni
el

denotes the number of elements in star !i. Also, the number of constraints given by equation (18a) coin-
cides with dim(ℙq−1(Ωk)) and the number of constraints of (18b) coincides with dim(ℙq()) = (q + 1)(q + 2)∕2 in
each face of the element. However, note that for every element of the star one of the constraints posed by (18a) and
(18b) is redundant. Also, note that actually equation (18b) does not pose any constraint in the edges of the Dirich-
let boundary and that an interior edge  = )Ωk ∩ )Ωk′ has two associated constraints which in fact impose normal
continuity of q on the interior edges of the star. Therefore, taking also into account that one of the constraints of the
global star problem is redundant, the total number of constraints of the original problem is

(q(q + 1)(q + 2)

6
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

(18a)

+2(q + 1)(q + 2)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

(18b)

−1
)
× ni

el
−

(q + 1)(q + 2)

2
(nifa − niNfa ) − 1,

where nifa denotes the number of faces contained in Γi and niNfa denotes the number of faces contained in Γi ∩ ΓN.

Remark 13. The original constrained optimization problem (16) can be solved using Lagrange multipliers, but
following Parés et al.13, Section 6, it is also possible to solve it taking advantage of the decomposition of the space
H(div,Ωk) used in the context of mixed or hybrid elements. In this case, the constraints given in (18) and (19) can
be explicitly imposed yielding to an unconstrained optimization problem with the following number of degrees of
freedom (q(q − 1)(2q + 5)

6
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

dim(Φk)

+
q(q + 1)(q + 2)

6
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

dim(ℙq−1(Ωk))

)
× ni

el
+

(q + 1)(q + 2)

2
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

dim(ℙq ())

× (nifa − niNfa ).

On the other hand, the number of unknowns of the new approach are:

Case I: 3 × nifa + 2 × ni
el

(unknowns associated to �k and reaction term ri1
k

and ri0
k

)

Case II: 3 × ni
fa
+ 4 × ni

el
(unknowns associated to �k and reaction term ri0

k
and riL

k
)

Case III: 6 × nifa (unknowns associated to �
q
k
),

and the number of constraints is one per element of the star (see (30), (36) or (45)) plus the constraints on the
Neumann boundary of the domain (see (19b)) if the star intersects ΓN.

Table 2 briefly compares the computational effort required to solve the local problems of the presented approach
with respect to the original approach for an interior star for which nifa = 3ni

el
∕2. In all the cases, the cost of comput-

ing a strict upper bound for the energy norm of the error is governed by the cost of the local systems of equations
that have to be solved, and therefore, the cost of explicitly evaluating the dual estimates and computing its norm is
not incorporated in the computational cost. Additionally, when the solution of a constrained optimization problem
is needed the computational cost is evaluated, assuming that the Lagrange multiplier method is used to enforce
the constraints. Of course, this is not an efficient implementation of the local problems and the cost of the algo-
rithms involving these optimization strategies could be reduced selecting a more efficient strategy to enforce the
constraints.

TABLE 2 Cost comparison in terms of degrees of freedom and constraints for an interior star.

Original (q = 2) Original (q = 3) Case I Case II Case III
Standard Optimized Standard Optimized (q = 2) (q = 3) (q = 3)

Number of unknowns 34ni
el

16ni
el

70ni
el

36ni
el

13∕2ni
el

17∕2ni
el

9ni
el

Number of constraints 18ni
el

– 34ni
el

– ni
el

ni
el

ni
el

d.o.f. Lagrange multipliers 52ni
el

16ni
el

104ni
el

36ni
el

15∕2ni
el

19∕2ni
el

10ni
el

Linear Solver O((dof )3) 140608ni
el

4096ni
el

1124864ni
el

46656ni
el

422ni
el

858ni
el

1000ni
el

This section is devoted to exhaustively describe the transformation of (16) into a simple constrained quadratic
minimization problem in terms of the local unknowns involved in the explicit expressions of qi

k
and ri

k
(the

unknowns associated to {gi}⊂F (!i)
and the constants describing ri

k
).
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Problem (16) aims at finding the pair of polynomial dual estimates qi ∈ [ℙ̂q(!i)]
3 , ri ∈ ℙ̂

q−1(!i) with associated
minimal squared L2-norm while verifying (15). To simplify the complexity of this problem, instead of allowing qi

and ri to be general polynomial estimates, they are restricted to be of the form of the estimates presented in Section
4.3 (the local restriction of ri and qi in each element of the star are given by equations (24) and (25) for Case I, (31)
and (32) for Case II and ri = 0 and (40) for Case III). Of course enforcing these particular forms of the estimates will,
in general, provide a larger value for the squared norm of the estimates than the norm given solving the full original
problem (16). However, as will be seen in the numerical examples, the results for the upper bounds are very similar
while the computational cost is greatly reduced.

Therefore, in the new modified problem, the unknowns of the problem are no longer the degrees of freedom of
the pair of dual estimates qi ∈ [ℙ̂q(!i)]

3 and ri ∈ ℙ̂
q−1(!i) but the set of local weighted tractions {gi}⊂F (!i)

associated
to each face  of the star !i and the degrees of freedom defining the reaction ri

k
. Note that once {gi}⊂F (!i)

and ri
k

are
fixed, qi

k
is uniquely defined by the formulas given in Section 4.3. Also enforcing these particular forms of ri and qi

directly enforces the verification of (15) as long as {gi}⊂F (!i)
fulfill 1) the boundary values given in equation (19) and

2) the weighted projected equilibration conditions (given in equations (30), (36) and (45) for the three considered
cases). Hence, instead of aiming at finding qi and ri verifying (15) the new problem aims at finding {gi}⊂F (!i)

and
ri
k

verifying both (19) and the corresponding weighted projected equilibration conditions.
Specifically, the constrained optimization problem given in (16) is simplified to

Minimize
∑

Ωk⊂!i

‖qi
k(g

i
 , r

i
k)‖2k + �2

k‖rik‖2k
gi , r

i
k

Subject to gi verifying the boundary conditions (19)

gi and rik verifying the equilibration conditions (30), (36) or (45).

(47)

The degrees of freedom of (47) are the values of gi (three or six DOFs per face of the star depending on the case)
and the degrees of freedom of rik which if necessary can be set to zero or a constant per element, being clearly smaller
than the (4q + 9)(q + 2)(q + 1)∕6 times the number of elements in the star (with q ≥ 2) of (16). Also, the number of
constraints is greatly reduced since the boundary conditions (19) only restrict the value of gi at the boundary of the
star (excluding the faces in the Dirichlet boundary) and the equilibration conditions state only one condition per
element of the star.

Remark 14. It is tacitly assumed that problem (47) has at least one solution, that is, it is assumed that the restrictions
given by equations (19) and the corresponding equilibration condition (30), (36) or (45) form a set of compatible
restrictions. The reader is referred to Remarks 6, 9, 10 and 11 for specific details.

Remark 15. The equilibration conditions given in (30), (36) or (45) are a direct consequence of (18) being solvable
and can be stated as a unified condition. Indeed, integrating equation (18a) over element Ωk yields

∫Ωk

[
�iΠ

q̂
k
(f − �2

kuℎ) − (uℎ ⋅ (�i − �2
kr

i
k

]
dΩ + ∫Ωk

( ⋅
(
q
i
k + �i(uℎ

)
dΩ = 0

which after applying the divergence theorem and the boundary conditions (18b) gives the condition

∫Ωk

[
�iΠ

q̂
k
(f − �2

kuℎ) − (uℎ ⋅ (�i − �2
kr

i
k

]
dΩ +

∑
⊂)Ωk

∫

�
k
gi dΓ = 0. (48)

Equations (30), (36) or (45) are found substituting the particular values of q̂ and the corresponding expression of ri
k

into the previous unified equation.

The remainder of the section thoroughly details for the three different considered cases: 1) the degrees of freedom
for the problems given in (47), 2) the expressions of its quadratic objective function

‖qi
k(g

i
 , r

i
k)‖2k + �2

k‖rik‖2k (49)

and 3) the expressions of its constraints in terms of the local degrees of freedom.

4.4.1 Case I. Piecewise constant projection of the data q̂ = q̄ = 0

Given a star !i and a tetrahedron of this star Ωk ⊂ !i, the linear tractions associated to the faces of this tetrahedron
gi ,  ⊂ )Ωk are given in (22). Therefore, every tetrahedron of the star has nine degrees of freedom associated to the
linear tractions gi which are stored in vector �k, see equation (23).
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With these notations, the expression for the linear part of the flux qiL
k

given in equation (26) can be simplified
noting that in this case, introducing (22) into (28) and recalling that �i(x[j]) = �1j yields

�k
[1]
= A

[2]
(�

[2]

k
�

21
− (uℎ ⋅ n[2]

)t
[21]

+ A
[3]
(�

[3]

k
�

31
− (uℎ ⋅ n[3]

)t
[31]

+ A
[4]
(�

[4]

k
�

41
− (uℎ ⋅ n[4]

)t
[41]
,

�k
[2]
= A

[3]
�
[3]

k
�

32
t
[32]

+ A
[4]
�
[4]

k
�

42
t
[42]
,

�k
[3]
= A

[2]
�
[2]

k
�

23
t
[23]

+ A
[4]
�
[4]

k
�

43
t
[43]
,

�k
[4]
= A

[2]
�
[2]

k
�

24
t
[24]

+ A
[3]
�
[3]

k
�

34
t
[34]

and therefore

qiL
k

=
1

3|Ωk|
(
�

[1]
A

[2]
�
[2]

k
t
[21]

, �
[3]
A

[2]
�
[2]

k
t
[23]

, �
[4]
A

[2]
�
[2]

k
t
[24]

, �
[1]
A

[3]
�
[3]

k
t
[31]

, �
[2]
A

[3]
�
[3]

k
t
[32]

,

�
[4]
A

[3]
�
[3]

k
t
[34]

, �
[1]
A

[4]
�
[4]

k
t
[41]

, �
[2]
A

[4]
�
[4]

k
t
[42]

, �
[3]
A

[4]
�
[4]

k
t
[43]

)
�k

+
1

3|Ωk|�[1]

(
A

[2]
(uℎ ⋅ n[2]

t
[12]

+ A
[3]
(uℎ ⋅ n[3]

t
[13]

+A
[4]
(uℎ ⋅ n[4]

t
[14]

)

=
1

3|Ωk|
(
M

qL
�

qL �k + �
[1]
b

qL
)
,

(50)

where
M

qL =
(
A

[2]
�
[2]

k t
[21]

, A
[2]
�
[2]

k t
[23]

, A
[2]
�
[2]

k t
[24]

, A
[3]
�
[3]

k t
[31]

, A
[3]
�
[3]

k t
[32]

, A
[3]
�
[3]

k t
[34]

,

A
[4]
�
[4]

k
t
[41]

, A
[4]
�
[4]

k
t
[42]

, A
[4]
�
[4]

k
t
[43]

)
,

�
qL = diag(�

[1]
, �

[3]
, �

[4]
, �

[1]
, �

[2]
, �

[4]
, �

[1]
, �

[2]
, �

[3]
),

bqL = A
[2]
(uℎ ⋅ n[2]

t
[12]

+A
[3]
(uℎ ⋅ n[3]

t
[13]

+ A
[4]
(uℎ ⋅ n[4]

t
[14]
.

(51)

Also, the expression for the quadratic flux q
iQ
k

given in equation (27) or (29) can be simplified writing the gradient
∇�i in terms of geometrical data, see equation (A10), and using the geometrical properties given in equation (A2).
Indeed, from equation (A2) it holds that

A
[1]
M

qn
[1]
=

4∑
n=1

4∑
m=2
m>n

�
[n]�[m]t[nm](A[1]

tT
[nm]
n

[1]
) = 3|Ωk|

4∑
m=2

�
[1]
�

[m]t[1m]

and therefore introducing (A10) into (29) yields

qiQ
k

= −
F 0

4

A
[1]

3|Ωk|M
qn

[1]
= −

F0

4

4∑
m=2

�
[1]
�

[m]t[1m]. (52)

Introducing the expressions for the fluxes qiL
k

and qiQ
k

given in equations (50) and (52) into the local squared
norms given in equation (49) allows expressing the contribution of element Ωk to the objective function of the total
star as a quadratic function depending on the nine unknowns given in �k and ri1

k
and ri0

k
(denoted as r1 and r0 in the

following to simplify the notation). Indeed, inserting equations (24) and (25) into (49) and expanding the expression
for the squared norms yields

‖qik‖2k + �2
k‖rik‖2k = ‖qiLk + q

iQ
k
‖2k + �2

k‖�ir1 + r0‖2k

= ‖qiLk ‖2k + ‖qiQ
k
‖2k + 2(qiL

k , qiQ
k
)k +

�2
k
|Ωk|
10

(
r2
1
+ 5r1r0 + 10r2

0

)
,

where (⋅, ⋅)k represents the [L2(Ωk)]
3 scalar product and the properties 4 ∫

Ωk
�idΩ = |Ωk| and 10‖�i‖2k = |Ωk| have

been used. Additionally, using equations (50) and (52) and introducing the expanded vector of unknowns �̂k =(
�T

k , r1, r0
)T

, the three terms of the previous expression can be computed as

‖qiL
k
‖2
k
= �̂

T

kM̂L
k
�̂k + �̂

T

k b̂L
k
+ cL

k
,

(qiL
k , qiQ

k )k = �̂
T

kM̂LQ
k �̂k + �̂

T

kb̂LQ
k + Π0

k(f − �2
kuℎ)c

LQ
k ,

‖qiQ
k
‖2
k
= �̂

T

kM̂Q
k
�̂k + �̂

T

k b̂Q
k
+ (Π0

k
(f − �2

k
uℎ))

2cQ
k
,

(53)
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where the expressions for the matrices, vectors and constants appearing in these equations are given in Appendix
C for simplicity of presentation. Therefore the squared norm of the local weighted fluxes is given by

‖qi
k‖2k+�2

k‖rik‖2k = �̂
T

k (M̂
L
k + 2M̂LQ

k
+ M̂Q

k
+

�2
k|Ωk|
10

⎡
⎢⎢⎣

09×9 09×1 09×1

01×9 1 5∕2

01×9 5∕2 10

⎤
⎥⎥⎦
)�̂k

+�̂
T

k (b̂
L
k + 2b̂LQ

k
+ b̂Q

k
) + constant term.

(54)

Equation (54) provides a closed explicit formula for the local contribution of element Ωk to the global objective
function to be minimized in the star, see equation (47). Element Ωk also contributes to the optimization problem
with one equation coming from the constraint given in (30). Appendix D shows that, after computing the inte-
grals appearing in equation (30), this weighted projected equilibration condition can be rewritten in terms of the
unknowns �̂k as

|Ωk|
(
1

4
Π0

k(f − �2
kuℎ) − ∇uℎ ⋅∇�i

)
− �2

k|Ωk|
(
1

4
r1 + r0

)

+
1

3
A

[2]
�
[2]

k
(�

21
+ �

23
+ �

24
) +

1

3
A

[3]
�
[3]

k
(�

31
+ �

32
+ �

34
) +

1

3
A

[4]
�
[4]

k
(�

41
+ �

42
+ �

43
) = 0.

(55)

4.4.2 Case II. Mixed piecewise linear/constant projection of the data q̂ = 1, q̄ = 0

As in Case I, the local tractions at face  of a tetrahedron )Ωk ⊂ !i are linear and can be expressed as detailed in
equation (22). Thus its degrees of freedom can be again stored using vector �k defined in (23). With these notations,
the contributions to the flux qi

k
given in (32) can be rewritten in terms of the nine unknowns given in �k plus the

five unknowns describing the reaction term rik (r
[1]

, r
[2]

, r
[3]

, r
[4]

and r0 = ri0k ), see (31). These unknowns are stored in
the expanded vector

�̂k =
(
�T

k , r[1], r[2], r[3], r[4], r0
)T

.

Specifically, the linear part of the flux qiL
k

given in equation (26), which coincides with the one from Case I, can be
rewritten in a matrix-vector form as detailed in (50).

Also, the cubic flux qiC
k

given in (33) depends on �̂k via the function F 1 (since from equation (35), F 1
[j]
= F 1(x

[j]) =

Π1
k
(f −�2

k
uℎ)(x[j])−�2

k
r
[j]). Thus, the flux qiC

k
can be rewritten in terms of �̂k by making its dependence on F 1 explicit.

Specifically, introducing the value of ∇vQ given in (B20) into (33) and using the following geometrical properties

t
T

[mn]
n

[l] = 0 if m, n ≠ l and A
[l]t

T

[ln]
n

[l] = 3|Ωk| , A[l]t
T

[nl]
n

[l] = −3|Ωk| for n ≠ l (56)

yields

qiC
k = −

1

40
M

qC (4MvQ

2
+ 4�

[1]
I4 +M

vQ

1
)
(
�

1 − �2
k(r[1] r[2] r[3] r[4])

T
)
, (57)

where I4 is the 4 × 4 identity matrix, matrices MvQ

1
and M

vQ

2
are defined in equations (B16) and (B21) and

MqC = ( �
[1]
�

[2]
t
[12]

+ �
[1]
�

[3]
t
[13]

+ �
[1]
�

[4]
t
[14]

, −�
[1]
�

[2]
t
[12]

+ �
[2]
�

[3]
t
[23]

+ �
[2]
�

[4]
t
[24]

,

− �
[1]
�

[3]
t
[13]

− �
[2]
�

[3]
t
[23]

+ �
[3]
�

[4]
t
[34]

, −�
[1]
�

[4]
t
[14]

− �
[2]
�

[4]
t
[24]

− �
[3]
�

[4]
t
[34]

),

�1 =
(
Π1

k(f − �2
kuℎ)(x[1]

) , Π1
k(f − �2

kuℎ)(x[2]
) , Π1

k(f − �2
kuℎ)(x[3]

) , Π1
k(f − �2

kuℎ)(x[4]
)
)T

.

Introducing the expressions for the fluxes qiL
k

and qiC
k

given in equations (50) and (57) into the local squared
norms given in equation (49) allows expressing the contribution of element Ωk to the norm associated to the star
as a quadratic function depending on �̂k. Indeed, inserting equations (31) and (32) into (49) and expanding the
expression for the squared norms yields

‖qi
k‖2k + �2

k‖rik‖2k = ‖qiL
k ‖2k + ‖qiC

k ‖2k + 2(qiL
k , qiC

k )k + �2
k‖�ir

iL
k + r0‖2k,

where
‖qiL

k
‖2
k
= �̂

T

kM̂L
k
�̂k + �̂

T

kb̂L
k
+ cL

k
,

(qiL
k
, qiC

k
)k = �̂

T

kM̂LC
k

�̂k + �̂
T

kb̂LC
k

+ cLC
k

,

‖qiC
k
‖2
k
= �̂

T

kM̂C
k
�̂k + �̂

T

kb̂C
k
+ cC

k
,

‖�ir
iL
k
+ r0‖2k = �̂

T

kM̂r
k
�̂k.

(58)
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The expressions for the matrices, vectors and constants appearing in the previous equations are given in
Appendix C for simplicity of presentation. Therefore the squared norm of the local weighted fluxes is given by

‖qi
k‖2k+�2

k‖rik‖2k = �̂
T

k (M̂
L
k + 2M̂LC

k + M̂C
k + �2

kM̂r
k)�̂k

+�̂
T

k (b̂
L
k + 2b̂LC

k + b̂C
k ) + constant term.

(59)

Equation (59) provides a closed explicit formula for the local contribution of element Ωk to the global objective
function to be minimized in (47). As in Case I, element Ωk also contributes to the optimization problem with one
equation coming from the constraint given in (36). Appendix D shows that this weighted projected equilibration
condition can be rewritten in terms of �̂k as

|Ωk|
20

(
2F 1

[1]
+ F 1

[2]
+ F 1

[3]
+ F 1

[4]
−20�2

kr0 − 20∇uℎ ⋅∇�i

)

+
1

3
A

[2]
�
[2]

k
(�

21
+ �

23
+ �

24
) +

1

3
A

[3]
�
[3]

k
(�

31
+ �

32
+ �

34
) +

1

3
A

[4]
�
[4]

k
(�

41
+ �

42
+ �

43
) = 0.

(60)

4.4.3 Case III. Piecewise linear projection of the data q̂ = q̄ = 1

Given a star !i and a tetrahedron of this star Ωk ⊂ !i, the quadratic tractions associated to the faces of this tetrahe-
dron gi ,  ⊂ )Ωk are given in equation (37). Therefore, every tetrahedron of the star has eighteen degrees of freedom
associated to the quadratic tractions gi which are stored in vector �q

k
, see equation (38). It is also worth noting that

in this case ri
k
= 0 and therefore the only unknowns of the local optimization problem are given by �

q
k
.

With these notations, the three contributions to the flux qi
k

given in (40) can be rewritten in matrix form in terms
of �q

k
as

qiC
k = −

1

40
M

qC (4MvQ

2
+ 4�

[1]
I4 +M

vQ

1
)�1, (61a)

qiQq
k

=
1

3|Ωk|
((

M
qQ

1
�

qQ +M
qQ

2

)
�
q
k
+ b

qQ
)
, (61b)

qi∇
k = −

1

18|Ωk|2
M

q
M

q∇�
q
k
. (61c)

Indeed, since the definition of qiC
k

is the same for Cases II and III, equation (61a) is directly obtained from equation
(57) recalling that in this case r

[j] = 0, j = 1,… , 4. Also, �k
[n]

and �k
[nm]

given in equations (29) and (46) respectively can
be expressed as
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and therefore
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Then, equation (61b) holds for
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(64)

Note that for simplicity, the first short form of �k
[nm]

has been used (see equation (46) in Remark 12). Similar
expressions can be obtained for the other two forms.

Finally, introducing equation (63) into the definition of v∇ given in equation (44) and using equation (B25) yields

v∇ = −
1
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and equation (61c) is found introducing (65) into (43).
Introducing the matrix expressions for the fluxes given in equations (61) into the local squared norm ‖qi

k
‖2 allows

expressing the contribution of element Ωk to the norm associated to the star as a quadratic function depending on
�
q
k
. For simplicity of presentation, the explicit quadratic expression for

‖qi
k‖2 = ∫Ωk

(qi
k)

Tqi
kdΩ = (�

q
k
)TMk�

q
k
+ (�

q
k
)Tbk + constant term (66)

is not given here. Matrix Mk and vector bk can be obtained explicitly by computing the norm of qi
k

using the matrix
expressions given in equation (61) as done in Cases I and II. However, in this more intricate case, noting that qi

k
is a

polynomial field allows exactly computing Mk and bk using an appropriate numerical quadrature rule.
Also, Ωk also contributes to the optimization problem with one equation coming from the constraint given in

(45). Again, for simplicity of presentation the explicit expression of the weighted projected equilibration condition
in terms of �q

k
is not given here. However, it can easily be obtained inserting the expression of the tractions gi given

in equation (37) into (45) and integrating all the terms therein.

4.5 Brief review of the algorithm to compute the upper bounds for ||e||
The following chart describes the steps to compute upper bounds for |||e||| using the new low-cost flux-free
approach. The procedure is sketched as follows:

1. For each node of the mesh xi, consider its associated star !i and denote by ni
el

the number of elements in the
star.
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(a) Consider the global vector �̂
i containing all the traction unknowns associated to the faces in Γi and the

reaction unknowns associated to all the elements Ωk ⊂ !i. That is �̂
i contains 3 × cardinal(Γi) + 2 × ni

el

unknowns in Case I, 3 × cardinal(Γi) + 5 × ni
el

unknowns in Case II and 6 × cardinal(Γi) in Case III.

(b) For each element of the star Ωk ⊂ !i, compute the matrix Mk and the vector bk associated to the norm of
the dual estimates

‖qi
k‖2k+�2

k‖rik‖2k = �̂
T

kMk�̂k + �̂
T

kbk + constant term,

where the particular form of Mk and bk is given in equations (54), (59) and (66) for Cases I, II and III
respectively, and where �̂k = �

q
k

in Case III. Assemble these contributions to the global matrix and vector

M!i
and b!i

associated to the global unknowns �̂
i.

(c) For each element of the star Ωk ⊂ !i, compute the corresponding weighted projected equilibrated
condition (55), (60) or (45). Assemble all the conditions into the linear global system of equations

A!i
�̂
i
= b!i

. (67)

(d) For each face  of element Ωk ⊂ !i lying on the Neumann boundary, impose the boundary conditions
(19b) and add these restrictions to the global system of equations given in (67).

(e) Solve the following quadratic optimization problem with only equality linear constraints

Minimize (�̂
i
)TM!i

�̂
i
+ (�̂

i
)Tb!i

Subject to A!i
�̂
i
= b!i

.
(68)

(f) For each element of the star Ωk ⊂ !i, compute the dual estimates qi
k

and ri
k

using the values of �̂k stored
in �̂

i, see equations (27) and (24) for Case I, (32) and (31) for Case II and (40) for Case III. Accumulate
these dual estimates into the elementary fields qk and rk, accounting for the contributions of all stars
containing Ωk

qk =
∑

i∈N (Ωk)

qi
k , rk =

∑
i∈N (Ωk)

rik. (69)

2. For each element of the mesh Ωk

(a) Compute the data oscillations terms osck(f ) and osc(gN) given in equations (8) and (9) for the considered
values of q̂ and q̄.

(b) Compute the local norm contributions ‖q‖[L2(Ωk)]
3 = ‖qk‖k and ‖r‖L2(Ωk)

= ‖rk‖k.

(c) Compute the local error contribution �k defined in equation (7) and add this contribution to the total
upper bound for the error.

3. Return the upper bound for the norm of the error given by

� =

( nel∑
k=1

�2
k

)1∕2

.

5 A NEW MORE ACCURATE EQUILIBRATED RESIDUAL METHOD

The equilibrated residual method computes a set of equilibrated boundary tractions gk for every element Ωk of the
mesh. These tractions are consistent16 or codiffusive28,33, that is

⎧
⎪⎨⎪⎩

gk + gk′ = 0 on  ⊂ )Ωk ∩ )Ωk′

gk = Π
q̄
gN on  ⊂ )Ωk ∩ ΓN,

(70)

and verify the first-order equilibration condition for all elements of the mesh Ωk, namely

∫Ωk

[
�iΠ

q̂
k
(f − �2

kuℎ) − (uℎ ⋅ (�i

]
dΩ +

∑
⊂)Ωk

∫

gk�i dΓ = 0, i ∈ N (Ωk). (71)
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These equilibrated tractions act as local Neumann boundary conditions for the local approximated error problems:
find qk ∈ [V(Ωk)]

3 and rk ∈ V(Ωk) such that

∫Ωk

(
qk ⋅ (v + �2

krkv
)
dΩ = RΠ

k (v) +
∑

⊂)Ωk∖ΓN

∫

gkv dΓ for all v ∈ V(Ωk), (72)

where ak(⋅, ⋅), R
Π
k
(⋅) and V(Ωk) are the restrictions of a(⋅, ⋅), RΠ(⋅) and V to element Ωk, for which the following upper

bound holds

|||e|||2 ≤
nel∑
k=1

[√
‖qk‖2k + �2

k
‖rk‖2k + osck(f ) +

∑
⊂)Ωk∩ΓN

osc(gN)

]2

.

Remark 16. The equilibrated tractions guarantee the solvability of the local error problems given in (72) even for
� = 0. Indeed, for � = 0 the kernel of the left hand side of equation (72) are the constant functions and therefore
solvability is ensured if the following zero-order equilibration condition holds

RΠ
k (1) +

∑
⊂)Ωk∖ΓN

∫

gk dΓ

= ∫Ωk

Π
q̂
k
(f − �2

kuℎ)dΩ +
∑

⊂)Ωk∩ΓN

∫

Πq̄
gN dΓ +

∑
⊂)Ωk∖ΓN

∫

gk dΓ = 0.

(73)

Adding (71) for all the nodes of an element and using both the partition of unity of the shape functions and the
consistency condition (70) yields the desired result. It is also worth noting that for � ≠ 0, equation (73) along with
(72) for v = 1 imposes a non-necessary zero mean value condition for rk, that is ∫

Ωk
rkdΩ = 0.

Remark 17. If the equilibrated tractions are set to be linear functions on the faces of the mesh, the consistency and
first-order equilibration conditions, equations (70) and (71) respectively, do not uniquely determine the values of
the tractions. In this case, it is standard to use the average of the tractions of the finite element approximation at
the inter-element faces to uniquely determine the equilibrated tractions. A vast literature exists providing different
approaches to compute the equilibrated tractions, but readers are here refereed to Ainsworth et al.34 for a very clear
and concise description in the 3D convection-reaction-diffusion setting.

Remark 18. Given the set equilibrated tractions {gk}, the local error problems (72) do not uniquely determine the
dual estimates qk ∈ [V(Ωk)]

3 and rk ∈ V(Ωk). Sauer-Budge et al.20,21 propose to compute piecewise polynomial dual
estimates q ∈ [ℙ̂q(Ω)]3 and r ∈ ℙ̂

q−1(Ω) minimizing the squared local complementary energy norm ‖qk‖2k + �2
k
‖rk‖2k.

Alternatively, Ainsworth et al.29,34 propose to set rk = 0 and find a closed piecewise polynomial explicit expression
for qk. This second approach yields bounds which are not as accurate as the ones proposed by Sauer-Budge et al.20,21

since no norm minimization is carried out and the reaction term is not taken into account, but it provides a cheaper
strategy since it does not require solving any local residual problem.

This section shows that the new technique presented in the previous sections, provides a new methodology to
obtain low-cost and efficient equilibrated tractions. Following the notations introduced by Ladevèze et al.35 this
new equilibrated technique would be classified as a new element equilibrated + star patch technique (EESPT).

Indeed, let {gi}i∈N be a set of local weighted tractions verifying equation (19) and the unified weighted projected
equilibration condition (48) and consider the global tractions obtained by adding all the weighted contributions,
namely

g =
∑

i∈N ()

gi . (74)

Note that both gi and g are associated to the arbitrary but fixed unit normal direction n . Then, given an element
Ωk and one of its faces  ⊂ )Ωk, one can define the tractions on face  of element Ωk to be

gk|| = �
k
g . (75)

The key point is that the set of tractions {gk}k=1,…,nel
defined in (75) are equilibrated, that is, they are consistent (70)

and for � = 0 they verify the zero-order equilibration condition (73). Indeed, the first consistency condition in (70)
holds since on  ⊂ )Ωk∩)Ωk′ gk+gk′ = (�

k
+�

k′
)g = (n


k
+n


k′
)⋅ng = 0. Also, if  ∈ )Ωk∩ΓN is a face in the Neumann

boundary, since �
k
= 1 and using equation (19b) and the partition of unity of the linear shape functions, it holds that

gk|| = g =

nnp∑
i=1

gi =

nnp∑
i=1

�iΠ
q̄
gN = Πq̄

gN,



21

TABLE 3 Notations for the different computed estimates.

New Flux-free Existing

Estimate Case Reaction term Estimate Reference Details

�0
1

I rik = 0 �st Parés et al.14 flux-free with full minimization (q = 3)

including a full quadratic reaction dual estimate r

�c
1

I ri
k
= ri0

k
�eq Ainsworth et al.34 equilibrated with explicit local solution (q = 2)

with no reaction dual estimate r = 0

�1 I ri
k
= �ir

i1
k
+ ri0

k

�0
2

II ri
k
= 0

�c
2

II ri
k
= ri0

k

�2 II ri
k
= �ir

iL
k
+ ri0

k

�0
3

III ri
k
= 0

which ensures the second consistency condition in (70). Finally, for a given element Ωk, adding (48) for i ⊂ N (Ωk)

and using the partition of unity property of the shape functions yields
∑

i⊂N (Ωk)
∫Ωk

[
�iΠ

q̂
k
(f − �2

kuℎ) − (uℎ ⋅ (�i − �2
kr

i
k

]
dΩ +

∑
i⊂N (Ωk)

∑
⊂)Ωk

∫

�
k
gi dΓ

= ∫Ωk

[
Π

q̂
k
(f − �2

kuℎ) − �2
krk

]
dΩ +

∑
⊂)Ωk

∫

gk dΓ = 0,

(76)

since for a face  ⊂ )Ωk, N () ⊂ N (Ωk). Then, for � = 0 and using the consistency of gk in the Neumann boundaries,
equation (76) coincides with the zero-order equilibration condition (73).

Remark 19. In the case � ≠ 0, equation (76) coincides with (72) with v = 1. Therefore the inclusion of the reaction
term �2

k
ri
k

in (48) (compare equations (48) and (71)) allows avoiding the additional condition on the reaction term
rk, while retaining the same equilibration condition for � = 0.

6 NUMERICAL EXAMPLES

The behavior of the new flux-free equilibrated strategy presented above is analyzed in three numerical examples.
Table 3 shows the notations for the various estimates compared herein, comprising all the possible different cases
for the estimate given in Section 4 and also introducing some existing equilibrated error estimates.

It is worth noting that by construction it is expected that

�st ≤ �0
3
≤ �0

2
≤ �0

1
, �st ≤ �2 ≤ �1 and �st ≤ �c

2
≤ �c

1
. (77)

These properties cannot be guaranteed since the estimates are constructed minimizing the squared norm of the
dual estimates qi

k
and ri

k
in each star, whereas the global upper bound is computed by first adding the estimates

qi
k

and ri
k

and then computing its squared norm, but they hold in most numerical examples showing that, as the
computational cost is reduced, the bounds are usually less accurate. However, as shown in the following numerical
examples, the difference in quality when reducing the computational cost is not very significant and therefore, the
cheapest strategies are recommended.

In the examples where the analytical solution is known, the quality of the error estimates is measured using the
standard effectivity index

�∗ = �∗∕|||e|||.
All the previous estimates provide local error information which can be used as an indicator for mesh adaptivity.
Indeed the new flux-free estimates �2 can be decoupled using the local elemental contributions �k given in (7) as

�2 =

nel∑
k=1

�2k.
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FIGURE 5 Initial mesh composed of 48 tetrahedra (left) and mesh with cut (right).

Then, the elemental contributions �2
k

can serve as informative mesh adaptivity indicators for controlling the error
in the energy norm. Note that these indicators also take into account the data oscillation errors, and therefore, the
mesh is refined both in the areas most contributing to the error and in the areas where the data cannot be properly
represented using its linear/constant projection.

The simulations are implemented using the MATLAB software package iFEM36. In some examples where the
3D longest edge bisection algorithm provided in the previous package is not able to adapt the mesh, the adaptive
refinement of the meshes is done using a non-recursive version of the algorithm37.

6.1 Poisson’s equation with variable source term

The purpose of this example38 is to both analyze the behavior of the bounds and the effect of data oscillation.
Consider a diffusion problem with � = 0 in equation (1), in the cubic domain Ω = (−1, 1)3, where the right-hand
side f is such that the exact solution of the problem is

u(x, y, z) = e−10(x
2+y2+z2).

The boundary conditions are all Dirichlet, that is, ΓD = )Ω. Note that even though the solution is not exactly zero
in the boundary of the cube, uD = e−30, and therefore the Dirichlet boundary conditions can be considered to be
homogeneous. Thus, we will consider that there is no data error due to the interpolation of the Dirichlet boundary
conditions, and therefore the upper bounds are going to be guaranteed upper bounds for the exact error. Note that
f = −Δu exhibits a large variation in Ω with oscillation within elements which forces the adaptive algorithm to
refine elements due to data oscillation. It is worth noting that in this case we can only consider the new flux-free
estimates �0

2
and �0

3
, since the source term is not piecewise constant and no reaction term is present in the problem.

First the convergence of the error estimates is analyzed for a uniform mesh refinement in a series of structured
meshes. The initial mesh is composed of 48 tetrahedra and in each refinement step every tetrahedron is divided
into 8 similar tetrahedra (see Figure 5). The results can be found in Table 4. The results confirm that, as shown in
previous literature11,13,14,15,12, the flux-free strategies are really competitive in terms of accuracy with respect to the
equilibrated strategies, since the effectivities �st are much more closer to one than �eq. The results also show that if
the value of the error estimates is mainly given by the data oscillation error terms (two first meshes) the effectivities
of both the flux-free estimates and equilibrated estimates are similar in both cases and far from one. However, when
the finite element mesh properly describes the source term, the quality of the flux-free error estimates is clearly
superior to the equilibrated estimates.

The predominance of the data oscillation errors in the error estimates in the first meshes is shown in Figure 6. The
separate contributions to the local squared error estimate (�0

2
)2
k

of the elements with larger error and contributing to
the 90% of the error is shown in a stacked bar plot. Note that since the problem is a pure diffusion problem with no
Neumann boundary conditions, the local squared contributions of �2

k
given in equation (7) are

�2k =
[‖q‖k + osck(f )

]2
= ‖q‖2k + (osck(f ))

2 + 2‖q‖kosck(f ). (78)
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nel ||||||uℎ|||||| |||e||| flux-free equilibrated
�st �0

3
�0
2

�eq

48 0.56407 1.24479 5.31603 5.37791 5.38936 5.61466
384 0.98403 0.94835 2.10283 2.13369 2.13768 2.27058
3072 1.24335 0.56723 0.65742 0.66622 0.66929 1.01969

24576 1.31492 0.37237 0.40272 0.40514 0.40568 0.67717
196608 1.35355 0.18859 0.19856 0.19968 0.19965 0.33654

�st �0
3

�0
2

�eq

48 4.27063 4.32034 4.32954 4.51054
384 2.21737 2.24991 2.25411 2.39426
3072 1.15899 1.17451 1.17992 1.79766

24576 1.08151 1.08803 1.08947 1.81855
196608 1.05283 1.05877 1.05860 1.78448

TABLE 4 Example 1: upper bounds for the error in the energy norm and its effectivities in a series of uniformly
ℎ-refined linear tetrahedral meshes.
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FIGURE 6 Example 1: Stacked bar plot of the contributions to the local squared total estimate (�0
2
)2
k

of the elements
with larger error for the three first meshes of 48 (left), 384 (middle) and 3072 (right) elements.

The total contributions of the error estimate �0
2

can be seen in Table 5. As can be appreciated both in Figure 6
and in Table 5, the error estimate for the two first meshes is governed by the data oscillation error contributions
resulting in a bad quality estimate �0

2
. This quality is improved in the third mesh where the data oscillation errors

only affect a 22% of the error estimate. Once the error coming from the projection of the source term is not relevant,
the effectivities of the flux-free estimates get really close to one while the effectivities of the equilibrated strategy
are close to 1.7.

nel �0
2

∑
k‖q‖2k

∑
k(osck(f ))

2
∑

k 2‖q‖kosck(f )
∑

k‖q‖2k%
48 29.04517 0.31415 23.34769 5.38333 1.08%

384 4.56968 0.47346 2.22114 1.87508 10.36%
3072 0.44795 0.35104 0.00756 0.08934 78.36%
24576 0.16458 0.15131 0.00036 0.01290 91.94%

TABLE 5 Example 1: Contributions to the squared estimate (�0
2
)2 of the data oscillation terms.

As seen by Parés and Díez1 for the two dimensional setting, alleviating the cost of the flux-free strategy by either
using �0

2
or �0

3
instead of �st does not significantly modify the value of the effectivities. As expected, introducing
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FIGURE 7 Example 1: Convergence of the upper bounds (left) and its effectivities (right) in a uniform ℎ-refinement.
The optimal decay is indicated (left) by the line with slope −1∕3.

FIGURE 8 Example 1: Longest edge tetrahedron refinement for the adaptive strategy.

quadratic tractions in �q provides closer results to the third order tractions implicitly computed in �st . However,
since the difference in accuracy when using linear (�0

2
) or quadratic (�0

3
) tractions is really small, it is preferable to

use linear tractions which is much cheaper. Also, it is clear that the new strategy to compute the linear equilibrated
tractions in the faces of the mesh (�0

2
) is more competitive than the standard equilibrated one (�eq), because a much

better accuracy is achieved without a significant increase in the computational cost.
Finally, Figure 7 shows the convergence of the bounds and its effectivity indices. As can be appreciated the

expected optimal convergence rate of |||e||| ∝ n−1∕3np is achieved.
The behavior of the bounds is also analyzed for an adaptive mesh refinement. The meshes are adaptively refined

using a bulk criterion39. In particular, the set of elements marked for refinement, denoted by T50%, is the one which
has the smallest number of elements verifying that the sum of the contributions toward the estimator from these
elements exceeds 50% of the value of the estimator, namely∑

Ωk⊂T50%

�2k ≥ 0.5�2.

The marked elements of the mesh are subdivided into two new ones by bisecting the longest edge of each specified
tetrahedron as can be shown in Figure 8.

Figure 9 shows the results obtained using as guiding error indicators both the contributions of �0
2

and �0
3
. As

can be seen both adaptive procedures achieve the optimal rate of convergence and yield practically equal results,
confirming that in this case there is no need to use the more expensive approach given by �0

3
.
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FIGURE 9 Example 1: Convergence of the upper bounds in an adaptive ℎ-refinement, guided by the local error
indicators associated to �0
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(right). The optimal decay is given by the −1∕3 slope line.
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FIGURE 10 Example 1: Effectivities of the upper bounds �0
2

in an adaptive ℎ-refinement and influence of the data
oscillation errors in the final error estimate. The red region indicates that DO < 10%.

Figure 10 shows the effectivities associated to the error estimate �0
2

along with the influence of the data oscillation
in the error estimate, measured using the index DO = (�0

2
− (

∑
k‖q‖2k))∕�02 . It is worth noting that the DO index

includes the two terms of the error decomposition given in (78) containing errors associated to the source term.
That is, for a zero data oscillation error DO = 0 while DO = 1 means that all the error come from errors due to
the source term. As in the uniform mesh refinement procedure, in the initial meshes the data oscillation errors are
dominant and the error estimate is not very accurate. However, as the adaptive procedure advances, it refines the
regions where the source term f exhibits larger variations and the effectivity indices tend to 1.05. Indeed, after only
11 refinements a mesh with only 758 nodes and 3966 elements is obtained for which �0

2
= 1.09 and DO = 8.5%. The

value � = 1.05 has been highlighted in the figure since this value is representative of the effectivities in most of the
final meshes.
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FIGURE 11 Example 1: Adaptive meshes for the 10th (left) and 24th (middle) iterations with 2880 and 1478844

elements and zoom into the 24th mesh (right).

Finally, two intermediate meshes obtained in the adaptive procedure for the estimate �0
2

are shown in Figure 11.
The error estimate for the initial mesh is �0

2
= 5.3896, an the meshes to be shown are selected such that its error

estimate is approximately 10% and 1% of the initial error, that is (�2
0
)iter10 = 0.48891 and (�2

0
)iter24 = 0.0513. As can

be seen, the adaptive procedure refines just the areas with a larger gradient of the source term, that is, the region
around the center of the cube.

6.2 Building - Poisson’s equation with no data oscillation errors

The second example is a pure diffusion problem with no source term f = 0 and constant boundary conditions34 . The
purpose of this example is to compare the performance of the explicit error estimates presented in this work with
the explicit equilibrated error estimate given by Ainsworth et al.34. The domain and boundary conditions are shown
in Figure 12 (where the symmetric splitting of the domain is marked using the red dashed line). Homogeneous
Neumann boundary conditions are applied at the faces z = 0, y = 20 and x = 5 (symmetry condition) and on the
remaining boundaries homogeneous Dirichlet boundary conditions are applied except on the building faces where
uD = 1.

The behavior of the error estimates is analyzed in an adaptive mesh refinement. Two initial meshes are consid-
ered: a very coarse initial mesh of 41 nodes and 86 tetrahedra and a finer initial mesh of 4826 nodes and 23900

tetrahedra both shown in Figure 13. The adaptive algorithm marks for refinement the elements verifying34

�k ≥ 1

2
max

k=1,…,nel
{�k}. (79)

In this example, the non-recursive version of the 3D longest edge bisection algorithm37 is used to adapt the meshes.
Figure 14 shows the convergence of the error bounds for the two available flux-free error estimates �0

1
= �0

2
and

�0
3

starting with the two different initial meshes along with the results for the equilibrated estimate �eq given by
Ainsworth et al.34. Note that if no reaction term is present in the problem and the source term is zero, then from
equations (25) and (32) qi

k
= qiL

k
which yields �0

1
= �0

2
.

It can be seen that all estimates decay with the optimal rate and that the new flux-free estimates are more accurate
than the equilibrated one. Also as seen in the previous example, the results for �0

1
= �0

2
and �0

3
are very close and

therefore there is no gain in using quadratic tractions instead of linear.
Finally, Figure 15 shows the final mesh composed of 63963 nodes and 3396285 tetrahedra over the faces of the

building obtained using the estimate �0
1
= �0

2
starting with the finer initial mesh of 4826 nodes and Figure 16 shows

several section views of the mesh with fixed values in the variable y (y ≥ 3, y ≥ 4, y ≥ 5, y ≥ 10, y ≥ 15 and y ≥ 18).
As seen by Ainsworth et al.34 the refinement mainly takes place on the re-entrant edges.
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FIGURE 12 Example 2: Domain geometry and boundary conditions. Neumann faces marked in red (planes z = 0,
y = 20 and x = 5), homogeneous Dirichlet boundary conditions marked in green (planes x = 0, y = 0 and z = 15)
and non-homogeneous Dirichlet boundary conditions marked in blue (building faces).

FIGURE 13 Example 2: Coarse initial mesh (left) and finer full initial mesh of the adaptive procedure (middle) and
its building surface mesh (right).

6.3 Reaction-diffusion problem with analytical solution

This example illustrates the performance of the a posteriori error estimators for a reaction-diffusion problem with a
discontinuous piecewise-constant reaction coefficient29. Consider the reaction-diffusion problem given in equation
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FIGURE 15 Example 2: Final mesh of the adaptive procedure starting with the finer initial mesh of 4826 nodes for
the estimate �0

1
= �0

2
: mesh over the building.

(1) in the cubic domain Ω = (−1, 1)3 with the piecewise-constant coefficient � given by

�(x, y, z) =

{
�1 , x < 0

�2 , x ≥ 0

where �2 ≥ �1 > 0 are constants and for f = �2
1
. Homogeneous Dirichlet boundary conditions are imposed on

ΓD = {x = ±1}, that is, u(1, y, z) = u(−1, y, z) = 0, and homogeneous Neumann boundary conditions are prescribed
elsewhere. The exact solution has a univariate nature and is given by

u(x, y, z) =

⎧
⎪⎨⎪⎩

A1e
−�1x +A2e

�1x + 1 , x < 0

A3e
−�2x +A4e

�2x + �2
1
∕�2

2
, x ≥ 0,
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FIGURE 16 Example 2: Final mesh of the adaptive procedure starting with the finer initial mesh of 4826 nodes for
the estimate �0

1
= �0

2
: section views of the mesh for y ≥ 3, y ≥ 4, y ≥ 5, y ≥ 10, y ≥ 15 and y ≥ 18.

where the constants A1, A2, A3 and A4 are uniquely determined by the Dirichlet boundary conditions and the C1

continuity requirements of u(x, y, z) on x = 0. Several solutions are plotted in Figure 17 for different values of the
parameters �1 and �2 (the univariate solutions u(x) = u(x, y, z) are shown).

Table 6 shows the results for a fixed regular mesh of 4913 nodes and 24576 tetrahedra (composed of 163 cubes
subdivided into 6 tetrahedra each) for the values of �1 and �2 shown in Figure 17. It is worth noting that since
the reaction term is not zero and the finite element approximation uℎ is linear, f − �2

k
uℎ ≠ Π0

k
(f − �2

k
uℎ). Therefore,

the estimate �0
1

cannot be used and the estimates �c
1

and �1 contain data oscillation terms. The results show that
the original implicit flux-free estimate �st provides very good results (with effectivities really close to 1) for all the
considered values even for large values of the reaction coefficients. Also note that the data oscillation errors worsen
the quality of the estimates associated to Case I (�1 and �c

1
) and therefore it is preferable to consider the estimates

associated to Case II (the tractions are linear in both cases and thus the computational cost is similar). As expected,
the effectivity indices of the estimates containing a better representation of the reaction term are smaller than those
having simpler or no-reaction estimates at all, that is �1 ≤ �c

1
and �2 ≤ �c

2
≤ �0

2
. In particular �2 provides very good

results similar to �st in all cases. It can also be observed that for highly reaction dominated problems the accuracy of
the estimates associated to r = 0 (�0

2
and �0

3
) may degenerate. Therefore when reaction is dominant robust estimates

are only obtained when reaction terms are included in the expression for the estimates. Finally, as in the previous
examples, the accuracy of �0

2
and �0

3
is very similar and therefore quadratic tractions should only be used in the

elements having solvability issues.
Finally the behavior of the true error and the upper bounds is shown for a series of adapted meshes starting with

a uniform regular mesh of 48 tetrahedra. The mesh is refined using the criteria given in equation (79) for the estimate
�2 (in this example, if the estimate �1 is used for guiding the adaptive procedure the same meshes are obtained). For
each mesh all the new explicit flux-free estimates are computed. The upper bounds and its effectivities are shown
in Figure 18. As in the results shown in Table 6, when dealing with reaction-dominated problems it is advisable
to use a full reaction term in the estimates (�2). It is worth noting that the accuracy of �2 is very good since its
associated effectivity indices is close to 1.05 for all the meshes. However, it can also be seen that as the mesh is
adaptively refined, the accuracy of the estimates with a simplified reaction term or no reaction term at all (�c

2
, �0

2
, �0

3
)

improves and its effectivity indices are close to one. Again, using quadratic tractions (�0
3
) instead of linear (�0

2
)
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FIGURE 17 Example 3: Exact solution for different values of �1 and �2 (univariate view).

�
2
=
1
0

�1 |||e||| �st �1 �c
1

�2 �c
2

�0
2

�0
3

1 0.09039557 1.061 1.333 1.334 1.068 1.076 1.102 1.100
2.5 0.38187968 1.064 1.348 1.349 1.070 1.078 1.108 1.105
5 0.85020487 1.065 1.398 1.399 1.069 1.078 1.114 1.111

10 2.23964827 1.056 1.534 1.535 1.068 1.083 1.140 1.136

�
2
=
1
0
0

�1 |||e||| �st �1 �c
1

�2 �c
2

�0
2

�0
3

1 0.10282749 1.063 1.523 1.617 1.162 1.352 1.648 1.622
2.5 0.47334587 1.067 1.535 1.625 1.165 1.351 1.658 1.632

5 1.15620255 1.072 1.549 1.622 1.158 1.322 1.651 1.625
10 2.73199220 1.068 1.617 1.657 1.131 1.252 1.639 1.615
50 19.59051014 1.013 1.531 1.552 1.059 1.317 2.649 2.602

100 46.66672399 1.018 1.458 1.509 1.056 1.551 3.699 3.629

TABLE 6 Example 3: Effectivities of the upper bounds for the error in the energy norm for a fixed regular mesh of
4913 nodes.

does not significantly increase the quality of the bounds and therefore quadratic tractions are only advisable when
solvability issues arise. Finally, it can also be seen that in this case including the reaction term in the data oscillation
errors (�1) yields worst results. Note that the only advantage of Case I estimates versus Case II estimates is that a
quadratic interpolation for qi

k
and ri

k
is used instead of a cubic one since the tractions (determining the size of the

linear system of equations to be solved) are linear in both cases.
Finally, the initial, final and an intermediate mesh of the adaptive procedure are shown in Figure 19.

7 CONCLUDING REMARKS

A three-dimensional extension of the new technique to compute guaranteed upper bounds for the energy norm of
the error presented by Parés and Díez1 has been introduced. The bounds are guaranteed regardless of the size of
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FIGURE 18 Example 3: Convergence of the new flux-free upper bounds in an adaptive ℎ-refinement (left) and its
effectivities (right).

FIGURE 19 Example 3: Meshes obtained in the adaptive procedure for �1 = �2 = 100: initial mesh (27 nodes) and
intermediate mes (77991 nodes).

the underlying finite element mesh and regardless of the kind of data (the source term and the Neumann boundary
conditions are not required to be piecewise polynomial functions). This extension incorporates two novelties with
respect to the two-dimensional approach: 1) the reaction term is included in the data oscillation terms so that a
simplified estimate can be considered (estimates presented in Case I) and 2) the estimates incorporate a reaction
term yielding estimates robust for all values of the reaction coefficient.

As in the two-dimensional case, the proposed strategy may be seen as either: (1) an improved low-cost version of
the flux-free technique13,14 or (2) a new more efficient hybrid-flux equilibrated residual method.

The new approach significantly alleviates the cost of the flux-free approach introducing only a slight difference
on the accuracy of the estimates (assuming the proper version of the estimate is selected to properly deal with data
oscillation errors and reaction dominated problems). It is also confirmed that the equilibrated tractions provided
by the new approach yield much sharper bounds than the original equilibrated strategies. Therefore, the proposed
strategy is clearly competitive to obtain guaranteed upper bounds for the error (both in accuracy and cost).
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APPENDIX

A PROOF OF THEOREM 2

The proof of Theorem 2 follows the same rationale presented in Appendix C of Parés and Díez1 and in Section 3.5
of Ainsworth and Vejchodský29 but is included here for completeness.

Let qi
k

and ri
k

be the weighted dual estimates defined by equations (24) and (25) for a set of local tractions gi
verifying (30). Then, we need to proof that qi

k
and ri

k
verify equation (18) for q̂ = 0. Taking q̂ = 0 and recalling the

expression for ri
k

given in equation (24), equation (18) can be rewritten as

−∇ ⋅
(
q
i
k + �i(uℎ

)
=�iF

0 − �2
kr

i0
k − (uℎ ⋅ ∇�i in Ωk, (A1a)

(
qi
k + �i(uℎ

)
⋅ n


k
=�

k
gi on  ⊂ )Ωk, (A1b)

where recall that F 0 = Π0
k
(f − �2

k
uℎ) − �2

k
ri1
k

.
Consider first equation (A1b) on face 

[1]
. On this face, since �

[1]
|[1] = 0, the normal component of the linear flux

qiL
k

defined in (29) can be simplified to

qiL
k ⋅ n

[1]
=

1

3|Ωk|
4∑

n=1

�k
[n]
⋅ n

[1]
�

[n] =
1

3|Ωk|
4∑

n=2

�k
[n]
⋅ n

[1]
�

[n]

where recall that n
[1]
= n

[1]
k

. Moreover, taking into account that

tT
[mn]
n

[1]
= 0 if m, n ≠ 1 and A

[1]
tT
[1n]
n

[1]
= 3|Ωk| for n ≠ 1 (A2)

and the definition of �k
[n]

given in (29), yields for n ≠ 1

�k
[n]
⋅ n

[1]
=

4∑
m=1
m≠n

A
[m]R|[m](x[n])t[mn] ⋅ n[1]

= A
[1]
R|[1](x[n])t[1n] ⋅ n[1]

= 3|Ωk|R|[1](x[n]),

and therefore, since R|[1] is a linear function over 
[1]

uniquely defined by its values at nodes x
[2]
,x

[3]
and x

[4]

qiL
k ⋅ n

[1]
=

4∑
n=2

R|[1](x[n])�[n] = R|[1] = �
[1]

k
gi[1]

− �i(uℎ ⋅ n[1]
.

Also note that the quadratic flux qiQ
k

defined in (27) has vanishing normal components on 
[1]

. Indeed, using the
compact notations introduced in Remark 8 and noting that �

[1]
|[1] = 0 yields

qiQ
k

⋅ n
[1]

= n
T

[1]
qiQ
k

=
F 0

4
n

T

[1]
M

q∇�i =
F 0

4

4∑
n=1

4∑
m=2
m>n

�
[n]�[m]n

T

[1]
t
[nm]t

T

[nm]
∇�i

=
F 0

4

4∑
n=2

4∑
m=3
m>n

�
[n]�[m]n

T

[1]
t
[nm]t

T

[nm]
∇�i = 0,

(A3)

since n
[1]

is orthogonal to tT
[mn]

if m, n ≠ 1.
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Analogous arguments apply to the other three faces, and we conclude that since

qiL
k ⋅ n


k
= �

k
gi − �i(uℎ ⋅ n


k

and qiQ
k

⋅ n

k
= 0 (A4)

then
qi
k ⋅ n


k
= qiL

k ⋅ n

k
+ qiQ

k
⋅ n


k
= qiL

k ⋅ n

k
= �

k
gi − �i(uℎ ⋅ n


k
,

and equation (A1b) is verified.
In order to proof the divergence condition (A1a) note that both qiL

k
and �i(uℎ are linear functions and therefore

they have constant divergence over Ωk. Thus, using the divergence theorem, the fact that qiQ
k

has vanishing normal
components on each face of Ωk and equation (A1b), yields

∇ ⋅ (qiL
k + �i(uℎ) =

1

|Ωk| ∫Ωk

∇ ⋅ (qiL
k + �i(uℎ) dΩ =

1

|Ωk| ∫)Ωk

(qiL
k + �i(uℎ) ⋅ nk dΓ

=
1

|Ωk| ∫)Ωk

(qi
k + �i(uℎ) ⋅ nk dΓ =

1

|Ωk|
∑

⊂)Ωk

∫

�
kg

i
 dΓ,

(A5)

which can again be simplified using the projected equilibration condition (30) and the fact that F 0 and �2
k
ri0
k
+∇uℎ⋅∇�i

are constant functions

−∇ ⋅ (qiL
k
+ �i(uℎ) = −

1

|Ωk|
∑

⊂)Ωk

∫

�
k
gi dΓ =

1

|Ωk| ∫Ωk

[
�iF

0 − �2
kr

i0
k − ∇uℎ ⋅ ∇�i

]
dΩ

=
1

4
F 0 − �2

kr
i0
k − ∇uℎ ⋅ ∇�i,

(A6)

since ∫
Ωk

�idΩ = |Ωk|∕4.
To compute the divergence of the quadratic contribution to the flux qiQ

k
the compact notations given in Remark 8

are used along with the fact that tT
[nm]
∇�i has is constant in Ωk yielding

∇ ⋅ qiQ
k

=
F 0

4

4∑
n=1

4∑
m=2
m>n

∇ ⋅
(
�

[n]�[m]t[nm]

)
tT
[nm]
∇�i. (A7)

Now, considering the centroid of the tetrahedron xk = (x
[1]
+ x

[2]
+ x

[3]
+ x

[4]
)∕4 and using the geometrical properties

∇ ⋅ (�
[n]�[m]t[nm]) = �

[n] − �
[m] and

1

4

4∑
n=1

4∑
m=2
m>n

(�
[n] − �

[m])t
T

[nm]
= (xk − x)T (A8)

yields

∇ ⋅ qiQ
k

= F 0(xk − x)T∇�i =
(
1

4
− �i

)
F 0. (A9)

The last equality in (A9) can be deduced using (A10) and that

�i = �
[1]
= −

A
[1]

3|Ωk|
nT

[1]
(x − x

[4]
) , ∇�i = −

A
[1]

3|Ωk|
n

[1]
and x

[4]
− xk =

1

4
(t

[14]
+ t

[24]
+ t

[34]
). (A10)

Indeed, using these properties

(xk − x)T∇�i = −∇�T

i (x − xk) =
A

[1]

3|Ωk|
nT

[1]
(x − xk)

=
A

[1]

3|Ωk|n
T

[1]
(x − x

[4]
) +

A
[1]

3|Ωk|n
T

[1]
(x

[4]
− xk)

= −�i +
1

4

A
[1]

3|Ωk|n
T

[1]
(t

[14]
+ t

[24]
+ t

[34]
) = −�i +

1

4

A
[1]

3|Ωk|n
T

[1]
t
[14]

= −�i +
1

4
,

(A11)

which easily yields to equation (A9).
Finally, joining (A6) and (A9) yields

−∇ ⋅ (qi
k + �i(uℎ) = −∇ ⋅ (qiL

k + �i(uℎ) − ∇ ⋅ q
iQ
k

=
1

4
F 0 − �2

kr
i0
k − ∇uℎ ⋅ ∇�i −

(
1

4
− �i

)
F 0

= �iF
0 − �2

kr
i0
k − ∇uℎ ⋅∇�i

and therefore equation (A1a) holds. □



36

B PROOF OF THEOREM 3

Let qi
k

and ri
k

be the weighted dual estimates defined by equations (31) and (32) for a set of local tractions gi verifying
(36). Then, we need to proof that qi

k
and ri

k
verify equation (18) for q̂ = 1. Taking q̂ = 1 and recalling the expression

for ri
k

given in equation (31), equation (18) can be rewritten as

−( ⋅
(
qi
k + �i(uℎ

)
=�iF

1 − �2
kr

i0
k − (uℎ ⋅ (�i in Ωk (B12a)

(
qi
k + �i(uℎ

)
⋅ n


k
=�

k
gi on  ⊂ )Ωk, (B12b)

where recall that from equation (35), F 1 = Π1
k
(f − �2

k
uℎ) − �2

k
riL
k

.
Let’s first start proving that the boundary conditions given in (B12b) hold. As seen in equation (A4) of Appendix

A, the value of qiL
k

defined in (26) at the faces of Ωk is given by qiL
k

⋅ n

k
= �

k
gi − �i(uℎ ⋅ n


k
, and, following an

analogous rationale as the one used in equation (A3), that is, using that

nT

[i]
M

q|||[i] = 0,

it is trivial to see that qiC
k

defined in (33) also has vanishing normal components on each face of Ωk. Hence

qi
k ⋅ n


k
= qiL

k ⋅ n

k
+ qiC

k ⋅ n

k
= �

k
gi − �i(uℎ ⋅ n


k
,

and equation (B12b) is verified.
To proof the divergence condition (B12a), first the same reasoning used in (A5) is applied here, since again qiL

k
and

�i(uℎ are linear functions and qiC
k

has vanishing normal components on the faces of Ωk. Therefore, using equation
(A5) along with the projected equilibration condition (36) yields

−∇ ⋅ (qiL
k
+ �i(uℎ) = −

1

|Ωk|
∑

⊂)Ωk

∫

�
k
gi dΓ =

1

|Ωk| ∫Ωk

[
�iF

1 − �2
kr

i0
k − ∇uℎ ⋅ ∇�i

]
dΩ

=
1

20

(
2F 1

[1]
+ F 1

[2]
+ F 1

[3]
+ F 1

[4]

)
− �2

kr
i0
k − ∇uℎ ⋅∇�i,

(B13)

where in the last step, the integral of the quadratic function �iF
1 has been computed and simplified.

To compute the divergence of the cubic flux qiC
k

given in equation (33)

∇ ⋅ qiC
k =

1

4

4∑
n=1

4∑
m=2
m>n

∇ ⋅
(
�

[n]�[m]t[nm]t
T

[nm]
∇vQ

)

it is worth noting that �
[n]�[m]t[nm]t

T

[nm]
∇vQ is a vector function which can be split into the product of the scalar function

c = tT
[nm]
∇vQ and the vector v = �

[n]�[m]t[nm]. Then, using the basic divergence property ∇ ⋅ (cv) = c∇ ⋅ v + vT∇c yields

∇ ⋅ qiC
k =

1

4

4∑
n=1

4∑
m=2
m>n

(tT
[nm]
∇vQ)∇ ⋅ (�

[n]�[m]t[nm]) +
1

4

4∑
n=1

4∑
m=2
m>n

�
[n]�[m]t

T

[nm]
∇(tT

[nm]
∇vQ). (B14)

Let’s first simplify the first term in the previous summation. Using the relations given in (A8) it follows that

1

4

4∑
n=1

4∑
m=2
m>n

(tT
[nm]
∇vQ)∇ ⋅ (�

[n]�[m]t[nm]) =
1

4

4∑
n=1

4∑
m=2
m>n

(�
[n] − �

[m])t
T

[nm]
∇vQ = (xk − x)T∇vQ. (B15)

Now, to compute the gradient of the quadratic function vQ defined in equation (34), first note that introducing the
vector F1 = (F 1

[1]
, F 1

[2]
, F 1

[3]
, F 1

[4]
)T and the matrix

M
vQ

1
=

⎛
⎜⎜⎜⎜⎝

4 0 0 0

0 0 −1 −1

0 −1 0 −1

0 −1 −1 0

⎞
⎟⎟⎟⎟⎠

(B16)

then
vQ =

2

5
�iF

1 +
1

10
(�

[1]
�

[2]
�

[3]
�

[4]
)MvQ

1
F
1. (B17)

Also note that since

∇�
[j] = −

A
[j]n[j]

3|Ωk| , (B18)
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the gradient of a linear function vL = v
[1]
�

[1]
+ v

[2]
�

[2]
+ v

[3]
�

[3]
+ v

[4]
�

[4]
, described by its associated vector vL =(

v
[1]
, v

[2]
, v

[3]
, v

[4]

)T
containing the nodal values of the function, can be rewritten as a matrix vector multiplication

∇vL = −
1

3|Ωk|
∇∇LvL, (B19)

where ∇∇L =
(
A

[1]
n

[1]
, A

[2]
n

[2]
, A

[3]
n

[3]
, A

[4]
n

[4]

)
. Therefore using the product rule for the gradient and rearranging terms

yields

∇vQ =
2

5
(∇�iF

1 + �i∇F
1) +

1

10
∇
(
(�

[1]
�

[2]
�

[3]
�

[4]
)MvQ

1
F
1
)

= −
2

15|Ωk|∇∇
L

⎛
⎜⎜⎜⎜⎝

F 1

0

0

0

⎞
⎟⎟⎟⎟⎠
−

2�
[1]

15|Ωk|∇∇
L
F
1 −

1

30|Ωk|∇∇
L
M

vQ

1
F
1

= −
1

30|Ωk|
∇∇L(4MvQ

2
+ 4�

[1]
I4 +M

vQ

1
)F1,

(B20)

where I4 is the 4 × 4 identity matrix and

M
vQ

2
=

⎛
⎜⎜⎜⎜⎝

�
[1]

�
[2]

�
[3]

�
[4]

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠
. (B21)

Finally, taking �i = �
[1]

into (B18) and (A11) yields A
[1]
(xk − x)Tn

[1]
= 3|Ωk|(�[1]

− 1∕4), which also holds for all the
other shape functions, namely A

[j](xk − x)Tn
[j] = 3|Ωk|(4�[j] − 1)∕4. Using this property along with the partition of

unity �
[1]
+ �

[2]
+ �

[3]
+ �

[4]
= 1 and after carefully simplifying the resulting expressions yields

(xk − x)T∇vQ = −
1

30|Ωk| (xk − x)T∇∇L(4�
[1]
I4 +M

vQ

1
+ 4MvQ

2
)

= −
1

40

(
4�

[1]
− 1, 4�

[2]
− 1, 4�

[3]
− 1, 4�

[4]
− 1

)
(4�

[1]
I4 +M

vQ

1
+ 4MvQ

2
)

= −
4

5
�

[1]
F 1 −

1

5
�

[1]
F 1

[1]
+

1

20
(2F 1

[1]
+ F 1

[2]
+ F 1

[3]
+ F 1

[4]
).

(B22)

To simplify the second summation in equation (B14), let’s first note that if H(vQ) denotes the Hessian matrix
associated to the function vQ, then

∇(tT
[nm]
∇vQ) = H(vQ)t

[nm] =
2

5
H(�iF

1)t
[nm], (B23)

since the Hessian matrix of the linear part of vQ is the null matrix. This expression can be further simplified applying
the property of the Hessian of a product of functions and recalling that F 1 and �i are linear functions

H(�iF
1) = H(�i)F

1 + ∇�i(∇F
1)T + ∇F 1(∇�i)

T + H(F 1)�i = ∇�i(∇F
1)T + ∇F 1(∇�i)

T

which again can be rewritten using equations (B18) and (B19) as

H(�iF
1) =

A
[1]

9|Ωk|2
(
n

[1]
(F1)T(∇∇L)T + ∇∇L

F
1nT

[1]

)
. (B24)

Then, joining equations (B23) and (B24) yields

tT
[nm]
∇(tT

[nm]
∇vQ) =

2A
[1]

45|Ωk|2
(
tT
[nm]
n

[1]
(F1)T(∇∇L)Tt

[nm] + tT
[nm]
∇∇L

F
1nT

[1]
t
[nm]

)

=
4A

[1]

45|Ωk|2
t
T

[nm]
n

[1]
(F1)T(∇∇L)Tt

[nm].

Finally, using that
A

[l]n[l] ⋅ t[nm] = 3|Ωk|(�ln − �lm) (B25)

then
t
T

[nm]
∇∇L = 3|Ωk|

(
�
1n − �

1m , �2n − �
2m , �3n − �

3m , �4n − �
4m

)

and it holds that
tT
[nm]
∇(tT

[nm]
∇vQ) =

4

5
(�

1n − �
1m)(F

1)T
(
�
1n − �

1m , �2n − �
2m , �3n − �

3m , �4n − �
4m

)T
.
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Therefore the second summation in equation (B14) can be simplified noting first that �
1m = 0 since m > 1 and that

�
1n = 0 unless n = 1 as

1

4

4∑
n=1

4∑
m=2
m>n

�
[n]�[m]t

T

[nm]
∇(tT

[nm]
∇vQ) =

1

5

4∑
m=2
m>n

�
[1]
�

[m](F
1)T

(
1 , −�

2m , −�3m , −�4m

)T

=
1

5
�

[1]
(F1)T

(
�

[2]
(1 , −1 , 0 , 0)T + �

[3]
(1 , 0 , −1 , 0)T + �

[4]
(1 , 0 , 0 , −1)T

)

=
1

5
�

[1]

(
F 1

[1]
− F 1

)

(B26)

where to obtain the last equality, the partition of unity of the shape functions has been used.
Introducing equations (B15), (B22) and (B26) into (B14) and simplifying the expression allows obtaining that

∇ ⋅ qiC
k = −�iF

1 +
1

20
(2F 1

[1]
+ F 1

[2]
+ F 1

[3]
+ F 1

[4]
), (B27)

and joining equations (B27) and (B13) after simplifying the common terms yields

−∇ ⋅ (qi
k + �i(uℎ) = −∇ ⋅ (qiL

k + �i(uℎ) − ∇ ⋅ (qiC
k ) = �iF

1 − �2
kr

i0
k − ∇uℎ ⋅ ∇�i,

which proofs equation (B12a). □

C NOTATIONS FOR THE MATRICES AND VECTORS APPEARING IN THE LOCAL
SQUARED NORMS ‖qi

k
‖2
k
+ �2

k
‖ri

k
‖2
k

This section provides the detailed expressions of the matrices, vectors and constants appearing in the local squared
norms given in equation (49) for Cases I and II. These expressions are derived by explicitly computing and simplify-
ing the integrals involved in the norms and scalar products given in equations (53) and (58), but these computations
are not included here for brevity.

C.1 Case I. Piecewise constant projection of the data q̂ = q̄ = 0

The local norms of the dual estimates given in equations (53) and (54) are defined using the following matrices,
vectors and constants:

M̂L
k =

[
ML

k 09×2

02×9 02×2

]
, M̂LQ

k
= −

�2
k

2

⎡
⎢⎢⎣

09×9 bLQ
k

09×1

(bLQ
k

)T 0 0
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⎤
⎥⎥⎦
, M̂Q

k
=

⎡
⎢⎢⎣

09×9 09×1 09×1

01×9 �4
k
cQ
k

0

01×9 0 0

⎤
⎥⎥⎦
,
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k =
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bL
k
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]
, b̂LQ

k
=

⎡
⎢⎢⎣

Π0
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(f − �2

k
uℎ)b
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⎥⎥⎦
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,

and
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1

90|Ωk| (b
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k
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1
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(t
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[13]
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for
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1 2 1 1 1 1 1 1 2

1 1 2 1 1 2 1 1 1

2 1 1 2 1 1 2 1 1

1 1 1 1 2 1 1 2 1

1 1 2 1 1 2 1 1 1

2 1 1 2 1 1 2 1 1

1 1 1 1 2 1 1 2 1

1 2 1 1 1 1 1 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗
(
(MqL)TMqL

)
,
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bLQ
k

= −
1

2880
�

LQ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 2 2 −2 −2 0

4 −4 0 −1 −1 1

4 0 −4 −1 −1 1

2 8 2 −2 0 −2

−4 4 0 −1 1 −1

0 4 −4 −1 1 −1

2 2 8 0 −2 −2

−4 0 4 1 −1 −1

0 −4 4 1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l2
[12]

l2
[13]

l2
[14]

l2
[23]

l2
[24]

l2
[34]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

bL
k =

1

90|Ωk|
diag(2, 1, 1, 2, 1, 1, 2, 1, 1)(MqL)TbqL,

and
�

LQ = diag(A
[2]
�
[2]

k
, A

[2]
�
[2]

k
, A

[2]
�
[2]

k
, A

[3]
�
[3]

k
, A

[3]
�
[3]

k
, A

[3]
�
[3]

k
, A

[4]
�
[4]

k
, A

[4]
�
[4]

k
, A

[4]
�
[4]

k
),

where the operator ⊗ refers to the element-by-element matrix product and the length of the edge of the tetrahedron
joining nodes x[m] and x[n] has been denoted by l

[mn] = |t
[mn]|2.

C.2 Case II. Mixed piecewise linear/constant projection of the data q̂ = 1, q̄ = 0

The local norms of the dual estimates given in equations (58) and (59) are defined using the following matrices and
vectors:

M̂L
k =

[
ML

k 09×5

05×9 05×5

]
, M̂LC

k = −
�2
k

2

⎡
⎢⎢⎣

09×9 MLC
k 09×1

(MLC
k )T 04×4 04×1

01×9 01×4 0

⎤
⎥⎥⎦
,

M̂C
k = �4

k

⎡
⎢⎢⎣

09×9 09×4 09×1

04×9 MC
k 04×1

01×9 01×4 0

⎤
⎥⎥⎦
, M̂r

k =

[
09×9 09×5

05×9 Mr
k

]
,

and

b̂L
k =

[
bL
k

05×1

]
, b̂LC

k =

⎡
⎢⎢⎣

MLC
k �1

bLC
k

0

⎤
⎥⎥⎦
, b̂C

k = −2�2
⎡
⎢⎢⎣

09×1

bC
k

0

⎤
⎥⎥⎦
,

where the expressions for ML
k and bL

k are given in the previous subsection C.1 and

MLC
k = diag(A

[2]
�
[2]

k
, A

[2]
�
[2]

k
, A

[2]
�
[2]

k
, A

[3]
�
[3]

k
, A

[3]
�
[3]

k
, A

[3]
�
[3]

k
, A

[4]
�
[4]

k
, A

[4]
�
[4]

k
, A

[4]
�
[4]

k
)D1M1,

MC
k = M2 − M3 , Mr

k =
|Ωk|
420

⎡
⎢⎢⎢⎢⎢⎣

12 3 3 3 42

3 2 1 1 21

3 1 2 1 21

3 1 1 2 21

42 21 21 21 420

⎤
⎥⎥⎥⎥⎥⎦

,

bLC
k =

�2
k

100800

⎛
⎜⎜⎜⎜⎜⎝

104(tT
[12]

+ tT
[13]

+ tT
[14]
)

−8tT
[12]

+ 22(tT
[13]

+ tT
[14]
) + 15(tT

[23]
+ tT

[24]
)

22(tT
[12]

+ tT
[14]
) − 8tT

[13]
+ 15(tT

[34]
− tT

[23]
)

22(tT
[12]

+ tT
[13]
) − 8tT

[14]
− 15(tT

[24]
+ tT

[34]
)

⎞
⎟⎟⎟⎟⎟⎠

b
qL,bC

k = M2
�

1,

for matrices D1 ∈ ℝ
9×27 and M1 ∈ ℝ

27×4 given by

D1 = −
1

100800
diag(tT

[21]
, tT

[23]
, tT

[24]
, tT

[31]
, tT

[32]
, tT

[34]
, tT

[41]
, tT

[42]
, tT

[43]
),
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M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

416(xk − x
[1]
) 148xk − 73x

[1]
− 75x

[2]
148xk − 73x

[1]
− 75x

[3]
148xk − 73x

[1]
− 75x

[4]

44(4xk − 5x
[1]
+ x

[3]
) 11(−12xk + 7x

[3]
+ 5x

[4]
) 148xk − 75x

[1]
− 73x

[3]
11(−12xk + 5x

[2]
+ 7x

[3]
)

44(4xk − 5x
[1]
+ x

[4]
) 11(−12xk + 5x

[3]
+ 7x

[4]
) 11(−12xk + 5x

[2]
+ 7x

[4]
) 148xk − 75x

[1]
− 73x

[4]

416(xk − x
[1]
) 148xk − 73x

[1]
− 75x

[2]
148xk − 73x

[1]
− 75x

[3]
148xk − 73x

[1]
− 75x

[4]

44(4xk − 5x
[1]
+ x

[2]
) 148xk − 75x

[1]
− 73x

[2]
11(−12xk + 7x

[2]
+ 5x

[4]
) 11(−12xk + 7x

[2]
+ 5x

[3]
)

44(4xk − 5x
[1]
+ x

[4]
) 11(−12xk + 5x

[3]
+ 7x

[4]
) 11(−12xk + 5x

[2]
+ 7x

[4]
) 148xk − 75x

[1]
− 73x

[4]

416(xk − x
[1]
) 148xk − 73x

[1]
− 75x

[2]
148xk − 73x

[1]
− 75x

[3]
148xk − 73x

[1]
− 75x

[4]

44(4xk − 5x
[1]
+ x

[2]
) 148xk − 75x

[1]
− 73x

[2]
11(−12xk + 7x

[2]
+ 5x

[4]
) 11(−12xk + 7x

[2]
+ 5x

[3]
)

44(4xk − 5x
[1]
+ x

[3]
) 11(−12xk + 7x

[3]
+ 5x

[4]
) 148xk − 75x

[1]
− 73x

[3]
11(−12xk + 5x

[2]
+ 7x

[3]
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and for the symmetric matrix M2 ∈ ℝ
4×4 and the anti-symmetric matrix M3 ∈ ℝ

4×4 given by

M2 =
|Ωk|

12096000

⎡
⎢⎢⎢⎢⎣

m11 SYM
m21 m22

m31 m32 m33

m41 m42 m43 m44

⎤
⎥⎥⎥⎥⎦

and

M3 = −
|Ωk|

672000

⎡
⎢⎢⎢⎢⎣

0 ANTI-SYM
6l2

[12]
+ l2

[13]
+ l2

[14]
− l2

[23]
− l2

[24]
0

l2
[12]

+ 6l2
[13]

+ l2
[14]

− l2
[23]

− l2
[34]

0 0

l2
[12]

+ l2
[13]

+ 6l2
[14]

− l2
[24]

− l2
[34]

0 0 0

⎤
⎥⎥⎥⎥⎦
,

where for l2 = (l2
[12]
,l2

[13]
,l2

[14]
,l2

[23]
,l2

[24]
,l2

[34]
)T,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m11

m21

m22

m31

m32

m33

m41

m42

m43

m44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3648 3648 3648 −912 −912 −912

−456 924 924 −24 −24 −300

−198 237 237 237 237 −158

924 −456 924 −24 −300 −24

12 12 222 −262 4 4

237 −198 237 237 −158 237

924 924 −456 −300 −24 −24

12 222 12 4 −262 4

222 12 12 4 4 −262

237 237 −198 −158 237 237

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

l
2.

Remark 20. The value of the constants cL
k

, cLC
k

and cC
k

appearing in equation (58) is not needed for minimization
purposes and therefore are omitted here for brevity.

Remark 21. The notation for the matrices and vectors associated to the linear flux, namely M̂L
k

and b̂L
k

, is the same
as in Case I even though they are slightly different (they contain more zero elements). However, the authors believe
that this notation simplifies the reading since they are easily differentiated by the case.

D DEDUCTION OF THE EXPRESSIONS FOR THE WEIGHTED PROJECTED
EQUILIBRATION CONDITIONS (47)

This section is devoted to provide a compact expression for the constraints of the local optimization problems (47)
in terms of the local unknowns of the problem for Cases I and II. That is, equations (55) and (60) are derived by
explicitly computing and simplifying the integrals involved in equations (30) and (36).
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D.1 Case I. Piecewise constant projection of the data q̂ = q̄ = 0

After some algebraic manipulations, the projected equilibration condition (30) can be rewritten as

|Ωk|
(
1

4
Π0

k(f − �2
kuℎ) − ∇uℎ ⋅∇�i

)
− �2

k|Ωk|
(
1

4
r1 + r0

)

+
1

3
A

[2]
�
[2]

k
(�

21
+ �

23
+ �

24
) +

1

3
A

[3]
�
[3]

k
(�

31
+ �

32
+ �

34
) +

1

3
A

[4]
�
[4]

k
(�

41
+ �

42
+ �

43
) = 0.

Indeed, since F 0 and �2
k
r0+∇uℎ ⋅∇�i are constant functions and since ∫

Ωk
�idΩ = |Ωk|∕4, it follows that the first term

of equation (30) is

∫Ωk

[
�iF

0−�2
kr0 − ∇uℎ ⋅ ∇�i

]
dΩ = |Ωk|

(
1

4
F 0−�2

kr0 − ∇uℎ ⋅∇�i

)

= |Ωk|
(
1

4
Π0

k(f − �2
kuℎ) − ∇uℎ ⋅ ∇�i

)
− �2

k|Ωk|
(
1

4
r1 + r0

)
.

(D28)

Also, introducing the values of the tractions gi given in equation (22) into the second term of equation (30) yields,
after explicitly computing the integrals over the faces of the tetrahedron involved therein,

∑
⊂)Ωk

∫

�
k
gi dΓ =

4∑
j=2

∫[j]

�
k
gi
[j]
dΓ =

4∑
j=2

4∑
l=1
l≠j

�
k
�jl ∫[j]

�
[l] dΓ =

1

3

4∑
j=2

4∑
l=1
l≠j

�
k
�jlA[j]

=
1

3
A

[2]
�
[2]

k
(�

21
+ �

23
+ �

24
) +

1

3
A

[3]
�
[3]

k
(�

31
+ �

32
+ �

34
) +

1

3
A

[4]
�
[4]

k
(�

41
+ �

42
+ �

43
),

(D29)

proving the desired result.

D.2 Case II. Mixed piecewise linear/constant projection of the data q̂ = 1, q̄ = 0

After some algebraic manipulations, the projected equilibration condition (36) can be rewritten as

|Ωk|
20

(
2F 1

[1]
+ F 1

[2]
+ F 1

[3]
+ F 1

[4]
−20�2

kr0 − 20∇uℎ ⋅∇�i

)

+
1

3
A

[2]
�
[2]

k
(�

21
+ �

23
+ �

24
) +

1

3
A

[3]
�
[3]

k
(�

31
+ �

32
+ �

34
) +

1

3
A

[4]
�
[4]

k
(�

41
+ �

42
+ �

43
) = 0.

Indeed, since the tractions in Cases I and II are the same, the boundary term of equation (36) coincides with the
one given in (D29). Also, using that �2

k
ri0
k
+∇uℎ ⋅ ∇�i is constant along with ∫

Ωk
�i�[j]dΩ = |Ωk|(1 + �ij)∕20 allows

rewriting the volume integral of equation (36) as

∫Ωk

[
�iF

1 − �2
kr

i0
k − ∇uℎ ⋅ ∇�i

]
dΩ

=
|Ωk|
20

(2F 1
[1]
+ F 1

[2]
+ F 1

[3]
+ F 1

[4]
) − |Ωk|(�2

kr
i0
k + ∇uℎ ⋅ ∇�i),

concluding the proof.

E VARIABLE REACTION COEFFICIENT

Let � ∈ L∞(Ω) be a function varying in Ω not necessarily piecewise-constant and denote by �min
k

the essential
infimum of the function �k = �|Ωk

where it is assumed that

0 ≤ �min
k = essinf

x∈Ωk

�k(x) < ∞.

Then, upper bounds for the energy norm of the error can be obtained using the following more general version of
Theorem 1.

Theorem 4. Let q ∈ [L2(Ω)]3 and r ∈ L2(Ω) be a pair of dual estimates verifying

∫Ω

(
q ⋅ (v + �̄2rv

)
dΩ = RΠ(v) ∀v ∈ V , (E30)

where �̄ ∈ L∞(Ω) is such that for all v ∈ V(Ωk), ‖�̄kv‖k ≤ ‖�kv‖k. Then, the following upper bound follows

|||e|||2 ≤
nel∑
k=1

(√
‖q‖2

[L2(Ωk)]
3
+ ‖�̄kr‖2L2(Ωk)

+ osck(f ) +
∑

⊂)Ωk∩ΓN

osc (gN)

)2

,
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where the data oscillation constants C0 and C1 appearing in equations (8) and (9) are replaced by

C0 = min

{
ℎk

�
,

1

�min
k

}
, C2

1
=

||
3|Ωk|

1

�min
k

√
(2max

x∈
|x − x |)2 + (3∕�min

k
)2.

In this case, the flux free local problems given in equation (18) become: find qi
k
∈ [ℙq(Ωk)]

3 and ri
k
∈ ℙ

q−1(Ωk) such
that

−( ⋅
(
qi
k + �i(uℎ

)
+ �̄2

kr
i
k = �iΠ

q̂
k
(f − �2

kuℎ) − (uℎ ⋅ (�i in Ωk, (E31a)
(
qi
k + �i(uℎ

)
⋅ n


k
= �

k
gi on  ⊂ )Ωk. (E31b)

It is worth noting that if �̄2
k
∉ ℙ

q−1(Ωk), equation (18a) can only be verified for ri
k
= 0. Then, the authors suggest to

use the following values for �̄:

1) if �2
k
∈ ℙ

q−1(Ωk), take either �̄k = �k or �̄k = �min
k

and the desired compatible form for ri
k
,

2) otherwise, either take �̄k = �min
k

and the desired compatible form for ri
k

or �̄k = �k and ri
k
= 0.

Alternatively, one could use the ideas introduced in Dörfler and Wilderotter40 to work with a projected polynomial
reaction term by means of introducing new terms in the final upper bound.
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