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Abstract. This paper presents the development of a three-dimensional micromechanical
model based on the Laguerre-Voronoi diagrams of the grain structure to study the vis-
coelastic behaviour of asphalt mastic with the use of the discrete element method (DEM).
Usually, the DEM models of asphalt mastics adopt a Burger’s contact model to reproduce
the known viscoelastic behaviour. A generalized Kelvin chain model (GK) was developed
within a particle model (PM) framework in order to obtain a better agreement in the
determination of dynamic properties of mastics. Numerical cyclic tests under a frequency
range varying from 10 to 0.10 Hz were implemented to analyse the dynamic response.
The parameters of the DEM model are determined from macroscale material properties,
which are obtained by fitting lab-based dynamic modulus and phase angle results. The
influence of the parameters defining the contact models on the dynamic response was
investigated. An iterative procedure was derived to convert the macroscale properties
into calibrated contact parameters of the proposed model. Simulation tests show a good
correlation between the numerical results obtained with the GK contact model and the
experimental data when compared with the agreement obtained with the Burger’s model.

1 INTRODUCTION

Asphalt mixture is a composite material usually comprising coarse and fine aggregates,
air voids and bitumen. The mix between the fine aggregates and the bitumen is called
mastic, which is considered the real binder of the asphalt pavements. The behaviour of
the asphalt mixtures is governed by the interaction of their different constituent elements.
The mastic provides the time and temperature dependency and influences the general
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behaviour of important properties, such as the dynamic modulus, cohesion and relaxation
characteristics of the asphalt mixtures.

In order to reduce costly tests for the design and control of the asphalt pavements,
the behaviour of the mixtures have been studied by researchers over the years following a
micromechanical approach based on their individual components. One of these techniques
is the discrete element modelling (DEM) [1]. The DEM is a numerical model based on
the alternate application of the Newton’s Second Law (the law of motion) and the force-
displacement law, applied to the particles and contacts, respectively [2]. A time stepping
procedure is used to integrate the constitutive equations for each entity of the particle
assembly.

The use of micromechanical approaches based on the DEM has been widely used to
investigate the properties of asphalt mixtures and mastics over the past years. Besides,
this methodology has the advantages of considering the material structure, the consti-
tutive laws are based on force-displacement relationships and the possibility to measure
large displacements and crack propagation [3]. A brief summary of some study efforts is
provided in the following section.

2 DISCRETE ELEMENT MODELLING BACKGROUND

The DEM was first introduced by Cundall [2, 4] in the analysis of rock mechanics.
In the asphalt materials field, the first study with the use of the discrete element mod-
elling approach was presented in [5]. The authors were able to prove possible the nu-
merical simulation in the analysis of a two-dimensional asphalt structure, modelling the
aggregate-binder and the inter-granular interactions in the presence of bitumen with elas-
tic aggregates using a viscoelastic contact model.

Few years later, a micromechanical model for hot mix asphalt was proposed in [6]. In
this analysis, the Burger’s contact model was applied to represent viscoelastic behaviour
of the binder in the asphalt-aggregate contact. It was shown that the stress-strain re-
sponse was correctly simulated. In many of the efforts in the study of asphalt materials,
elastic models were assumed to simulate the contact behaviour of the mastic [7, 8]. As a
consequence, the time-dependent behaviour of this material was difficult to be measured.

In order to compute the viscoelasticity of such materials, many studies have been
focused on the implementation of viscoelastic contact models. In most of the analysis,
the Burger’s contact model has been implemented to simulate the interactions among the
contacting particles of the mastic. By simulating cyclic tests for predicting the dynamic
modulus and phase angle of asphalt mastics, Liu et al. [9] determined the behaviour of
these materials under a loading frequency range. Using the Burger’s model to represent
the viscoelasticity of the mastic, the dynamic response was accurately predicted compared
to lab tests, with a confidence rate of more than 90%. A similar work was developed in [10],
where a maximum error between the dynamic behaviours in discrete model predictions
and lab-based data was less than 10%. A considerable reduction in the computational
time in DEM analysis based on the frequency-temperature superposition principle was
achieved in [11]. Similar to other studies, the authors adopted the Burger’s model to
investigate the dynamic behaviour at different temperatures and loading frequencies of
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asphalt materials.
However, the Burger’s contact model is not suitable for predicting the viscoelastic

behaviour of asphalt mixtures and mastics along a large frequency range. The errors
between the DEM analysis and experimental results in dynamic tests may decrease with
the implementation of more complex contact models, such as the generalized Maxwell
model and the generalized Kelvin model [11]. In [12], a generalized Maxwell model was
used to simulate the time-dependent behaviour of mastics at low-temperatures in dynamic
modulus tests, static creep tests and bending tests. The results showed a maximum error
of 8% between numerical and lab measurements among the different analysis.

By the same reason, this work describes a new approach in the analysis of the viscous
behaviour of mastic in the context of DEM. In order of that, a generalized Kelvin contact
model is derived and a calibration method of the contact parameters is presented based
on values of dynamic modulus and phase angle experimentally obtained for a variety
of loading frequencies. The method is based on a direct integration of the constitutive
equations, using a centred difference scheme, similar to the adopted in [13] for the Burger’s
model equations.

3 OBJECTIVES AND SCOPE

The main objective of this paper is to develop a generalized Kelvin contact model with
the use of the discrete element method to characterize the viscoelastic behaviour of asphalt
mastics across a loading frequency range. The proposed contact model is derived, as so as
the model implementation and the calculation process to obtain the contact parameters.
The contact parameters are obtained from macroscale parameters fitting experimental
data. Macroscopic parameters are properties defining the mechanical behaviour of bi-
tuminous mastic. The procedure to convert the macroscale properties into microscale
parameters, i.e. contact parameters, is established. For last, the proposed model is cali-
brated using compressive cyclic tests at different loading frequencies submitted to a strain
control mechanism. The response obtained with the proposed model is compared to the
results obtained with the traditional Burger’s contact model.

4 DISCRETE ELEMENT VISCOELASTIC CONTACT MODEL

A generalized Kelvin model was developed to represent the time-dependency of mastic
samples. This model consists of a Maxwell model element (a spring and a dashpot are
connected in series) and n-chains of Kelvin elements (springs and dashpots are connected
in parallel) placed in series, as illustrated in Figure 1.

The generalized Kelvin model (GK) adopts a direct integration of the constitutive equa-
tions, using a centred difference scheme, similar to the adopted in [13] for the Burger’s
model equations. The total displacement (u) of the contact model results from the sum of
the elastic deformation of the spring (uκ) and the irreversible deformation of the dashpot
unit (uη) of the Maxwell element, respectively, which correspond to the Maxwell element’s
total displacement, and the sum of the delayed elastic deformation from the ith Kelvin
element (ui), as shown in equation 1. On the other hand, the generalized Kelvin vis-
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Figure 1: Generalized Kelvin contact model

coelastic contact model’s force (f) and the forces generated by these elements (fκ, fη and
fi) are the same, as stated in equation 2.

u =
m∑
i=1

ui + uκ + uη (1)

f = fi = fκ = fη (2)

The force-displacement relationship of the ith Kelvin element and the Maxwell element
are expressed in equations 3-5.

u̇i =
f

ηi
− κiui

ηi
(3)

u̇κ =
ḟ

κm
(4)

u̇η =
f

ηm
(5)

Taking the equation 3 and applying the central difference approximation and average
values for the derivative units and solving the equation for the derivative unit of the
Kelvin’s displacement chain versus time, equation 3 can be expressed as:

ut+1
i − uti

∆t
=

1

ηi

[
f t+1 + f t

2
−κi

ut+1
i + uti

2

]
(6)

where ∆t is the adopted time step.
By solving the equation 6 to the delayed displacement of the Kelvin contact model at

time t+ 1, it is determined the displacement of the ith element of the Kelvin parcel.

ut+1
i =

1

Ai

[
Biu

t
i +

∆t

2ηi

(
f t+1 + f t

)]
(7)

where the values of parameters Ai and Bi are determined according to the following
equations:

Ai = 1 +
κi∆t

2ηi
(8)

Bi = 1− κi∆t

2ηi
(9)
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The first derivative of the total displacement of the Maxwell unit (um) is determined
by the sum of equations 4 and 5.

u̇m =
ḟ

κm
+

f

ηm
(10)

Applying the central difference approximation and average values, the displacement of
the spring and dashpot units of the Maxwell element at time t+ 1 is expressed as:

ut+1
m =

f t+1 − f t

κm
+

∆t (f t+1 + f t)

2ηm
+ utm (11)

Substituting the equations 7 and 11 into the first derivative of equation 1, the normal
and shear force-displacement relationships of the generalized Kelvin contact model is
expressed according to equation 12.

f t+1 =
1

C

[
ut+1 − ut +

(
1−

m∑
i=1

Bi

Ai

)
uti −Df t

]
(12)

where C and D are determined according to equations 13 and 14, respectively.

C =
m∑
i=1

(
∆t

2Aiηi

)
+

1

κm
+

∆t

2ηm
(13)

D =
m∑
i=1

(
∆t

2Aiηi

)
− 1

κm
+

∆t

2ηm
(14)

5 MACROSCOPIC PARAMETERS OF THE GENERALIZED KELVIN
MODEL

In this research, a macroscopic generalized Kelvin viscoelastic model was employed
to fit the laboratory data of dynamic modulus and phase angle of asphalt mastic. The
macroscopic model and its parameters are represented in Figure 2.

Ei

Ci C1

E1

Em Cm

Figure 2: Macroscopic generalized Kelvin model

Taking the force-displacement relationship in equations 1 to 5 as reference, the stress
and strain relationships are expressed according to equations 15-17.

εEm + εCm +
m∑
i=1

εi (15)

σ = σEm = σCm = σiE (16)
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σEm = EmεEm σCm = CmεCm σiE = Eiεi + Ciεi (17)

The sinusoidal one-dimensional loading applied to the model and the resultant strain
are determined according to equations 18 and 19, respectively.

σ(t) = σ0e
iωt (18)

ε(t) = ε0e
i(ωt−φ) (19)

where σ0 and ε0 refer to the stress and strain amplitudes, ω is the angular frequency and
φ is the phase angle.

Substituting the equations 18 and 19 into equation 17 results in the following expres-
sions:

σ0e
iωt = EmεEme

i(ωt−φ) (20)

σ0e
iωt = iωCmεCme

i(ωt−φ) (21)

σ0e
iωt = Eiεie

i(ωt−φ) + iωCiεie
i(ωt−φ) (22)

The complex modulus (E∗) is determined by the ratio between the applied stress
(equation 18) and the resultant strain (equation 19), as expressed in equation 23. It is
composed by a real part (E

′
), which corresponds to the storage modulus, and an imaginary

part (E
′′
), corresponding to the loss modulus in a loading cycle.

E∗ =
σ0e

iωt

ε0ei(ωt−φ)
=
σ0

ε0

eiφ (23)

The strains of the elements of the model can be obtained by solving the equations
24-26.

εEm =
σ0e

iωt

Emei(ωt−φ)
=

σ0

Em
eiφ (24)

εCm =
σ0e

iωt

iωCmei(ωt−φ)
=

σ0

iωCm
eiφ (25)

m∑
i=1

εi =
σ0e

iωt

Eiei(ωt−φ) + iωCiεiei(ωt−φ)
=

σ0

Ei + iωCi
eiφ (26)

The complex modulus can be determined by substituting the equations 24-26 into
the expression 23. Taking its reciprocal value, it is possible to calculate the complex
compliance (D∗). Similarly, it is composed by a real (D

′
) and an imaginary (D

′′
) parts

and assumes the value of equation 27.

D∗ = D
′
+ iD

′′
=

1

Em
+

1

iωCm

+
1

Ei + iωCi
(27)
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Therefore, the real and imaginary parts of the expression 27 take the following equa-
tions.

D
′
=

1

Em
+

m∑
i=1

Ei

Ei
2 + ω2Ci

2 (28)

D
′′

=
1

ωCm

+
m∑
i=1

ωCi

Ei
2 + ω2Ci

2 (29)

Finally, based on the values of the real and imaginary parts of the complex compliance,
it is possible to determine the expressions to fit the laboratory values of dynamic modulus
and phase angle according to the following relationships.

|E∗| = 1√
D′2 +D′′2

(30)

E
′
=

D
′

D′2 +D′′2 (31)

E
′′

=
D

′′

D′2 +D′′2 (32)

φ = tan−1

(
D

′′

D′

)
(33)

The fitting process is based on the minimization function of the sum of square errors
of the predicted values of the real and imaginary parts of the dynamic modulus and the
values obtained in laboratory described as:

F =
n∑
i=1

[(
E

′
i

E
′0
i

− 1

)2

+

(
E

′′
i

E
′′0
i

− 1

)2
]

(34)

where E
′
i and E

′′
i are the predicted values of the storage and loss modulus at the ith

frequency, E
′0
i and E

′′0
i are laboratory values of the storage and loss modulus at the ith

frequency and n is the number of frequency points.
The parameters of the generalized Kelvin model were obtained by fitting the dynamic

modulus and phase angle through equations 28 to 34 for loading frequencies of 10, 5, 2, 1
and 0.10 Hz, taking as reference the laboratory measurements of the viscoelastic properties
of the asphalt mastics in [14], where prismatic mastic samples (80 × 50 × 50 mm) were
analysed under uniaxial tensile-compressive cyclic tests at 5 oC. The number of chains
associated with the model was investigated. As expected, increasing the number of Kelvin
units resulted in a reduction of the fitting error. Therefore, the minimum error was
obtained for a 5-element model structure. The calibrated macroscopic constants of the
generalized Kelvin model are presented in Table 1.
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Table 1: Calibrated parameters of the generalized Kelvin model

Em [MPa] Cm [MPa·s−1] Ek [MPa] Ck [MPa·s−1]

9.871× 105 1.331× 108

5.850× 106 5.850× 104

2.486× 106 2.486× 105

1.436× 106 1.436× 106

4.586× 105 4.586× 106

1.354× 105 1.354× 107

Using the calibrated parameters of the generalized Kelvin model, the fitted dynamic
modulus and phase angle were compared to the experimental test results. Also, the
Burger’s model was fitted to the experimental data in order to compare the results with
the calibrated GK model. A good agreement between the fitted and lab-based data was
obtained for both dynamic modulus and phase angle with the use of the generalized Kelvin
model. The calculated error using equation 26 was 0.050, a better fitting result compared
to the Burger’s model, with an error of 1.86.

6 INPUT PARAMETERS OF DEM MODEL

An initial guess for the parameters of the generalized Kelvin contact model for asphalt
mastics is defined by converting the macroscopic properties obtained in the fitting process
into contact parameters using the following set of equations:

κnψ =
EψA

L
δ (35)

ηnψ =
CψA

L
δ (36)

where L is the sum of two neighbouring particles’ radii, A is the cross–sectional area of
the contacting spheres, δ is a coefficient of adjustment between macroscopic properties of
the asphalt mastic and DEM simulations and ψ assumes i for the Kelvin chains and m for
the spring and dashpot of the Maxwell unit. The parameters for the shear direction are
determined by the product of the parameters for the normal direction by α parameter,
which represents the relationship between the normal and shear directions.

7 DEM SIMULATION AND MODEL VALIDATION

Numerical simulations were performed with three-dimensional mastic samples, with
the height of 80 mm and length and width of 50 mm to validate the DEM model. For this
purpose, two particle assemblies were generated with different number of entities. The
assembly M1 were generated with 341 discrete particles with diameters varying from 6 to
12 mm and 1825 contacts among the particles, while a more refined particle assembly M2

were generated with 2726 discrete elements with diameters ranging from 3 to 6 mm and
14334 contacts along the sample. Figure 3 illustrates the two generated asphalt mastics.

Compressive dynamic loadings were imposed to the upper plate in the vertical direction
with a strain control mechanism of 1× 10−4 m/m, while the bottom plate remained fixed
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Gustavo Câmara, Nuno Azevedo and Rui Micaelo

(a) Mastic M1 (b) Mastic M2

Figure 3: Generated particle assemblies of mastic

in all directions. The applied loading frequencies were 10, 5, 2, 1 and 0.1 Hz. Based
on the applied strain and stress monitored response of the asphalt mastic, the dynamic
modulus (E∗) and phase angle (φ) were determined according to equations 37 and 38.

E∗ =
σmax − σmin
εmax − εmin

(37)

φ =
∆t

T
× 360 (38)

where σmax, σmin, εmax and εmin correspond to the maximum and minimum stress re-
sponses and the maximum and minimum applied strain values. Moreover, ∆t is referred
to the time lag between two adjacent peak stress and strain and T is the loading period.

The parameters of the discrete element GK contact model composed by 5 Kelvin units
were determined by solving the equations 35 and 36 for the normal and shear directions.
A good agreement with the experimental analysis was achieved adopting values of α =
0.30 for both mastic specimens, M1 and M2. Moreover, a δ = 1.44 was adopted for
mastic M1 and a δ = 1.63 for the particle sample M2 were determined. The predicted
values for dynamic modulus and phase for both mastic assemblies were compared to the
experimental data and the results obtained with the Burger’s model, as shown in Figures
4 and 5.

Numerical simulations showed a better correlation between the numerical results ob-
tained with the GK contact model and the experimental data when compared with the
agreement obtained with the Burger’s contact model for both asphalt mastics. For the
case of the mastic M1, the average error for dynamic modulus and phase angle were
5.77% and 10.79%, respectively. In addition, higher values of the average errors using the
Burger’s contact model were obtained, where the average error for dynamic modulus was
9.67%, while 11.65% for phase angle. A similar behaviour was verified for the case of the
particle assembly M2 between the two contact models. However, the average error using
the GK model was lower compared to the results obtained for mastic sample M1, where
the average errors were 4.63% for E∗ and 9.40% for φ.

In order to investigate the influence of the α and δ coefficients on the numerical results,
a parametric study was conducted with the asphalt mastic M1 to analyse the effect on the
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Figure 4: Comparison of the predicted and measured dynamic behaviour between the
Burger’s model and the generalized Kelvin model for mastic M1
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Figure 5: Comparison of the predicted and measured dynamic behaviour between the
Burger’s model and the generalized Kelvin model for mastic M2

predicted dynamic response. As shown in Figure 6, the δ and α factors had no significant
influence on the predicted phase angle. On the contrary, higher values of δ resulted in
higher values of E∗ in the analysis for directly influencing the normal and shear contact
parameters. The α effect in dynamic modulus is less significant than the δ effect. The
α should be calibrated in order to obtain the desired macroscopic Poisson’s ratio and
then the δ should be calibrated in order to obtain a good agreement with the known
experimental dynamic modulus.

8 CONCLUSIONS

- A new contact model using the discrete element method approach was developed
based on the macroscopic material properties in cyclic loading conditions. A good
agreement with the laboratory measurements was achieved in the analysis of the
viscoelastic behaviour of the mastic particle samples.
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Figure 6: Analysis of the influence of the δ and α parameters on the dynamic modulus
and phase angle response

- The developed contact model presented a better response of the dynamic modulus
and phase angle of asphalt mastic compared to the Burger’s model for both mastic
specimens. Lower errors for both mastics, specially for mastic M2 were obtained
using the GK model.

- The methodology to determine the contact parameters of the GK model was derived.
A calibration procedure was presented to convert the macroscale properties into
contact parameters. With the use of stress-strain relationships and a coefficient
of adjustment, the contact parameters were properly calibrated in the normal and
shear directions.

- The δ parameter presented a high effect on the behaviour of the dynamic modulus as
it affects the the normal and shear directions. The α parameter should be previously
calibrated in order to match the macroscopic Poisson’s ratio.
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