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ABSTRACT

A unified approach for the vibration analysis of curved
or stral ght prismatic plates and bridges and axlsymmctnc
shells using a finite str1p method based in Reissner—
Mindlin shell theory is presented. Details of obtaining
all relevant strip matrices and vectors are given. It is also
shown how the use of the simple linear two node strip
with reduced integration leads to direct explicit forms of
all relevant matrices. Examples of application which
show the accuracy of the linear strip for free vibration
analysis of structures are presented.

INTRCDUCTION

The finite strip method for the analysis of pnsmauc
structures, combines the use of Fourler expansions and
one-dimensional finite elements to model the longitudinal
and transverse behaviour of the structure, respectively.
The finite strip method was mmally developed by
Cheung'~* and Loo and Cusens®” who presented a wide
range of solutions for static and dynamic analysis of
plates and bridges using Kirchhoff’s thin plate theory®.

Applications of the finite strip method for the static
and vibration  analysis of thick plates using Reissner—-
Mindlin plate theory®, have been reported by Benson
and Hinton®®, Dawe!! and Ronfacil and Dawe'?
Extensions of the ‘thick strip’ theory for bridge deck
analysis were carried out by Ofiate*?. More recently,
Ofate and Suarez!**S have shown that the simple two
node thick strip with a single point reduced integration
is a valuable element for static analysis of a wide range
of prismatic shell type structures.

The work presented in this paper can be considered
as an extension of that presented by the authors*?. It will
be shown here that the free vibration analysis of bridges,
plates and shells by the finite strip method can be treated
in a uniform manner under the general framework of
tronconoincal Reissner—Mindlin shell theory. Also, the
advantages of using the simple linear strip element in
order to obtain explicit forms of all the relevant matrices
and vectors will be detailed. Finally, the accuracy of the
linear strip for practical free vibration analysis of
structures will be checked out with some examples of
application. . ‘

Before going any further, the basic ideas of the finite
strip method for free vibration analyszs of structures will

"be briefly presented in the next section. More detailed
information about the subject can be found in References
I and 7.
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BASIC FINITE STRIP EQUATIONS

In the finite strip method the displacement field is first
expressed in terms of a Fourier expansion along the

Jongitudinal direction of the structure. For example, in

a rectangular plate the displacement vector uis a function
of the two coordinates of the point x, y and of time ¢.
Thus, we can expand uin the longitudinal direction y as:

n

i
u(x,y, ty= 3. (ﬁ'(x, t) sin ; y+B(x, t) cos %t y) L
1=0

~ where @'{x, t) and &(x, t) are the amplitudes for the Ith

harmonic term. The trigonometric functions are chosen
so that the boundary conditions at both ends of the
structure are automatically satisfied.

The second step implies the finite element discretization
along the transverse direction. Here the amplitudes are
expressed in terms of its values at the strip nodes in a
standard finite element form'®, i.e.

w(x, z)-—-_Z N(x)ai{s)
| | @
i(x, )=y, Ni(x)air)
=1

where N;(x) is the one-dimensional finite element shape
function of node i, a4t), &i{t) are the amplitudes of node
i for the Ith harmonic term ard k is the number of nodes
of the strip. For static problems the nodal amphtudes
are independent of time r.

Substituting (2) in (1) we get:

n  k l I
L Ni(x)(ﬁﬁ sin *g y+3icos g y)

1i=1

u(x; y, t)= :

x

M:s

=3, 2, N 3)
H i=1

1

Equation (3) allows us to express the generalized strains
and resuitant stresses in terms of the nodal amplitudes as:

" k
=Y Y Blal 4)
I=1i=1
n k
=D Y 2, B O
1=1i=1

where B! is the strain matrix for node i and the Ith
harmonic term and D is the standard comstitutive
elasticity matrix*®

The virtual work expressions for dynamic analyms can
be written in the absence of external loads, as,

H 5T dd=— J J SuT(Pa) d4 (6)

where — Pii represent the inertia forces and A is the area
of the midsurface of the plate. Differentiating (3) with
respect to time we get:

n k
=3 3 N M
_ I=1i=1
" =7%/3t*. Also from (3) and (4) we have:
n k [ k
=3 3 Nisaj; Se= Yy 3 Biday (8)

i=1i=1 =1 i=1

Substituting (5), {7) and (8) in (6) and taking into account
the orthogonality properties of the trigonometric

where
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functions chosen, i.e.

bl b
sinjysinﬂydy = ifl=m
o b b 2 9
b I mn h ) )
COS — y cos — y dy 0 ifl#£m
o b b
we can easily get the following system of equations
1i 1
K 0 a
' K22 a?,
+
0 K}‘lﬂ an
11 i
M 0 |
M22 32
=0 (10
0 Mrm 7"

Details of matrices K" and M” will be given in the next
sections.

Equation (10) is an uncoupled system of matrix
equations which can be solved independently for each
harmonic term. Thus for the Ith harmonic we have:

Ka!+ MYl =0 (11)

The solution of each uncoupled matrix equation is
obtained using standard procedures of structural
dynamics. Thus, the general solution of (11)is written as:

a!=¢leiwft (12)

where e™ =cosw't+isinw't and w' and @' are the
natural frequency and vibration mode (eigenvector) for
the Ith harmonric term. Substituting (12) in (11) we obtain
the classical eigenvalue equation:

[K.!.!_ (WI)?'MHJQBI:O (13)
The non-trivial solution of (13) implies:
|K”~(WE)2M”1=0 (14)

from which the natural frequencies can be obtained. Note
that the number of natural frequencies is equal to the
rank of matrix K*. Finally, the corresponding eigenvec-
tors ¢* for each frequency are obtained from (13).

In conclusion, the free vibration analysis of structures
using the finite strip method implies the solution of n
uncoupled eigenvalue problems, n being the number of
harmonic terms used in the analysis. The natural
frequencies and the corresponding vibration modes for
each harmonic term are obtained from (13) and (12),
respectively. In the next sections, the detailed expressions
of all the matrices and vectors shown above are given
for various structures.

CURVED BRIDGES AND PLATES:
TRONCONICAL SHELL THEORY

We start here from the most general case of a curved
bridge with circular plant (see Figure 1), formed by
assembly of tronconical shell elements like that shown
in Figure 2. It will be shown how the formulation for
straight bridges and plates and axisymmetric shells can
be considered as a particular case of the formulation
presented here below.

Straight bridge Curved brﬁdgé“ B

Figure 7 Finite strip discretizations for curved and straight bridges

:
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Figure 27 Sign convention for displacements in a tronconical shell

The finite strip formulation will be based in classical
tronconical shell theory with Reissner—Mindlin assump-
tions. Details of that particular shell theory can be found
in Reference 14.

Basic finite strip equations
For the finite strip analysis the bridge is divided into

circular k noded strips as shown in Figure 1. The -

displacement field inside the strip e can be expressed,
following the steps explained in the previous section, as
products of polynomial one-dimensional shape functions
in the transverse direction of the structure and Fourier
expansions in the circular one. Thus, we can write
n k
w=) Y Naf {15)
I=1i=1

where

u’=[ug, v5, wo, 05, 6,17 (16a)
is the local displacement vector of a strip point with
g, Vg, W being the local displacements of the points over
the midsurface of the strip and #,, 6, the two local
rotations of the midsurface normal. For sign convention
see Figure 2.

a;[:Eug." Ug." ng’ giﬂ Q:i]-r (]'Gb)

is the vector of local nodal displacement amplitudes for :
node i and the /th harmonic term, and T

[ N:S, 0

NG

Ni= N:S, (17)
Ni§y

0 NG

H
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is the generalized shape function matrix associated with
node i for the Ith harmonic term. In (17) §;=sin(in/x)0,
C,=cos(in/x)8, and « is the bridge angle (see Figure 1).

It can easily be checked that the harmonic expansions
choser satisfy the conditions of simply supported strip
for 6=0 and 6=¢. Thus, this formulation is valid for
simply supported bridges with rigid diaphragms at the
two ends. Other boundary conditions can be reproduced
by an appropriate choice of the Fourier-like expansions
of (17)°. However, not all the expansions chosen lead to
the uncoupled system of equations of (10} The
expansions chosen here are the most simple and useful
in practice since they reproduce the boundary conditions
of most real bridge and plate structures.

The generalized strain vector can be obtained from
tronconical shell theory'* as:

Em
E=1{ & {18a)
85
with
dug
Js
&, = %%4——:{9 - —2 cOS P
dvy touy vy .
O
at,
as
(18b)
8= 16)9‘+gssinq§
w roe r
08, 1488, 6, cos ¢ 8vp
traw T
dw;
g 42
. s+ ds
o 1dw) 1
9t+;%§‘+?008(p

where e, £ and &, are generalized membrane, bending
and shear strain vectors, respectively. Substituting (15)
in (18) we obtain:

3 BL.
" " k m n k
e={g =Y Y (B, }a/=3 5 Bal (19)
I=1i=1 ! I=1i=1
85 Bs.-

where B! is the generalized strain matrix of node i for the
Ith harmonic term and B, , B}, and Bf are the generalized
strain matrices due to membrane, bending and shear
effects respectively. These matrices are given by:

AN, u
° S, 0 0 00
as
! i i Ni H
B, =|—sin s, —— 5 ——sin S 00
r

N, aN; N;
—¥C (———1———' sin QS)C, 0 00
r os  r
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N,
0 0 0 LSI 0
ds
N; N,
B, =|0 0 0 —;_—'sm o8 — 2y,
cos ¢ N, N, TON, N,
0 — ¢—‘C, 0 LG (———‘——fc s¢)C,
N rds N
N enN,;
0 0 =SSNSO
B, = (20)
N, N,
0 Tcos ¢C, —;yci 0 NC

where y=In/a and ¢ is the angle that the strip forms with
the global z axis (see Figure 2). The resultant stress vector
o is related to the generalized strains by:

c=Ds (21)
where
J= [NS, Arf! NSI! M,ﬁ! Mf! MSI! QS’ QI‘]T (22)

and the constitutive elasticity matrix I} can be written
for an isotropic elastic material as:

D= D, (23)
0 D

where D, D, and D, correspond to membrane, bending
and shear effects with:

s

1 v 0
Et 1 0 -
D= " 24)
1—v 0 0 1—v
2
£? Eg [t 0
D,=—D d D,=
Vit A . 2(1+v}[0 J

where E is the Young's modulus, v the Poisson’s
coefficient, ¢t the shell thickness and £ a coefficient to take
into acecount the warping of the section (f=5/6 for
rectangular sections).

The expression of virtual work (6) can now be written

as:
J:’A dgTordA=— jj SuT Piir d4 (25)
where * _ 4 —_
! 0
1
1
P=pt 2 (26)
12
0 t*
_ 12_|

where p is the density of the material. Substituting {17},
{19} and (23) in (25) and making use of (8) and (9) the
uncoupled systems of (10) can be obtained. The stiffness
and mass matrices of the strip in the local coordinate
system are given by:

K;gﬂ; J 0 [Bi]*DB.r ds (27a)
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a T
M;;f:é'f J | N PRy ds=M 27b)
K"=Mj"=0 for I#m (27¢)

where a° is the width of strip e and B! and N, are directly
obtained from {(20) and (17) making S,=C,=1. Note that
matrix M} is independent of the harmonic number [ and,
therefore, the same matrix can be used for all the different
harmonic equations. In (27) the primes mean that the
respective matrices are computed in the local coordinate
system of each strip. The stiffness matrix of (27a) can be
rewritten using (19) and (23) as:

o [¢ i _ - _ _
K =5 j ([B,]'D, B, +[B,1'D,B} +[B,]'D,B. )rds
0 .

=Ko + KL+ K (28)
where X/ . K, and Kl are respectively the membrane,
bending and shear contributions to the stiffuess matrix.
The independent evaluation of each of these matrices is
very advantageous from the computational point of view.

Assembly of the stiffness and mass matrices, coordinate
transformations

To assemble the complete stiffness and mass matrices
of the structures from the individual strip matrices, ali
nodal forces and displacements must be expressed in a
common and uniquely defined coordinate system. This
can be easily done using the coordinate transformation
matrix relating displacement and forces in the local and
global systems. We have to note that when several strips
meeting at a common node lie in different planes it is
necessary to include a third global rotation, 6., and
bending moment, M,, for a consistent transformation of
displacements and forces from the local to global
coordinate axes. Thus, in general, we can write:

aj=Ta} (29a)
and
£l =T f (29D)
where
a;=[ug,. vo,, Wh,, O, 05, 611" (30a)
and
fi=[F!, F,F., M M5, MIT (30b)

are the displacement and force amplitude vectors in the
global coordinate systems x, y, z {see Figure 2). The
transformation matrix T{ of (29a) is given by:

rsin d® 0 —cosgp® 0 0
_ 0 1 0 0 0
cosd® 0 sing® ¢ 0
T = ¢ ¢ (31)
0 0 0 1 0
0o 0 0 0 sin¢®
0 0 0 0 —cos¢® |

After standard transformations the strip stiffness and -

mass matrices in the global system can be written as:
Kl =TR[] (32)
M, =TEOM, [T = M, (33)

Note that in (33) the superscript [ has been omitted, due
to the constant value of the mass matrix for all the
harmonic terms. Equation (32) can be written in a more

useful alternative form, using (27a) as:

Kg.:%‘ J (BF1" DB ds (34)
Q

where
B¥ = BI[T{]" - G3)

Equation (34) can now be expressed in terms of the
membrane, bending and shear contributions to matrix
K, similarly as in (28).

We have to point out here that the inclusion of the
sixth rotational degree of freedom in the global stiffness
equations may lead to singularity of the stiffness matrix
if all the strips meeting at a node are laying in the same
plane (coplanar node). Such a singularity can be avoided
cither at the equation solution level or introducing a
priori a ‘spring’ coefficient in the stiffness diagonal
position corresponding to the extra sixth degree of
freedom®*'%. In the examples presented later in the
chapter wehave chosen the first procedure comnsisting in
simply not assembling the equations corresponding to
the sixth degree of freedom in the coplanar nodes. This
avoids the appearance of spurious natural frequencies
and vibration modes associated to that degree of freedom,
which, due to the coplanarity of the strips, lack any
physical meaning. '

It is also worth noting here that (27b) leads to a full
‘consistent” mass matrix. However, diagonalization of the
mass matrix can be easily made following any of the well
known existing procedures. For the examples shown later
we have used a diagonal mass matrix obtained by taking
as diagonal values the sum of the coefficients of each row
of the consistent mass matrix of (27b).

Linear strip element with reduced integration

For practical applications of the above strip
formulation any of the well known one-dimensional finite
elements from the Lagrangean family can be used.
However, the success of the Reissner—Mindlin formula-
tion presented, for thick and thin shell/plate analysis, lies
in the use of reduced integration techniques for the
numerical computation of the stiffness matrix. This
simply implies that the shear terms contributing to the
stiffiness matrix are numerically integrated with a
Gaussian quadrature order—less than that needed for
its exact computation, whereas the rest of the stiffness
matrix can be exactly calculated. Details of this technique
can be found in many references®3-16,

It has been recently shown by Ofiate and Sudrez!3-14
that the simple two noded linear strip element with a
single integration point for the numerical computation of
all terms of the stiffness matrix has an excellent behaviour
for thin and thick plate and shell analysis in comparison
with other elements of higher order. In addition, the
single point integration implies that a direct explicit form
of the element matrices can be directly obtained simply
evaluating the terms of all integrals at the element
midpoint. Thus we can write from (34) and (33):

atu
Kfj=“2— ([B?IJTDB}":")O

e {(36)
Mij:—z— (NirPNj?‘)o

where the index 0 implies that all the terms inside the
parentheses are evaluated at the strip midpoint. The
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explicit form of the stiffness and mass matrices is simply
obtained noting that in B¥ and N, the terms (N:)o =%
and (ON /0s5)y=(—1)/a".

FINITE STRIP FORMULATION FOR
STRAIGHT-FOLDED PLATE STRUCTURES

The general expressions for straight bridges or similar
folded plate structures can be directly obtained from
those of curved bridges presented in the previous section.
In Figure 1 is shown the geometry of a straight bridge
and its discretization in straight strips. All the expressions
for the displacement, strain and stress vectors are directly
deduced from the corresponding ones of the curved
formulation, simply substituting the coordinates s, t and
n by x, y, z; the derivatives d/r 06 by d/2y; the terms A/r
(where A is a displacement) by zero and the bridge angle
« by the bridge length b.

With the above considerations the membrane, bending
and shear generalized strain matrices are obtained from
(19) and (20) as:

BN,
— 0 0 0 ¢
ax !
B, = 0 ~-N3§ 0 0 0
ON.
NJC, —=—C 0 0 0
L Ox _
dN,
00 0 =5 0
ax
B=[000 0 —N75 (37)
N,
0 0 0 NG =G
| ox
and - _—
oN,
B = 0 0 EC—SI NS 0
0 0 NJC, 0 NG
with o n
__lrr
=%

It can be checked that the above matrices can be directly
obtained simply making y=ry in (20) and r equal to a
large number (such that 1/r — 0). The uncoupled stiffness
and mass matrices for the /th harmonic term are obtained
in local strip axes as:

x;.;.fzgj [B'DB! dx (38a)
li]
and
b
M;jgijl NTPR, dx (38b)
o

In (38a) B! is directly obtained from (37) making
S,=C,=1. All other matrices in (38) are identical to those
for the curved formuiation.

The transformation of the stiffness and mass matrices
to global axes follows exactly the same steps explained
earlier for curved bridges. On the other hand, if linear
strip elements are used, the explicit form of those matrices
are obtained by:

K=" ((BHTTDBY), (39a)
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ba*
2

where B} is obtained by (35) and the index 0 indicates
values of the matrices at the strip midpoint. All the
remarks indicated for the case of curved bridges are again
valid for the straight formulation. :

CURVED AND STRAIGHT PLATES

The formulation for curved and straight plates {(see FFigure
3) can be easily derived from the general formulations
presented in earlier sections by simply neglecting in all
relevant vectors and matrices the contributions of the
membrane terms. Thus, the displacement vectors and
shape function matrix are now given by:

curved plate straight plate
u=[wg, 0, 01"  u=[w,,6,,0,]" {40)
aj=[wh, 85, 6]"  ai=[wo, 04, 0,1
NS 0
Ni=| “' NS
i [: O [ Nj Cl]

On the other hand, the strain and constitutive matrices

are given by:
Bl D, 0
Bﬁ:{BZ:} and D:[ 0” DJ (41)
where the corresponding terms of matrix B are given by
20y and (37) for the curved and straight plate

formuiation, respectively, and matrix D, and D, are given
by (24). '

Finally, the global stiffness and mass matrices for
curved and straight plates are given by (27a) and (382),
respectively. Note, however, that matrix P in the mass
matrix is now given by:

1 0
[2
P=pt 12 (42)
IZ
R

AXISYMMETRIC SHELLS

The formulation for axisymmetric shells (see Figure 4)
follows identically the steps of the curved bridge
formulation. The displacement field within each strip can
be expressed in terms of the symmetric and antisymmetric
contributions of the shell deformation with respect to a
meridional plane, as:
u' =
!

(.;N{' sa:l + ANi Aai’) (43)

M:
=

1

0i

where o’ is given by (16a) and the first and second terms

Straight plate

Curved plate

Figure 3 Finite strip discretizations for curved and straight plates
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Circular plate

Axisymmetric shell

Figure 4 Finite strip discretizations for axisymmetric shells

in the right-hand side of (43) correspond to symmetric
and antisymmetric components of the displacement field.
Matrix ,Ni coincides with (17) and matrix Nis obtained
directly from ,IN! interchanging the terms S, by C, and
vice versa. On the other hand, in this case S,=sin I8 and
C,=cos If. In practice it is usual to take as reference
symnetry plane that of 8=0.

To simplify the computations it is more convenient to
compute separately the contributions of the symmetric
and antisymmetric displacement fields. An arbitrary
deformation can thus be obtained as the sum of its
symmetric and antisymmetric parts. On the other hand,
it can be noticed that in (43) the harmonic zero has been
included. This term has a clear physical meaning and it
corresponds to an axisymmetric displacement field.

The expressions for the generalized strain and resultant
stress vectors and the constitutive matrix are identical to
those studied for the cvrved bridge case. The only
difference in the computation of the stiffness and mass
matrices with respect to the curved bridge formulation
is that the integrais over the ‘length’ of the structure are
now performed over a whole circumference. The local
stiffness matrix of the strip is obtained as:

K=C j [BJ'DB!r ds (44)
o

where Cisequal to 27 or n for =0 and [ #0, respectively.

It is interesting that matrix B! in (44) can be directly

obtained from (20) simply making

symmetric case  antisymmetric case 45)
On the other hand, the mass matrix for the strip is
obtained by (27b) substituting the value of «/2 by the
constant C of (44).

Finally, the transformation of the stiffness and mass
matrices to global axes follows exactly earlier steps and
they will not be repeated here. Also, if linear strip
elements are used an explicit form of both matrices can
be obtained similarly as in (36).

EXAMPLES

All the examples shown next have been analysed using
the linear strip element with a single integrating point
for the evaluation of all terms of the stiffness and mass
matrices' 34, :

Circular box bridge

In this example a two cells box bridge of circular plant
is analysed. The geometry and material properties of the
problem are shown in Figure 5. 36 Hnear strip elements

have been used to discretize the transverse section of the
structure. Different deformation modes are shown in
Figure 5. Results for the values of the natural frequencies
for the first four harmonics are shown in Figure 5, where
some numerical results obtained by Cheung® have also
been plotted.

Cylindrical shell

Details of the geometry and material properties of the
shell are shown in Figure 6. The curved geometry of the
shell has been modelled using 48 (flat) linear strip
elements. The first three vibration modes for the first
harmonic term are plotted in Figure 6 where a plot of
the natural frequencies for the two first harmonics is also
shown. Comparison of results with those obtained by
Morris and Dawe using curved strips'?, also plotted in
the same figure, is good.

Cylindrical tank with spherical dome

The final example analysed is a cylindrical tank with
a spherical dome (Figure 7). The meridional section of
the structure has been discretized using 15 and 34 strip
elements for the cylindrical wall and the dome
respectively. Results for the first vibration modes
corresponding to the harmonic terms zero and one, have
been plotted in Figure 7. The natural frequencies
corresponding to the first mode for different harmonic
terms are presented in Figure 7 where results obtained
by Feijoo et al.'® using curved elements have also been
plotted. Good agreement between both sets of results is
again obtained.

Harmonic 1
Mode 1
Frequency 0,002617
E/Px1 pz036
-, -~y
Harmonic 1 Harmonic 2
Mode 2 Mode i
Frequeney 0004281 Frequency 0.008123
A
030 |
o [5]
== Linear strip
0.25 Harmonic 4
M
o .
2 owp Harmonic 3
=] .
ois | .
B Harmonic 2
-
2 /
o o b
§- i Harrnenic 1
W ogost /
frree) . . . . L
T 2 E B 5

Mode number

Figure 5 Circular box bridge. Modal amplitudes and
frequencies for various harmonic terms
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Harmoric 1
Mode 1
Frequency 3648

E=28GN/m®  p=015 P =2400 HgimT

Harmenic 1
Mode 3
Frequency 66.58

Harmoenic 1
Mode 2
Frecuency 46.66

L o ms
280 |

~—-— Linear element

0+ .
o Harmanic 2

Harmonic 1

Frequency (rods)

Mode number

Figure § Circular shell. Modal amplitudes and frequencies for
different harmonic terms

CONCLUSIONS

In this paper, a finite strip formulation for free vibration
analysis of prismatic shell type structures has been
presented. It has been shown how the different finite strip
matrices for the analysis of bridges, plates and
axisymmetric shells can be easily derived from the general
expressions for the circular bridge case. In particular, the
single point integrated linear strip allows to obtain simple
explicit forms of all matrices and vectors which make the
formulation particularly attractive for use in small
computers. The examples analysed show the accuracy of
the linear strip element for free vibration structural

analysis.
}
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