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Abstract

This final studies work target is to contribute two new beam theories to MAT-fem
[6], an educational developed program by CIMNE [5]. Until now the MAT-fem
Beams program only offered the Euler-Bernoulli and Timoshenko beam theories
for homogeneous materials. With this work, the Timoshenko theory for composite
materials and the refined zigzag theory are added.

MAT-fem Beams application works by discretizing beams into two noded ele-
ments. This work offers a beam theories opportunity of contrasting with up to
four kinematic variables. Timoshenko theory for composite materials works with
three kinematics variables per node and zigzag theory works with four variables.
Finally, the accuracy of zigzag theory must be remarked in comparison to other
classic beam theories.

Keywords

Finite element method, MAT-fem, Timoshenko theory, Zigzag kinematics, Two-
noded beam element, Composite material
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Chapter 1

Introduction

1.1 Composite laminated plane beams

The advantages in strength and weight of composite materials versus traditional
concrete and steel have led to an increased number of applications in engineering.
The design of efficient and reliable composite structures requires improved compu-
tational methods that can accurately incorporate key mechanical effects [4].

Composite beams are typically formed by a piling of layers of composite material.
The finite element analysis of the so called composite laminated beams has to ac-
count for the non-uniform distribution of the material properties along the beam
thickness direction. Timoshenko beam theory is particularly suited to these prob-
lems as the heterogeneity of the material increases the importance of transverse
shear deformation.

However the classical Euler-Bernoulli beam theory and the more advanced Tim-
oshenko theory produce inadequate predictions when applied to relatively thick
composite laminated beams with material layers that have highly different stiff-
ness.

Improvements to the classical beam theories have been obtained by the so called
equivalent layer (ESL) theories [3] that assume a priori the behavior of the displace-
ment and/or stress through the laminate thickness. Despite being computationally
efficient, ESL theories often produce inaccurate distributions for the stresses and
strains across the thickness.

The need for composite laminated beam theories with better predictive capabilities
has led to the development of the so-called higher order theories. In this theories

1
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higher-order kinematic terms with respect to the beam depth are added to the
expression for the axial displacement.

Accurate predictions of the correct shear and axial stresses for thick and highly
heterogeneous composite laminated and sandwich beams can be obtained by using
layer-wise theory. In this theory the thickness coordinate is split into a number of
analysis layers that may or not coincide with the number of laminate plies. The
kinematics are independently described within each layer and certain physical
continuity requirements are enforced.

Discrete layer theories where the number of unknowns in the model does not
depend on the number of layers in the laminate are called zigzag theories. In this
class of discrete layer-wise theories a piecewise in-plane displacement function is
superimposed over the displacement field over the thickness of the laminate.

Oñate et al. [3] and [4] proposed a simple 2-noded beam element for composite
laminated beams based on the refined zigzag theory. A standard linear displace-
ment field is used to model the four variables of the linear refined zigzag (LRZ)
element. Shear locking is avoided by using reduced integration on selected terms
of the shear stiffness matrix.

1.2 MAT-fem program

MAT-fem has been produced under the close interaction of GiD [7] with MATLAB
[9]. GiD allows manipulating geometries and discretizations while writing the
input is required by MATLAB. The calculation program is executed in MATLAB
without losing any of the MATLAB advantages. Finally GiD gathers the output
data files for graphical visualization and interpretation.

This scheme allows understanding in detail the execution a Finite Elements pro-
gram, following step by step each one of the code lines. At the same time is
possible to run examples that by their dimensions would fall outside any program
with educative aims.

MAT-fem has 2D elasticity applications and also heat transfer, beams, plates,
shells, axisymmetric shells and sound transfer. This work focus in beams applica-
tion and gives two new beam theories about composite materials. Figure 1.1 shows
MAT-fem scheme, every item related to composite beams is gray shaded.

2
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FILE
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OUTPUT 
FILE

Figure 1.1: MAT-fem flow chart

1.3 Organization

The scheme organized of the subsequent chapters is as follows:

Beam theories concepts are presented in Chapter 2, followed by the basics of the
finite element method formulation. Chapter 3 shows in detail the numerical imple-
mentation of the finite element method, and shear locking is discussed. Chapter
3 also explains preprocess and postprocess. Examples are included in Chapter 4
to test the reduced integration proposed in Chapter 3. The examples show con-
vergence and capabilities of refined beam theories showed in Chapter 2. Finally,
some conclusions are discussed in Chapter 5.
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Chapter 2

Beam theories

2.1 Timoshenko composite laminated beams

2.1.1 Kinematics of a plane laminated beam

Let us consider a straight beam of length L and axis x linking the gravity centers
G of all cross-sections with xz being a principal plane of inertia. The cross-section
is formed by a piling of layers of composite material. Hence, in general the beam
axis does not coincide with the neutral axis. The loads are vertical forces and
bending moments contained in the xz plane as usual for plane beams. Bending on
the plane yz will not be considered here.

Timoshenko hypothesis for the rotation of the normal to hold will be assumed. The
axial and vertical displacements of a point A of the beam section are expressed
as

u(x, z) = u0(x)− zθ(x) ; w(x, z) = w0(x) (2.1)

where (·)0 denotes the displacements of the beams axis

The axial and transverse shear strains are deduced from equations (2.1) as

εx =
∂u

∂x
=
∂u0

∂x
− z ∂θ

∂x
(2.2a)

γxz =
∂w

∂x
+
∂u

∂z
=
∂w0

∂x
− θ (2.2b)

5
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Equation (2.2) can be written in matrix form as

εεε =

{
εx
γxz

}
=

[
1 −z 0
0 0 1

] [
∂u0

∂x
,
∂θ

∂x
,
∂w0

∂x
− θ
]T

= Sε̂εε (2.3a)

with

S =

[
1 −z 0
0 0 1

]
, ε̂εε =

[
∂u0

∂x
,
∂θ

∂x
,
∂w0

∂x
− θ
]T

(2.3b)

where εεε is the strain vector, ε̂εε is the generalized strain vector containing the elon-
gation of the beam axis

(
∂u0
∂x

)
, the curvature

(
∂θ
∂x

)
and the transverse shear strain(

∂w0

∂x
− θ
)

and S is a strain-displacement transformation matrix depending on the
thickness coordinate z.

2.1.2 Stresses and resultant stresses

The axial and shear stresses are expressed from equation (2.2) as

σx = Eεx = E

(
∂u0

∂x
− z ∂θ

∂x

)
(2.4a)

τxz = Gγxz = G

(
∂w0

∂x
− θ
)

(2.4b)

where E = E(x, z) and G = G(x, z) are the longitudinal Young modulus and the
shear modulus of the beam composite material.

Equation (2.4) can be written in matrix form using equation (2.3) as

σσσ =

{
σx
τxz

}
=

[
E 0
0 G

]{
εx
γxz

}
= Dεεε = DSε̂εε (2.5)

where D is the standard constitutive matrix relating stresses and strains at a point
in the transverse cross section.

The axial force N , the bending moment M and the shear force Q in a beam section
are obtained as

σ̂σσ =


N
M
Q

 =

∫∫
A


σx
−zσx
τxz

 dA =

∫∫
A

STσσσ dA (2.6)

where σ̂σσ is the resultant stress vector and A is the area of the cross-section.

6
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2.1.3 Generalized constitutive matrix

Substituting equation 2.5 into 2.6 gives

σ̂σσ =

(∫∫
A

STDS dA

)
ε̂εε = D̂ε̂εε (2.7)

where ε̂εε is the generalized strain vector defined in equation (2.3b) and D̂ is the
generalized constitutive matrix. The terms of D̂ are computed as

D̂ =

∫∫
A

STDS dA =

 D̂a D̂ab 0

D̂ab D̂b 0

0 0 D̂s

 (2.8a)

with

D̂a =

∫∫
A

E(x, z) dA ; D̂ab = −
∫∫

A

E(x, z)z dA

D̂b =

∫∫
A

E(x, z)z2 dA ; D̂s = kzĜ with Ĝ =

∫∫
A

G(x, z) dz
(2.8b)

where D̂a is the axial stiffness, D̂b is the bending stiffness, D̂ab is the coupling axial-
bending stiffness, D̂s is the shear stiffness and kz is the shear correction parameter
for bending around the y axis. The computation of kz is explained in the next
section.

Layer defined constitutive matrix

From equations (2.8b) we can define the layer defined generalizad constitutive
matrix as

D̂a =

nl∑
k=1

[D̂a]
k D̂b =

nl∑
k=1

[D̂b]
k

D̂ab =

nl∑
k=1

[D̂ab]
k D̂s =

nl∑
k=1

[D̂s]
k

(2.9)

This formulation results usefully when computing resultant stresses. For a lami-
nated beam with nl layers of isotropic material with modulae Ek, Gk, thickness

7
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Figure 2.1: Rectangular laminated beam. Coordinates and nomenclature to inte-
grate the material properties

hk and width bk we have

[D̂a]
k = b(zk+1 − zk)Ek = bhkE

k

[D̂ab]
k = − b

2
(z2
k+1 − z2

k)E
k = −bhkz̄kEk

[D̂b]
k =

b

3
(z3
k+1 − z3

k)E
k

[D̂s] = kzb(zk+1 − zk)Gk = kzbhkG
k

(2.10)

where z̄k is the vertical coordinate of the midpoint of the kth layer. Figure 2.1
shows an example of a rectangular laminated beam.

Neutral axis

The position of the neutral axis for an arbitrary composite laminated section can
be found as follows. Let us define the relative vertical coordinate z′ = z− d where
d is the vertical distance between the beam axis x and the neutral axis. If the x
axis is placed at point O defining the neutral axis (figure 2.2 ), then

D̂ab = −
∫∫

A

Ez′dA = −
∫∫

A

E(z − d)dA = 0 (2.11)

8
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Figure 2.2: Position of the neutral axis

From equations (2.11) and (2.8) we can obtain

d = −D̂ab

D̂a

(2.12)

Computation of the shear correction parameter

In this section is used the expression for the shear correction parameter given in
[3]

kz =
Q2

Ĝ

[∫∫
A

τ 2
xz

G(z)

]−1

dA (2.13)

Inverting equation (2.9) and substituting it into (2.4) gives σx at each layer in
terms of N and M by

σx =
E

D̂

[
D̂bN − D̂abM − z(−D̂abN + D̂aM)

]
(2.14)

Equation (2.4) shows that the shear stress τxz is constant across the beam depth.
The “correct” distribution of τxz which satisfies the equilibrium equations of elas-
ticity can be computed “a posteriori” once the displacements have been obtained.
From the equilibrium equation along the x direction

∂τxz
∂z

+
∂σx
∂x

= 0 → τxz(z) = −
∫ z

h−

∂σx
∂x

dz (2.15)

9
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Substituting equation 2.14 into equation 2.15 and accepting that
∂N

∂x
= 0 and

using
∂M

∂x
= −Q gives

τxz(z) =
−Q
D̂

F (z) (2.16)

with

F (z) = D̂aS(z) + D̂ab

∫ z

h−
E(z)dz , S(z) =

∫ z

h−
zE(z) dz (2.17)

If x is the neutral axis, then D̂ab = 0, and, hence, D̂ = D̂aD̂b and

τxz(z) =
−Q
D̂b

S(z) (2.18)

Substituting equation (2.16) into (2.13) gives

kz =
D̂2

Ĝ

[∫∫
A

F 2(z)

G(z)
dA

]−1

(2.19)

If x is the neutral axis, then F = D̂aS(z), D̂ = D̂aD̂b and

kz =
D̂2
b

Ĝ

[∫∫
A

S2(z)

G(z)
dA

]−1

(2.20)

Integrating equation (2.20) in a rectangular composite laminated section we obtain
the next expression

∫∫
A

S2(z)

G(z)
dA =

nl∑
j=1

b

Gi

∫∫ zj+1

zj

S2(z) dA =

= b

nl∑
k=1

1

4Gk

(
k−1∑
l=1

El
((
zl+1

)2 −
(
zl
)2
)
− Ek

(
zk
)2

)2 (
zk+1 − zk

)
+ b

nl∑
k=1

1

6Gk

(
k1∑
l=1

El

((
zl+1

)2 −
(
zl
)2
)
− Ek

(
zk
)2

)
Ek
((
zk+1

)3 −
(
zk
)3
)

+ b

nl∑
k=1

1

20

(
Ek
)2
((
zk+1

)5 −
(
zk
)5
)

(2.21)
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2.1.4 Thermal strains and initial stresses

An initial axial strain due to thermal effects (εox) and initial stresses (σox, τ
o
xz) can

easily be accounted for in the present formulation. The strain-stress relationship
of Eq.(3.8) is modified as

σx = E(εx − εox) + σox ; τxz = Gγxz + τ oxz (2.22)

where εox = α∆T , α being the thermal expansion coefficient and ∆T the tem-
perature increment. Recall that the initial tangential stresses due to a thermal
expansion are zero (Section 4.2.4 of [On4]).

The relationship between resultant forces and generalized strains (equation (2.4))
is modified as

σ̂σσ = D̂ε̂εε+ σ̂σσo (2.23a)

where σ̂σσo is the initial resultant stress vector given by

σ̂σσo = [N o,M o, Qo]T (2.23b)

with

N o =

∫∫
A

[−Eεox + σox]dA , M o =

∫∫
A

[Eεox − σox]z dA , Qo =

∫∫
A

τ oxzdA (2.23c)

2.1.5 Principle of virtual work

We study the PVW for distributed loads t only. Other load types(i.e. point loads)
can be easily taken into account as explained in Zienkiewicz [1] and Oñate [2]. The
expression of the PVW is ∫∫∫

V

δεεεTσσσ dV =

∫
L

δuT t dx (2.24)

where δu = [δu0, δw0, δθ]
T is the virtual displacement vector, δεεε and σσσ are the

virtual strain vector and the stress vector, respectively, and t = [fx, fz,m]T is the
vector of external forces acting over the beam axis due to distributed axial and
vertical loads fx and fz, respectively and a distributed moment m. The integral
in the l.h.s. of equation (2.24) represents the internal virtual work.

Making use of equations (2.3) and (2.5), equation (2.24) can be written as∫∫∫
V

δεεεT σ̂σσ dV =

∫
l

δε̂εεT
[∫∫

A

STDSdA

]
ε̂εε dx =

∫
L

δε̂εεT D̂ε̂εε dx =

∫
L

δε̂εεT σ̂σσ dx (2.25)

11
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Figure 2.3: Two-noded composite laminated Timoshenko beam element

The PVW can therefore be expressed in terms of integrals along the beam axis as∫
L

δε̂εεT σ̂σσ dx =

∫
L

δuT t dx (2.26)

all the derivatives appearing in the PVW are of first order. This allows us using
C◦ continuous interpolations for the axial displacement u0, the vertical deflection
w0 and the rotation θ.

2.1.6 Two-noded composite laminated Timoshenko beam
element

The beam is discretized into 2-noded elements of length l(e). A standard linear
approximation is chosen for u0, w0 and θ as (figure 2.3)

u =


u0

w0

θ

 =
2∑
i=1

Ni(ξ)a
(e)
i with a

(e)
i =


u0

w0

θ


i

(2.27)

where (·)i denotes nodal values.

Substituting the approximation (2.27) into the generalized strain vector of equation
(2.3a) gives

ε̂εε =



∂u0

∂x
∂θ

∂x
∂w0

∂x
− θ


=

2∑
i=1

Bia
(e)
i = Ba(e) (2.28)

12
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with

a(e) =

{
a

(e)
1

a
(e)
2

}
and Bi =


Bai

· · ·
Bbi

· · ·
Bsi

 =


∂Ni

∂x
0 0

· · · · · · · · ·
0 0 ∂Ni

∂x

· · · · · · · · ·
0 ∂Ni

∂x
−Ni

 (2.29)

where Bmi
,Bbi and Bsi are the generalized strain matrices corresponding to axial,

bending and transverse shear deformation effects.

Substituting the constitutive relationship (2.23) into the PVW (equation (2.26))
and using equations (2.27) and (2.28) leads to the system of equations Ka = f
where the stiffness matrix and the equivalent nodal force vector are assembled
from the element contributions given by

K
(e)
ij =

∫
l(e)

BT
i D̂Bj dx

f
(e)
i =


fxi
fzi
mi

 =

∫
l(e)
N

(e)
i t dx−

∫
l(e)

BT
i σ̂σσ

odx i, j = 1, 2

(2.30)

The second integral in the expression of f
(e)
i accounts for the effect of the initial

(thermal) strain and the initial stresses.

The element stiffness matrix can be written using the components of Bi and D̂ as

K
(e)
ij = K(e)

aij
+ K

(e)
bij

+ K(e)
sij

+ K
(e)
abij

+ [K
(e)
abij

]T (2.31a)

where

K(e)
rij

=

∫
l(e)

BT
ri
D̂rBrj dx r = a, b, s (2.31b)

and

K
(e)
abij

=

∫
l(e)

BT
ai
D̂abBbi dx (2.31c)

In the above expressions indexes a, b, s and ab denote respectively the contribu-
tion of the axial, bending, shear and coupling axial-bending terms to the element
stiffness matrix.

13
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Finally, the explicit element stiffness matrix can be written as:

K(e)
a =

D̂a

l(e)


1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (2.32a)

K
(e)
b =

D̂b

l(e)


0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 1

 (2.32b)

K
(e)
ab =

D̂ab

l(e)


0 0 1 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

 (2.32c)

K(e)
s =

D̂s

l(e)



0 0 0 0 0 0

0 1 l(e)

2
0 −1 l(e)

2

0 l(e)

2
l(e)

2

3
0 − l(e)

2
l(e)

2

6

0 0 0 0 0 1

0 −1 − l(e)

2
0 1 − l(e)

2

0 l(e)

2
l(e)

2

6
0 − l(e)

2
l(e)

2

3


(2.32d)

2.1.7 Shear locking

The relative value of the shear stiffness terms versus the bending terms affects
the finite element solution for the Timoshenko beam problem is explained in E.
Oñate [2] and [3]. For thick beams, the shear terms dominate the bending ones
in the stiffness matrix and this leads to unrealistically stiff results (locking). The
relative influence of the shear terms over the bending terms can be quantified by
the parameter β of equation (2.33):

β =
12D̂b

L2D̂s

(2.33)
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A small value of β indicates that the influence of transverse shear deformation is
negligible in the solution. Parameter β depends on the geometrical and mechan-
ical properties of the section. For a rectangular beam of length L, depth h and
homogeneous isotropic material, β = E(kzGλ

2)−1 with λ = L/h being the beam
slenderness ratio.

For a relatively “thick” isotropic beam (λ = 4), the ratio
E

kzG
' 2 and β = 0.125.

It is interesting that for a slender composite beam with λ = 20 and
E

kzG
= 50

the value of β is also 0.125. The influence of transverse shear deformation is the
same for a thick isotropic beam and a slender composite beam, both leading to a
small value of β. This justifies using Timoshenko theory for composite laminated
beams.

Shear locking appearing for small values of β can be eliminated by any of the
methods explained in the previous chapter. For the 2-noded composite Timo-
shenko beam element, the simplest procedure is to evaluate all integrals in the
stiffness matrix using a single Gauss integration point. Element shear stiffness
matrix becomes as follows:

K(e)
s =

D̂s

l(e)



0 0 0 0 0 0

0 1 l(e)

2
0 −1 l(e)

2

0 l(e)

2
l(e)

2

4
0 − l(e)

2
l(e)

2

4

0 0 0 0 0 1

0 −1 − l(e)

2
0 1 − l(e)

2

0 l(e)

2
l(e)

2

4
0 − l(e)

2
l(e)

2

4


(2.34)

2.2 Zigzag refined Timoshenko theory

2.2.1 General concepts of zigzag beam theory

The displacement field in layer-wise theory is written as a linear combination of
some function as

ui(x, z) = u0
i (x) +

Ni∑
k=1

uki (x)φk(z) (2.35)

where Ni is the number of analysis layers taken, uki (x, y) are the displacements
at each layer interface k and φj are known functions of the thickness coordinate
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z. The φk functions are piecewise and continuous within each layer. Due to the
local definition of φj(z), the displacements are continuous across the thickness but
their derivatives with respect to z are not. So the transverse shear strains are
discontinuous at the interfaces and the transverse shear stress can be enforced to
be continuous for the case of layers with different mechanical properties.

The zigzag theories assume a zigzag pattern for the axial displacements and enforce
continuity of the transverse shear stresses across the entire laminate depth. The
number of kinematic variables in zigzag theories is independent of the number of
layers. The kinematic field in zigzag beam theories is written as

uk(x, z) = u0(x)− zθ(x) + ūk(x, z) ; w(x, z) = w0(x) (2.36a)

where
ūk = φk(z)Ψ(x) (2.36b)

is the zigzag displacement function.

Function φk(z) denotes a piecewise linear zigzag function and Ψ(x) is a primary
kinematic variable that defines the amplitude of the zigzag function along the
beam.

2.2.2 Zigzag displacement field

The key attributes of the RZT are: first, the zigzag function vanishes at the top
and bottom surfaces of the beam section and does not require full shear-stress
continuity across the laminated-beam depth. Second, all boundary conditions can
be modelled adequately. And third, C◦ continuity is only required for the FEM
approximation of the kinematic variables.

Within each layer the zigzag function is expressed as

φk =
1

2
(1− ζ)φ̄k−1 +

1

2
(1 + ζ)φ̄kk =

φ̄k + φ̄k−1

2
+
φ̄kk − φ̄k−1

2
ζk (2.37)

where φ̄k and φ̄k−1 are the zigzag functions of the k and k−1 interface, respectively

with φ̄0 = φ̄nl = 0 and ζk = 2(z−zk−1)
hk

− 1 (figure 2.4a).

Note that the zigzag displacement ūk (equation ) also vanishes at the top and
bottom layers (figure 2.4b).

The form of φk of equation (2.37) yields a constant distribution of its gradient
within each layer βk

βk =
∂φk

∂z
=
φ̄k − φ̄k−1

hk
(2.38a)
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Figure 2.4: Refined zigzag theory. Zigzag and displacement fields

From equation (2.38) and the conditions φ̄0 = φ̄N = 0 we deduce∫∫
A

βkdA = 0 (2.38b)

The βk parameter is useful for computing the zigzag function.

2.2.3 Strain and stress fields

The strain-displacement relations are derived from equations (2.2) and (2.36a) as

εkx =
∂u0

∂x
− z ∂θ

∂x
+ φk

∂Ψ

∂x
= [1,−z, φk]



∂u0

∂x
∂θ

∂x
∂Ψ

∂x


= Spε̂εεp (2.39a)

γkxz = γ + βkΨ = [1, βk]

{
γ
Ψ

}
= Skt ε̂εεt (2.39b)

with

Sp = [1,−z, φk] , ε̂εεp =

[
∂u0

∂x
,
∂θ

∂x
,
∂Ψ

∂x

]T
Skt = [1, βk] , ε̂εεt = [γ,Ψ]T

(2.39c)
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Miguel Masó Sotomayor

where ε̂εεp and ε̂εεt are the generalized in-plane (axial-bending) and transverse shear
strain vectors, respectively.

In equation (2.39b), γ = ∂w0

∂x
− θ. Integrating equation (2.39b) over the cross

section and using equation (2.38) and the fact that Ψ is independent of z yields

γ =
1

A

∫∫
A

γkxzdA (2.40)

i.e. γ represents the average transverse shear strain of the cross section. Stress-
strain relations for the kth layer have the next form (equation 2.4)

σkx = Ekεkx = EkSkpε̂εεp (2.41a)

τ kxz = Gkγkxz = GkSkt ε̂εεt (2.41b)

where Ek and Gk are the axial and shear moduli for the kth layer.

2.2.4 Computation of the zigzag function

The shear strain-shear stress relationship of equation (2.39b), is written as

τ kxz = Gkη +Gk(1 + βk)Ψ (2.42)

where η = γ −Ψ is a difference function.

Clearly the distribution of τ kxz within each layer is constant, as η is independent of
the zigzag function and βk is constant (equation (2.38)).

The distribution of τ kxz is enforced to be independent of the zigzag function. This
can be achieved by constraining the term multiplying Ψ in equation (2.42) to be
constant, i.e.

Gk(1 + βk) = Gk+1(1 + βk+1) = G, constant (2.43)

This is equivalent to enforcing the interfacial continuity of the second term in the
r.h.s. of equation (2.42).

From equation (2.43) we deduce

βk =
G

Gk
− 1 (2.44)

Substituting βk in the integral of equation (2.38) gives

G =

[
1

A

∫∫
A

dA

Gk

]−1

=

[
1

h

nl∑
k=1

hk

Gk

]−1

(2.45)
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which is the equivalent shear modulus for the laminate.

Substituting equation (2.38a) into equation (2.38b) gives the following recursion
relation for the zigzag function values at the layer interfaces

φ̄k =
k∑
i=1

hiβi with u0 = unl = 0 (2.46)

with βi given by Eq.(3.58).

Introducing Eq.(3.60) into (3.51) gives the expression for the zigzag function as

φk =
hkβk

2
(ζk − 1) +

k∑
i=1

hiβi (2.47)

This theory does not enforce the continuity of the transverse shear stresses across
the section. For homogeneous material Gk = G and βk = 0. The zigzag function φk

vanishes and we recover the kinematic and constitutive expressions of the standard
Timoshenko composite laminated beam theory.

Function Ψ can be interpreted as a weighted-average shear strain angle [3]. The
value of Ψ should be prescribed to zero at a clamped edge and left unprescribed at
a free edge.

2.2.5 Generalized constitutive matrix

The resultant stresses are defined as

σ̂σσp =


N
M
Mφ

 =

∫∫
A

[Skp]
TσkxdA =

(∫∫
A

[Skp]
TSkpE

kdA

)
ε̂εεp = D̂pε̂εεp (2.48)

σ̂σσt =

{
Q
Qφ

}
=

∫∫
A

[Skt ]
T τ kxzdA =

(∫∫
A

[Skt ]
TSktG

kdA

)
ε̂εεt = D̂tε̂εεt (2.49)

In vectors σ̂σσp and σ̂σσt, N,M and Q are respectively the axial force, the bending
moment and the shear force of standard beam theory, whereas Mφ and Qφ are an
additional bending moment and an additional shear force which are conjugate to
the new generalized strains ∂Ψ

∂x
and Ψ, respectively.

The generalized constitutive matrices D̂b and D̂t are

D̂p =

∫∫
A

Ek

 1 −z φk

−z z2 −zφk
φk −zφk (φk)2

 dA , D̂t =

[
Ds −δ
−δ δ

]
(2.50a)
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with

Ds =

∫∫
A

GkdA , δ = Ds −GA (2.50b)

In the derivation of the expression for D̂t we have used the definition of βk of
equation (2.38).

The generalized constitutive equation can be written as

σ̂σσ =

{
σ̂σσp
σ̂σσt

}
= D̂ε̂εε = D̂

{
ε̂εεp
ε̂εεt

}
with D̂ =

[
D̂p 0

0 D̂t

]
(2.51)

This formulation does not require a shear correction parameter kz.

Layer defined generalized constitutive matrix

In the same way as explained in section 2.1.4, defining the generalized consti-
tutive matrix by layers has great advantages when computing resultant stresses.
Expressions are modified and had a cheap additional computational cost

D̂p =

nl∑
k=1

[D̂p]
k D̂t =

nl∑
k=1

[D̂t]
k (2.52)

and each component is detailed

[D̂p11]k = (zk+1 − zk)bkEk = bhkE
k

[D̂p22]k =
b

3
(z3
k+1 − z3

k)E
k

[D̂p33]k =
b

3

(φ̄k+1)
3 − (φ̄k)

3

φ̄k+1 − φ̄k
hkEk

[D̂p12]k = − b
2

(zk+1 − zk)Ek = −bhkz̄kEk

[D̂p13]k =
b

2

(
φ̄k+1 + φ̄k

)
hkEk

[D̂p23]k = −bEk

((
φ̄k+1 + φ̄k

) mk
2

4
+
(
φ̄k+1 − φ̄k

)(mk
3

6
− mk

1m
k
2

4

)
1

hk

)

(2.53a)
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and

[D̂t11]k = b(zk+1 − zk)Gk = bhkG
k

[D̂t11]k = bhkG
k

(
G

Gk
− 1

)2

[D̂t12]k = −[D̂t11]k +GAk

(2.53b)

with

mk
1 = zk+1 − zk

mk
2 =

(
zk+1

)2 −
(
zk
)2

mk
3 =

(
zk+1

)3 −
(
zk
)3

(2.53c)

2.2.6 Virtual work expression

The virtual work expression for a distributed load fz = q is∫∫∫
V

(δεkxσ
k
x + δγkxzτ

k
xz)dV −

∫
L

δwqds = 0 (2.54)

The l.h.s. of equation (2.54) contains the internal virtual work performed by the
axial and tangential stresses over the beam volume V and the r.h.s. is the external
virtual work carried out by the distributed load.

Substituting equations (2.39a,b) into the expression for the virtual internal work
and using equations (2.48) and (2.50a)∫∫∫

V

(
δεkxσ

k
x + δγkxzτ

k
xz

)
dV =

∫∫∫
V

(
δε̂εεTp [Skp]

Tσkx + δε̂εεTt [Skt ]
T τ kxz

)
dV =

=

∫
L

(
δε̂εεTp σ̂σσp + δε̂εεTt σ̂σσt

)
dx (2.55)

The virtual work is therefore written as∫
L

(
δε̂εεTp σ̂σσp + δε̂εεTt σ̂σσt

)
dx−

∫
L

δwqdx = 0 (2.56)
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Figure 2.5: Two-noded LRZ composite laminated beam element

2.2.7 Two-noded LRZ beam element

The kinematic variables are u0, w0, θ and Ψ. They are discretized using 2-noded
linear C◦ beam elements of length l(e) (figure 2.5) as

u =


u0

w0

θ
Ψ

 =
2∑
i=1

Nia
(e)
i = Na(e) (2.57)

with

N = [N1I4, N2I4] , a(e) =

{
a

(e)
1

a
(e)
2

}
, a

(e)
i =


u0i

w0i

θi
Ψi

 (2.58)

where Ni are the standard 1D linear shape functions, a
(e)
i is the vector of nodal

DOFs and I4 is the 4× 4 unit matrix.

Substituting equation (2.57) into the generalized strain vectors of equation (2.39a)
gives

ε̂εεp = Bpa
(e) , ε̂εεt = Bta

(e) (2.59)

The generalized strain matrices Bp and Bt are

Bp = [Bp1 ,Bp2 ] , Bt = [Bt1 ,Bt2 ] (2.60a)

with

Bpi =


∂Ni

∂x
0 0 0

0 0
∂Ni

∂x
0

0 0 0
∂Ni

∂x

 , Bti =

 0
∂Ni

∂x
−Ni 0

−− −− −− −−
0 0 0 Ni

 =

Bsi

−−
Bψi


(2.60b)
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where Bpi and Bti are the in-plane and transverse shear strain matrices for node
i.

The virtual displacement and the generalized strain fields are expressed in terms
of the virtual nodal DOFs as

δu = Nδa(e) , δε̂εεp = Bpδa
(e) , δε̂εεt = Btδa

(e) (2.61)

The discretized equilibrium equations are obtained by substituting equations (2.48),
(2.57), (2.59) and (2.61) into the virtual work expression (2.56). After simplifica-
tion of the virtual nodal DOFs, the following standard matrix equation is obtained

Ka = f (2.62)

where a is the vector of nodal DOFs for the whole mesh.

The stiffness matrix K and the equivalent nodal force vector f are obtained by
assembling the element contributions K(e) and f (e) given by

K(e) = K(e)
p + K

(e)
t (2.63)

with

K(e)
pij

=

∫
l(e)

BT
pi

D̂pBpjdx , K
(e)
tij =

∫
l(e)

BT
ti
D̂tBtjdx (2.64)

and

f (e) =

∫
l(e)
Niq[1, 0, 0, 0]Tdx (2.65)

Matrix K
(e)
p is integrated with a one-point numerical quadrature which is exact in

this case. In a more compact way, it can be expressed in terms of the generalized
strain matrix Bp and the generalized constitutive matrix D̂p. Generalized strain
matrix Bp integration requires a one-point quadrature

(
B(e)
p

)
c

=

− 1
l(e)

0 0 0 1
l(e)

0 0 0
0 0 − 1

l(e)
0 0 0 1

l(e)
0

0 0 0 − 1
l(e)

0 0 0 1
l(e)

 (2.66)

Full integration of matrix K
(e)
t requires a two-point Gauss quadrature. This how-

ever leads to shear locking for slender composite laminated beams. K
(e)
t matrix

can be split as Shear locking can be eliminated by reduced integration of all (or

some) of the terms of K
(e)
t . For this purpose this matrix is split as

K
(e)
t = K(e)

s + K
(e)
ψ + K

(e)
sψ + [K

(e)
sψ ]T (2.67a)
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with

K(e)
sij

=

∫
l(e)
DsB

T
si

Bsjdx , K
(e)
ψij

=

∫
l(e)
δBT

ψi
Bψj

dx (2.67b)

K
(e)
sψij

=

∫
l(e)

(−δ)BT
si

Bψj
dx

and the K
(e)
t matrix exact integration is

K(e)
s =

D̂s

l(e)



0 0 0 0 0 0 0 0

0 1 l(e)

2
0 0 −1 l(e)

2
0

0 l(e)

2
l(e)

2

3
0 0 − l(e)

2
l(e)

2

6
0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0

0 −1 − l(e)

2
0 0 1 − l(e)

2
0

0 l(e)

2
l(e)

2

6
0 0 − l(e)

2
l(e)

2

3
0

0 0 0 0 0 0 0 0


(2.68a)

K
(e)
ψ = − δ

l(e)



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 l(e)
2

3
0 0 0 l(e)

2

6

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 l(e)
2

6
0 0 0 l(e)

2

3


(2.68b)

K
(e)
b =

δ

l(e)



0 0 0 0 0 0 0 0

0 0 0 − l(e)

2
0 0 0 − l(e)

2

0 0 0 − l(e)
2

3
0 0 0 − l(e)

2

6

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 l(e)

2
0 0 0 l(e)

2

0 0 0 − l(e)
2

6
0 0 0 − l(e)

2

3

0 0 0 0 0 0 0 0


(2.68c)

In chapter 4 is made a study of the accuracy of the LRZ beam element for analysis
of laminated beams using one and two-point quadratures for integrating K

(e)
s , K

(e)
ψ

24



Beam theories

and K
(e)
sψ . One-point quadratures integrated matrices are
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(2.69c)

This beam element is termed LRZ (for Linear Timoshenko Zigzag element).

2.2.8 Shear stresses integration

LRZ results can be much improved by computing τxz “a posteriori” from the axial
stress field using the equilibrium equation ([3], [4])

∂σx
∂x

+
∂τxz
∂z

= 0 (2.70)
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The transverse shear stress at a point across the thickness with coordinate z is
computed by integrating equation (2.70) as

τxz(z) = −
∫ z

h−

∂σx
∂x

dz = −∂Nz

∂x
where Nz =

∫ z

h−
σxdz (2.71)

In equation (2.70) Nz is the axial force (per unit width) resulting from the thickness
integration of σx between the coordinates h− and z.
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Chapter 3

Numerical implementation

3.1 MAT-fem. The process

MAT-fem is a top-down program and it’s flow chart is shown in figure 3.1. This
simple scheme allows understanding the execution of a Finite Element program.

3.1.1 Start and read input file

The program starts cleaning variables and next ask to the user the name of the
input data file (the m. extension is not included in the file name). Listing 3.1
shows the first lines of the code corresponding to the variables and the clock set
up. Data data is read from a data file as a subroutine.

Input data file

Data file has three groups of variables: the associates wit the section, geometry
definition and boundary conditions. In order to simplify the code, the program
is free of data validation mechanisms. Even though MAT-fem only allows one
material, composite sections are allowed, they are treated by vector notation.
Listing 3.2 shows the variables associated with the material. Variable matyp if the
beam has an homogeneous section (matyp = 1) or a composite section (matyp =

2).
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Write results for GiD

Start

INPUT
FILE

INPUT
FILE Read input data .m

Check data

Compute DD̂

OUTPUT 
FILE

Loop over elements

Compute  κ , ,  f(e)(e) (e)(e)

Assembly of κ      and ff    (e)(e)(e)(e)

Define ff 
for punctual loads

(e)(e)

Apply ficked displacements

Functions:
Stress Stress 
CompositeComposite
Shear NZShear NZ

Function To GiDTo GiD

End

Compute κ κ u = = f  .

Compute node reactions

R= κ κ u -  f  .

Compute smoothed
stresses at nodes

Figure 3.1: MAT-fem process flow chart
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%% 2 Nodes Beam using Timoshenko Theory.

% Composite laminated plane beams

% Reduced integration of K_shear

%

% Clear memory and variables.

clear

file_name = input(’Enter the file name : ’,’s’);

tic; % Start clock

ttim = 0; % Initialize time counter

eval (file_name ); % Read input file

% Finds basics dimensions

nlayr = size(young ,1); % Number of layers

npnod = size(coordinates ,1); % Number of nodes

nelem = size(elements ,1); % Number of elements

nnode = size(elements ,2); % Number of nodes por elem

dofpn = 3; % Number of DOF per node

dofpe = nnode*dofpn; % Number of DOF per element

nndof = npnod*dofpn; % Number of total DOF

ttim = timing(’Time needed to read the input file ’,ttim);

Listing 3.1: Program initialization and data reading

29



Miguel Masó Sotomayor

%

% Material Properties

%

matyp = 2 ;

young = [

1.00e+00 2.190000000e+05 ;

2.00e+00 2.190000000e+03 ;

3.00e+00 2.190000000e+05 ] ;

poiss = [

1.00e+00 2.500000000e-01 ;

2.00e+00 2.500000000e-01 ;

3.00e+00 2.500000000e-01 ] ;

denss = zeros( 3,2);

hlayr = [

1.00e+00 6.667000000e-02 ;

2.00e+00 6.666000000e-02 ;

3.00e+00 6.667000000e-02 ] ;

blayr = [

1.000000000e-01 ;

1.000000000e-01 ;

1.000000000e-01 ] ;

Listing 3.2: Input data file: Material definition
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Basic material properties are stored as n−by−two array. First column indicates
in which layer is set the value specified in the second column. Width is constant
over the domain so, it doesn’t need to specify the layer. In next section data will
be reordered to simplify notation.

Listing 3.3 shows the definition of the coordinates and connectivities by the vari-
ables coordinates and elements.

%

% Coordinates

%

global coordinates

coordinates = [

1.000000000e+00 ;

5.000000000e-01 ;

0.000000000e+00 ] ;

%

% Elements

%

global elements

elements = [

3 , 2 ;

2 , 1 ] ;

Listing 3.3: Input data file: Geometry definition

coordinates is an array containing nodal x-coordinate. The number of any node
corresponds to the position that keeps their coordinates in the array. elements

defines the number of elements and its connectivities, i-th row corresponds to i-th
element.

The last group of variables define the boundary conditions, as it is shown in listing
3.4

fixnodes is a matrix where the number of rows corresponds to the number of
prescribed DOF and the number of columns describes in the following order the
restricted node, the fixed DOF code and the value for this DOF. The pointload

variable is used to define the punctual loads. Like the previous variables, this
is a matrix where the number of rows match the number of loads defined in the
problem, and the number of columns corresponds to the number of the loaded
node, the direction in which acts and the value of the load. sideload is a matrix
where the number of rows match the total element number, and the number of
columns is the number of DOF’s.
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%

% Fixed Nodes

%

fixnodes = [

3 , 1 , 0.000000000e+00 ;

3 , 2 , 0.000000000e+00 ;

3 , 3 , 0.000000000e+00 ;

3 , 4 , 0.000000000e+00 ] ;

%

% Point loads

%

pointload = [

1 , 1 , 0.000000000e+00 ;

1 , 2 , -1.000000000e+00 ;

1 , 3 , 0.000000000e+00 ] ;

%

% Side loads

%

uniload = sparse (2 , 2);

uniload ( 1 , 1) = 0.000000000e+00 ;

uniload ( 2 , 1) = 0.000000000e+00 ;

uniload ( 1 , 2) = -1.000000000e+00 ;

uniload ( 2 , 2) = -1.000000000e+00 ;

Listing 3.4: Input data file: boundary conditions definition
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young = sortrows(young ,1);

young = young (: ,2);

poiss = sortrows(poiss ,1);

poiss = poiss (: ,2);

denss = sortrows(denss ,1);

denss = denss (: ,2);

hlayr = sortrows(hlayr ,1);

hlayr = hlayr (: ,2);

Listing 3.6: Data checking

Zigzag-Timoshenko compatibility

Sometimes can be interesting to analyze the same problem under two beam theories
in order to make a comparison. Listing 3.5 shows some code lines that eliminate
the ψ condition, corresponding to the 4th DOF.

[condnum c] = find(fixnodes (: ,2)==4);

condnum = setdiff (1: size(fixnodes ,1), condnum );

fixnodes = fixnodes(condnum ,:);

Listing 3.5: Timoshenko

3.1.2 Generalized constitutive matrix

The program main’s purpose is to demonstrate the implementation of the FEM,
so some simplifications are made, like use a unique section along the whole beam.
Constitutive matrix will not vary element to element and it is evaluated before
initializing the stiffness matrix.

The first step is order data input from GiD. Algorithm is shown in listing 3.6.
Once values are sorted, each row of the variable stores the corresponding layer
value.

Before computing the generalized constitutive matrix, some values are set. Listing
3.7 gives an example of basic data setting of the laminated section. Variable hsect
stores the beam depth and variable shear is a nlayer-rows vector containing the
shear moduli.

Auxiliary variables as vertical coordinate (zlayr), middle point coordinate (mlayr)
and self-weight (weight) are computed in this section.
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hsect = sum(hlayr );

shear = young ./(2*(1+ poiss ));

zlayr = zeros (nlayr + 1,1);

mlayr = zeros (nlayr ,1);

weight= 0;

for k = 1 : nlayr

zlayr(k + 1) = zlayr(k) + hlayr(k);

mlayr(k) = zlayr(k) + hlayr(k)/2;

weight = weight + hlayr(k)* blayr(k)* denss(k);

end

zlayr = zlayr - hsect /2;

mlayr = mlayr - hsect /2;

Listing 3.7: Basic section values definition

for ilayr = 1 : nlayr

weight = weight + hlayr(ilayr)* blayr(ilayr)* denss(ilayr);

D_la(ilayr) = hlayr(ilayr)* blayr(ilayr)* young(ilayr);

D_lb(ilayr) = 1/3*( zlayr(ilayr +1)^3 - zlayr(ilayr )^3)* ...

blayr(ilayr )*young(ilayr );

D_lab(ilayr) = -hlayr(ilayr )*blayr(ilayr )*mlayr(ilayr )* ...

young(ilayr );

G_l(ilayr) = hlayr(ilayr)* blayr(ilayr)* shear(ilayr);

end

Listing 3.8: Timoshenko layer defined constitutive matrix

Timoshenko constitutive matrix

To compute the generalized constitutive matrix, first is calculated by layers (list-
ing 3.8) and then, generalized constitutive matrix is obtained by summing terms
(listing 3.9)

This variables had great advantages when computing resultant stresses.

Shear correction parameter Since composite laminated Timoshenko theory
assumes a uniform distribution of shear stresses, it needs a correcting shear pa-
rameter depending on the section properties. Shear correction parameter increases
deflection in very heterogeneous sections.

To use an easier formulation (equation 2.11) listing 3.10 implements equation 2.12.
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D_mata = sum(D_la); % Section stiffness

D_matb = sum(D_lb);

D_matab = sum(D_lab);

G_mat = sum(G_l);

D_mat = D_mata * D_matb - D_matab ^2;

Listing 3.9: Timoshenko generalized constitutive matrix

dnaxs = -D_matab/D_mata; % Axis translation

znaxs = zlayr - dnaxs;

mnaxs = mlayr - dnaxs;

Listing 3.10: Axis translation to neutral axis

Listing 3.11 shows the implementation of shear correction parameter (equation
2.21)

Variables S1, S2 and S3 are auxiliary variables used to compute the integration of
the static moment of the Young modulus with respect to the coordinate z (equation
2.17)

Zigzag constitutive matrix

In this section generalized constitutive matrix is also computed by layers, but be-
fore compute the stiffness, zigzag function must be set (listing 3.12). The zigzag
function adds an additional deformation pattern, that is coupled with axial, bend-
ing and shear patterns of deformation. Scalar variable G is the averaged shear
stiffness. Vector variables beta and phi are the derivative of the zigzag function
and the zigzag function respectively.

D lp and D lt variables store the in-plane and transverse stiffness respectively for
each layer. Both are three dimensional arrays. D matp and D matt variables store
the generalized constitutive matrix, they are computed as the sum of D lp and
D lt variables along the layers.

D matp and D matt variables (listing 3.14) store the generalized constitutive matrix,
they are computed as the sum of D lp and D lt variables along the layers.
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S1 = 0; % Compute the shear correction parameter

S3 = 0;

for jlayr = 1 : nlayr

if jlayr > 1

S1 = S1 + young(jlayr -1)*( zlayr(jlayr )^2 -zlayr(jlayr -1)^2);

end

S2 = 1/4*(S1 -young(jlayr)* zlayr(jlayr )^2)^2 ...

*( zlayr(jlayr +1) -zlayr(jlayr) )+ ...

1/6*(S1 -young(jlayr)* zlayr(jlayr )^2) *young(jlayr) ...

*( zlayr(jlayr +1)^3- zlayr(jlayr )^3)+ ...

1/20* young(jlayr )^2*( zlayr(jlayr +1)^5 - zlayr(jlayr )^5);

S3 = S3 + blayr(jlayr)/ shear(jlayr)*S2 ;

end

kz = D_naxb ^2/ G_mat/S3; % Shear correction parameter

D_ls = kz*G_l; % Layer shear stiffness

D_mats = kz*G_mat; % Section shear stiffness

Listing 3.11: Shear correction parameter computing

G = 0;

for k = 1 : nlayr

G = G + hlayr(k)/ shear(k);

end

G = hsect/G;

beta = zeros(nlayr ,1);

phi = zeros(nlayr +1,1);

for k = 1 : nlayr

beta(k) = G/shear(k) - 1;

phi(k+1)= phi(k) + beta(k)* hlayr(k);

end

Listing 3.12: Zigzag function
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for k = 1 : nlayr

D_lp(1,1,k) = young(k)* blayr(k)* hlayr(k);

D_lp(2,2,k) = young(k)* blayr(k)*dz3(k)/3;

D_lp(3,3,k) = young(k)* blayr(k)* hlayr(k)*...

(phi(k+1)^3 -phi(k)^3)/( phi(k+1)-phi(k))/3;

D_lp(1,2,k) = -young(k)* blayr(k)* hlayr(k)* mlayr(k);

D_lp(1,3,k) = young(k)* blayr(k)* hlayr(k)*( phi(k+1)+ phi(k))/2;

D_lp(2,3,k) = -young(k)* blayr(k)*(( phi(k+1)+ phi(k))* dz2(k)/4..

+ (phi(k+1)-phi(k))*( dz3(k)/6-mlayr(k)*dz2(k)/4)/ hlayr(k));

D_lp(2,1,k) = D_lp(1,2,k);

D_lp(3,1,k) = D_lp(1,3,k);

D_lp(3,2,k) = D_lp(2,3,k);

D_s = hlayr(k)* blayr(k)* shear(k);

D_lt(1,1,k) = D_s;

D_lt(2,2,k) = D_s * beta(k)^2;

D_lt(1,2,k) = G*blayr(k)* hlayr(k) - D_s;

D_lt(2,1,k) = D_lt(1,2,k);

end

Listing 3.13: Generalized constitutive matrix by layers

D_matp = sum(D_lp ,3); % In -plane section stiffness

D_matt = sum(D_lt ,3); % Transverse section stiffness

Listing 3.14: Generalized constitutive matrix
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% Dimension the global matrices.

StifMat = sparse ( nndof , nndof ); % Create the stiffness matr

force = sparse ( nndof , 1 ); % Create the force vector

Listing 3.15: Global matrix initialization

%% Element cycle.

for ielem = 1 : nelem

lnods (1: nnode) = elements(ielem ,1: nnode );

coor_x (1: nnode) = coordinates(lnods (1: nnode ),1); % Elem X coor

len = coor_x (2) - coor_x (1); % x_j > x_i

const = D_mata/len;

K_axial = [ 1 , 0 , 0 , -1 , 0 , 0 ;

0 , 0 , 0 , 0 , 0 , 0 ;

0 , 0 , 0 , 0 , 0 , 0 ;

-1 , 0 , 0 , 1 , 0 , 0 ;

0 , 0 , 0 , 0 , 0 , 0 ;

0 , 0 , 0 , 0 , 0 , 0 ];

Listing 3.16: Element cycle beginning to evaluate and assemble the elemental
stiffness matrix

3.1.3 Elemental stiffness matrix and its assemble

The code shown in listing 3.15 defines the global stiffness matrix and the equivalent
nodal forces vector a respectively as a sparse matrix and vector. This sparse
indexing optimizes the memory using the MATLAB’s tools.

Another simplification is made in this section to allow MAT-fem to demonstrate
the FEM. This routine is free of local axes, so global matrices are directly in-
tegrated. Listing 3.16 shoes the elemental loop in which the program calculates
and assembles the stiffness matrix and the equivalent nodal load vector for each
element. The cycle begins recovering the geometric properties of each element.
In the vector lnods the element’s nodal connectivity are stored and in the coord

matrix the coordinates from these nodes are keep.

Next step is to calculate the elemental stiffness matrix. The simple beam element
allows defining directly the stiffness matrices, listing 3.17 shows the code of reduced
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const = D_mats/len;

K_shear = [ 0 , 0 , 0 , 0 , 0 , 0 ;

0 , 1 , len/2 , 0 , -1 , len/2 ;

0 , len/2 , len ^2/4 , 0 , -len/2 , len ^2/4 ;

0 , 0 , 0 , 0 , 0 , 0 ;

0 , -1 , -len/2 , 0 , 1 , -len/2 ;

0 , len/2 , len ^2/4 , 0 , -len/2 , len ^2/4];

K_shear = K_shear * const;

K_elem = K_axial + K_bend + K_axbn + K_axbn ’ + K_shear;

Listing 3.17: Shear stiffness matrix integration and elemental stiffness matrix

B_matp = [-1/len , 0 , 0 , 0 , 1/len , 0 , 0 , 0 ;

0 , 0 ,-1/len , 0 , 0 , 0 , 1/len , 0 ;

0 , 0 , 0 ,-1/len , 0 , 0 , 0 ,1/len];

K_p = len * B_matp ’ * D_matp * B_matp;

Listing 3.18: In-plane stiffness integration

integration of the shear matrix from equation 2.34 in Timoshenko theory. Lisitng
3.18 shows the code of the in-plane stiffness matrix integration from zigzag theory,
deduced from equation 2.66

Since uniload matrix is defined nelem×2 (listing 3.4), while the elemental loop
is running, the uniform distributed loads are extrapolated to the equivalent nodal
forces and stored in ElemFor vector, this code is shown in listing 3.19. The nodal
contribution is evaluated equality on each node due to linear function form.

f1 = ( uniload(ielem ,1))* len /2;

f2 = (-weight + uniload(ielem ,2))* len /2;

ElemFor = [ f1 , f2 , 0 , 0 , f1 , f2 , 0 , 0 ];

Listing 3.19: Mass and uniform load vector

Finally, before stiffness matrix and force vector assembly the eqnum is defined
(listing 3.20). This variable stores the global equation number for all the DOF’s
involved in the element. The force vector needs one cycle from 1 to dofpe (number
of equations per element), while the stiffness matrix requires two cycles from 1 to
dofpe. With this scheme the elemental matrices and vectors are stored tempo-
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rally.

% Finds the equation number list for the i-th element

for i=1: nnode

ii = (i-1)* dofpn;

for j =1: dofpn

eqnum(ii+j) = (lnods(i)-1)* dofpn+j; % Build equation numbe

end

end

% Assemble the force vector and the stiffness matrix

for i = 1 : dofpe

ipos = eqnum(i);

force (ipos) = force(ipos) + ElemFor(i);

for j = 1 : dofpe

jpos = eqnum(j);

StifMat (ipos ,jpos) = StifMat (ipos ,jpos) + K_elem(i,j);

end

end

end % End element cycle

Listing 3.20: Elemental stiffness matrix assembling

When the elemental cycle stops the global stiffness matrix is assembled and in
next steps, punctual loads and Dirichlet conditions are added before solving the
global system.

3.1.4 External loads

Adding uniform loads is explained in previous section. Punctual loads calculation
(listing 3.21) is simpler than uniform loads calculation. It’s calculation is made by
adding the value of the load to the equivalent nodal force vector. This calculation
needs a loop over the number of point loads and a local to global equation number
conversion.

%% Add point loads conditions to the force vector

for i = 1 : size(pointload ,1)

ieqn = (pointload(i,1) -1)* dofpn+pointload(i,2); % Finds eq num

force(ieqn) = force(ieqn) + pointload(i,3); % add the forc

end

Listing 3.21: Equivalent nodal force vector for a punctual load
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3.1.5 Fixed displacements

Listing 3.22 shows the code which defines the loop over the prescribed DOF to
assign to the displacements vector u the known values defined by fixnodes. Also
the fix vector is defined to keep the equation numbers of the restricted DOF.

Finally the force vector is modified into forceDC vector with the product of the
StifMat matrix and the u vector, which at this moment contains only the values
of those DOF which have been restricted. Conserving force vector without being
affected by Dirichlet conditions is needed to compute the reactions.

for i = 1 : size(fixnodes ,1)

ieqn = (fixnodes(i,1) -1)* dofpn+fixnodes(i,2); % Finds eq num

u (ieqn) = fixnodes(i,3); % and store the solution in u

fix(i) = ieqn; % and mark the eq as a fix value

end

forceDC = force - StifMat * u; % adjust the rhs

Listing 3.22: Adding prescribed values

3.1.6 Solution of the equation system

The strategy used in MAT-fem consists of solving the global equation system (list-
ing 3.23) without considering those DOF whose values are known. The FreeNodes
vector contains the list of the equations to solve.

The FreeNodes vector is used as a DOF index and allows us to write in a simple
way the solution to the equations system. MATLAB takes care to choose the most
suitable algorithm to solve the problem, being totally transparent for the user the
solution of the system.

% Compute the solution by solving StifMat * u = force for the

% remaining unknown values of u.

FreeNodes = setdiff ( 1:nndof , fix ); % Finds the free node list

u(FreeNodes) = StifMat(FreeNodes ,FreeNodes) \ forceDC(FreeNodes );

Listing 3.23: Solution of the global equation system
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3.1.7 Reactions

The solution to the equations system (listing 3.24) is in the u vector, therefore the
reaction calculus is made by means of the expression R = StifMat*u - force.
Note that in this calculus, is used the force vector without the Dirichlet condi-
tions contribution. It is obvious that the reactions on the unprescribed nodes is
zero.

%% Compute the reactions on the fixed nodes as R = StifMat * u - F

reaction = sparse(nndof ,1);

reaction(fix) = StifMat(fix ,1: nndof) * u(1: nndof) - force(fix);

Listing 3.24: Computing reactions

3.1.8 Strains, stresses and resultant stresses

Once the nodal displacements have been found it is possible to evaluate the resul-
tant stresses in the elements by the DBu expression. The deformation matrix B
is calculated at the integration points, so the stresses are referred to these points.
In order to transfer the values of the stresses at the integration points towards
the element nodes it is necessary to review in detail and in a later section the
calculation of these values. Listing 3.25 presents the subroutine call for the nodal
stresses evaluation which are store in the StrNod matrix.

%% Compute the stresses

StrNod = Stress_Beam_LRZ_v1_1(D_matp ,D_matt ,u);

Listing 3.25: Calling stresses evaluation

A lot of information remains stored in a composite laminated beam element, so
MAT-fem calls an specific subroutine to calculate the strains, stresses and resul-
tant stresses along the beam thickness. Composite Beam subroutine (listing 3.26)
computes this values. The subroutine structure is like Stress Beam subroutine
(listing 3.25), so it is also discussed in next section.

[lDspNod lStrNod lResStrGP] = Composite_Beam_LRZ_v1_1 ...

(young ,shear ,zlayr ,phi ,beta ,D_lp ,D_lt ,u);

[shrStr coor_z] = ShearNz_Beam_LRZ_v1_1 (young ,zlayr ,lStrNod );

Listing 3.26: Strains, stresses and resultant stresses evaluation along the beam
thickness
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Shear stresses are computed from the kinematic variables interpolated by the
FEM even though, as explained in section 2.2.8 zigzag theory can integrate shear
stresses from the constitutive equation (2.70). Listing 3.26 shows the code calling
ShearNz Beam LRZ subroutine to integrate shear stresses.

Label LRZ refers to zigzag theory (from LRZ element) and subroutines related to
Timoshenko theory are labeled with Timoshenko.

3.1.9 More about stresses evaluation

Stress Beam subroutine computes stresses on Gauss points and project the stresses
toward the nodes. In C◦ beam shape functions the stresses are constant and the
nodal extrapolation is trivial.

Listing 3.27 shows the subroutine initialization and the shown code sets the basic
variables. The subroutine needs the generalized constitutive matrix and the dis-
placements. Additionally the nodal coordinates and elements connectivities will
be used, as they are defined as global variables.

The StrNod matrix is initialized to zeros to store the value of the nodal stresses,
in the last column the number of elements that concur in the node are counted.
This is necessary to make a nodal stress mean.

function StrNod = Stress_Beam_LRZ_v1_1 (D_matp ,D_matt ,u)

%% Evaluates the resultant stresses at the gauss point and smooth

% the values to the nodes.

global coordinates;

global elements;

nelem = size(elements ,1); % Number of elements

nnode = size(elements ,2); % Number of nodes por elem

npnod = size(coordinates ,1); % Number of nodes

StrNod = zeros(npnod , 6 ); % Create array for stresses

dofpn = 4; % Number of DOF per node

dofpe = dofpn*nnode; % Number of DOF per element

eqnum = zeros(dofpe ); % Equation number list

Listing 3.27: Subroutine initialization

Like in the stiffness matrix, the stress evaluation requires a loop over the ele-
ments, recovering the element’s connectivities (lnods), coordinates for these nodes
(coor x) as well as the displacements in u elem as it is shown in listing 3.28
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% One gauss point for stress evaluation

gaus0 = 0.0; % One Gauss point for stresses evaluation

B_matt = [ 0,-1/len ,-(1-gaus0)/2, 0, 0, 1/len ,-(1+ gaus0)/2, 0;

0 , 0 , 0 , (1-gaus0)/2, 0, 0, 0, (1+ gaus0 )/2];

Listing 3.29: Strain matrices evaluation on Gauss points

% Element cycle.

for ielem = 1 : nelem

lnods (1: nnode) = elements(ielem ,1: nnode );

coor_x (1: nnode) = coordinates(lnods (1: nnode ),1); % Elem X coor

% Finds the equation number list for the i-th element

for i=1: nnode

ii = (i-1)* dofpn;

for j =1: dofpn

eqnum(ii+j) = (lnods(i)-1)* dofpn+j; % Build equation numbe

end

end

% Recover the nodal displacements for the i-th element

u_elem (1: dofpe)=u(eqnum (1: dofpe ));

Listing 3.28: Recovering the element coordinates and nodal displacement

Inside the elemental loop strain matrix B is defined and evaluated on the inte-
gration point (listing 3.29). Element stresses are stored in Str p g0 and Str p g0

arrays, this values are accumulated in the StrNod were the last column is the
number of elements that share the node to evaluate later the nodal average (list-
ing 3.30).

StrNod is a npnod−by−4 array in Timoshenko theory; corresponding to the number
of nodes and the number of stresses (equation (2.6) defines N , M and Q resultant
stresses, and the additional index to store the number of entries). In zigzag theory
StrNod is a npnod−by−6 array due to the two additional stresses Mφ and Qφ

defined in equation (2.48).

Str_p_g0 = D_matp * B_matp * transpose(u_elem );

Str_t_g0 = D_matt * B_matt * transpose(u_elem );

StrNod(lnods (1) ,1) = StrNod(lnods (1) ,1)+ Str_p_g0 (1);
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StrNod(lnods (2) ,1) = StrNod(lnods (2) ,1)+ Str_p_g0 (1);

.

.

.

StrNod(lnods (1) ,6) = StrNod(lnods (1) ,6)+1;

StrNod(lnods (2) ,6) = StrNod(lnods (2) ,6)+1;

Listing 3.30: Stresses evaluation and projection toward nodes

Finally listing 3.31 code defines a loop over nodes to compute the nodal stresses
mean.

for i = 1 : npnod

StrNod(i,1) = StrNod(i,1)/ StrNod(i,4);

StrNod(i,2) = StrNod(i,2)/ StrNod(i,4);

StrNod(i,3) = StrNod(i,3)/ StrNod(i,4);

end

Listing 3.31: Nodal stresses mean

3.1.10 More about thickness distribution of strains and
stresses

In Composite Beam subroutine (listing 3.26) a more detailed calculus of strains
stresses and resultant stresses is performed. Since strains doesn’t need the evalua-
tion of the B matrix it are computed directly on the nodes. Even though stresses
and resultant stresses need to be evaluated at the integration points.

function [lDspNod lStrNod lResStrGP] = Composite_Beam_LRZ_v1_1 ...

(young ,shear ,zlayr ,phi ,beta ,D_lp ,D_lt ,u)

global coordinates;

global elements;

Listing 3.32: Subroutine initialization

In listing 3.32 the initialization of the subroutine is shown. It is initializated with
the layer defined generalized constitutive matrix rather the simple generalized
constitutive matrix, and it needs some extra information as the young and shear
moduli, geometrical section parameters and the zigzag function.

lDspNod = zeros(npnod ,4,nlayr +1); % Create array for displaceme

lStrNod = zeros(npnod ,3,2* nlayr); % Create array for stresses
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lResStrGP = zeros(nelem ,5,nlayr ); % Create array for res stress

Listing 3.33: Set variables

Listing 3.33 shows the variables definition. lDspNod array stores the displacements
field. The nodal reference is indexed in the first dimension, the displacement
interpolation (three in Timoshenko theory, equation (2.27), and four in zigzag
theory, equation (2.27)) is indexed in the second dimension and the thickness
position is indexed in the third dimension.

lStrNod array stores the stresses field. The nodal reference is indexed in the first
dimension, the stress reference is indexed in the second dimension (two for σ and τ ,
and the third to store the number of entries) and the thickness position is indexed
in the third dimension. The stresses are a discontinuous field, so they need two
values on each layer, on the lower and the upper boundary.

lResStrGP array stores the layer’s contribution to the resultant stresses. Once
they are computed, they remain on the Gauss points. lResStrGP is analog to
StrNod, but changing nodes by elements.

%% Compute the layer displacements

% Finds the equation number list for the i-th node

for nn = 1 : npnod

ndof1(nn) = (nn -1)* dofpn + 1;

ndof2(nn) = (nn -1)* dofpn + 2;

ndof3(nn) = (nn -1)* dofpn + 3;

ndof4(nn) = (nn -1)* dofpn + 4;

end

Listing 3.34: Finding the DOF reference for each node

Listing 3.34 shows the code computing the equation number to evaluate in list-
ing 3.35 the displacements field, from equation (2.1) in Timoshenko theory and
equation (2.36a) in zigzag theory.

for k = 1 : nlayr + 1

lDspNod (:,1,k) = u(ndof1) -zlayr(k)*u(ndof3) +phi(k)*u(ndof4);

lDspNod (:,2,k) = u(ndof2);

lDspNod (:,3,k) = u(ndof3);

lDspNod (:,4,k) = u(ndof4)*phi(k);

end

Listing 3.35: Computation of the displacement field
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function [shrStr coor_z] = ShearNz_Beam_LRZ_v1_1 ...

(young ,zlayr ,lStrNod)

% This script integrates shear stress from constitutive eq.

global coordinates;

global elements;

npz = 50; % number of points per layer

shrStr = zeros(npnod ,npz*nlayr ,2); % Create array for shear str

Listing 3.38: Subroutine initialization

Stresses are evaluated by the DSε̂εε expression from equation (2.5) in Timoshenko
theory and from equation (2.41a) in zigzag theory. Code from listing 3.36 gives an
example how to evaluate the DS product at different beam depth positions.

for k = 1 : nlayr

E_Sp (2*(k-1)+1 ,:) = young(k)*[ 1 ,-zlayr( k ), phi( k ) ];

E_Sp (2*(k-1)+2 ,:) = young(k)*[ 1 ,-zlayr(k+1), phi(k+1) ];

G_St (2*(k-1)+1 ,:) = shear(k)*[ 1 , beta(k)];

G_St (2*(k-1)+2 ,:) = shear(k)*[ 1 , beta(k)];

end

Listing 3.36: Constitutive matrix and strain-displacement transformation matrix

Once DS product is evaluated, stresses can be computed inside an elemental loop
substituting equation (2.28) on equation (2.5), and it are stored on lStrNod, in
the same way that StrNod.

Str1_g0 = E_Sp*B_matp*transpose(u_elem );

Str2_g0 = G_St*B_matt*transpose(u_elem );

Listing 3.37: Stresses evaluation

Shear stresses integration. Section 2.2.8 explains how to integrate the thick-
ness distribution of shear stresses. Listing 3.38 shows the basic parameters of the
subroutine to evaluate shear stresses.

Vertical coordinate is split on several points where shear stresses distribution will
be evaluated. npz variable defined on listing code 3.38 sets the number of points
to evaluate the stresses (listing 3.39 and 3.40).
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%% Vertical coordinate

coor_z = zeros(npz*nlayr ,1);

for k = 1 : nlayr

coor_z(npz*(k -1)+1: npz*k) = linspace(zlayr(k),zlayr(k+1),npz);

end

Listing 3.39: Split vertical coordinate

diffNz = (Nz(lnods (2) ,:) - Nz(lnods (1) ,:))/ len;

shrStr(lnods (1),:,1) = shrStr(lnods (1),:,1) - diffNz;

shrStr(lnods (2),:,1) = shrStr(lnods (2),:,1) - diffNz;

Listing 3.41: Stresses derivative

MATLAB commands allow integrating shear stresses in a few lines. Two loops
over nodes and layers are request.

%% Normal stresses integration

for i = 1 : npnod

for k = 1 : nlayr

Nz(i,npz*(k -1)+1: npz*k) = ...

linspace(lStrNod(i,1 ,2*(k-1)+1) , lStrNod(i,1 ,2*(k-1)+2) , npz);

end

Nz(i,:) = cumtrapz(coor_z ,Nz(i ,:));

end

Listing 3.40: Stresses evaluation and integration along the beam depth

Finally, shear stresses are obtained with the x derivative of the Nz variable. Shear
stresses derivative is obtained with the same strategy than stresses. Listing 3.41
makes the derivative inside the element and store the values on shrStr vari-
able.

3.1.11 Writing for postprocessing

Once calculated the nodales displacements, the reactions and the stresses it is
come to overturn these values to the postprocess files from where GiD will be able
to present/display them in a graphical way. This is made in the subroutine ToGiD
shown in listing 3.42

%% Graphic representation.
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ToGiD_Beam_LRZ_v1_1(file_name ,zlayr ,u,reaction ,...

StrNod ,lDspNod ,lStrNod ,lResStrGP );

Listing 3.42: Postprocess call

3.2 Graphical User Interface

MAT-fem is named by GiD as a Problem Type [7]. In this section the Graphical
User Interface (GUI) implemented in GiD is reviewed. In order to accede to GUI is
necessary to locate MAT-fem beams.gid folder inside the GiD installation directory.
Then user is able to select from the Data menu in the option Problemtype the
module corresponding to MAT-fem beams. When selected, the image shown in
figure 3.2 will appear.

Figure 3.2: MAT-fem beams GUI start up

3.2.1 Preprocess

Solving a problem with MAT-fem is a very simply thing once geometry have been
defined. Holding an line elements mesh brings preprocess to be early nonexistent.
The user just needs to follow the icons of the MAT-fem’s graphical menu.

The first button is for identify those geometric elements that present move-
ments restriction. When pressing on, an emergent window (figure 3.3) will

appear to select the nodes or lines were the displacements are restricted. The
check boxes identify the fixed direction. Also it is possible to give a non-zero value
to constrain.
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Figure 3.3: Fixed displacement condition

The icon button is used for punctual loads allocation. When selecting, an
emergent window (figure 3.4) allows giving the load value in the global coordinate
system. Once it is defined is necessary to select the nodes were to applied it.

Figure 3.4: Point loads assignation

The icon associated to the uniformly distributed loads permits to assign
this condition on the geometry’s lines. The emergent window (figure 3.5)

allows introducing the value of the load by length unit referred the global axes
system.

The material properties definition is made trough the following button which
leads to a new emergent window (figure 3.6) to define the material variables.

This assignation is used with the classical beam theories: Euler-Bernuolli and
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Figure 3.5: Uniform loads assignation

Figure 3.6: Material properties definition

Timoshenko. As was mention before, in MAT-fem, for simplify reasons only one
material is allowed.

Composite material definition is made by this alternative icon which open an
emergent window (figure 3.7). Each field is defined by the layer assignation

and the corresponding property value. Obviously the number of layers must be
the same in all the fields. Note that this section properties assignation mode is
equivalent to a unique material. A composite section must be processed with
the composite laminated plane beams Timoshenko theory or even with the zigzag
theory.

The general properties button allows acceding to the window shown in figure
3.8 where the title of the problem is identified and the gravity forces can be

51



Miguel Masó Sotomayor

Figure 3.7: Composite material definition

Figure 3.8: General properties of the problem

considered.

Once defined the boundary conditions and the material properties it is nec-
essary to make the domain discretization. The mesh button is used to create

the mesh.

The data file writing is made when pressing the last button shown in the
menu. All the geometrical properties of the problem, as well as the material

are written to the data file in the specific reading format for MAT-fem. MATLAB
.m extension must be added to the file name.
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Details about the configuration files

GiD allows creating a problem type trough several files. All of them are named
problem type name.extension:

• MAT-fem beams.cnd Conditions definitions

• MAT-fem beams.mat Materials properties

• MAT-fem beams.prb Problem and intervals data

• MAT-fem beams.uni Units system

• MAT-fem beams.sim Conditions symbols

• MAT-fem beams.tcl Tcl extension

• MAT-fem beams.bas Information for the input data file

The GUI icons are created by the .tcl file [7], [8]. In the present work is added
the composite materials assignation icon, it calls a materials book with composite
laminated sections (listing 3.43).

proc MyBitmaps { dir { type "DEFAULT INSIDELEFT "} } {

global MyBitmapsNames MyBitmapsCommands \

MyBitmapsHelp MAT -fem_Beams

set MyBitmapsNames (0) "fix.gif pload.gif uload.gif \

material_homog.gif material_comp.gif units.gif \

mesh.gif write.gif"

set MyBitmapsCommands (0) [list \

[list -np- GidOpenConditions "Displacement_Constraints "] \

[list -np- GidOpenConditions "Puntual_Loads "] \

[list -np- GidOpenConditions "Uniform_Loads "] \

[list -np- GidOpenMaterials "Homogeneous_section "] \

[list -np- GidOpenMaterials "Composite_laminated_section "] \

[list -np- GidOpenProblemData] \

"Meshing generate" \

"File WriteCalcFile" ]

Listing 3.43: Tcl file: Commands definitions

Composite laminated sections It keep the same structure than homogeneous
materials, but treating properties as vectors rather than scalars. Additionally,
is set a hidden property to identify if the section, 1 means homogeneous and 2
means composite. Listing 3.44 shows the code setting the identifier and defining
the Young modulus as a variable field.
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NUMBER: 5 MATERIAL: Sym_3_layered

QUESTION: Identifier

VALUE: 2

STATE: hidden

QUESTION: YOUNG(LAYER ,_E_(N/m^2)__)

VALUE: #N# 6 1 2.19e5 2 2.19e3 3 2.19e5

Listing 3.44: Materials file: section identifier and definition of the materials prop-
erties

Conditions file This file defines the fixed displacements, the punctual loads
and the uniform distributed loads. Composite laminated Timoshenko theory in-
troduces an axial displacement so, an axial constraint and axial loads can be
defined. Even though zigzag theory only needs a zigzag constraint.

The template file It is the same as the .bas file, it describes the format and
structure of the required input data file for the solver. As mentioned before, the
input data file has three sections: section properties, geometrical definition and
boundary conditions. Section properties and boundary conditions had different
writing format: one for the homogeneous case and another for the composite case.
The code shown in listing 3.45 sets the id variable and prints the values for the
homogeneous section case (id==1).

%

% Material Properties

%

*loop materials

*set var id = MatProp(Identifier ,int)

*if(id==1)

*format " young = %17.9e ;"

*MatProp (2)

Listing 3.45: Template file: section identification

The composite section follows a different structure (listing 3.46). The id variable
will be used latter to define the format of the conditions file.

*elseif(id==2)

*set var C=2

*set var N=MatProp(2,int)

*if(N== MatProp(3,int)&&N== MatProp(4,int)&&N== MatProp(5,int))

young = [
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*for(i=1;i<=N-C;i=i+C)

*format " %6.2e %17.9e "

*MatProp (2,*i) *MatProp (2,* operation(i+1)) ;

*end for

*format " %6.2e %17.9e "

*MatProp (2,* operation(N-1)) *MatProp (2,*N) ] ;

Listing 3.46: Template file: composite section format

3.2.2 Postprocess

Once concluded the problem execution in MATLAB, is necessary to return to GiD
and open the file postprocess to analyze the obtained results. It is necessary to open
any of the generated files that contain the extension *.post.msh or *.post.res. If
they are saved inside the project directory GiD will read them automatically.

The obtained results visualization can be done in a diversity forms, due the GiD’s
graphical possibilities which permits to show the results like a colors gradient, iso-
lines, cuts and graphs; allowing the simple interpretation of the obtained results.
In figure (3.9) there is an iso-areas example showing the horizontal displacement
using the deformed mesh. The example is a thick cantilever beam under an end
point.

Figure 3.9: Beam postprocess

ToGiD Beam subroutine writes two different analysis on the postprocess files: the
first one prints the classical beam theories results and the second one shows a
thickness distribution along the beam depth.

The classic beam results have the structure shown in table 3.1 and the thickness
distribution of the results are organized as table 3.2 shows.
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• Resultant stresses • Reactions • Deformations

◦ Axial ◦ Force ◦ Displacements

� Nx � X-react � X-displ

◦ Moment � Y-react � Y-displ

� M ◦ Moment ◦ Rotation

� M-theta � Z-moment � Z-rot

� M-phi ◦ Psi-function ◦ Zigzag

◦ Shear � Psi-react � Psi-X

� Q

� Q-theta

� Q-phi

Table 3.1: Classical beam results structure

• Resultant stresses • Stresses • Deformations

◦ Axial ◦ Sigma ◦ Displacements

� Nx ◦ Tau � X-displ

◦ Moment � Y-displ

� M ◦ Rotation

� M-theta � Z-rot

� M-phi ◦ Zigzag

◦ Shear � X-displ

� Q

� Q-theta

� Q-phi

Table 3.2: 2D results structure
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Examples

4.1 Study of shear locking for the LRZ beam el-

ement

In this section the performance of the LRZ beam element for the analysis of a
cantilever of length L under an end point load F is studied. The beam is formed
by a symmetric three-layered section whose properties are described on 4.1. The
analysis is made under different span-to-thickness ratios: λ = 5, 10, 50, 250 (λ =
L/h).

Composite material properties

Layer 1 (bottom) Layer 2 (core) Layer 3 (top)

h [mm] 6.6667 6.6667 6.6667
E [MPa] 2.19E5 2.19E3 2.19E5

ν 0.2500 0.2500 0.2500

Table 4.1: Symmetric 3-layered cantilever beam. Material properties for shear
locking study

For the two first span-to-thickness ratios is made a convergence study using several
meshes from one to 100 elements. Figure 4.1 shows the vertical deflection versus
the number of elements. The exact stiffness matrices integration induces the shear
locking phenomenon, requiring a higher number of elements, while the reduced
integration of all the stiffness matrices can eliminate this undesired effect.

From figure 4.1 is chosen the S, Sψ and ψ reduced integration results as reference.
Figure 4.2 shows the ratio between the end node deflection obtained with different
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Figure 4.1: Shear locking of LRZ beam element. Convergence under different
span-to-thickness ratio. Labels “all”, S, Sψ and ψ refers to the matrices K

(e)
t ,

K
(e)
s , K

(e)
sψ and K

(e)
ψ , respectively

integration modes and the S, Sψ and ψ reduced integration.

For small values of λ the reduced or exact integration of the matrix K
(e)
t leads to

similar results. For slender beams, however, reduced integration is prescriptive.
There is no special reason to choose K

(e)
s and K

(e)
sψ or K

(e)
s , K

(e)
sψ and K

(e)
ψ reduced

integration even though they lead to different shear stresses distribution.

More accurate studies [4] recommend using the reduced integration for matrices

K
(e)
s and K

(e)
sψ , while matrix K

(e)
ψ should be integrated with a 2-point quadrature.

In next examples will be used only reduced integration for matrices K
(e)
s and

K
(e)
sψ .
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Figure 4.2: Ratio
(
r = ωi

ωs,sψ,ψ

)
versus L/h (λ = 5, 10, 50 and 250) for cantilever

under point load analyzed with 100 LRZ elements

4.2 Convergence study

A simple supported beam under a uniformly distributed load of unit value is
analyzed with two different composite laminated sections. It is span-to-thickness
ratio is λ = 10. The section properties are listed in table 4.2. Note that the
first laminate does not posses material symmetry with respect to the mid-depth
reference axis, while the second composite is symmetric and holds more uniform
properties.

The legend caption PS denotes the reference results obtained with a structured
mesh of 14.400 four-noded plane stress quadrilateral elements (4.3). TBT label
means the solution obtained with a mesh of 300 two-noded Timoshenko beam
element. LRZ-n refers to the solution obtained with the LRZ beam element using
meshes of n elements. Additionally, shear stresses can be computed from the
constitutive equation (2.70) which are labeled as Nz.
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Figure 4.3: Mesh of 14.400 four-noded plane stress quadrilateral elements to obtain
the “reference” results

Composite material properties

Layer 1 (bottom) Layer 2 (core) Layer 3 (top)

A h [mm] 2 16 2
E [MPa] 7.30E5 7.30E2 2.19E5

ν 0.25 0.50 0.25

B h [mm] 6.6667 6.6667 6.6667
E [MPa] 2.19E5 2.19E3 2.19E5

ν 0.25 0.25 0.25

Table 4.2: Thickness and layer properties for convergence study in a 3-layered
simple supported beam under uniformly distributed load
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Figure 4.4: Three-layered simple supported beam under uniformly distributed
load. Distribution of the deflection along beam axis
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Figure 4.4 shows the deflection distribution along the beam axis for the two lami-
nates. TBT results are considerable stiffer, the difference with the reference solu-
tion in composite A is about six times stiffer. The PS reference has some difficulties
modeling the boundary conditions, note that the error is constant along the beam
axis and note also, that near the fixed nodes there is an unusual deflection.

LRZ results are excellent with the 50 element mesh. Composite (A) maximum
deflection relative error is less than 3% respect results obtained with the 300 el-
ement mesh. A more homogeneous case is reflected in the composite (B) which
has a higher convergence, even though, the PS solution continues suffering the
boundary conditions modeling.
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Figure 4.5: Thickness distribution of normal stresses (composite A)

The axial stresses are plot in figures 4.5 and 4.6. LRZ results agree quite well with
those of the reference solution, and predict the discontinuity of σx better than
TBT results. TBT underestimate the maximum axial stress σx.

Convergence is still lower for the more heterogeneous case. In composite (A) the
LRZ results are displaced respect the PS reference solution. This discrepancy is
due to the difference in the way the simple support conditions are modeled and
the limitations of the beam theory.

Figures 4.7 and 4.8 show the shear stresses distribution along the beam depth.
LRZ provides an accurate average estimate of the transverses shear stress value
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Miguel Masó Sotomayor

−1 −0.5 0 0.5 1

x 10
4

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

σ (Pa)

h
 (

m
)

 

 

LRZ−10

LRZ−300

TBT

PS

(a) x = L/2

−1 −0.5 0 0.5 1

x 10
4

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

σ (Pa)
h
 (

m
)

 

 

LRZ−10

LRZ−300

TBT

PS

(b) x = 3L/4

Figure 4.6: Thickness distribution of normal stresses (composite B)
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Figure 4.7: Thickness distribution of shear stresses (composite A) at x = 3L/4
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for each layer. TBT results are clearly inaccurate. Shear streess τxz is highly
overestimated by TBT at the skin layers, specially for the more heterogeneous
composite (A).

The distribution of τxz across the thickness are substantially improved (figures
4.7b and 4.8b) by the integration of the equilibrium equations to compute τxz “a
posteriori” as explained in section 2.2.8. This distributions of the shear stresses
match the PS results.
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Figure 4.8: Thickness distribution of shear stresses (composite B) at x = 3L/4

4.3 Modeling delamination

Prediction of delamination in a composite laminated beams is a challenge for beam
models. Some models introduce a kinematic unknown for each layer even though,
the LRZ element can reproduce delamination without introducing additional kine-
matic variables. The delamination model introduces a very thin “interface” layer
between adjacent materials. Delamination is produced when the material prop-
erties of the interface layer are reduced to almost zero value in comparison with
those of the adjacent layers.
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Figure 4.9: Interface layer for modeling
delamination effects

An example to show the capabilities
of the LRZ beam element is presented.
This example is a cantilever beam un-
der end point load with a span-to-
thickness ratio about λ = 5. The beam
section has three layers whose proper-
ties are shown in table 4.3. A very
thin interface layer has been introduced
between upper and core layers (figure
4.9). The initial properties of the in-
terface layer coincides with the those of
the core layer. Next, Young modulus,
and shear modulus, has been reduced
up to 10 orders of magnitude (table 4.4).

Composite material properties

Layer 1 (bottom) Layer 2 (core) Layer 3 (interface) Layer 4 (top)

h [mm] 2 16 0.01 2
E [MPa] 7.30E5 7.30E2 E3 2.19E5

ν 0.25 0.50 0.25 0.25

Table 4.3: Thickness and layer properties for dealmination study in a 3-layered
cantilever beam under end point load. Young modulus values and it’s correspond-
ing shear modulus are given in table 4.4

The reduction of the Young and shear modulus has been applied over the whole
beam length. In other cases this reduction can be applied in selected regions of
the beam.

Model E3 G Model E3 G

1 7.38E+2 2.43E+2 6 7.38E−3 2.43E−3

2 7.38E+1 2.43E+1 7 7.38E−4 2.43E−4

3 7.38E+0 2.43E+0 8 7.38E−5 2.43E−5

4 7.38E−1 2.43E−1 9 7.38E−6 2.43E−6

5 7.38E−2 2.43E−2 10 7.38E−7 2.43E−7

Table 4.4: Young and shear modulus for the interface layer for delamination study
in a 3-layered cantilever beam. Values in MPa

The deflection evolution with the models is shown in figure 4.10. Note that the
deflection does not change after the shear modulus of the interface layer is reduced
about six orders of magnitude. Results agree reasonably well with the plane stress
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model. The main difference is the additional deflection of the skin from the core
layer which the plane stress model can reproduce.
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Figure 4.10: Delamination study in a cantilever beam. Evolution of end deflection
with the interface layer stiffness

Figure 4.11 show the axial displacement at x = 4L/5 for two different models:
model 2 is before delamination and model 8 is after delamination. The disconti-
nuity of the axial displacement between the core layer and the skin layer is well
represented (figure 4.11b). Results agree with the plane stress solution.

Figure 4.12 shows the thickness distribution of the axial stresses for the same
models. The delamianted section works as two independent beams, there are
two neutral axis. Results agree well with the plane stress ones, like in the other
cases.

The thickness distribution of the shear stresses is shown in figure 4.13 for the
same two models. The solution is obtained integrating the stresses equilibrium
equation (equation 2.70). Note the accuracy of the solution versus the plane stress
results.

This example shows the capability of the LRZ beam element predicting delamina-
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Figure 4.11: Delamination study in a cantilever beam. Axial displacements at
x = 4L/5
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Figure 4.12: Delamination study in a cantilever beam. Thickness distribution of
normal stresses at x = 4L/5
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Figure 4.13: Delamination study in a cantilever beam. Thickness distribution of
shear stresses at x = 4L/5

tion effects, a complex phenomenon for beams theories. Finally, is important to
recall that the LRZ does not incorporate additional kinematic variables.
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Chapter 5

Conclusions

This work presents two simple 2-noded beam elements. The first one is based on
composite laminated Timoshenko beam theory and the second one on the refined
zigzag theory.

On a regular basis the Euler-Bernoulli formulation works with one degree of free-
dom per node (the deflection) while the Timoshenko theory adds an additional
degree of freedom per node (the deflection and the rotation). This two beam
theories presented add two additional degrees of freedom per node (the axial dis-
placement and the amplitude of the zigzag function). A standard interpolation
C◦ is used for all the variables. From the tested examples we infer the following
conclusions:

• The resulting linear refined zigzag element, called LRZ, is free of shear lock-
ing. It is performed by the reduced integration of the matrices K

(e)
s and K

(e)
sψ ,

while K
(e)
ψ matrix should be integrated with a two point quadrature.

• For slender isotropic beams, the bending terms dominate over the shear terms
but, in composite laminated beams, the influence of transverse shear defor-
mation can be increased drastically. This justifies the use of the advanced
beam theories for composite laminated beams.

• LRZ beam element degrees of freedom does not depend on the number of
analysis layers.

• The LRZ beam element numerical results agree in practically all cases of the
two-dimensional plane-stress FEM results. The plane-stress FEM uses a far
larger number of degrees of freedom.

• The possibilities of the LRZ beam element for predicting delamination effects
has been presented in a simple but representative example.

69



Miguel Masó Sotomayor
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[2] Oñate, E., Cálculo de estructuras por el método de los elementos finitos,
2a Ed., Centro Int. de Met. Num. en Ingenieŕıa, Barcelona, septiembre
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[4] Oñate, E., Eijo, A., Oller, S., Simple and accurate two-noded beam
element for composite laminated beams using a refined zigzag theory,
Comput. Methods in Appl. Mech. Engrg., Vol. 213–216, 1 March 2012,
Pages 362-382

[5] Centro Internacional de Métodos Numéricos en Ingenieŕıa.
www.cimne.com

[6] MAT-fem manual. www.cimne.com/projects/mat-fem, 2007

[7] GiD customization manual. www.gidhome.com, 2012

[8] Welch, B., Practical programming in Tcl and Tk, 3rd Ed., Prentice Hall
PTR, 2000

[9] MATLAB. www.mathworks.com, 2003

71


	Abstract
	Contents
	List of variables
	Introduction
	Composite laminated plane beams
	MAT-fem program
	Organization

	Beam theories
	Timoshenko composite laminated beams
	Kinematics of a plane laminated beam
	Stresses and resultant stresses
	Generalized constitutive matrix
	Layer defined constitutive matrix
	Neutral axis
	Computation of the shear correction parameter

	Thermal strains and initial stresses
	Principle of virtual work
	Two-noded composite laminated Timoshenko beam element
	Shear locking

	Zigzag refined Timoshenko theory
	General concepts of zigzag beam theory
	Zigzag displacement field
	Strain and stress fields
	Computation of the zigzag function
	Generalized constitutive matrix
	Layer defined generalized constitutive matrix

	Virtual work expression
	Two-noded LRZ beam element
	Shear stresses integration


	Numerical implementation
	MAT-fem. The process
	Start and read input file
	Input data file
	Zigzag-Timoshenko compatibility

	Generalized constitutive matrix
	Timoshenko constitutive matrix
	Zigzag constitutive matrix

	Elemental stiffness matrix and its assemble
	External loads
	Fixed displacements
	Solution of the equation system
	Reactions
	Strains, stresses and resultant stresses
	More about stresses evaluation
	More about thickness distribution of strains and stresses
	Writing for postprocessing

	Graphical User Interface
	Preprocess
	Details about the configuration files

	Postprocess


	Examples
	Study of shear locking for the LRZ beam element
	Convergence study
	Modeling delamination

	Conclusions
	Bibliography

