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Abstract. Cost-effective parameteric surrogate models of unsteady aerodynamic loads acting on
a flapping wing are highly desirable. They would enable real time aerodynamic load prediction,
multiobjective optimisation and optimal control of intelligent flapping wing flight devices. In
the present work, a parametric surrogate modeling framework for unsteady aerodynamic loads
based on a non-intrusive reduced order modeling approach is presented. The unsteady flow past
a plunging 2D flat plate is considered where the aerodynamic load time histories are obtained
for different plunging frequencies and amplitudes using a potential flow solver. The parametric
non-intrusive reduced order model (p-NIROM) for the obtained loads is constructed using a
combination of snapshot proper orthogonal decomposition (POD) for dimensionality reduction
and a fully connected feed forward neural network (FCNN) for modeling the input parametric
dependency. Both, linear and non-linear FCNN based p-NIROM are explored and compared
on the basis of load time history reconstruction accuracy. The non-linear FCNN regression for
the p-NIROM is observed to generalise well for unseen parametric instances as compared to the
linear approach when a systematic data sampling strategy is adopted.

1 INTRODUCTION

Unsteady aerodynamics of flapping wings have been intensely researched over recent years [1].
This is due to their potential applications in efficient design of biomimetic flight devices. For
such applications, accurately computing the unsteady aerodynamic loads is of high importance.
Moreover, since such devices operate in a dynamic environment, real time load prediction across
flow or structural parameters would enable lower turn around times for solving deisgn optimisa-
tion and optimal control problems. This is where, cost-effective surrogate models that generalise
well in the parametric space would be beneficial.

Surrogate modeling of unsteady aerodynamic loads is an inverse problem where a cost-
effective alternative model to the underlying full order model is developed with the given load
data. As per Eldred et al. [2], surrogate models are of three types: data-fit, reduced order and
heirarchical. The present study involves the second type of surrogate models where a para-
metric non-intrusive reduced order model (p-NIROM) [3] of the unsteady aerodynamic loads is

1



R. Sundar, V. Kumar, D. Majumdar, C. Shah and S. Sarkar

proposed. Typically, building a p-NIROM [3] involves the following steps: (i) data generation
and input parameter space sampling (ii) dimensionality reduction, (iii) modeling parameteric
dependency and regression and (iv) dynamics reconstruction for unseen parametric instances.
The above steps can be further simplified into two phases in p-NIROM implementation: offline
(training - steps (i)-(iii)) and online (testing - step (iv)) phases. In the context of unsteady
flows, earlier works have mostly focused on traditional projection based approaches [4] towards
non-intrusive reduced order modeling. However, recent works have explored a plethora of deep
neural network (DNN) architectures for model order reduction of unsteady flows [3, 5–7] owing
to their high expressivity and agility [8]. Although, pure deep learning based NIROMs that use
either fully connected [7] or convolutional neural networks [3] are efficient in the testing phase,
their training is costly owing to the large number of neural network parameters that need to
be estimated. Recently, Fresca et al. [6] demonstrated how a prior reduction of the data using
snapshot proper orthogonal decomposition (POD) [9] and then learning a reduced map from
input to output data using a neural network lowered the training costs. Following the works of
Fresca et al. [6], a p-NIROM of the lift coefficient data has been developed, given only a handful
of different input kinematic parameters. To compensate for the deficiency of data, a sampling
strategy based on the underlying structure in the data is also devised.

The structure of the paper is as follows: In section 2, the p-NIROM framework is discussed
in the context of unsteady aerodynamic loads generated by a plunging flat plate. In section 3,
efficacy of the proposed p-NIROM is demonstrated in predicting the unsteady aerodynamic lift
coefficient time series for unseen kinematic parameters. Finally, conclusions are drawn along
with the perspectives on further scope in section 4.

2 COMPUTATIONAL METHODOLOGY

The objective of this study, is to develop a cost efffective parametric non-intrusive reduced
order model for the unsteady aerodynamic loads acting on a plunging flat plate. Specifically, the
unsteady aerodynamic lift coefficient (CL) data is considered for investigation. A p-NIROM is
purely data driven and hence once trained, doesn’t require any governing equations to be solved
to predict the load time histories for a given input parameter [6]. As shown in the schematic
figure 1, the process of constructing a p-NIROM involves the following steps: (i) data generation,
(ii) dimensionality reduction, and (iii) regression and dynamics reconstruction for different input
kinematic parameters.

Here, a potential flow theory based unsteady vortex lattice method (UVLM) solver is used
for CL time histories data generation. In the dimensionality reduction step, a snapshot data
matrix using the CL time series data is constructed first at different input kinematic parameters
for a fixed time window. Snapshot POD is then used to obtain a truncated temporal POD basis
matrix Φ̃ and kinematic parameters dependent expansion coefficient matrix Ã. The FCNN is
then trained to approximate a continuous map from input kinematic parameters vector µ to
the corresponding column vectors of Ã, using a training dataset. Finally, the efficacy of the
proposed p-NIROM is evaluated based on the reconstruction accuracy of CL data for a testing
dataset. Each of these steps are further discussed in sections 2.1-2.3, respectively.
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Figure 1: Schematic of the non-intrusive reduced order modeling strategy for the CL time
series data.

2.1 Data generation using UVLM

A sinusoidally plunging two-dimensional (2D) flat plate immersed in a uniform freestream
has been considered here (see figure 2a). The plunging kinematics is mathematically modeled
as follows

y(t̂) = h0 sin(ωt̂), (1)

ẏ(t̂) = ωh0 cos(ωt̂), (2)

where, h0 is dimensional plunging amplitude, ω = 2πf with f being plunging frequency, and
t̂ is dimensional time. Aligning with the earlier literature [10], the reduced frequency k =
ωc/U∞, non-dimensional plunging amplitude h = h0/c and non-dimesnional time t = U∞t̂/c are
considered in further discussions, where, c and U∞ are chord length of the flat plate and the
free stream velocity, respectively.

UVLM is a method to solve for unsteady flow past flapping bodies based on the potential
flow theory. In UVLM, the plunging thin flat plate is modeled as a sheet of discrete vortex
panels as shown in figure 2b. Here, the free vortex elements released in the trailing edge, model
the trailing wake patterns. Whereas, the bound vortex elements help to enforce the surface
boundary conditions and are used to compute the pressure distribution on the flat plate. The
pressure distribution is then integrated to compute the aerodynamic load coefficients [11]. The
results from the present UVLM solver have been compared with that of Young [10] in figure
2c. It was observed that for k ≤ 10, the peak CL values obtained using the present UVLM
solver match quantitatively well with that of Young [10]. It is important to note that, for
k > 10, the results from the UVLM solver deviates from the Naviers-Stokes (NS) solver in
Young [10]. Therefore, in the present work, the periodic vortex shedding regime (kh ≤ 1.0) has
been considered to generate CL time histories for different input k ≤ 10 and h values. As a
result, the computational time can be further reduced as compared to a typical Navier-Stokes
(NS) solver.
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(a) (b)

(c)

Figure 2: (a) Schematic of the plunging flat plate, (b) schematic of the discretisation for the
unsteady vortex lattice method and (c) validation of peak CL obtained from the current UVLM
solver with those reported in the literature [10].

2.2 Snapshot proper orthogonal decompositon based dimensionality reduction

Dimensionality reduction of the obtained CL time series data is carried out using snapshot
POD [9]. Firstly, the snapshot data matrix CL ∈ RN×M is constructed such that

CL = [CL(t,µ1) CL(t,µ2) · · ·CL(t,µj) · · ·CL(t,µM )]N×M , (3)

where, CL(t,µj) ∈ RN for j = 1, 2 · · ·M is the lift coefficient time series data for a given
parametric instance µj = (kj , hj). Here, M and N are the number of parametric instances

and time stamps, respectively, where M << N. A data correlation matrix C ∈ RN×N is then
constructed such that

C =
1

N − 1
CLCL

T . (4)

The eigen decomposition of C results in the eigen vector matrix or the temporal POD modes
Φ ∈ RN×N , and a set of eigen values, λ ∈ RN , where λ1 > λ2 > · · · > λj · · · > λN . Now,
Φ which is orthonormal in nature, can be used to project CL onto a lower dimensional space
thereby obtaining the parametric expansion coefficient matrix A ∈ RN×M such that

A = ΦTCL. (5)
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(a) (b)

Figure 3: (a) Cumulative contribution of temporal POD modes and (b) comparison of ground
truth and POD reconstructed CL time series data for different input parameters.

Here, A depends solely on the input kinematic parameters µj = (kj , hj) for j = 1, 2, · · ·M,
therefore, independent of temporal effects such that

AN×M (µ) = [a1(µ1) a2(µ2) · · ·aj(µj); · · ·aM (µM )]N×M , (6)

with aj(µj) ∈ RN denoting the column vectors, simply written as aj or a in further discussions.
Low rank approximation C̃L can be obtained in terms of truncated temporal POD modes
Φ̃ ∈ RN×r and expansion coefficient matrix Ã ∈ Rr×M with its column vectors ãj ∈ Rr for
j = 1, 2, · · ·M such that

CL ≈ C̃L = Φ̃Ã (7)

where, rank(C̃L) = r ≤ rank(CL) = M. While Φ̃ is obtained by retaining the first r column
vectors of Φ, Ã is obtained by retaining the first r rows of A. For a good data reconstruction
accuracy, the choice of r is crucial. This in turn depends on the cumulative contribution from
the temporal POD modes denoted by S, which can be evaluated as a function of the eigen values

λj for j = 1, 2, · · ·N, such that S =
Σr

j=1λj

ΣN
j=1λj

. In our present study, r = 15 has been chosen for

performing data reconstruction such that S = 0.9999 (see figure 3a). The comparison of the
POD reconstructed CL time series obtained using r = 15 modes with that of ground truth shows
a very good match (see figure 3b).

Now, a FCNN can be used to model the input kinematic parametric dependency of Ã as a
continuous function. The mathematical setup for the FCNN based regression is presented in the
following section.

2.3 Neural network based regression

A FCNN is a simple neural network architecture where each layer’s neurons are completely
connected to its preceeding/succeeding layer of neurons [12]. As a regression model, a FCNN
approximates the parametric dependency of ã as a continuous function of any given µ. This is
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achieved by using the discrete instances of kinematic parameters µj for a 1 ≤ j ≤ M as input,
and the corresponding POD computed expansion coefficient vectors ãj as the target output.
Here, the FCNN is represented by F such that

ãF
j = F(µj, θ), (8)

where, θ denotes the neural network parameters that are to be estimated by solving an error/loss
minimisation problem (see section 2.4). The mathematical representation of F with Nh hidden
layers and Nn hidden neurons, relating the input µj ∈ R2, network parameters (θ) and target
output ãF

j ∈ Rr for j = 1, 2, · · ·M can be written as follows

X = µj (9)

h1 = g(W1X + b1) (10)

hl = g(Wlhl−1 + bl), 2 ≤ l ≤ L− 1 (11)

ãF
j = WLhL−1 + bL. (12)

Here, X is the input layer, hl for l = 1, 2 · · ·Nh are the activation units at each lth hidden layer
with g(.) denoting a non-linear activation function. Here, the neural network parameters are
such that θ = {W l, bl}Nh

l=1, where, W l and bl denote the weights and biases of any lth hidden
layer, respectively. Now, given any input kinematic parameter instance µj , and the resultant

FCNN approximation ãF
j , the corresponding CL time histories can be reconstructed using the

truncated temporal basis Φ̃ obtained earlier from snapshot POD (see section 2.2) such that

C̃L
F
(t,µ) = Φ̃ãF . (13)

In the present work, a single hidden layer FCNN with linear activation function is considered as
a baseline for regression where equations (9)-(12) simplify to

ãF
j = W T

1 µj + b1, for j = 1, 2, · · ·M. (14)

In the present study, results from both linear and non-linear FCNN based regression will be
compared in section 3. Now, the methodology to train and evaluate the constructed FCNN is
discussed next.

2.4 Model training and evaluation

For the FCNN alone, the input-output pairs are {µj , ãj}Mj=1. Whereas, for the entire p-

NIROM, the input-output pairs are {µj , CL(t,µj)}Mj=1. In order to avoid overfitting [12] of the

FCNN, the data set consisting of input-output pairs {µj , ãj}Mj=1 is split into mutually exclu-
sive training, validation and testing datasets, such that M = Mtrain +Mval +Mtest. Here, these
datasets are represented as {µtrain

j , ãtrain
j }Mtrain

j=1 , {µval
j , ãval

j }Mval
j=1 , and {µtest

j , ãtest
j }Mtest

j=1 , respec-

tively. Similarly, for evaluating the p-NIROM, we have the datasets, {µtrain
j , CL(t,µj)

train}Mtrain
j=1 ,

{µval
j , CL(t,µj)

val}Mval
j=1 , and {µtest

j , CL(t,µj)
test}Mtest

j=1 . The training and validation FCNN datasets
are used to estimate the optimal network parameters and hyperparameters (see table 1), respec-
tively. The testing datasets for the FCNN and p-NIROM are used to evaluate the efficacy of
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Table 1: Hyperparameter settings used for the non-linear and linear FCNN regression models
to fit the expansion coefficient vectors ãj for j = 1, 2 · · ·M.

Hyperparameter Value (Range)

Optimiser ADAM

Epochs 1000

Learning rate 1e-03

Weights and biases initialisation Kaiming [13]

x linear non-linear

Activation function Linear ReLU

Hidden neurons per layer 100 60, 70, 80, 90, 100

Hidden layers 1 2, 3, 4

the p-NIROM. The numerical details of the dataset split are presented in section 3, where a
sampling strategy is discussed.

Here, the loss function (L) considered to train the FCNN is the mean squared error (MSEtrain)
between predicted ãF

j , and training data ãtrain
j , which can be written as follows

L = MSEtrain =
1

Mtrain

r,Mtrain∑
i=1,j=1

∥ãtrain
ij − ãF

ij∥2L2
. (15)

A stochastic gradient descent based optimisation algorithm, ADAM [14] is used to minimize
L and estimate the optimal network parameters θ. Here, the gradients of L with respect to θ are
computed using back propagation and automatic differentiation [15] through a Tensorflow [16]
implementation. To determine the effect of hyperparameter variation and whether the model
is overfitting, the loss is computed on the training and validation datasets at every iteration
and have been tracked. Finally, the efficacy of the p-NIROM is evaluated based on the mean
squared error (MSEtest) in ãF

j and averaged root mean squared error (aRMSECL
test) between

C̃L
F
(t,µj) and CL(t,µj)

test over all the Mtest samples as shown in the following expressions

MSEtest =
1

Mtest

r,Mtest∑
i=1,j=1

∥ãtest
ij − ãF

ij∥2L2
, and (16)

aRMSECL
test =

1

Mtest

Mtest∑
j=1

√
ΣN
i=1∥CL(ti,µj)

test − C̃L
F
(ti,µj)∥2L2

N
. (17)

3 RESULTS AND DISCUSSION

The key results for both the linear and nonlinear FCNN regression based p-NIROMs are
discussed in this section. Here, CL time histories are first generated using the UVLM solver.
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A time step size of ∆t = 0.005, and discretization of the flat plate into 250 panels with bound
vortices are decided after carrying out appropriate convergence tests. In the present study,
kh = [0.1, 0.2, 0.4, 0.6, 0.8, 1.0] and k = [1, 2, 3, 4, 5, 6, 7] are chosen such that M = 42 different
input parameter sets µj = (kj , hj) for j = 1, 2, ...M and corresponding CL time histories have
been obtained. For each input kinematic parameter setting, the solver is marched in time for
N = 7000 time stamps.

For a p-NIROM, the input parameter space sampling plays an important role in developing
a generalisable model for unseen parametric instances [17]. The importance of sampling is
compounded especially in the limited data regime like in the present work where there are only
M = 42 data samples. The line plots and contour plots of POD obtained expansion coefficient

(a) (b)

(c)

Figure 4: (a) Line plots of the column vector entries of the expansion coefficient matrix Ã
for each parametric instance and (b) contour plot of Ã showing an overall sparse and sharp
localised jumps at specific row and column indices and (c) input parameter space sampling
using a systematic approach.

vectors ãj and matrix Ã, shown in figures 4a and 4b, indicate localised high valued jumps.
Moreover, for a given k, these jumps are located at the same row index of Ã and grow in
their absolute value only as a function of h. This is because, for a given k, the CL amplitudes
are a function of the plunging amplitude h as seen in figure 2c. Hence, instead of choosing
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(a) (b)

Figure 5: Comparison of the loss convergence behavior for (a) linear FCNN and (b) non-linear
FCNN based regression.

the training, validation and testing datasets randomly, particular values of k and h for each
dataset are chosen in a systematic manner such that (kh)train = [0.1, 0.4, 1.0], (kh)val = [0.6]
and (kh)test = [0.2, 0.8], and M = Mtrain +Mval +Mtest with [Mtrain,Mval,Mtest] = [21, 7, 14];
see figure 4c.

As the model is expected to perform well on the training data, only the results for the testing
dataset prediction are presented here for the sake of brevity. While a linear activated FCNN
is considered as a baseline, ReLU activation function is considered for the non-linear FCNN
regression (see equation (9)), since the matrix Ã is sparse and consists of discrete jumps (see
figure 4a and 4b) which otherwise can’t be captured well by smooth activation functions like
tanh [12]. The hyperparameters chosen for the non-linear FCNN regression are mentioned in
table 1. However, the results presented are for the best non-linear FCNN configuration with
Nh = 3 and Nn = 90. The training and validation losses for the linear FCNN rapidly decrease
for the first few iterations and then plateau immediately (see figure 5a). Whereas, training
and validation losses for the non-linear FCNN (see figure 5b) decrease by atleast 2 orders of
magnitude after 250 epochs of training. Moreover, it is surprising that the validation loss
although very high (O(103)), is still lower than training loss for linear FCNN when compared
to non-linear FCNN. A possible reason for this is that, the training dataset (see figure 4c)
correspond to the minimum and maximum CL amplitudes in the overall dataset, which indirectly
gets reflected in ãtrain

j for j = 1, 2, · · ·Mtrain. Whereas, the validation and testing datasets (see
figure 4c) contain the input-output pairs values within the range already observed in the training
dataset. Also, the linear regression model is incapable of capturing discrete jumps in the values
of ãtest

j for j = 1, 2, · · ·Mtest, and as a result, CL reconstruction is highly inaccurate as reflected

in the high aRMSECL
test with an order of O(1); see table 2. However, the non-linear FCNN

based p-NIROM performs significantly better in training, validation (see figure 5b) and testing
(see figure 6 and table 2) as compared to linear FCNN based p-NIROM. Notably, the mean
squared errors in ãF

j shown in table 2 are high because ãj for j = 1, 2, · · ·M are not normalised
due to which the order of magnitude of entries in ãj is O(102) (see figures 4a and 4b).

It is interesting to note that CL time history reconstructions from the predicted ãF
j for
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(a) (b)

(c)
(d)

Figure 6: Comparison of (a)-(c) ground truth CL time series data with POD, linear FCNN and
Non-linear FCNN reconstructed CL time series for three different test input parameters and (d)
peak CL for all the test cases for POD, linear FCNN, nonlinear FCNN and ground truth data.

Table 2: Model performance metrics highlighting the best performing nonlinear FCNN model
as compared to the linear FCNN.

Model Nh Nn MSEtrain MSEval MSEtest aRMSECL
test

Nonlinear FCNN 2 80 8.158 69.426 34.005 –

Nonlinear FCNN 3 90 2.235 19.870 18.564 0.1787

Nonlinear FCNN 4 70 2.244 44.936 34.543 –

Linear FCNN 1 100 4522.81 3386.36 3846.54 2.03

j = 1, 2, · · ·Mtest is qualitatively and quantitatively matching quite closely with the ground truth
irrespective of the plunging frequency k chosen at test phase (see figures 6a - 6c). Moreover,
the model is also able to capture the peak values of the CL time series data very well in all the
test cases as seen in figure 6d. This shows that, in addition to capturing the discrete jumps, the
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non-linear FCNN based p-NIROM generalises well to unseen input parameter instances.
As far as the computational budget is concerned, the FCNN based regression model approx-

imates only a reduced map between the input parameter space and the parametric expansion
coefficients. Therefore, in comparison to the full map approximation between the input param-
eters and CL, the p-NIROM works with lesser target data points (q × M now, versus N × M
where q << N) for training and testing. As a result, the FCNN requires lesser network pa-
rameters to train and thereby resulting in lower training times. For 1000 epochs of training,
the model takes approximately ttrain ≈ 5 − 10 minutes on a GPU system with a T40 NVIDIA
GPU card and it takes ttest ≈ 5 seconds to test the trained model as compared to 2− 3 hours of
data generation for each parametric instance using the UVLM solver. This shows the potential
benefit of developing p-NIROMs that would enable real time prediction.

4 CONCLUSIONS

A hybrid POD-FCNN based p-NIROM has been proposed in the present study for surrogate
modeling of unsteady aerodynamic loads acting on a plunging airfoil. The key contributions of
the work are: (i) a strategic parameter space sampling methodology making use of the underlying
structure of the POD expansion coefficient matrix, and (ii) a generalisable p-NIROM solely
dependent on input kinematic parameters thereby making the neural network agnostic to the
temporal scales present in the time series data. The nonlinear POD-FCNN based p-NIROM
performs better than the linear version in reconstructing the load time histories accurately across
different plunging frequencies and amplitudes from the testing dataset. While current model is
capable of reconstructing the lift coefficient data spreading across different frequencies with a low
training budget, the ability to reuse the available temporal basis to reconstruct lift coefficients
for unseen parameters for which temporal basis has not been precomputed, and needs to be
tested in future.
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