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Preface

Stochastic Mechanics is a rapidly growing area of research, whose importance
is being recognized not only in academic circles but also in industrial practice.
This is no doubt due to the fact that most structural properties and loads
are either random or uncertain. The first term refers to a natural chaotic
variation of the parameter, while the second is associated to the human
lack of knowledge about it. Both kinds of unpredictability work together in
rendering doubtful the results of a (usually single) deterministic mechanical
analysis. When thinking about the randomness and uncertainty linked to all
physical parameters and phenomena a big question mark closes the large list
of numbers produced by a finite element calculation.

In Stochastic Mechanics there are several techniques to analyse the natu-
ral scatter of strains and stresses caused by the dispersion in the given loads
and/or the structural parameters. The most general one is the Monte Carlo
method. However, it must be recognized that it is as well the most costly
in computational terms. Nevertheless, this cost has becoming feasible with
the advance in Computer Science, specially with the advent of parallel com-
puting, due to the fact that a Monte Carlo calculation is intrinsically a task
that can be performed in parallel.

The present report is intended to provide the reader an introduction to
the Monte Carlo method in the context of Computational Mechanics. The
technique is applied to the analysis of the uncertainty spread in a stamping
process. The first chapter summarises the Monte Carlo method and its theo-
retical backgrounds. The second chapter is devoted to the case study, namely,
the stochastic analysis of a square cup deep drawing problem. Finally, the
basic equations governing the mechanical modelling of the stamping process
are summarised in the appendix.






Chapter 1

Statistics, Probability and
Monte Carlo

1.1 Introduction

This starting chapter of the present report summarizes the main concepts and
ideas of the Monte Carlo approach to the stochastic analysis of systems. It
is purported to give the reader a rapid introduction to this area. To this end
it is necessary (a) to review some basic notions of Statistics and Probability
theory and (b) to examine the generation of random numbers, which is the
kernel of the Monte Carlo method. these two topics will be developed in
what follows.

1.2 Random events

A random event is a physical phenomenon whose cause is uncertain, i.e. it
is the result of a complex combination of unobserved (and sometimes, unob-
servable) causes so that it can be considered as unpredictable. For example,
the motion of the gas molecules inside a recipient is the result of a large num-
ber of their mutual collisions. Despite each particle motion is, in principle,
governed by the deterministic differential equations of particle dynamics, its
initial conditions, however, cannot be measured. As a consequence, the only
possible treatment of the subject is by having resort to probability notions
and tools.

Natural phenomena such as earthquakes constitute also a good example.
In fact, the physics of earthquake occurrence at the fault and the spreading,
reflections and refractions of the waves across the earth layers can in principle
be studied with the aid of deterministic physics. But the lack of knowledge of



the actual complex shape of the fault and earth strata, as well of their many
physical parameters, suggest that the resulting seismograms be considered
as random functions for the design of structures which can be subject to
repeated seismic actions in the whole span of their lifetime.

Let us consider a subset A of the random event. For example, if the
latter is the peak displacement X of a point of a car riding over an uneven
(i.e. random) surface, the subset A can be a special range of peak displace-
ments that is of interest for design. In general, one can group the observed
peak displacements into several ranks A; (also called bins) and count the
number of observations falling into each of them. The plot of the number
of observations versus the location of the rank of the random variable X is
the well-known histogram, which gives origin to the the so-called frequency
definition of probability. It states that an event A; which has been observed
to occur NV; times in IV observations of the whole random phenomenon, has
a probability of occurrence given by

P[Aj] = (1.1)

N

Besides the histogram, there are other measures of the scatter of the
random variable, which convey some valuable statistical information. In first
lieu, the ordinary moments are useful measures of the shape of the histogram
of a random variable. They are given by

N n
Up = h]ffx_l) (1.2)

The most important ordinary moment is the mean,

N
: /% -
A~ =1 (3

which defines the center of gravity of the histogram. The variance

52 = Zi]il(Xi - m)? (1.4)

& N -1 '
is a measure of the spread of the data about the mean, as illustrated by its
similarity with the definition of the moment of inertia in structural mechan-
ics. The standard deviation is defined as its square root, 6. Perhaps the
most practical measure of the randomness of the variable is the coefficient of

variation defined as

Q»

M = (1.5)

>
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so that it expresses the spread as a fraction of the mean. In general, it can
be said that low and high coefficients of variation correspond to the values
less than 0.05 on the one hand and higher than 0.2 on the other.
The central moments are quantities defined with respect to the mean in
the form
N - A~ \n
5 = i:l(Ai_:u‘,\‘) (16)
™ N
In particular, the normalized form of two central moments are of importance
in practice. They are the coefficient of skewness,

Z B
T =— (1.7)
UX
and the coefficient of excess (or kurtosis)
v
Vo= A: -3 (1.8)
O-X

The former gives a measure of the symmetry of the histogram, being positive
when the dominant tail is on the right and negative in the opposite case.
The latter is a measure of the flatness of the histogram, being positive for
slim shapes and negative for rather flat ones.

1.3 Density and Distribution

At a difference with Statistics, Probability Theory deals not with observed
data but with ideal mathematical models of randomness. Thus, its results
can be considered as "exact” in the sense that they correspond to abstract
random situations not corrupted by the actual, crude scatter found in nature.

In this conceptual framework, the histogram of a random variable .\’
finds its idealisation in the Probability Density Function (abbreviated PDF),
fx(z), which is a mathematical function expressing the concentration and
spread of continuous or discrete random variables X as a function of an inde-
pendent variable z, which plays here the role of the ranks used in statistics.
A commonly used model is, for instance, the normal or Gaussian:

1 _ (:L'—m)2

fx(z) = — Je ¥x (1.9)

whose parameters are just the mean m and the standard deviation o,. The
vast majority of models, however, have parameters that do not coincide with
these two fundamental measures.



The density models are by definition normalized, i.e. their total area
equals unity:

/Oo fx(z)dz =1 (1.10)

This is a constraint imposed by the fact that the integral of the density
function over the whole real axis constitute a sure event, whose probability is
by definition equal to one. Random events, on the contrary, are defined over
ranges of the variable, as previously noted. For calculating their probabilities,
it is necessary to use the Cumulative Distribution Function (or CDF) Fy (),
defined as the area of the density function up to a certain x and expressing
the probability that the random variable X is less than or equal to z:

Fx(@) = PIX <ol = [ fx(@)ds (1.11)

As a consequence, the probability of the event ¢ < X < b is given by

Pla<X <b = /ab fx(@)dz = Fx(b) — Fy(a) (1.12)

1.4 Expected values

An important concept in probability theory is the ezpected value of a function
g(X), defined by

Elg(0)] = [ g(a)fx(z)ds (113)

meaning that it is an average of the function weighted by the density function.
The ordinary and central moments mentioned before are but particular cases
of this general definition. Actually, the mean pu,, corresponds to g(X) =
while the variance, 0% (also denoted as Var(X)), to g(X) = (z — )%
Replacing this function into the general definition of the expected value, it
can be observed that the variance is also equal to

o2 =E[X?] — 12 (1.14)

The value E[X?] is called the mean square.
Note that we differentiate the notation of statistical and probabilistic
measures by adding a hat to the former to indicate their empirical origin.



1.5 Some Probability models

In this section some probability models commonly applied in stochastic anal-
ysis of structures will be briefly described.

Uniform, U(a, b)

The Uniform distribution is usually employed to model situations in which
it is reasonable to assign an equal likelihood to all the values of the random
variable in a given range. Thus, the density function is constant over the
range. A classical example is the roulette, in which the random angle is
uniformly distributed in the range [0, 27]. The density function is

fx(z):ﬁ a<z<b (1.15)

Integrating, one obtains the distribution function:

0, <0
Fx(r)=< =z, 0<z<1 (1.16)
1, z>1
The mean and variance are
E(X):(a—+—b)/2 (1.17)
1
Var(X) = ﬁ(b — a)? (1.18)

In this respect it is important to remark that most of the algorithms for
simulating random variates and processes dealt with in subsequent chapters
require the generation of uniform random numbers as a first step. This is
perhaps the main practical application of this model in Structural Mechanics.

Gamma, Gamma(v, m)

The Gamma density function is

I/(l/i)m_l e~ ve

fx(@) = (m—1)!

The factorial in the denominator can also be expressed as

>0 (1.19)

(m —1)!=T(m) (1.20)

where I['(-) is the Gamma function,



(0.0}
T(m) = / e~ Ldy (1.21)
0
The new expression for the density function is, then,

(l/l.)m—le—uz

fx(@) ="

T (m) x>0 (1.22)
This substitution allows the extension of the model to the general case of
m a positive real number. The names Erlang and Gamma are convention-
ally assigned to the integer and non integer cases, respectively. As will be
shown later on, this distinction determines different algorithms for generating
random numbers from these models.

The distribution function can be found by integration. The result is

I'(m, A\z)
Fx(z) = ——~ 1.2:
where I'(m, y) is the Incomplete Gamma function,
y
I'(m,y) = / e “u™ du (1.24)
0
The mean and variance of a Gamma variate are
E(X)=m/v (1.25)
Var(X) = m/v? (1.26)

An important property of the Gamma distribution that is exploited in
random number generation is that the sum of N independent random vari-
ables, each being Gamma(v, m;), is Gamma(v, m) distributed, where

N
m=Yy_ m; (1.27)
i=1

A final remark about this distribution is that the Exponential model is a
special case of it making m = 1.

Beta, Beta(a,b,q,r)

The Beta distribution is often used as a rough model for cases with scarce
information. Its main advantage is the flexibility with which it can be ac-
commodated to the skewness and kurtosis of the empirical information. It
has however the disadvantage of being constrained in the range [a, b] so that

|



it does not allow that the variable tend to infinity as the models with one or
two tails do. The density function is

1 (z—a)(b—z) !

; — <z <b 1.28
MO Goaer eSSt (02
where B(q,r) is the Beta function given by
1
B(q,r) :/ $9-1(1 — ¢)"1d¢ (1.29)
0

The distribution function can only be obtained by numerical methods. The
mean and variance are

= T (b-a :
E(X)=a+ q+r(b ) (1.30)

f = ar — g)® :
Var(X) = CEnE T G (1.31)

The uniform distribution U(a, b) is equivalent to Beta(a, b, 1,1).

Normal (or Gaussian), N(u, o)

The Normal distribution arises as the limiting case (as n — co) of a sum of
n random variables, which can be either

1. Independent and identically distributed.

2. Independent but not identically distributed, if any of the summands
amounts little to the total.

3. Dependent variables with zero correlation between any of them and a
limited number of the rest.

These conditions are required by the Central Limit Theorem. The im-
portance of the Normal model in Statistics and Probability founds an expla-
nation in the above weak conditions, and especially in the second one. In
fact, at a difference with other models resulting from sums of random num-
bers, the validity of the Normal distribution does not depend on the specific
underlying distribution of the summands, provided their total number tends
to infinity. It is by no means surprising, then, that the histograms of some
random variables such as measurement errors exhibit a Normal pattern, since
they can be thought of as the result of the accumulation of many random
causes, all of which would show a different distribution if measured.



The equation of the Normal density function is commonly deduced in
standard books of Probability by calculating the density function of the sum
of an increasing number of independent, identically distributed random vari-
ables. The result is

)] —oo<z<co (1.32)

fx(z) = _QEGXP [“'2"( "

where 1 and o happen to be the mean and standard deviation of the random
variable X:

E(X) =p (1.33)

Var(X) = o? (1.34)

This fact indicates that the Gaussian model is completely defined by these
two low order moments. On the other hand, there is no closed form expres-

sion for the distribution function, which must be calculated by numerical
integration:

Fx(@) = —— [ e3Py (1.35)

270 J—o0 2° a

Both the density and the distribution functions of the so-called standard
(emphor unit) Normal variable, defined as

X—p
g

S = (1.36)

are widely tabulated. The standard Normal variable can be interpreted as
the number of standard deviations that X differs from its own mean. Notice
that S ~ N(0,1) and that

ﬁmmzpmgﬂzppgﬂiﬁzﬂ@ (1.37)

where s = (z —p)/0o. Note that he symmetry of the Normal density function
implies that

FS(—S) = l—Fs(S) (138)
An additional distinguishing feature of the multivariate Normal is that it
is preserved under linear transformations. In other words, if X, Xy, ..., .\,

are Normal variables, then the weighted sum

Y:O[1X1+O[21Y2...+Oéan (139)



where a;,7 =1,2,...n, is also Normal. The parameters of the density of 1"
can be easily calculated by applying the transformation laws. In the specific
case of two random variables X, Xy with a; = ap = 1, we have

By = px, + Ux, (1.40)
oy = 0%, +0%, (1.41)

Notice that transformations like that of equation 1.39 are very common in
the analysis of linear structures. For instance, if the variables X; are Gaussian
external forces and the o; are flexibility coefficients, then the displacement
Y will be also Gaussian.

Lognormal, LN(y, o)

Since the product of random variables Y = Y1Y5...Y, can always be trans-
formed to a sum

InY = InY; + 1InY5 + ... +1nY,, (1.42)

it can be concluded that the variable X = InY is normally distributed.
according to the Central Limit Theorem. The distribution of ¥ can then be
found by applying the transformation rule for density functions, i.e.

foty) =195

In this case we have g(z) = exp(z) and ¢'(y) = Iny. Since X ~ N(u,0).
the result is

fx(g7 () (1.43)

Fr(y) = ——exp [P Ey 45 (1.44)

V2myo 2 o

As in the case of the Normal distribution, the distribution function can
only be specified in implicit form:

1 00 1, Iny — p .
Frly) = o | e =5 (EEE g0 (145)

The mean and standard deviation of a Lognormal variable are

E(Y) =exp (1 + %aQ) (1.46)

Var(Y) = E*(Y)[e” — 1] (1.47)

10



Extreme value distributions

There are several distributions that have been derived for modeling the
largest or smallest value of a sample. They are the following:

1. Gumbel, EX — L, l(«, )

- It is usually employed for describing the largest value of a sample with-
out any further specification about the characteristics of the variable
or the asymptotic behaviour of the density function. Its equations are:

fx(z) = ae™®C P exp[—e @A _ o<z <0 (1.48)
Fx(z) =exp[-e ] _co<z<oo (1.49)
0.577
B(X)=p+~—— (1.50)
"
Var(X) = — 1.5
ar(X) 2 (1.51)

2. Fréchét, EX — 1T, 1(a, )

This function is used to model the largest value of i.i.d. variables
greater than zero. Its basic equations are

fx(@) =55 e @m0 (1.52)
Fx(z) =e /2% > (1.53)

E(X) = AT(1 — é) - (1.54)

Var(X) = g2[0(1 — é) _r(1 - i)] a>2  (1.55)

3. Weibull, EX — III, s(a, )

‘This function is usually employed to characterize the smallest value
of a sample having a distribution of a specified form in the tail. Its
equations are the following:

11



fx(@) = g(E)H exp l—(f)“} z>0 (1.56)

l—exp[=(5)*] =z>0

Fx(e) = { 0 otherwise \L57)
E(X) = gF(%) (1.58)
Var(X) = (%)[m%) _ ér?(é)} (1.59)

An special case of the Weibull distribution is the Rayleigh distribution.,
defined as Ray(y) = EX — IIL,s(2, 3/v/2). Its density function, mean and

variance are given by

fx(z) = %exp [—%(%)2] x>0 (1.60)
E(X) = g’y (1.61)
Var(X) = (2 — g)f (1.62)

The Exponential distribution can also be derived from the Weibull model
by setting v = 1/8 and o = 1. On the other hand, the natural logarithm of
a Weibull variable obeys a Gumbel model.

1.6 Notions of Statistical Inference

The passage from the empirical observations to the building of mathematical
models for the random phenomena is known in statistics as inference, i.e. the
postulating of a suitable density function and/or its main expected values out
of the available information. A detailed treatment of this important subject
would occupy an entire volume and thus we will restrain the attention to
the following two practical situations: (a) The estimation of the mean and
its confidence intervals; (b) The choice and test of a probability model. The
latter, in particular, is a necessary step previous to the generation of artificial
samples in Monte Carlo simulation.

Confidence interval for the mean. Having a population of observed values.
the mean can be estimated by means of equation 1.3, which is repeated here
for convenient reference:

12



N Zf\;1 l\rz .
e = =5 (1.63)
We employ the verb estimate instead of calculate because the true mean
of the population remains unknown, as it is also the case of other statistical
measures such as the standard deviation, the skewness and, in general, the
probability density function. In this regard, it is necessary to say that a basic
theorem of statistics demonstrates that the statistical estimates i, and ai
obtained from a population of independent, identically distributed random
variables (hereinafter abbreviated as i.i.d.) converge to their exact values ji
and az, as the sample size NV approaches infinity. However, it is often the case
that /V is not so large as to allow one to state that p, = i, and 6, = o
with certainty. It is then necessary to estimate a range that contains the
true statistical measure with a high level of certainty. These are known as
confidence intervals, which are explained next with reference to the particular
case of the mean value.
It has been said that, in general, the empirical and true means, i, and
5 do not coincide, and the only statement that can be done about them is
that [i, is an unbiased estimate of ;,,. However, a basic theorem of Statistics
shows that the random variable

V = fﬁ% (1.64)
UX N

is normally distributed with zero mean and unit standard deviation. In other
words, Y is a standard normal variable. Using equation 1.12, this suggests

that the probability that Y lies in the range [a, b] is

Pla<Y < b = d(a) — 3(b) (1.65)

where ®(-) is the standard normal variable, which is widely tabulated!, and «
and b are values normally symmetric about zero. Using the usual statistical
notation, they are defined as

a,b= £k, (1.66)
where k. /o is the value that corresponds to a probability
o
Dkas) =1 -2 (1.67)
In such a case equation 1.65 becomes
!This function can be easily computed after the error function: ®(z) = 0.5 +

0.5erf(z/v/2) . The error function is provided in all modern computer languages

13



P[—ka/g S Y S ka/g] =1—-« (168)

or equivalently

Plii i+ X092 g g (1.69)

*TTUN S py <

This points out that the calculation of the confidence interval depends
on the value of «, which is known as the significance level. Typical values
used in statistical analysis are 0.01, 0.05 or 0.1, which can be interpreted in
the sense that the probability that the true mean lies in the range specified
by equation 1.69 is 0.99, 0.95 or 0.9. Note that the lower the value of a,
the wider the confidence interval, so that « cannot be arbitrarily reduced
without relaxing the bracketing of the true mean. On the other hand, the
higher the value of «, the lower the probability of finding the true mean in
the range. These observations indicate the need of a trade-off between the
size of the interval and its associated probability of certainty. A value of o
frequently used is 0.05.

Choice of a probability model. In contrast to histograms, which show a
non smooth shape and are built up only with actually observed values, the
mathematical density models provide smooth functions that allow to describe
the randomness of the variable over the whole real space, so that the can
give estimates of the probabilities corresponding to very large or very low
values. Since sometimes values located at the so-called tails of the density
functions are of importance in that they usually correspond to critical states
of the variable, there is a need of passing from the actual measured data to
mathematical models, i.e. from statistics to probability theory.

The fitting of probabilistic models, such as normal, lognormal, Weibull,
etc. to the observed data is usually performed by postulating some of them
and measuring their adequacy by means of the so-called goodness-of-fit tests.
The most used are the Kolmogorov-Smirnov, Anderson-Darling or ? tests.
The first of them consists in calculating the maximum absolute distance from
the measured and hypothesized cumulative distribution functions, FX(.’L’) and
Fx(z). The former is calculated as
~ i

where X; is the i—th value of the population sorted in ascending order. The
Kolmogorov-Smirnov distance is defined as

D =max, ||Fx(X;) — Fx(X;)| (1.71)

14



The hypothesis that the data correspond to the underlying model Fy(x) is
rejected if

D>d (1.72)

Otherwise it is not rejected. Here d denotes a value depending on the con-
fidence level a and the sample size N. It is given by appropriate statistical
tables. Again, a value of 0.05 is commonly used for this kind of analysis.
The best model among several tested is that showing the best confidence.
Finally, note that in computing the Kolmogorov - Smirnov distance account
must be taken of the staircase nature of FX(Xi), so that the selection of the
maximum requires the computation at the beginning and end of each stair.

Let us now suppose that the model of a random variable, such as a mate-
rial property, has been defined on the basis of experimental information. An
artificial population of the random variable (also called a random deviate or
a realization) can be generated from the idealized model by means of some
techniques known collectively as random number generation, which represent
the way back from the abstract models to the empirical world. This con-
stitutes the fundamental step of the Monte Carlo method, as applied to the
simple random variables discussed heretofore. This method constitutes the
main subject of the present chapter.

1.7 Multivariate statistics

All the above said in the previous sections corresponds to the case of single
random variables that behave independently to each other in the stochastic
sense. In case the several random variables are dependent on each other there
1s a need of building up multivariate distribution functions of the type

Ff\'l,Xz (:El)'TZ) = P([Xl % 1131] ﬂ[XZ < Iz]) (173)

which corresponds to the case of two random variables. The distribution
function for more than two variables is defined analogously. It can be shown
that any multivariate distributions must satisfy the following restrictions:

Fx| x,,.x, (00,00, ...) =
Frisoox. (-0, —00,.) = 0
FXI’Xz""X”(OO’OO’%"OO: w) = FXj;vj (1.75)

The last equation indicates that the distribution of any variable can be ob-
tained by making the rest of variables tend to infinity. On the other hand,

15



the joint density function is defined as the partial derivative of the multivari-
ate distribution function with respect to the implied variables. In the two
dimensional case we have

aFX .4 —_
le:X2(x1’a:2) = 85515:1:92 (1-‘6)
The inverse relationship is then
Ty [T e
FXl,X2(I17$2) :/_ /_OO fUl,Uz(uwuz)dulduz (1'”)

Taking into account the first of equations 1.75, it can be demonstrated that
the density of any variable (or marginal density) can be obtained by inte-
grating the joint density with respect to the rest of variables:

le (xl) = ‘/_O:O le,Xz(‘lea:g)dmg (1.1—8)

Finally, it must be said that the notion of independence of several random
variables is reflected mathematically by the fact that their joint density func-
tion is simply the product of the marginal densities. For instance, in the two
dimensional case, the independence of variables X and Y is expressed by

fxy(z,y) = fx(z)fr(y) (1.79)

In the general multivariate case, expected values can be defined in a
similar manner as in the univariate case. For instance, in the two dimensional
case we have

Elo(, V)] = [ [ g, v) (o, p)dady (1.80)

o0 JOO

If g(X,Y) = XV, its corresponding expectation is the covariance (denoted
as Cov(X,Y)), which is a measure of the linear relationship existing between
X and Y. Its normalized form, called the correlation coefficient, is given by

Cov(X,Y)  Cov(X,Y)

p(X,Y) =
Var(X ) Var (Y Ox0y

(1.81)

Note that —1 < p(X,Y) < 1. A value of p(X,Y) close to +1 (—1) indicates
the existence of an almost linear positive (negative) relationship between
X and Y. On the other hand, a negative or positive correlation coefficient
close to zero indicate a very poor linear relationship between the implied
variables. However, the possibility of nonlinear relationship should not be
discarded on such basis, so that it is always necessary to examine the shape of
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the plot (X,Y) to understand more deeply their relationship?. In Statistics.
the correlation coefficient is estimated by

1 N

ﬁ(X7Y):_E(Xi—ﬂx)(yi—ﬂy) (1.82)

N =~ (o 8 o

Of great practical importance are the mean vector and the covariance
matriz of a n dimensional set of random variables X = [X;, X»,..., X,
These are given by

p = E[X] (1.83)

X =E[(X - )" (X — p)] (1.84)
Note that the entries of the latter are

V&l‘(Xl) COV(Xl, XQ) .o COV(XI, /Yn)
COV(XQ, Xl) Val'(Xg) F COV(XQ, /Yn) _
= ] ) _ : (1.85)
Cov(X,, X1) Cov(X,, X3) ... Var(X,)

At a difference with the univariate case, there are only a few mathematical
models for describing the multivariate joint stochastic behaviour. One of
the most used is the Normal or Gaussian model, due to the fact that it is
completely defined in terms of the moments of the first two orders, as in the
univariate case (equation 1.32).

For a set of n random variables, X, the multivariate Gaussian density
function is given by

fx(z)= (2vr)‘"/2|2|"“2exp[—-;—<x — )" E X - ) (1.86)

It must be noted that a diagonal covariance matrix X' indicates a lack of
correlation among the variables. In the Gaussian model it also implies their
independence, as defined. In the general multivariate case, however, this par-
ticular property of the Gaussian model does not hold, i.e. lack of correlation
does not imply independence.

%For instance, to a perfect parabola y = x> corresponds a null correlation coefficient
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1.8 The Monte Carlo method

1.8.1 Introduction

Engineering and physical sciences, as well as some social sciences, employ
mathematical models or systems, which describe the (linear or nonlinear)
relationship existing between some given variables X and responses Y. In
many cases the link between the input and output variables is very complex
so that it is impossible to find an exact solution and there is a need of using
approximate methods. In Structural Mechanics, for example, stresses and
deformations are computed from information on loads, material properties
and boundary conditions using the finite element method. If at least one
of the input variables X; is random then we have a stochastic system in
which all the responses will then be also random. For this type of systems
the calculation of the exact probabilistic solution by analytical methods can
only be achieved in the most simple situations. In Structural Mechanics, this
plainly means that for complex systems the probability density function of
the variables Y; cannot be calculated from the density functions of the input
variables X; using the analytical input/output mapping of the theories of
random vibration and stochastic finite elements unless by imposing severe
restrictions.

The Monte Carlo method has been deemed as a mean of coping with
the (usually involved) calculation of statistical measures of response random
variables Y of a system, which depend on the input ones X , some of which
are modeled as random, in a very complex way. Instead of feeding the ana-
lytical methods with the probability densities of X;, the idea is to generate
populations of each input variable, to calculate the response of the system
subject to randomly selected sets of these realisations [X " .‘\A’N] using
a deterministic code and to calculate the density functions as well as other
relevant statistical measures of the responses 3

It is evident that the method supposes a considerable computational labor
which has discouraged many researches and engineers for using it in the past.
In fact, one can find some technical literature on stochastic mechanics written
before the nineties not recommending its use. However, the fast development
of high speed computers occurring continuously nowadays makes easier the
application of the method for gaining insight into the sometimes bizarre and
surprising random response of stochastic systems, which cannot otherwise be
anticipated, with the final aim of making structures more reliable.
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1.8.2 Generation of random numbers

Since the methods for generating samples of random numbers corresponding
to non uniform distributions rely on the previous generation of a uniform
random deviates in the range (0, 1), it is important to mention the way this
is performed these days in computers. The most commonly used technique
is that known as linear congruential method, which generates the random
variates X; sequentially in the form

Xit1 = aX;modm (1.87)

where a is a multiplier and the operation modm means the removing of m
till the residual be less than or equal to m. For instance, the recursion

1Yi+1 = 3X1mod7 (188)

using X; = 1 as starting value, produces the sequence 1 3 2 6 4 5 1. Notice
that m represents also the maximum achievable value, so that the random
deviates in the range (0, 1) can be obtained by dividing into m. Also note that
m determines the cycle length, i.e. the period of the sequence after which the
same sequence is generated anew. This indicates the importance of having a
large m for avoiding periodicities in the random stream. A commonly used
value of m is 23! — 1. On the other hand, the following values of a have been
recommended (Bratley 1987): 742938285, 950706376, 1226874159, 62089911,
1343714438.

1
vniform L
deviate v X
| F(X)=f p(x)dx
X 0
p(x)
0 % *
transformed
deviate x

Figure 1.1: Inversion method.

There are basically two methods for generating a random deviate from a
given non uniform probability distribution: the Inversion and the Rejection
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methods. In the Inversion Method (see figure 1) uniform random numbers w,
are generated in the range (0,1), so that they can be associated to the values
of the distribution function, and the corresponding variates are calculated
by inversion of the latter. Since the steep part of the distribution function
corresponds to the higher concentration of values, it is evident from the
figure that even in case of a regular partition of the (0,1) probability range
the inversion will give a mass of points on the z— axis more crowded in
the central part than in the tails. The general algorithm of inversion is the
following:

1. Generate U ~ U(0, 1).
2. Return X = F~Y(U).

The main disadvantage of this method is the requirement of inverting the
distribution function, for which in some cases (such as the Normal distribu-
tion) there is no explicit expression. However, the method is especially suitec
for the application of some economical sampling techniques, such as Stratified
Sampling, whose aim is to diminish the scatter in the statistical estimates
of the random variables (i.e. moments an probabilities) with the maximum
possible parsimony in the generation of the random number samples. The
importance of such economies in Finite Element - based Probabilistic Struc-
tural Analysis need not be emphasized.

The Rejection Method is based on the following idea (figure 2): a random
variate is generated using a fictitious density g(x) that majorizes the target
density f(z). Note that its area will be greater than one, because

a:/_o:og(x)dmz /oo fleydz=1 (1.89)

—00
This indicates that g(z) is not a true density function but also that h(z) =
g(z)/c is. The density h(z) is selected in such a way that it be easy to
generate random numbers Y satisfying it. Accordingly, one can write the
distribution function of X as a conditional probability on Y as follows:

P(X <1)=P(Y < 1|A) (1.90)

where A denotes the event that Y can accepted as a valid random deviate
for X. This can take place if the above conditional probability is the same
as that of X:

T

P(Y < z]A) :/ f(a)dz (1.91)

—0oQ0
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It is easy to demonstrate that this equation effectively holds. In fact,
using the definition of conditional probability, the latter can be expressed as

P(A,Y < 2)
R = — .92
P[Y < z|A] PA) (1.92)
On the other hand the conditional probability P(A|Y = y) is given by
fw)y _ f)
P(AlY =y) = P(U < &= (1.93
A )=F( g(y)) 9(y) )
A
uniform L
deviate v | l ;f(x)dx
|
f(x) reject x,
1 (x0)
p(x) - accept xg
0 / 0
X0

Figure 1.2: Rejection method.

In other words, the probability of accepting ¥ as a valid X (the event
A), given that Y = y, is the same as the ratio of the densities of X" and Y~
evaluated at Y = gy. This implies that if U < %, where U is a uniform
random number independent from Y, can be taken as a test whether Y™ can
be accepted as a valid X. The joint probability required in equation 1.92 is
then

T

= /_zoo P(A]Y = y)¥dy = %/; f(y)dy (1.94)
On the other hand
P(A) =) = [ PAIY = ph(y)dy == - (1.95)



Substituting these results into equation 1.92 on obtains that equation 1.91
effectively holds. Thus, the algorithm of the rejection method is the following:

1. Generate Y from density h(z).
2. Generate U ~ U(0, 1), independent of Y.

3. IfU < f(Y)/g(Y), return X =Y. Otherwise repeat the process.

Notice that this method depends on the selection of a fictitious density
g(z) close to the target one f(z) in order to reduce the number of iterations.
a common method of doing this is to specify h(z) to be the Normal density
and to calculate the smallest a such that ah(z) > f(z). On the other hand,
a disadvantage of the rejection method lies in the fact that the final value of
a valid U escapes from the control of the analyst. This makes complicated
(or, at least, time-consuming) the linking of this method to some powerful
algorithms for economical Monte Carlo simulation such as Latin Hypercube
or Stratified Sampling described later on.

Finally, it should be added that in many instances methods for generating
variates that are specific for each type of density are preferred. For instance,
such is the case of the Normal and Gamma distributions. In the following
section some specific algorithms for generating random numbers satisfying
the density functions most commonly applied in Structural Mechanics are
described.

1.8.3 Specific methods for non uniform random num-
ber generation

In this section the generation of random numbers after some distributions
are briefly revised.
Uniform

The inversion method can be easily applied to generate a random deviate .\
such that X ~ U(a,b), i.e

F(z) ,a<z<b (1.96)

:b—a

In fact, if U is a uniform random number generated in the range (0, 1), then

X=F'U)=a+(b-a)U (1.97)

Therefore, the procedure is the following:
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1. Generate U ~ U(0,1).

2. Deliver X =a+ (b—a)U.

Erlang and Gamma

These probability models differ in that the parameter m in the expression of
the density function

/\(/\I)m—le—)\a:
I'(m)

is a positive integer or any positive real value in the Erlang and the Gamma
cases, respectively. This difference implies that the algorithm for generating
random variates from the former model is much simpler than from the latter.
In fact, an Erlang random variable X can be written as a sum of m indepen-
dent, exponentially distributed variables Y; with common mean 1/\m. This
implies that a realization of X can be constructed in the form

fx(z) = >0 (1.98)

m m 1 1 m
i Ve v U

/

The algorithm is then the following:
1. Generate U; ~ U(0,1),2=1,2,...,m.
2. Deliver X = —-In T[22, U;

The generation of Gamma deviates is a good example of the application of
the rejection method. First of all, let us point out that if ¥ ~ Gamma(m, 1)
a variate X ~ Gamma(m, \) can be obtained as X = Y/\. Thus we can
restrict our attention to the case of A = 1. For 0 < m < 1 the majorizing
function is

0 z <0
mm—l
glz) = I(m) 0<z<1 (1.100)
I?(m) 1 &

The area under this function is a = b/[mI'(m)], in which b = (e +m)/e. the
sampling density is, then,

0 <0
hz)={ ™" 0<z<1 (1.101)
m%—m 1<z



and the corresponding distribution is

z 2t 0<z<1
0= [ M= { % =TS (1.102)
The inversion of this function yields
_ bu)w y<i
Huy =] | = b 1.103
(w) { —IHW otherwise ( )

The basic criterion for the acceptance or the rejection of the deviate generated
from distribution H (z) is the ratio f(x)/g(z), as stated previously. It is given
in this case by

@:{exp(—m) 0<z<1 (1.104)

g(x) g™ 1 1<z
According to this, an algorithm for generating ¥ ~ Gamma(m, 1) when
0 <m <1 is the following:
1. Generate U, Uy ~ U(0,1). If V = bU; > 1, skip step 2.

2. Set Z=Vwm. IfU < exp(—Z), deliver Y = Z. Otherwise go back to
step 1. -

3. Set Z = —lnb:n—v. If Uy < Z™1, deliver Y = Z. Otherwise go back to
step 1.

In case m > 1 an efficient algorithm uses as majorizing function the following:

Bmbebl
h(z) = { (mP+af)? i (1.105)
0 otherwise

which is linked to function g(z) by the constant a = dm™exp(—m)/[AT (m)].
The sampling distribution function is

8

_aP 0
H(z)={ mtaF T2 106
(a:) { 0 otherwise (1.106)

whose inverse is
5] 1

-1 _ (MUNG -
H(u)™"' = (1 -~ u) (1.107)
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Normal distribution

The generation of random numbers from the Normal distribution faces the
problem of the absence of an explicit equation giving the distribution func-
tion as well as its inverse. Hence, the inversion method can only be applied
by approximating the latter using numerical techniques. Due to the impor-
tance of the Normal distribution in statistical analysis, more direct methods
have been developed to generate Normal random deviates making use of some
statistical principles. One of the most popular methods of this kind is the
Box-Muller method, which has the advantage that can be linked to the vari-
ance reduction and optimal sampling algorithms explained in the following
chapter, whose applications is crucial for the sake of simulation economy in
Probabilistic Mechanics. The algorithm implies the generation of pairs of
uniform numbers U; and Us,, which are transformed to the Normal numbers
71, Zy ~ N(0, 1) by the following relationships:

Z = —21n(U1)%cos27rUg
Zy = —2In(Uy) 7sin27 Uy (1.108)

For the general case of a variable X ~ N(u, o) the linear transformation

X=0Z+mu (1.109)

must be applied.
The joint normality of Z; and Z; can be easily demonstrated. In fact,

setting V' = —InlU; and U = U,, the above pair satisfy the following relation-
ships:
7P+ 73 =2V
Zy
— = tan27U (1.110)
Z

The Jacobian of the transformation is

Ou  du 2 cos22mu o522 1
J = Bazvl 862122 _ 2722 27z, = —— (1111)
o, 0z % 2 o
Therefore
1 #* - g*
fZ1,ZQ(Zuz2) = |J|fU:V(u’v) - %eXp<_ 1 ) 2) (1'112)
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which is the joint density of two independent normal variables having zero
mean and unit standard deviation. Since uncorrelated Gaussian variables
are also uncorrelated, the algorithm is especially suitable for the generation
of the random process known as Gaussian white noise, which requires the
latter property (see Chapter 5). The algorithm is, then,

1. Generate two independent variates Uy, Uy ~ U(0,1).
2. Deliver Zy, Z, given by the above equations.

Figure 1.3 shows some variables generated from a standard Normal function.

0.03 T T T T T T T T T

0.025 o

0.02 4

Xoo1s5+ -

0.01f b

0.005

T
L

0 1 1 €3 ¢ b o3 1 1 1
A

0 20 40 60 80 100 1207 140 160 180 200

Figure 1.3: Random Normal variates.

Lognormal distribution

On the basis of the relationship existing between the Normal and Lognormal
distributions it is possible to derive a simple algorithm for the generations
of Lognormal deviates. In fact, if Z ~ N(y,0), then expy ~ LN(pu, o).
Consequently, the algorithm is the following:

1. Generate Z ~ N(u,0).
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2. Deliver X = expY.

Notice that p and o are not the mean and standard deviation of X' but
merely parameters. Their true values are given by

o’ 0’
px = exp(p+ ?), ox = exp(p + 7) (1.113)

Figure 1.4: Simple random sampling.

1.8.4 Combination of random numbers

The random numbers of all the input variables, generated according to the
above quoted techniques, should be combined to produce the samples of the
output ones. The algorithm using the crude random numbers of the input
variables and combining them haphazardly without any constraint is known
as Simple Random Sampling . In this case no optimization is applied to the
population of input data with the aim of reducing its size without sacrifying
the quality of the statistical description of the structural behaviour. Figure
1.4 shows a typical cloud of input points obtained by this technique. Note
that in spite of the uniform generation of the probabilities, there is a high
concentration of points around the mean values, which is in contrast to the

sparseness appearing towards the tails. For a Monte Carlo analysis this would
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imply that many analysis would be performed with very close data in the
mean zone, with the consequence that their results would be rather similar.
While this method can be fast for reliability analysis of single structural
components or even structures with a reduced number of degrees of freedom,
it is too costly for analyzing large structures. In such a case the repetition of
calculations with close data should be avoided by sampling the probabilities
of the input data in a controlled (less random) way.

Figure 1.5: Stratified sampling.

The following are some popular methods for sample reduction:

1. Stratified Sampling

In order to sample the whole range of the input variables, it has been
proposed to that the whole space of each variable be divided into sub-
sets of equal probability. Then an outcome is generated from each
subset and the analysis is performed with the corresponding sets of
points.

2. Latin Hypercube Sampling (Iman and Canover 1980; Bazant and Liu
1985) This method represents an even more drastic reduction of the
sampled population because each subset number (identified with a
Latin letter, whence the name of the algorithm) of each random vari-
able is combined with other subset numbers of the rest of the variables
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only once in a randomized way. A variant of the method has been
proposed (Florian 1992). In it a Cholesky factorization is applied to
the correlation matrix of the permuted ranks of the input variables,
in order to diminish the relatively high correlation resulting from the
drastic reduction of the population with respect to the conventional
method.

. Descriptive Sampling (Ziha 1995). This method is quite similar to the
previous one, the difference between them lying in the way of generating
the permutation matrix of the ranks. Figures 1.5 and 1.6 illustrate the
way in which samples are generated by Stratified Sampling and the
other two methods. It is important to say that in all of them the
sample inside a rank is taken either from the its middle or randomly
from it.

u—space

Figure 1.6: Descriptive sampling.

29



Chapter 2

Stochastic stamping analysis

2.1 Introduction

Sheet metal forming is one of the most widely used process in manufacturing.
The goals of the sheet metal forming process are to minimize the time and
cost of the manufacturing process while optimizing the quality of the parts.
The deformation modes of metal sheet, during forming process are very com-
plex. Without properly designed tools and process parameters, final products
may be subjected to various types of defects such as wrinkles, fractures and
dimensional inaccuracies. A great deal of time and money in industry is thus
consumed by finding appropriate tool geometries and manufacturing param-
eters by trial and error, whereby physical experiments have to be performed
and tools are repeatedly modified according to the experimental results.

In order to overcome the expensive trial and error practice, the simulation
technique based on FEM becomes popular to optimize the tool design i.e. to
minimize time and cost in the design phase. Such simulation is most useful
and efficient when it is performed in the early stage of the design by designers
rather than by analysis specialists after the detailed design is complete. It
is however clear how little information is conveyed by classical single-shot
analysis and how this information may be often misleading. The necessity to
reach higher level of predictability, is pushing engineers to introduce scatter
as integrating part of their everyday practice.

As stated in the introduction to this report, uncertainty and scatter con-
stitute important physical dimensions of almost any engineering problem
which often become the driving mechanism behind the behavior and perfor-
mance of complex large systems. It is however of paramount importance to
identify the dominating parameters early in the design phase since this will
have direct repercussions on the subsequent engineering cost.

30



Friction plays an important role in sheet metal forming process and is
therefore of major importance for reliable finite element simulations of these
processes. For these simulations a frequently used friction model is the
Coulomb model in which the friction coefficient is constant parameter. From
a wider point of view, this is not satisfying because the friction coefficient
depends on local contact conditions like pressure, combined surface rough-
ness of the sheet and the tools, lubricant viscosity and sum velocity of the
surfaces.

During sheet forming process, the friction between sheet and tools has
an active role in affecting the material flow, the strain distribution and the
forming force. It also takes part in determining the forming failures (e.g.
wrinkling, tearing and surface distortion) and the location of these failures.
Hence, an accurate simulation of the sheet forming process requires a de-
tailed understanding of frictional behavior under actual forming condition.
Since the frictional force is known to be a complicated function of material
properties and process parameters, it is unrealistic to use a single test to
accurately represent the sheet metal forming process.

In the frictional problem, two cases can be distinguished. At the early
stage of the process where a full stick condition between the sheet and tools is
verified, a tangential force appears opposing to the relative slip. At this phase
the active friction coefficient is the so-called static one. Once a threshold
value in the modulus of the force is reached a slip condition is verified, thus
the dynamic friction coefficient becomes dominating.

In this chapter a classical problem in stamping analysis is examined from
the stochastic perpective. After a brief description of the modelling details,
the results will show the relevance of this kind of approach.

2.2 Case study

2.2.1 Problem description

The square cup deep drawing problem is one of the most practical indus-
trial application of sheet stamping. This problem has been the subject of
much research and represents a benchmark test that was proposed by the
NUMISHEET’93. The NUMISHEET conferences are designed to offer engi-
neers and scientist the opportunity to compare state-of-the art simulations
with careful experimental data, each contributed by the leading sheet forming
research and production groups world-wide.

The benchmark test reported herein features an the ability to simulate a
large amount of material draw-in with a nearly vertical wall and the ability
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to efficiently treating the frictional contact. It consists of the analysis of
a deep drawing process of a square sheet into a square cup. The empha-
sis of the chapter, however, lies on the discussion of the implications of the
stochastic viewpoint adopted in the present study. The probabilistic anal-
ysis was performed via Monte Carlo simulation, briefly summarized in the
previous chapter, by means of the computer code PROMENVIR (CASA,
1997), which is a general PRObabilistic MEchanical design ENVIRonment.
This environment allows the calculation of a Monte Carlo task in several
computer machines at a time using the same deterministic solver installed
on each of them (i.e., coarse-grain parallelism) under the control of a master
node. The generality of the program lies in its solver-independence. In other
words, it does not need any interface with the determinsitic solver, as the in-
put and output variables are simply highlighted on the ASCII files on which
they appear. Once this is done, it is only needed to give the probabilistic
information of the input random variables (i.e., the density function S (o)
and its parameters), as well as the number of samples, the constituents of
the paralel virtual machine and other details. The execution can be stopperl
and reinitiated at any time if needed. Finally, the statistics of the output
variables can be visualised on-line as the solution progresses and can also be
exported to other programs via ASCII files.

2.2.2 Finite element model

Geometry

The geometries of the punch, die and blankholder are shown in Figure
2.1. For this deep drawing problem, the punch travel is 40mm.

Mesh The sheet was modelled using triangular shell layered elements. The
blankholder, punch and die were modelled using rigid elements. The initial
geometry of the tools as well as the sheet geometry after deformations were
complete are shown in Figures 1.2 and 1.3.

Materials

The sheet material was mild steel using a non-linear hardening elasto-

plastic model with the following properties: Young’s modulus E = 206GPa.
Poisson’s ratio v = 0.3, mass density p = 7800kg/m3 and the initial yield
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Figure 2.1: Square cup deep drawing. (a): Upper view. (b): Frontal view

value C=565.3MPa. The blankholder material was steel using a linear elas-
tic model. with the following properties: Young’s modulus £ = 210GPa,
Poisson’s ratio v = 0.3 and mass density p = 7800kg/n13.

Boundary conditions

The die was held in place while the punch was moved vertically. Contact
pair surfaces between the tools and sheet, die - sheet and blankholder - sheet
contact pairs, were modelled using a constant friction coefficient. Contact
pair surface punch - sheet was modelled using different values of friction
coefficient.

Loading
A constant blankholding force of 19.6k/N was applied to the surface of

the blankholder as a surface load on those elements. The punch was moved
vertically for 40mm by applying a sinusoidal velocity over the total analy-
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Figure 2.2: Initial geometry of the tools.

sis time period. The total response time was obtained using an automatic
time stepping calculation and was terminated when the punch stroke was
completed. Material non-linearities were considered to be rate independent.

2.2.3 Probabilistic model

A crucial stage in any probabilistic problem is the selection of the random
variables together with their probability density functions. In the present
case, the static and dynamic friction coefficients were selected as the input
random variables, as they are those appearing as the most uncertain of all the
implied variables. Since knowledge of the probabilistic information regarding
these variables is rather scarce, it was assumed that they obey a lognormal
distribution, due to the fact that they are always positive. The parameters
of the density function, which is repeated here for convenient reference,

——exp[- (Lt

fy(y)=myaexp[ 5 (—— y>0 (2.1)
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Figure 2.3: End sheet state.

were set equal to p = 0.753 and 0 = —2.45569. The mentioned random input
values are applied on the contact surface pair sheet-punch and were limited
to be in the range 0.05 to 0.3, as the PROMENVIR code allows working with
truncated probabilistic distributions. The output random variables selected
are the minimum, maximum and medium thicknesses of the sheet.

The deterministic Finite Element code STAMPACK (CIMNE, 1997) was
used as the work-horse for performing the Monte Carlo analyses under the
control of the PROMENVIR environment. The STAMPACK code uses the
new finite elements described in Cendoya (1996), Onate et al. (1997), Duffet
et al. (1997), Onate et al. (1999). The number of Monte Carlo samples
was 150, which were run at CIMNE on a single SGI processor, Origin 2000
computer, in 4 hours and 45 minutes.

2.3 Results and discussion

As said before, the large amount of information given by PROMENVIR can
be visualised either on real time or after the completion of the whole Monte
Carlo task. For the present case it is summarized in the following.

Histogram of inputs
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The histograms of the input random variables are displayed as a data
check and should coincide with the assumed lognormal distribution. As an
illustration, the histogram for the dynamic friction coefficient is presented in
Figure 2.4. Notice that as an effect of the truncation just mentioned, the
mean value in the histogram should not coincide with that of the theoretical
one used for the derivation of the parameters & and .

Figure 2.4: Histogram of the dynamic friction coefficient.

Mean

The mean px of the minimum thickness was used as a measure of the
convergence of the solution with respect to the requested sample size (see Fig-
ure 2.5). This information is of great engineering relevance since it provides
directly the most likely value of the minimum thickness. PROMENVIR also
computes two important additional curves, defining the 5 — 95% confidence
interval of the mean (see Chapter 1). It can be observed in the figure that
the both the mean and the confidence interval curves stabilize at a number
of samples roughly equal to 50.

Standard deviation
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Figure 2.5: Minimum thickness - Mean value.

The standard deviation oy of the minimum thickness is computed in
order to assess the amount of scatter which, in its turn, is a reflection of
the robustness of the product. It is plotted in Figure 2.6. In general, large
scatter is undesired since it can lead, under unfavorable circumstances, to
unexpected failures. As explained in the first chapter, a convenient Quality
Assurance measure is the coefficient of variation, given by

n= X (2.2)
X

Two additional curves that define the width of the confidence interval of
the standard deviation are also plotted in the figure. Once more, the width
of the confidence interval appears as stable after approximately 50 shots.

Thickness’ histogram

The histogram of the most important output random variable, i.e. min-
imum thickness, is displayed in Figure 2.7. The values greater then 0.6 are
considered to be in the safety zone. It is clear from the histogram that there
are three clusters of possible values, i.e. around 0.28, 0.42 and 0.70. The same
information may be inferred from the ant-hill plot in Figure 2.10. This result
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clearly reflects the relevance of the stochastic regard in stamping analysis.
As a mater of course, the existence of several clusters (which correponds to
what is called multimodality in Statistics) implies that a single deterministic
analysis is far from being a sufficient basis for assuring the quality of this
highly nonlinear problem. Moreover, the existence of a large cluster falling
into the cathegory of unsafety (as it is the case in the present example) shows
the risk of having a large percent of products not matching the quality stan-
dards which cannot be detected by conventional deterministic calculations.

Cumulative Distribution Function

The Cumulative Distribution Function (CDF) of the minimum thickness
is displayed in Figure 2.8. Again, the CDF clearly reflects the existence of
the three clusters of thickness. From this figure it can be concluded that the
probability of having unsafe products (under the assumed distributions for
the friction coefficients) is very high (about 71 %).

Ant-hall plot

Figure 2.6: Minimum thickness - Standard deviation.

38



Figure 2.8: CDF of the minimum thickness.
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This PROMENVIR functionality plots the relationship between two ran-
dom variables. The term ant-hill is due to the characteristic shape that the
plot assumes when the two variables are uncorrelated. The two random vari-
ables are maximum and minimum thicknesses, presented in Figure 2.9. The
left bottom cloud shows clearly that this is a risky zone where all products
have fallen with some possible concentration of material and the right top
cloud is a safety zone. The correlation coefficient of value p = 0.98 indicates
that there is a strong association between maximum and minimum thick-
nesses. This means, for example, that if the minimum thickness increases, so
will the maximum thickness. However, the figure warns the danger of inter-
preting this statement too loosely, as it is evident that there is a deadzone
in which the minimimum nor the maximum thicknesses take values.

Figure 2.9: Ant-hill plot - maximum versus minimum thickness.

Figure 2.10 presents ant-hill plot of the dynamic friction versus the min-
imum thickness. It has been especially interesting to investigate how far the
dynamic friction coefficient can be considered as responsible for the successtul
performance of the metal forming process. The left top cloud is in a safety
zone and the recommendable dynamic friction coefficient is less than 0.117, if
this variable could ever be under control. Greater values of dynamic friction
coefficient lead to the forming failures. The correlation coefficient between
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two random variables is —0.712. After the comparison of the results obtained
from the stochastic simulation, it becomes clear that the influence of the dy-
namic friction coefficient is very high and therefore has to be measured and
treated with care in the present context.

Figure 2.10: Dynamic friction coefficient vs. minimum thickness.

Figure 2.11 presents the ant-hill plot of the static friction coefficient ver-
sus minimum thickness. The correlation coefficient is —0.052 - a value that
reflects an almost total independence of the minimum thickness on the static
friction coefficient. The reason for this is that the static friction really acts
as such for a very short time. In fact, once the material starts to flow, it
is the dynamic friction that controls the response. Therefore the temporal
correlation of the static friction coefficient with the minimum thickness de-
cays very rapidly and the entire phenomenon appears as independent on this
particular variable.
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Figure 2.11: Static friction coefficient vs.
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Appendix A

Mechanics of the stamping
process

This appendix summarizes the main concepts and equations involved in the
mechanical analysis of an stamping problem, as it is needed for a more com-
plete description of the study reported herein.

As is well known, this mechanical problem must be dealt with in both Eu-
lerian (or spatial) and Lagrangian (or material) coordinate system, denoted
respectively as X and x in the sequel. The displacement field is defined
either in the material and spatial systems as

=X +u(X,t)

X=z—-u(X,1) (A1)

Other important concepts that must be taken into account are those
concerning of the deformation gradient tensor, defined in tensor notation as
afL’i

81‘{](

In terms of the tensor F' the left and right Cauchy-Green tensors, P and
Q are defined as

FiK =

(A.2)

—1
P = Xk Xk,

QKL = TikTi L (A.3)

These tensors allow the definition of the Green-Lagrange E and the Al-
mansi € strain tensors, which are used in the following section, as
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€= %(I - P (A.4)

Other notations used are introduced on due places.

A.1 Equations of motion

In analyzing a stamping problem it is necessary to consider both the equation
of motion in spatial coordinates and material coordinates. The first one reads

Vgo + pb = pa, x € Qf (A.5)

with boundary and initial conditions, given respectively by

n«o =t xz eIt
U = U, V = Vo,, Z EQt (‘L\G)

In material coordinates the equation of motion is

VmT -+ pob() = pA, T € QO (k\?)

with the following boundary and initial conditions:

N -T =Ty, x el
U = Uy, v = vy, , z el (A.8)

where T' is the first stress tensor of Piola-Kirchoff and IV is a unit normal
vector. The weak form of the equilibrium equations is

/a:de-dQ:/ p(b—a)du-dQ+ [ tou - dQ

Qt Ot Tt
/QOT:5F~dQ=/Qopo(bO—A)(Su-deL/FoTéu‘dQ (A.9)

/S:VXaE-dQ:/ po(bo—A)6u~dQ+/ Téu - AQ

Qo Qo ro

where T and S are the first and second Piola-Kirchoff tensors, respectively,
F is the gradient tensor, E is the Green-Lagrange tensor and € the Almansi
strain tensor. The constitutive equations are those of an hypoelastic material
(Khan and Huang, 1995). The form of the constitutive tensor depends on
the modeling of the material as anisotropic, orthotropic or isotropic.
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A.2 Finite element equations

Using an updated Lagrangian formulation, the first of the equations (A.10),
written in matrix form, is

/ (Squii~dQ+/ 5eT-a-dQ—/ 6uT-pbdQ—/ suTt-d2 =0 (A.10)
Ot Ot Ot Tt

where

o= [011022033012013023]T
€ = [611622633261226132623]T (:\11)
the conventional elasticity definitions of the components of € being applied.

Supposing that the kinematics of body is compatible with the displacement
field, the following finite element discretization is adopted:

u(X)=N(X)r (A.12)
where IN(X) is the shape function matrix and r is the vector of nodal dis-
placements. The first variation of the displacement field and that of the
Green-Lagrange tensor are

du(X) = N(X)érde(X) = B(X)ér (A.13)

where B is the deformation matrix, given in this case by

(A.14)

The application of this discretization leads eventually to a matrix differential
equation of the form
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M7 + F™ — F™' =0 (A.15)

where the matrices M, F™ and F®* result from the assemblage of the
element matrices

M“ = | pNTNAQ
Qe

O _ [ BTgdQ
Qe
= [ NTpbdQ+ [ NTtdl (A.16)

Qe Ie

ext'(e)

Since the mass matrix appearing in the above differential equation is not di-
agonal, thus making the solution of the problem cumbersome, a modification
of the system is in order. To this purpose, an equivalent solution of the form

M*# 4 C7 + F™ + F©" — F** =0 (A.17)

where M* is a diagonal mass matrix and C' is a damping matrix, which is
introduced in order to reduce the vibrations. the term F™ is also introduced
to represent the contact force.
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