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SUMMARY 

Within the framework of Continuum Damage Mechanics some isotropic scalar damage 

models for concrete are revisited, with emphasis on a recent one proposed by the 

authors. This scalar damage model is based on the assumption that a stress split is 

required to capture the unilateral behaviour exhibited by concrete when passing from 

tension to compression. Similar assumptions are pursued on many scalar damage 

models, yet with many differences being encountered on the strategies adopted for the 

implementation of such split, which sometimes is performed over the strain tensor. In 

this paper a discussion on the implications of those splits is conducted, as well as on the 

norms that define the elastic domain in the stress space. For the proposed damage model 

a strain-driven formalism is adopted, but the stress split is performed on the effective 

elastic stress tensor, which is shown to correspond to a split of the Cauchy stress tensor. 

This strategy improves the algorithmic efficiency as much as required for the seismic 

analysis of large-scale problems, and circumvents many of the drawbacks present in 

similar damage models. Besides, two scalar damage variables are introduced as internal 

variables, as well as an inelastic strain tensor. Efficiency of the proposed constitutive 

model is illustrated through numerical applications. Algorithmic implementation is also 

detailed. 

Keywords: concrete, stress split, scalar norms, thermodynamics, damage variables, 

irreversible deformations. 
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1. INTRODUCTION 

A large set of constitutive models for the modelling of concrete is presently available, 

namely the ones based on the theories of Hypo and Hyperelasticity, Plasticity, Fracture, 

Plastic-Fracture or Continuum Damage Mechanics. Based on the Thermodynamics of 

Irreversible Processes, Continuum Damage Mechanics provides a powerful and general 

framework for the derivation of consistent material models suitable for many 

engineering fields. Firstly introduced for creep-related problems1, nowadays Damage 

Mechanics covers a broad range of applicability, for materials so different as metals, 

ceramics, rock and concrete2-13. Among the reasons for such a large acceptance, the 

versatility of the inherent Theory of Irreversible Processes can be pointed out, as well as 

its thermodynamic consistency. 

In Section 2 a recent model proposed by the authors is presented. Supported on a 

strain-based formalism, the following basic features of concrete behaviour were selected 

as relevant to be accounted for in the constitutive model: (i) the rather different 

stress-strain envelopes observed under tension or under compression, (ii) the stiffness 

recovery upon loading reversal (visible when passing from tension to compression, or 

backwards), (iii) the concrete strength enhancement discernible under 2D or 3D 

compressive tests, when compared to the 1D compressive strength, and (iv) the inelastic 

deformations observable upon unloading. 

The dissimilar behaviour exhibited by concrete under tension or under compression 

is an essential feature when dealing with cyclic actions. This peculiarity of concrete’s 

behaviour, also exhibited by other geomaterials, is a consequence of the rather different 

strengths exhibited under tension or under compression, the first one associated to 

significant fragility, responsible for visible cracking. Therefore, under cyclic loading 

tensile cracking is usually the first evidence of nonlinearity, and consequently important 

changes in stiffness are observed when passing from tension to compression. To cope 

with this unilateral effect, clearly visible when reversing the sign of the external loading 

(as in earthquake motion), the constitutive model must be able, somehow, to distinguish 

tension from compression. An essential feature of the proposed model is that a split into 

tensile and compressive contributions will be introduced in the definition of the 

Helmholtz free energy. Two scalar damage variables are selected, each of them 

associated to the degradation mechanisms occurring under tensile or compressive stress 

conditions (assumed as independent). 
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The proposed model was devised to provide high algorithmic efficiency, a feature of 

primary importance when seismic analysis of large-scale concrete structures are 

envisaged. To account for this requisite a strain-driven formalism is adopted throughout, 

since the strain tensor is the first entity to be computed in standard displacement-based 

finite element codes. Typical disadvantages of classical strain-based splits − namely the 

inability to account for the strength enhancement in compression due to lateral 

confinement − are circumvented by defining the energy potential as a function of the 

effective elastic stress tensor, and not in terms of the strain tensor, the former a 

physically more relevant entity. This strategy preserves the advantages of a strain-driven 

formulation, since the effective stress tensor is itself a strain-based entity, and 

circumvents the drawbacks inherent to those formulations based on the final Cauchy 

stress tensor, which require an iterative procedure inside the constitutive model. 

Close to the end of Section 2 the model capabilities are extended to account for 

irreversible deformations, and in order to clarify the implementation of the proposed 

model the most relevant algorithmic steps required for its coding will be presented. 

Some attention will be also devoted to the derivation of the inherent tangent matrix, but 

in order to avoid unnecessary detailing the most cumbersome operations are transferred 

to an Appendix, whereas in Section 2 only the most relevant aspects of the derivation 

will be presented. 

To emphasise the implications arising from the different backgrounds in which are 

founded the proposed and some ‘parent’ scalar damage models, a comparative 

discussion is presented in Section 3, pointing out the major advantages and drawbacks 

of the corresponding formulations. The background of the proposed constitutive model 

was inspired in other concrete constitutive models founded on Damage Mechanics12,14, 

although with important differences namely in what concerns the precise strategy 

pursued for the split, and the tensors that are involved in the definition of the energy 

potentials. 

Section 4 is devoted to the validation of the proposed model through comparison of 

the corresponding numerical predictions with the experimental responses obtained for 

several structural applications. 

A final Section with the most relevant conclusions closes the paper. 
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2. TWO SCALAR DAMAGE VARIABLES MODEL 

2.1 Effective stress tensor 

In the ensuing a basic entity, the rank-two effective stress tensor5, is postulated as 

 εεεεσσσσ :0D=  (1) 

where D0  denotes the rank-four isotropic linear-elastic constitutive tensor and εεεε is the 

rank-two strain tensor. The effective stress tensor defined through equation (1) coincides 

with the definition of an elastic stress tensor, having considerable physical relevance 

since on a damaged material it corresponds to the stresses acting on the ‘net’ cross 

section, that is, excluding voids, cracks or any other imperfections, here looked as 

damages. 

In order to account for the concrete unilateral effect, a split of the effective stress 

tensor σσσσ  into tensile and compressive components, σσσσ+  and σσσσ− , is introduced, and 

performed according to15 

 ⊗>σ<=+

i
iii ppσσσσ  (2a) 

 − += −σσσσ σσσσ σσσσ  (2b) 

where σi  refers the i-th principal stress of tensor σσσσ  and pi  denotes the versor of the 

associated principal direction. The ramp function indicated by the Macaulay brackets 

< ⋅ > returns the value of the enclosed expression if positive, but sets a zero value if 

negative. As in equations (2), in the ensuing lines tensile and compressive entities will 

be pointed out through the using of indices (+) and (−), respectively. 

2.2 Free energy potential 

For a consistent derivation of a constitutive law a Helmholtz free energy potential with 

the form15-17 

 )()1()()1(),,( 00 εεεεεεεεεεεε −−++−+ ψ−+ψ−=ψ dddd  (3) 

is postulated, where ψ0
+  and ψ0

−  are elastic free energies, defined according to 

 εεεεσσσσσσσσσσσσεεεε :21::21)( 1
00

+−++ ==ψ D  (4a) 

 εεεεσσσσσσσσσσσσεεεε :21::21)( 1
00

−−−− ==ψ D  (4b) 
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The set of internal variables is therefore constituted by the d + and d − scalar damage 

variables, which correspond to the surface density of material defects, and range from 

‘zero’ (for the virgin material) to ‘one’ (at collapse). These damage variables are directly 

linked to tensile and compressive deteriorations, herein after assumed as independent 

processes. Strain tensor εεεε  is the only free variable admitted. 

As demonstrated in Reference 17 

 ψ0 0+ ≥  ψ0 0− ≥  (5) 

and consequently, taking into consideration the intrinsic definition of damage, 

 0 1≤ ≤+ −( , )d d  (6) 

it is easy to demonstrate the positiveness of ψ: 

 ψ ψ ψ= − + − ≥+ + − −( ) ( )1 1 00 0d d  (7) 

2.3 Constitutive equation 

Since during a loading process non-negative energy dissipation has to be observed, 

thermodynamic consistency requires the Clausius-Duhem inequality to be satisfied, that 

is, 

 � � : �γ ψ= − + ≥σσσσ εεεε 0  (8) 

From equation (3) it follows that 

 −−++ ψ−ψ−
∂
ψ∂

=ψ dd ���� 00: εεεε
εεεε

 (9) 

and consequently equation (8) assumes the form 

 0: 00 ≥ψ+ψ+
�

��
�

�

∂
ψ∂

−=γ −−++ dd ���� εεεε
εεεε

σσσσ  (10) 

Pursuing standard reasonings, and since εεεε is a free variable, for the equation of 

dissipation to maintain its generality the expression within parenthesis should vanish, 

that is, 

 σσσσ
εεεε

=
∂ψ
∂

 (11) 

a Coleman’s relation from which the constitutive law is derived. Due to the definition 

for the free energy potential expressed in (3), equation (11) leads to 
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εεεεεεεε

σσσσ
∂
ψ∂−+

∂
ψ∂−=

−
−

+
+ 00 )1()1( dd  (12) 

Taking into consideration the equations (4), the linear dependency between σσσσ  and εεεε 

expressed in (1), the stress split postulated in (2), and the fact that σσσσ+  and σσσσ−  are 

degree-one homogeneous functions of εεεε, owing to Euler’s theorem in Reference 17 it is 

shown that 

 +
+

=
∂
ψ∂

σσσσ
εεεε
0  −

−

=
∂
ψ∂

σσσσ
εεεε

0  (13) 

Substituting in equation (12) a final form for the constitutive law is then accessible, 

leading to a rather intuitive expression for the σσσσ Cauchy stress tensor: 

 σσσσ σσσσ σσσσ= − + −+ + − −( ) ( )1 1d d  (14) 

Remark 1. Due to the isotropy inherent to the scalar damage variables d +  and d −  and 

to the format of the present constitutive law, equation (14) points out that a split of 

tensor σσσσ into tensile and compressive tensors σσσσ+  and σσσσ−  is implicit in the present 

formulation, that is, 

 σσσσ σσσσ+ + += −( )1 d  σσσσ σσσσ− − −= −( )1 d  (15) 

This relevant property emphasises that the adopted split of the effective stress 

tensor leads in fact to a related dual split of the Cauchy stress tensor. ���� 

2.4 Elastic domain: damage criteria 

Analogously to the equivalent strain postulated by Simo and Ju18, let us define the dual 

concept of equivalent stress, a scalar positive norm that allows identifying ‘loading’, 

‘unloading’ or ‘reloading’ situations. Since a clear distinction between tension and 

compression is assumed throughout based on the stress split defined in (2), a tensile 

equivalent stress τσ
+  and a compressive equivalent stress τσ

−  are postulated according to 

the forms 

 τσσσσ σσσσ ΛΛΛΛ σσσσ+ + + += : :  τ σσσσ σσσσ ΛΛΛΛ σσσσ− − − −= : :  (16) 

where ΛΛΛΛ±  are non-dimensional fourth-order metric tensors that define the shape of the 

damage bounding surfaces. In principle the one for tension, ΛΛΛΛ+ , is different from the 
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one for compression, −ΛΛΛΛ , but both should be isotropic and positive definite, features 

that can be accomplished by adopting definitions like 

 11 ⊗γ−γ+= ±±± I)1(ΛΛΛΛ  (17) 

where I and 1 are the rank-four and rank-two identity tensors. Parameters ±γ , which can 

be defined separately for tension and for compression, are devised to reproduce the 

equibiaxial/uniaxial strength ratios typical in concrete. They should be such that 
±γ  ∈  [0, 1[. 

Calling for the stress norms defined in (16), two damage criteria ±g  in terms of the 

Cauchy stress tensors are introduced 

 0),( ≤−τ= +++++ qqg σσσσσσσσ  (18a) 

 0),( ≤−τ= −−−−− qqg σσσσσσσσ  (18b) 

where q ±  are current thresholds that control the size of the damage surfaces, therefore 

playing the role of hardening-like internal variables. Consequently, and previously to the 

onset of damage, q ±  would have to be set equal to q0
± , the initial values of such internal 

variables corresponding to the initial elastic domain. At any time the elastic domain 

defined by the criteria expressed in (18) is therefore the intersection 

 −+ ∩= σσσσσσσσσσσσ EEE  (19) 

with 

 { }0),(;E <= ++++ qg σσσσσσσσσσσσ  { }0),(;E <= −−−− qg σσσσσσσσσσσσ  (20) 

Figure 1 reproduces a characteristic configuration of the 2D initial elastic domain 

obtained in the present model†: in pure tension a rounded Rankine-type criterion is 

obtained by setting 0.0=γ+ , whereas in pure compression a realistic 

equibiaxial/uniaxial strength ratio equal to 1.15 is obtained by adopting 622.0=γ− . The 

overall agreement of this elastic domain with the one inferred form the experimental 

results due to Kupfer et al.19 is fairly good, either in pure tension or in pure 

compression, or even in tension-compression situations. 

                                                 
† In this figure −

0f  denotes the stress which defines the onset of damage in 1D compression. 
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Figure 1. Initial 2D elastic domain. 

2.5 Evolution of the damage variables 

Let us assume that the damage variables are computed in accordance to 

 d r
q r

r
± ±

± ±

±= −( )
( )

1  (21) 

where the hardening/softening thresholds ±q  are positive functions of some internal 

variables r ± , which in turn obey the kinematics 

 �r± ±= λ  (22) 

with λ± ≥0 being damage multipliers which will participate in the Kuhn-Tucker 

conditions. Through substitution of equations (16) in (18), owing to the split of tensor σσσσ 

expressed in equation (15) and also to 

 q r d r± ± ± ±= −( ) ( )1  (23) 

that arises from equation (21), it is worth noting that the criteria expressed in equations 

(18) are equivalent to 

 0),( ≤−τ=τ ±±±±± rrg  (24) 

where 

 ±±±± =τ σσσσΛΛΛΛσσσσ ::  (25) 

Since the effective stress tensor is a strain-driven entity, the Kuhn-Tucker relations 

will be applied to the criteria expressed in the latter format (24), that is, 

 g ± ≤ 0  λ± ≥ 0  λ± ± =g 0  (26) 

Introducing the persistency condition it reads 
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 λ± ± =�g 0  (27) 

and consequently for loading conditions one gets 

 00 ≥=τ= ±±± rg ���  (28) 

Integrating for a generic instant t, in view of this equation the following conclusion 

arises 

 �
�

�
�
� τ= ±±±

∈
stst rr )(max,max

][0,
0  (29) 

where r0
±  are the thresholds that bound the initial linear-elastic domain; according to 

equation (23) it results 

 r q0 0
± ±=  (30) 

since d
t

±
=

=
0

0 . 

2.6 Dissipation 

Owing to the non-negativeness of ψ0
+  and ψ0

− , from equation (10) it can be inferred 

that for the dissipation 

 −−++ ψ+ψ=γ dd ��� 00  (31) 

to satisfy the Clausius-Duhem inequality it suffices that 

 �d ± ≥ 0  (32) 

These inequalities fix a classical condition on the rate evolution of the damage variables, 

or equivalently, it introduces the thermodynamic requirement that thresholds q±  would 

have to satisfy, due to the links between the two entities expressed in equation (21): 

 0
)(

1
2 ≥
�

�
�
�

�
+

∂
∂

−= ±
±

±

±

±

±
± r

r
q

r
q

r
d ��  (33) 

Accounting to the conclusion expressed in equation (28), that is, 0≥±r� , condition 

(33) demands also the non-negativeness of the expression within brackets, and 

consequently 

 ±
±

±

±

±

=
∂
∂

≥ H
r
q

r
q  (34) 

where ±H  may be looked as a hardening/softening parameter. 
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Remark 2. According to equations (6) and (23) condition 1≤±± rq  has to be 

satisfied, which combined with equation (34) leads to the conclusion that 

1H ≤≤ ±±± rq . As depicted in Figure 2 this condition is trivially satisfied by 

the hardening/softening laws exhibited by the most relevant materials commonly 

used in engineering, and namely by the concrete. ��������

r  ±r0 ±

q ±

r0 ±

1
1

H 
±

1

1
q ±/r ±

 

Figure 2. Hardening/softening condition. 

2.7 Updating of the damage variables 

From equation (29) it becomes clear that the updating of the internal variables r ±  

constitutes an easy task, since only the maximum ±τ  need to be retained. Consequently 

the damage variables can be updated quite easily, because owing to equation (21) they 

are explicit functions of thresholds r ± , provided that suitable formats are attributed to 

functions q r± ±( ) . The selection of these functions will determine the specific damage 

evolutions to be considered, and consequently some care must be devoted to this 

subject, so that realistic kinematics for d ±  are included in the numerical model. 

Anyway, the change from one particular set of evolution laws to a different one does not 

put any special problem, thus enabling the constitutive model to have substantial 

updating versatility. 

In the present work the following evolution rules are adopted, which fulfil the 

requirements expressed in (34): 

 )1()( 0
0

++
+++ −= rrAerrq  if  r r+ +≥ 0  (35a) 

 )1()1()( 0
0

−−
−−−− −+−= rrCeBrBrrq  if  r r− −≥ 0  (35b) 
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For a 1D tensile test equation (35a) provides a softening branch that is asymptotic to 

the strain axis. With such an evolution law20 a finite area is retained between the 

stress-strain curve and the strain axis, which has to be appropriately related to the 

concrete fracture energy so as to satisfy requirements of mesh-objectivity, an issue that 

can be solved by introducing a characteristic length l depending on the spatial 

discretization21. Consequently the unique parameter A involved in equation (35a) is 

computed by equating the concrete fracture energy G per unit of the characteristic length 

to the time integral of dissipation on a 1D tensile test, rendering20 

 0
2
1

)(f

1

2
0

≥
�

�
�

�

�
−=

−

+l
EGA  (36) 

where +
0f  denotes the concrete tensile strength and E is the Young’s modulus. 

Equation (35b) allows reproducing the hardening in concrete under compression, as 

well as the softening which characterises the post-peak behaviour. Definition of the two 

parameters B and C is required, usually by imposing the numerical curve to pass in two 

selected points of a curve from a 1D compressive test. 

2.8 Extension to account for inelastic strains 

• = Evolution law 

Rather small modifications need to be introduced in the formulation of the proposed 

model to account for the inelastic strains that are observed in concrete upon unloading. 

Let us call for the additive rule ie εεεεεεεεεεεε += , where εεεε e  and iεεεε  stand for the elastic and 

inelastic strain tensors, respectively. 

By assuming that the rate of the inelastic strains iεεεε  is forced to occur in the same 

direction of the elastic strain tensor we postulate the following law 

 ei b εεεεεεεε �� =  (37) 

with 

 0
:
:

)( ≥
><

β= −

σσσσσσσσ
εεεεσσσσ �

�� dHEb  (38) 

being a non-negative scalar, where β≥0 is a material parameter that controls the 

intensity of the inelastic deformation and H d( � )−  is the Heaviside function computed 

for the damage rate in compression. 
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This format for the inelastic strain evolution is somehow inspired on the Generalised 

Plasticity Theory†, since the typical ingredients of such approach22 can be identified in 

equations (37-38): (i) the dependency of the irreversible strain change on the strain rate 

εεεε�  and (ii) the explicit inclusion of the loading or unloading direction via factor H d( � )− . 

This directional loading factor hinders the inelastic straining during unloading or before 

the damage threshold being attained in a compressive test. Additionally, it also 

precludes the evolution of the irreversible strains in a pure tensile test, a simplification 

adopted here to reduce the complexity of the approach, since the present constitutive 

model is mainly intended for large time consuming analysis, and only an overall 

representation of the irreversible straining effect is intended. 

• = Free energy potential and dissipation 

With the inclusion of the irreversible strain tensor εεεεi the effective stress tensor is 

redefined as a function of the elastic strain tensor εεεεe, that is, 

 )(:: 00
ie εεεεεεεεεεεεσσσσ −== DD  (39) 

a postulate that replaces equation (1). 

Accordingly the elastic free energies expressed in equations (4) should be rewritten 

as 

 ψ0 1 2+ +=( ) :εεεε σσσσ εεεεe e  ψ0 1 2− −=( ) :εεεε σσσσ εεεεe e  (40) 

and the free energy potential (3) is thereafter replaced by the following one 

 0)()1()()1(),,,( 00 ≥−ψ−+−ψ−=ψ −−++−+ iii dddd εεεεεεεεεεεεεεεεεεεεεεεε  (41) 

As demonstrated in Reference 17 the constitutive law defined through equation (14) 

is kept unchanged, since according to the chain rule it is possible to rewrite equation 

(11) as 

 eee dd
εεεεεεεεεεεεεεεε

σσσσ
∂
ψ∂

−+
∂
ψ∂

−=
∂
ψ∂

=
∂
ψ∂

=
−

−
+

+ 00 )1()1(  (42) 

and 

 +
+

=
∂
ψ∂

σσσσ
εεεε e

0  −
−

=
∂
ψ∂

σσσσ
εεεε e

0  (43) 

                                                 
† According to the above definitions εεεεe may be looked as the ‘direction of inelastic flow’ and b�  as the 

‘inelastic multiplier’. 
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In what concerns the dissipation, as a new internal variable εεεεi is introduced in (41) 

the following new term has to be added to equation (31): 

 i
i εεεε
εεεε

�:
∂
ψ∂−  (44) 

Since 

 [ ]−−++ −+−−=
∂
ψ∂

−=
∂
ψ∂

σσσσσσσσ
εεεεεεεε

)1()1( ddei  (45) 

substitution of this result and equation (37) into equation (44) leads to 

 ψ=
∂
ψ∂− bi

i
�� 2: εεεε

εεεε
 (46) 

Taking into consideration that 0≥ψ  (see equation (41)) this additional contribution to 

dissipation will be non-negative if 0≥b� , a requirement that is systematically fulfilled 

owing to the particular format adopted in equations (37-38) for the rate evolution of the 

irreversible strain tensor, where the Macaulay brackets play an essential role. 

Consequently, condition of dissipation 0≥γ�  is satisfied. 

• = Integration 

By differentiating equation (39) with respect to time, owing to equations (37-38) it 

results: 

 � : � ( � ) : �
:

σσσσ εεεε σσσσ εεεε
σσσσ

σσσσ σσσσ
= − < >−D0 βE H d  (47) 

If a backward-Euler time discretization scheme is adopted, with ( )⋅ n  and ( )⋅ +n 1 

denoting entities pertaining to consecutive time steps and ∆εεεε  referring to the inherent 

increment of εεεε, one gets 

 σσσσ σσσσ εεεε σσσσ εεεε
σσσσ

σσσσ σσσσn n n n
n

n n
E H d+ +

−
+

+

+ +
= + − < >1 0 1 1

1

1 1
D : ( � ) :

:
∆ ∆β  (48) 

Defining 

 σσσσ σσσσ εεεεn
trial

n+ = +1 0D : ∆  (49) 

it is possible to attribute the following form17 to equation (48) 

 σσσσ σσσσn n
trial

+ +=1 1α  (50) 

where 
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 α β= −
< >

+
− +

+ +
1 1

1

1 1
E H dn

n
trial

n
trial

n
trial( � )

:
:

σσσσ εεεε
σσσσ σσσσ

∆
 (51) 

Since ∆εεεε  and σσσσn
trial
+1  are explicit in terms of the strains at step n+1, the effective stress 

tensor ends being a strain-based entity, which can be updated according to the ‘radial 

return’ algorithm reproduced in equations (50-51): tensor σσσσn
trial
+1  is a trial predictor, 

through which the final effective stress tensor can be obtained once computed the scale 

factor α. The 0/1 discontinuity in equation (51) due to the Heaviside function requires a 

maximum of two iterations to be performed, and consequently high algorithmic 

efficiency is guaranteed with the proposed format for the inelastic strain evolution. 

2.9 Algorithm 

Owing to the strain-driven formalism of the proposed constitutive model, and to the fact 

of εεεε being fully determined at the beginning of each step of a displacement-based finite 

element algorithm, its code implementation is quite straightforward, as illustrated in 

Table 1. 

Table 1. Algorithm for the two scalar damage variables model 

 Step n=0: 

 (i) Set  r rn
+ += 0 ,  r rn

− −= 0 ,  dn
+ = 0  and  dn

− = 0. 

 Step n+1: 

 (ii) Evaluate  εεεεn+1  and  ∆εεεε. Compute  σσσσn+1  according to equations (49-51). 

 (iii) Split  σσσσn+1  into  σσσσn+
+

1  and  σσσσn+
−

1  according to equations (2). 

 (iv) Compute  +
+τ 1n   and  −

+τ 1n   according to equations (25). 

 (v) If  ±±
+ >τ nn r1   update thresholds:  { }±

+
±±

+ τ= 11 ,max nnn rr . 

 Update damage variables  d q r rn n n+
± ±

+
±

+
±= −1 1 11 ( )   according to 

 equations (21,35) (or equivalent ones). 

 (vi) Compute the Cauchy stress tensor 

 ( ) ( )n n n n nd d+ +
+

+
+

+
−

+
−= − + −1 1 1 1 11 1σσσσ σσσσ σσσσ           EXIT. 
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2.10 Performance in 1D cyclic conditions 

Figure 3 depicts the typical performance of the constitutive model during a 1D 

tension-compression cyclic test. The ability of the inelastic-damage model to reproduce 

the softening behaviour under tension becomes evident, as well as the hardening and 

softening under compression. During the incursions into the tensile regimen the 

irreversible strains are prevented to increase, as evidenced during the first tensile 

unloading (line B-O), but accumulation of irreversible deformations occurs during 

increased loading in compression. Stiffness recovery is also clearly detected during 

paths B-O-C, D-E-F or G-E-D, a unilateral effect easily captured by the two different 

damage variables adopted in the constitutive model. 

TENSION

COMPRESSION

ε

σ

 

Figure 3. Cyclic behaviour during a 1D test. 

2.11 Tangent matrix 

Derivation of a consistent tangent matrix for the proposed model demands the 

constitutive law (14) to be differentiated with respect to time: 

 −−++−−++ −−−+−= dddd ����� σσσσσσσσσσσσσσσσσσσσ )1()1(  (52) 

In equation (47) a time differentiation of tensor σσσσ  was already presented. Rewriting 

it on a more suitable format as 

 εεεεσσσσ �� :iD=  (53) 

little mathematical handling is required to conclude that iD  is the following symmetric 

matrix: 

 
σσσσσσσσ
σσσσσσσσεεεεσσσσ

:
):()(0

⊗β−= − dHdHEi �DD  (54) 
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In spite of the intrinsic simplicity of the split postulated in equations (2), which 

expresses σσσσ±  as functions of the eigenvalues and eigenvectors of σσσσ , quite more 

complex operations are required to express �σσσσ+  as a function of �σσσσ . In the Appendix an 

operator P such that 

 εεεεσσσσσσσσ ��� ::: iDPP ==+  (55a) 

 εεεεσσσσσσσσ ��� ::)(:)( iDII PP −=−=−  (55b) 

is presented. Here it suffices to express P as 

 

>
=

⊗
σ−σ

>σ<−>σ<
+⊗σ=

3

1

3

1
2)(

ij
i,j=

ijij

ji

ji

i

iiii
iH PPPPP  (56) 

where 

 ( ) ( )P P p p p p p pij ji
i j j i i j= = ⊗ + ⊗ = ⊗

1
2

symm  (57) 

Therefore, for complete clarification of equation (52) it is only required to write 

explicitly the rate evolutions for �d ±  (under loading conditions). In compacted form 

equation (33) can be expressed as 

 � �d h r± ± ±=  (58) 

with 

 2)(
H1

±

±
±

±
± +−=

r
q

r
h  (59) 

Owing to equation (28) ±± τ= ��r . Consequently, and according to equations (25), it 

follows 

 εεεεΛΛΛΛσσσσσσσσΛΛΛΛσσσσ ��� ::::1::1 ir DP++
+

+++
+

+

τ
=

τ
=  (60a) 

 ( ) εεεεΛΛΛΛσσσσσσσσΛΛΛΛσσσσ ��� ::::1::1 ir DI P−
τ

=
τ

= −−
−

−−−
−

−  (60b) 

Introducing these results in equation (58), which in turn is used in (52) jointly with 

equations (55), one gets 

 εεεεσσσσ �� :tanD=  (61) 

where for the tangent matrix tanD  the following expression applies: 
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−�
�
�

�
�
�
�

	
⊗

τ
−−+ −−−

−

−
− PΛΛΛΛσσσσσσσσ  (62) 

This operator is non-symmetric under general conditions, and it applies whilst 

‘loading’ conditions are observed. If ‘unloading’ occurs in tension or in compression the 

evolution of the corresponding damage variable is null, and consequently it suffices to 

take 0=+h  or 0=−h  in (62). If ‘unloading’ occurs in compression it should also be 

considered that 0DD =i . 
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Figure 4. Performance of the tangent matrix on the analysis of Koyna dam. 

Figure 4 illustrates the performance of a Newton-Raphson algorithm when the 

proposed constitutive model is used jointly with the tangent matrix here derived. It 

concerns the numerical simulation of a scenario for the gravity Koyna dam, where the 

hydrostatic impulse is monotonically increased by a load factor up to failure. Since the 

simulation itself is somewhat irrelevant for the present illustrative purposes (further 

details can be found in Reference 16), we will focus solely on the comparison of the 

numerical results obtained with the tangent matrix or by using a modified 

Newton-Raphson algorithm supported on the initial elastic stiffness matrix. Figure 4a 

depicts the evolution of the load factor with the horizontal displacement at the crest of 

the dam, and points out the inability from the ‘initial’ strategy to provide solutions for 

load factors greater than 2.5, contrarily to the ‘tangent’ one which steps considerably 

further close to collapse. The quadratic convergence from the ‘tangent’ algorithm 
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provides also a drastic reduction on the number of iterations required for convergence, 

in comparison with the ‘initial’ one, as reproduced in Figure 4b. 

3. COMPARATIVE DISCUSSION 

3.1 Overview 

The damage model formulation detailed in Section 2 is based on a split of the effective 

stress tensor σσσσ  into tensile and compressive stress tensors, which associated with the 

scalar damage variables d ±  play an essential role in the definition of the free energy 

potential. Moreover, tensors σσσσ+  and σσσσ−  are mapped onto a 1D domain via the scalar 

norms ±τ , equivalent stresses which participate in the definition of the two damage 

criteria introduced in equation (24). 

Therefore, both the split and the ‘structure’ of the free energy potential, and even the 

norms and the damage criteria resemble the features of other models based on 

Continuum Damage Mechanics. For instance, Reference 23 a similar split is 

documented, yet performed over the strain tensor, and in Reference 12 a split of the 

strain tensor into εεεε±  is also referred, associated to different variants of Mazars’ models. 

Concerning the damage criteria, the format adopted here is clearly inspired on the 

original one proposed in Reference 18, but extended to account for the split of the 

effective stress tensor. 

With reference to the scalar norms ±τ , in the above references definitions similar to 

the ones postulated here are encountered. In fact many different norms have been 

proposed in the literature12,18,20,24, associated to several damage criteria. A crucial 

distinction between those norms and damage criteria concerns the basic entity on which 

they are based, and at least two families can be identified: (i) the strain-based ones and 

(ii) the stress-based ones. Apparently this may be thought to reflect the different 

appraisals concerning the basic mechanisms which guide the initiation and progression 

of damage in concrete, particularly the one associated to cracking, where interpretations 

linking this phenomenon to lateral expansion (volume increase) or to tensile stresses are 

commonly encountered. These interpretations depend mostly on the level under which 

the model approximation is introduced, since under a microscopic or intermediate level 

cracking in the cement paste is frequently attributed to tensile stresses that form due to 

bridging between the aggregates, whereas under a macroscopic standpoint, and for 
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instance during a uniaxial compressive test, the visible cracking is not easily associated 

to tensile loading, and consequently sometimes it is associated with lateral positive 

straining†. 

Therefore, and since some common features exist between the model described in 

Section 2 and the ‘parent’ ones, a pertinent doubt concerning the real differences 

between them may arise in the reader’s mind. In spite of several similarities, some 

relevant discrepancies exist between the many formulations just mentioned, with 

implications in the code implementation and in the computational efficiency. 

3.2 Free energy potential 

The free energy potential assumed in the present paper (equation (3)) may be compared 

to the one in Reference 12, whose form is: 

 ψ =
−

+
−+

+ − +
−

− − −1
2 1

1
2 10

1
0

1

( )
: :

( )
: :

d d
σσσσ σσσσ σσσσ σσσσD D  (63) 

A fundamental particularity that can detected in this definition is that the Cauchy 

stress tensor σσσσ is mobilised, whilst in equation (3) we have adopted the effective stress 

tensor σσσσ . Since σσσσ is the stress tensor to be evaluated, in (63) an implicit formulation is 

therefore involved, which obviously requires an iterative procedure to be implemented 

within the constitutive model. In (3) the constitutive model is intentionally written in 

terms of the effective stress tensor (or their split components), a rather more explicit 

entity due to its strain-driven background. Anyway, and as emphasised in (15), a split of 

tensor σσσσ is also implicit in our model, and equation (3) could be expressed as 

 ψ = ++ − − −1
2

1
20

1
0

1σσσσ σσσσ σσσσ σσσσ: : : :D D  (64) 

Therefore, the difference between the two models is evident comparing equations 

(63) and (64). This crucial modification does rather distinguish both models, and leads 

to significant computational advantages for the model here proposed, as already pointed 

out. 

In Reference 14 a split concerning the Cauchy stress tensor is also invoked, but 

further complexities are included in the formulation due to the addition of a third 

                                                 
† Under the authors’ viewpoint one should not necessarily intend to directly introduce into the local model 

the observed macroscopic cracking directions, since those directions should be ‘better’ understood as 
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damage variable ~d , linked to a coupling term describing the effects of concrete 

micropores: 

 ψ
υ

=
−

+
−

+
−

+ +

+

− −

−
σσσσ σσσσ σσσσ σσσσ σσσσ σσσσ σσσσ:

( )
:

( )
: tr ( )

( ~)2 1 2 1 2 1

2

E d E d E d
 (65) 

(υ is the Poisson’s coefficient and tr (⋅) is the trace of tensor (⋅)). Therefore an implicit 

formulation is also inherent to such a model, leading to great computational difficulties 

documented in Reference 14, namely in what concerns the stress split and the 

uniqueness of tensor σσσσ with respect to an arbitrary strain tensor. 

3.3 Equivalent strains or stresses 

3.3.1 Proposed model 

As observed in Figure 1, in combination with the equivalent stresses ±τ  expressed 

through equations (25) the damage criteria (24) encompass an elastic domain that in 

pure tension or in pure compression is defined by ellipsoids. This presents some 

advantages, since through providing a unified format for the norms and the damage 

criteria associated to tension and to compression the mathematical handling of the 

corresponding expressions becomes considerably simplified, as it became evident 

during the derivation of the tangent matrix. Besides, under plane stress conditions good 

fitting is obtained with the Kupfer et al.19 envelope via such elastic stress space. 

Nevertheless, under 3D stress conditions the ellipsoid may be inadequate to bound the 

pure compressive octant, since it renders an excessively conservative envelope, like if a 

‘cap model’ was adopted for relatively low compressive stresses. This limitation is 

easily circumvented by switching to another norm for the compressive stresses, as 

already proposed in Reference 16, where for −τ  the following definition was adopted 

 )(3 −−− τ+σ=τ octoctK  (66) 

In this format, directly inspired on the Drucker-Pragger criterion, −σoct  and −τoct  are the 

octahedral normal and shear stresses obtained from σσσσ− , that is, 

 3)(tr −− =σ σσσσoct  (67a) 

                                                                                                                                               
the locus of damaged points where local instability phenomena, strain-localisation, local bifurcation and 
‘strong discontinuities’ take place25. 
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 9)(tr3: 2 −−−− −=τ σσσσσσσσσσσσoct  (67b) 

K controls the aperture angle of the inherent Drucker-Pragger cone, and consequently it 

can be devised to fit the experimental results in the 2D compression-compression 

domain. Obviously under 2D plane stress conditions definition (66) performs identically 

to (25), leading to a bounding curve similar to the one depicted in Figure 1, but under 

3D compression the open bounding surface inherent to the Drucker-Pragger cone is 

considered to be more suitable for concrete. The selection of any of the two definitions 

(equations (25) or (66)) is a matter of choice, with no particular numerical difficulties 

arising when implementing any of them. 

1σ

3σ

 

Figure 5. Reshaping the initial 2D elastic domain. 

Another comment is addressed to the non-convexity of the initial 2D elastic domain 

depicted in Figure 1 for the model detailed in Section 2. In fact this feature is not so 

cumbersome as it seems, since no ‘closest point projection’ concept was invoked in the 

formulation. Anyway, it is possible to reshape such domain in order to convert it into a 

convex one by simply replacing σσσσ−  with σσσσ  in definitions (25) or (66) for the 

equivalent stresses. It is important to remark that this change does not interfere with the 

proposed stress split, neither with the remnant model formulation: the split of the 

effective stress tensor provides the essential tool for monitoring the stress components 

which are to be associated to compression, but for the points located in the 

tension-compression corner responsible for the loss of convexity the threshold in 

compression is updated by using the effective stress tensor σσσσ , instead of σσσσ− . 

Thermodynamic consistency of this arrangement is almost self-evident, since with 

reference to the standard procedure it enforces a slightly increased evolution of the 
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damage variable d − . Figure 5 reproduces the new convex configuration of the reshaped 

elastic domain. 

3.3.2 Some purely strain-based damage models 

In Reference 12 an isotropic scalar damage model is presented where crack propagation 

is assumed to be a consequence of the development of positive straining, and 

accordingly an equivalent strain of the form 

 
=

>ε<=τ
3

1

2

i
iεεεε  (68) 

is adopted, where εi  is the i-th principal strain. In addition, a loading surface with the 

equation 

 rrg −τ=τ εεεεεεεε ),(  (69) 

is introduced, where the hardening-softening parameter r retains the largest value of the 

equivalent strain εεεετ  ever reached. As for the damage variable d, a weighted sum of the 

tensile damage d +  and the compressive damage d −  is computed as 

 d d d= ++ + − −α α  (70) 

where coefficients α ±  depend on the tensile and compressive strain tensors ±εεεε , these 

ones defined according to 

 [ ] +−+ = σσσσεεεε :)( 1dD  [ ] −−− = σσσσεεεε :)( 1dD  (71) 

Obviously an implicit formulation is involved here, since εεεε±  depend on the Cauchy 

stress tensor and on the rank-four secant matrix D, which in turn depends on the 

weighted damage d, entities which are not known a priori†. At a first glance it becomes 

clear that this formulation has already introduced some of the concepts assumed for the 

two scalar damage variables model here proposed, namely the split and the simple 

format of the scalar damage criterion inherent to equation (69). However, an important 

difference arises from the fact that in general we have replaced the strain entities by the 

effective stress tensor, but since σσσσ  is itself a strain-based entity, our approach to the 

modelling of concrete behaviour stands in between the strain and the stress appraisals 

above referred. Besides, as pointed out in Reference 12, this version of the isotropic 

                                                 
† Concerning the specific evolution laws for ±d  and the definitions for ±α , a visit to Reference 12 is 
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scalar damage model is unable to account for the unilateral effect, and consequently its 

domain of application is confined to situations in which local damages develop 

preferentially in mode I or in mixed I and II fracture modes. This can be also ascertained 

through inspection of Figure 6a, where the 2D elastic domain inherent to the damage 

criterion (69) is reproduced: it becomes clear that the compression-compression 

quadrant is too restrictive when compared to the one from Kupfer et al.19 depicted in 

Figure 1. 

σ1

σ3

              

σ1

σ3

 

a) one scalar damage variable b) two scalar damage variables 

Figure 6. Scalar damage models from Mazars. 

In Reference 20 several equivalent strains (or stresses) were also presented. Among 

them, a first one with the form 

 σσσσσσσσεεεεεεεεεεεε :::: 1
00
−==τ DD  (72) 

is evidently a preliminary version of the norms ±τ  postulated in equation (25). This 

definition coincides with the energy norm of the strain tensor originally proposed in 

Reference 18, which through the using of the elastic constitutive tensor or the 

compliance one (both ‘undamaged’) allow the interchange between the effective stress 

tensor and the strain tensor documented in (72). Some variants of definition (72) were 

also proposed in Reference 20, basically through replacing the effective stress tensor by 

σσσσ+ , or by substituting the strain tensor by +εεεε †, or even by postulating a norm like 

 ( ) εεεεεεεεεεεε ::)1( 0Dnθ−+θ=τ  (73) 

where n is the ratio (compressive strength)÷(tensile strength) and 

                                                                                                                                               
recommended. 
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Anyway, from the beginning it was observed that the purely strain-based norms were 

inadequate to fit the concrete envelope in the compression-compression domain, as 

pointed out for Figure 6a. Such undesirable performance results from the fact that the 

favourable effect due to the lateral confinement in concrete samples axially compressed 

is compatible with some lateral expansion, a feature that can not be captured by norms 

like (68,72-73), since they predict εεεετ  to increase with the lateral expansion. 

3.3.3 Unilateral damage models 

Considerable advances were obtained with improved versions of the previous 

strain-based damage models by distinguishing the tensile damage from the compressive 

one, as postulated for the energy potential described in equation (63). This strategy 

allows accounting for the stiffness recovery effect, which as demonstrated in Reference 

12 improved the constitutive model described through equations (68-72) to deal with 

cyclic loading. 

Even with this modification, and apart from the already referred important difference 

concerning the stress tensors which are used to define the free energy potential, such 

version of the Mazars model is distinguishable from our constitutive model in the 

damage criteria. In fact, in that reference similar basic scalar definitions are assumed 

 τσσσσ
+ +− ≤r 0 τ σσσσ

− −− ≤r 0  (75) 

with the norms τσσσσ
±  coinciding with the damage energy release rates, that is, 

 τ
∂ψ
∂σσσσ

σσσσ σσσσ±
±

± − ±

±
= − =

−d d
: :D0

1

2 1
 (76) 

Formally equations (75) are analogous to equations (24) adopted for the two scalar 

damage variables model here proposed, but with an essential difference concerning the 

definitions for the norms: in equation (76) ±τ σσσσ  are clearly dependent on the Cauchy 

stress tensor and on the damage variables, whilst in our model ±τ  are strain-based 

entities. 

                                                                                                                                               
† This split performed similarly as in equations (2) for the effective stress tensor. 
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Figure 6b reproduces the 2D elastic domain bounded by equations (75-76), clearly 

an improved version of the one depicted in Figure 6b. In the tension-tension or 

tension-compression quadrants such envelope is quite similar to the one reproduced in 

Figure 1 for our model. Nevertheless, in the compression-compression quadrant 

equations (75-76) are unable to bound adequately the concrete elastic domain, namely in 

what concerns the prediction of an increased compressive strength under equibiaxial 

compression (when compared to the uniaxial one), contrarily to what occurs with the 

damage criteria postulated in Section 2, which provide a more realistic approximation to 

the Kupfer’s envelope. 

4. APPLICATIONS 

4.1 Seismic behaviour of a R/C wall 

This application concerns the numerical simulation with the model described in Section 

2 of the seismic behaviour of a six-floor reinforced concrete wall, experimentally tested 

on a shaking table. A set of three consecutive earthquakes with peak accelerations 

0.24g, 0.40g and 0.71g was prescribed to the R/C wall in an increasing intensity 

sequence. Even for the 0.24g earthquake significant cracking was already induced in the 

wall, but in order to save space the results to be presented hereafter refer only to the last 

0.71g seism†. Figure 7 reproduces this earthquake, whereas Figure 8 details the meshes 

adopted for the concrete, discretized with 8-noded plane stress finite elements (0.06 m 

thick), as well as for the steel reinforcement, simulated via 2-noded truss elements. 
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Figure 7. The 0.71g earthquake. 

                                                 
† Complimentary details may be found in Reference 26. 
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Three different concrete zones were considered in the wall, each of which with a 

particular 1D curve of the type depicted in Figure 9, and according to the properties 

resumed in Table 2. Zone A concerns to the concrete standing outside the stirrups 

(unconfined concrete), whereas B and C refer to the concrete located within the core of 

the stirrups existing on the lateral sides and on the centre of the wall, respectively. 

Floor
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 a) concrete b) reinforcement 

Figure 8. Finite element meshes. 

Table 2. Concrete properties (E = 28GPa) 

Concrete fco (MPa) εco f0
+ (MPa) fcm (MPa) εcm 

A 35 2‰ 3.8 – – 

B 35 2‰ 3.8 39.7 2.27‰ 

C 35 2‰ 3.8 38.5 2.20‰ 
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Figure 9. Confined and unconfined concrete. 

Such distinction between the curves for the unconfined and the confined concrete 

would be unnecessary under a 3D simulation, since the constitutive model would 

account for the favourable effect due to the confinement provided by the stirrups. 

However, for the present simulation a 2D plane stress condition is being assumed, and 

consequently the benefits provided by the confinement along the perpendicular to the 

plane of representation can not be reproduced consistently by the concrete model, since 

a null stress condition is enforced on such direction. 

Therefore we adopt here the standard procedure that consists in attributing an 

increased compressive strength fcm to the confined concrete depending on the 

confinement degree k, with the latter being27 

 
cocc

sytwsw

shb
lA

k
f
f

1 +=  (77) 

where Asw defines the cross sectional area of the stirrups, with perimeter lw, separation s 

and yield strength fsyt; b hc c×  designates the area of the concrete core effectively 

confined. Denoting by fco and εco the compressive strength and strain for the unconfined 

concrete, the confinement effect may lead to the following increments on the concrete 

strength and peak strain (see notation in Figure 9) 

 cocm k ff =  cocm k ε=ε 2  (78) 

The nonlinear behaviour of the steel reinforcement was modelled with the explicit 

formulation due to Giuffré-Menegotto-Pinto28. Details concerning this standard steel 
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model are obviously out of scope of the present paper, but for further information the 

reader is addressed to References 27-28; here it suffices to say that such explicit 

formulation is capable of reproducing dissipative loops like the ones depicted in 

Figure 10. 

 

Figure 10. Steel cyclic model. 

Table 3 condenses the properties assumed for the steel reinforcement layout 

indicated in Figure 8b (fsu and εsu are the ultimate stress and strain on the monotonic 

curve for each steel bar, and Eh denotes the hardening modulus reproduced in 

Figure 10). 

Table 3. Steel properties (E = 200GPa) 

 εsy εsu Eh (GPa) fsy (MPa) fsu (MPa) 

φ3 2.50‰ 25‰ 2.222 500 550 

φ4.5 2.33‰ 25‰ 2.425 465 520 

φ5 2.85‰ 25‰ 1.580 570 605 

φ6 2.58‰ 55‰ 0.953 515 565 

φ8 2.15‰ 50‰ 0.418 430 450 
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Figure 11. Results after the 0.71g earthquake. 

The numerical predictions from the proposed model are compared with the 

experimental ones in Figure 11: (i) in Figure 11a for the relative horizontal displacement 

registered on the top of the wall and (ii) in Figure 11b for the bending moment on the 

wall’s footing. A good overall agreement between the numerical and the test results was 

obtained, with the amplitudes, the frequencies and also the phases exhibiting perfectly 

acceptable deviations, particularly taking into consideration that two earthquakes were 

already considered before the present one. The underestimation of the top displacement 

evident in the numerical computations may be attributed to discrepancies between 

computational and test conditions, namely debonding of the steel bars and poor 

characterisation of the material properties. 
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4.2 Cyclic behaviour of a R/C bridge pier 

The next application shows the numerical simulation with the model described in 

Section 2 of a complex experimental test of a structural element under real physical 

conditions. It concerns a quasi-static cyclic test of a reduced-scale bridge pier, reported 

in Reference 27 and depicted in Figure 12a. Pier’s height is 8.4m, and the cross section 

is a 0.8×1.6m2 hollowed rectangle (Figure 12b). As reproduced in Figure 12b, 28φ14, 

12φ12 and 40φ8 diameters provide the longitudinal reinforcement, whereas φ5 stirrups 

with 0.06m spacing were used for transversal reinforcement. 
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Figure 12. R/C bridge pier. 

A constant axial force of 1700kN was firstly applied to the pier’s head, reproducing 

the vertical dead load transmitted by the deck. Afterwards a cyclic horizontal 

displacement was prescribed to the top of the pier, forcing it to move along the strong 

axis of the cross section. Owing to the geometric and load symmetries, a plane stress 

condition was assumed for the 8-noded finite element concrete mesh depicted in 

Figure 12a. An infinitely rigid foundation was assumed on the pier’s footing. 

Concerning to the material characterisation, two types of concrete were considered: 

(i) the unconfined one, which recovers the steel bars and (ii) the confined one, interior to 

the stirrups. With reference to the notation included in Figure 9 Table 4 condenses the 
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basic material properties for the characterisation of the 1D performance of these two 

types of concrete. Table 5 resumes the material properties assumed for the steel 

reinforcement. 

Table 4. Concrete properties (E = 36GPa) 

Concrete fco (MPa) εco f0
+ (MPa) fcm (MPa) εcm 

Confined 50.5 2.5‰ 3.8 59.6 3.0‰ 

Unconfined 50.5 2.5‰ 3.8 - - 

Table 5. Steel properties (E = 200GPa) 

Steel εsy εsu Eh (GPa) fsy (MPa) fsu (MPa) 

Longitudinal 2.50‰ 100‰ 1.500 500 650 

Stirrups 3.50‰ 16‰ 2.320 700 730 
 

Through superposing the numerical and the experimental force-displacement 

diagrams obtained on the top of the pier, as reproduced in Figure 13, it becomes evident 

the good agreement between the model predictions with the observed response for the 

entire loading history. Therefore, it becomes clear that under cyclic loading the two 

scalar damage variables model is able to reproduce the continuous change in the 

structural stiffness, namely the cracking of concrete, the ‘pinching’ effect dictated by the 

crack-closing, or even the nonlinearity in compression. 

Top displacement (m)

Force (MN)

present model
experimental

 

Figure 13. Force-displacement diagrams. 
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5. CONCLUSIONS 

A constitutive model proposed by the authors and based on the Continuum Damage 

Mechanics is detailed. Devised for the seismic analysis of large-scale concrete 

structures, an effective stress tensor is selected as the basic entity for supporting the 

formulation. This elastic tensor is subsequently split into tensile and compressive tensor 

components, each of them associated to an independent scalar damage variable. With 

such a strategy it is possible to capture the stiffness recovery effect upon load reversal, a 

feature of primary importance for seismic analysis. 

Owing to the strain-based formulation adopted throughout an explicit format is 

obtained, a particularly suitable property when dealing with large-scale problems, 

ensuring high algorithmic efficiency. In addition, a tangent operator is derived, an open 

issue in previous versions of the model due to some difficulties in expliciting time 

derivatives of the split stress tensors. 

A comparative discussion between the proposed model and some other scalar 

damage ones is performed, with particular reference to the strategies pursued for 

introducing the split and to the norms and the damage criteria adopted in the 

corresponding formulations. 

Finally, several numerical applications are presented, illustrating the adequacy of the 

constitutive model to reproduce the observed behaviour of reinforced concrete structures 

under cyclic motion, and consequently load reversal. 
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APPENDIX: DERIVATION OF OPERATOR  P  SUCH THAT  σσσσσσσσ �� :P=+  

During the derivation of the tangent matrix associated to the constitutive model 

described in Section 2 the definition of an operator P such that 

 σσσσσσσσ �� :P=+  (A.1) 

was required. 
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Taking into consideration the definition for the tensile effective stress tensor σσσσ+ , 

which can also be written as 

 σσσσ+ = ⊗Hi i i i
i

σ p p  (A.2) 

where H Hi i= ( )σ  denotes the Heaviside function computed for the i-th principal stress 

σi , performing a differentiation it becomes evident that 

 ( )[ ] ( )[ ]d H d H di i i i
i

i i i i
i

σσσσ+ = ⊗ + ⊗p p p pσ σ  (A.3) 

In subsequent steps entities d iσ  and ( )d i ip p⊗  will be explicited taking into 

consideration the following properties, concerning the eigenvalues and the eigenvectors 

of tensor σσσσ : 

 σσσσ ⋅ =p pi i iσ  (A.4a) 
 p pi i i⋅ ⋅ =σσσσ σ  (A.4b) 

 p pj i⋅ = 0 (for j ≠ i) (A.4c) 

 p pi i⋅ = 1 (A.4d) 

• = Clarification of d iσ  

By differentiating equations (A.4b,d) one obtains: 

 d d di i i i iσ = ⋅ ⋅ + ⋅ ⋅p p p pσσσσ σσσσ2  (A.5) 

 ( )d d di i i i i ip p p p p p⋅ = = ⋅ ⋅ =0 2 0  (A.6) 

Besides, multiplying equation (A.4a) by d ip  it results 

 d di i i i ip p p p⋅ ⋅ = ⋅σσσσ σ  (A.7) 

and owing to equation (A.6) it comes 

 d i ip p⋅ ⋅ =σσσσ 0 (A.8) 

Going back to equation (A.5), it is now possible to conclude that 

 d di i iσ = ⋅ ⋅p pσσσσ  (A.9) 

• = Clarification of ( )d i ip p⊗  

Differentiating p pi i⊗  leads to 

 ( )d d di i i i i ip p p p p p⊗ = ⊗ + ⊗  (A.10) 
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where d ip  is a basic entity, which requires clarification. Owing to the fact that the 

eigenvectors constitute an orthogonal referential, projection of d ip  onto direction p j  is 

expressible as ( )d i j jp p p⋅ , which allows introducing the following definition for d ip  

 ( )d di i j j
j

p p p p= ⋅  (A.11) 

According to (A.6) the situation j i=  can be eliminated from (A.11), and 

consequently 

 ( )d di i j j
j i

p p p p= ⋅
≠

 (A.12) 

On other hand, equation (A.4a) is equivalent to the homogeneous equation 

 ( )σσσσ 0000− ⋅ =σi iI p  (A.13) 

which after differentiation leads to 

 ( ) ( )σσσσ σσσσ− ⋅ = − ⋅σ σi i i id d dI p I p  (A.14) 

Result expressed in (A.9) allows also concluding that 

 ( ) ( )σσσσ σσσσ σσσσ− ⋅ = ⋅ ⋅ − ⋅ =σi i i i i id d dI p p p p p  

 ( )= ⊗ ⋅ ⋅ − ⋅p p p pi i i id dσσσσ σσσσ  (A.15) 

or, through pre-multiplication by p j  (with j i≠ ), 

 ( ) ( )p I p p p p p p pj i i j i i i j id d d⋅ − ⋅ = ⋅ ⊗ ⋅ ⋅ − ⋅ ⋅σσσσ σσσσ σσσσσ  (A.16) 

Owing to the eigenvectors orthogonality expressed in equation (A.4c) first term on 

the second member of (A.16) cancels, therefore leading to 

 ( )p I p p pj i i j id d⋅ − ⋅ = − ⋅ ⋅σσσσ σσσσσ  (A.17) 

Besides, first member on this equation is equivalent to 

 ( ) ( )p I p p p pj i i j i j id d⋅ − ⋅ = ⋅ − ⋅ =σσσσ σσσσσ σ  

 ( )= − ⋅σ σj i j idp p  (A.18) 

where property (A.4a) was invoked. According to equations (A.17-18) the following 

definition is hence extracted 
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 p p p pj i
i j

j id d⋅ =
−

⋅ ⋅
1

σ σ
σσσσ  (A.19) 

where for the present it was assumed that ji σ≠σ . Substituting in (A.12) leads to  

 ( )d di
i j

j i j
j i

p p p p=
−

⋅ ⋅
≠

1
σ σ

σσσσ  (A.20) 

Due to the symmetry of tensor dσσσσ  it is easy to conclude that the following property 

applies: 

 p p p pj i i jd d⋅ ⋅ = ⋅ ⋅σσσσ σσσσ  (A.21) 

Besides, it also occurs that 

 ( ) ( )p p p p p pj i j i i jd d d⋅ ⋅ = ⊗ ⋅ = ⊗ ⋅σσσσ σσσσ σσσσtr tr  (A.22) 

result that can be used to support the ensuing definition 

 
( ) ( )[ ]
( )

p p p p p p

p p p p

j i i j j i

i j j i

d d d

d

⋅ ⋅ = ⊗ ⋅ + ⊗ ⋅ =

= ⊗ + ⊗ ⋅� � =

σσσσ σσσσ σσσσ

σσσσ

1
2

1
2

tr tr

tr
 

 ( )= tr .P ij dσσσσ  (A.23) 

where 

 ( ) ( )P P p p p p p pij ji
i j j i i j= = ⊗ + ⊗ = ⊗

1
2

symm  (A.24) 

is a second-order symmetric matrix. 

Back to equation  (A.20), it is therefore possible to express d ip  according to 

 ( )d di
i jj i

ij
jp P p=

−
⋅

≠

1
σ σ

tr σσσσ  (A.25) 

and consequently (A.10) may finally be explicited as: 

 ( ) ( )d di i
i jj i

ij ijp p P P⊗ =
−

⋅
≠

2
1

σ σ
tr σσσσ  (A.26) 

Owing to (A.22) the following form may be attributed to equation (A.9): 

 ( )d di i iσ = ⊗ ⋅tr p p σσσσ  (A.27) 

Equation (A.24) allows to conclude that 

 p p Pi i
ii⊗ =  (A.28) 
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and therefore it is possible to transform (A.27) into 

 ( )d di
iiσ = ⋅tr P σσσσ  (A.29) 

Since P ii , P ij  and dσσσσ  are second-order symmetric tensors, the following properties 

are observed: 

 ( )tr :P Pii iid d⋅ =σσσσ σσσσ  (A.30a) 

 ( )tr :P Pij ijd d⋅ =σσσσ σσσσ  (A.30b) 

Substituting these results in equations (A.26) and (A.29) it is possible to arrive to 

 ( )d di i

ij ij

i jj i
p p

P P
⊗ =

⊗
−≠

2
σ σ

: σσσσ  (A.31a) 

 d di
iiσ = P : σσσσ  (A.31b) 

Consequently equation (A.3) may be expressed as 

 σσσσσσσσ dd :P=+  (A.32) 

with 

 ijij

i i ij ji

iiiii
iH PPPP ⊗

σ−σ
>σ<+⊗=

≠
2P  (A.33) 

Since P Pij ji=  this equation may also be transformed into 

 
≠

⊗
σ−σ

>σ<−>σ<
+⊗=

i ij

ijij

ji

jiiiii
iH PPPP 2P  (A.34) 

where the indices pair (i, j) is called only once on the second summation. 

An important property applies in equation (A.34), concerning to the fact that 

 lim
, if
, ifσ σ

σ σ
σ σ

σ
σi j

i j

i j

i

i→

< > − < >
−

=
≤
>

0 0
1 0

 (A.35) 

which puts into evidence that no singularity occurs when σ σi j= , and consequently 

limitation introduced about equation (A.19) is no longer restrictive. 
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