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Moving object classification is essential for autonomous vehicle to complete high-level tasks like scene understanding and motion
planning. In this paper, we propose a novel approach for classifying moving objects into four classes of interest using 3D point cloud in
urban traffic environment. Unlike most existing work on object recognition which involves dense point cloud, our approach combines
extensive feature extraction with themultiframe classification optimization to solve the classification task when partial occlusion occurs.
First, the point cloud of moving object is segmented by a data preprocessing procedure.(en, the efficient features are selected via Gini
index criterion applied to the extended feature set. Next, Bayes Decision (eory (BDT) is employed to incorporate the preliminary
results from posterior probability Support Vector Machine (SVM) classifier at consecutive frames.(e point cloud data acquired from
our own LIDAR as well as public KITTI dataset is used to validate the proposedmoving object classificationmethod in the experiments.
(e results show that the proposed SVM-BDT classifier based on 18 selected features can effectively recognize the moving objects.

1. Introduction

Autonomous driving has become an increasingly popular do-
main for intelligent transportation system [1, 2]. Moving object
classification is a critical step to achieve reliable planning of
driving trajectories for autonomous vehicles in dynamic envi-
ronment, and the prior knowledge of the category attribute
helps to build an appropriate dynamicmodel formoving objects
[3–5]. (e most commonly used sensors for object recognition
are camera and LIDAR. Compared with cameras, LIDAR can
obtain the accurate 3D measurements and it is invulnerable to
weather and illumination. Extensive research bends the efforts
to object recognition using LIDAR. Conventional techniques
can be coarsely divided into two categories.

(e first category of the methods determines the object
semantics through calculating the similarity between the
scanned object and the predefined template. Simple geometric
or motionmodel is constructed to classify rigid objects, while it
is difficult to recognize pedestrians. Fang and Duan [6] employ
iterative endpoint fitting algorithm to fit the segmented point
cloud and calculate the number and size of line segments to

determine whether the object is a vehicle or not. Petrovskaya
and(run [7] combine the rectangularmodel of point cloud in
2D occupancy grid map with the motion model established by
Rao-Blackwellized particle filter to improve the vehicle clas-
sification accuracy when partial occlusion temporarily occurs.

(e second class of the methods mainly focuses on the
effective feature descriptors of the object of interest as well as
training specific classifiers [8, 9]. For vehicle recognition, Yang
and Dong [10] calculated the geometric features based on the
optimal neighborhood size of each point, and classified the
segments using SVMs. Lee and Coifman [11] checked the
shape feature of each point cloud cluster and classified the
vehicle into six classes of vehicles. For pedestrian recognition,
Kim et al. [12] used SVM classifier with 31 layer-based features
for pedestrian recognition. Arras et al. [13] defined 14 static
features including roundness and compactness to train the
pedestrian classifier based on the point cloud of the legs. Al-
though this method can generate good recognition result at
indoor environment, it is not suitable for outdoor. For mul-
ticlass object recognition, Azim and Aycard [14] used the
simple ratio characteristics of 3D bounding box based on point
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cloud to recognize the vehicles and pedestrians, such as width-
height ratio and length-height ratio. However, frequent oc-
clusion in real traffic environment leads to false size ratio so
that the recognition performance is poor. Wang et al. [15]
proposed 120-dimensional feature set including rotating im-
ages, shape factors, point normal vectors, and Euclidean dis-
tances and employed SVM classifier to recognize multiclass
moving objects. Teichman et al. [16] constructed boosting
classifier to recognize moving vehicles, pedestrians, and bi-
cycles by integrating geometric features and motion features.
Moreover, occupancy-grid-based methods [17, 18] are pre-
sented to detect moving objects efficiently, but they only es-
timate the kinematic state of the object without the need to
classify the category.

Conclusion drawn from the abovementioned related lit-
eratures can be summarized as follows. First, the existing
moving object classification methods based on LIDAR are
designed for the relatively dense point cloud returned from the
scanned object. Second, temporary or partial occlusion at
consecutive frames is seldom considered in the majority of
object classification schemes, and the effectiveness of the
extracted features has not been analyzed from the perspective
of object category. Furthermore, most of the aforementioned
classification methods are proposed to recognize common
moving objects including vehicles, pedestrians, and bicycles. In
real traffic scenarios, the pedestrians often appear as inde-
pendent individuals or a small crowd. When two pedestrians
are too close, it is so hard to segment the returned point cloud
clearly that it is difficult to identify individual pedestrian. As
shown in Figure 1, the pedestrians marked as A and B are
segmented as a whole wrongly. It is very common that two or
three human get together, and the crowd composed of two or
three pedestrians may be regarded as other class of moving
object due to point cloud under-segmentation. Motivated by
the abovementioned analysis, we proposed a LIDAR-based
classification method in this paper for four categories of
moving objects, namely, vehicle, pedestrian, bicycle, and
crowd. Velodyne HDL-64E LIDAR is adopted to collect 3D
point cloud of the surrounding environment. Our method for
moving object classification uses raw point cloud as follows.
First, the points measured on moving objects are segmented
from the rest of 3D point cloud.(is process consists of ground
segmentation, the clustering of nonground points, and moving
object detection. Second, both global- and layer-based features
are extracted to describe the geometric characteristics, andGini
index criterion is utilized to select the effective features based
on the category attributes of training samples. Next, posteriori
probability SVM classifier is employed to obtain the classifi-
cation result at each frame, and BDTalgorithm is further used
to optimize the classification result of the tracked object at
consecutive frames. Finally, the proposed SVM-BDT-based
classification method is validated using the point cloud dataset
collected by our own LIDAR as well as public KITTI dataset.

(e contributions of this paper are two-fold. First, we
describe a novel approach for classifying moving objects into
vehicle, pedestrian, bicycle, and crowd, since the point cloud
segment of the crowd may be confused with other types of
objects and even reduces the accuracy of object recognition.
(is approach makes progress towards the application goal

of moving object classification in real traffic environment for
autonomous vehicle. Second, we adapt the idea of SVM-
BDT classifier to incorporate multiframe classification re-
sults based on the effective features, and moving object
classification is transformed into maximum posteriori
probability solution problem.

(e remainder of this paper is organized as follows.
Section 2 introduces the point cloud preprocessing. Section
3 presents feature extraction. Section 4 describes the
classification method. Section 5 demonstrates experimental
results. Finally, Section 6 offers conclusions and future
works.

2. Point Cloud Preprocessing

(e point cloud is characterized by the coordinates in the
world coordinate system, and LIDAR position is marked as
the origin of the world coordinate system. In this section,
ground points are removed from 3D raw point cloud using
the ground segmentation method in [19] which combines
Markov random field models with loopy belief propagation
algorithm. (en, nonground points should be divided into
independent clusters. Since the number of point cloud
clusters of moving objects in surrounding environment is
unknown and the density of point cloud varies with the range,
mean shift clustering algorithm in [20] is selected. In order to
reduce the influence of fixed bandwidth on the stability of
clustering results, an improved mean shift clustering algo-
rithm based on adaptive bandwidth is proposed as follows:

(1) (e nonground points are represented by

P � p1, . . . , pn( 􏼁,

pi � xi, yi( 􏼁, for i � 1, . . . , n.
(1)

Given initial kernel radius bandwidth h0, Gauss kernel
function G(p) and the tolerance ε, the initial kernel
density estimation is calculated by

􏽥f(p) �
1
n

􏽘

n

i�1

1
hd

k
p − pi

h

������

������

2
􏼠 􏼡, (2)

where d is the dimension of the data space.

A

B

Figure 1: Segmentation of moving object point cloud at one frame.

2 Journal of Advanced Transportation



(2) (e adaptive bandwidth is calculated for each point

by h(pi) � h0

�������

λ/􏽥f(pi)

􏽱

, where λ is a proportional
constant value and it can be calculated by
log λ � n− 1 􏽐

n
i�1 log􏽥f(pi).

(3) (e initial kernel centroid is marked as q1, and the
weighted mean value at qj is computed using kernel
functions G and the weight hd+2(pi)􏼈 􏼉

− 1:

qj+1 � mh qj􏼐 􏼑 �
􏽐

n
i�1 pi/hd+2 pi( 􏼁g qj − pi􏼐 􏼑/ h pi( 􏼁( 􏼁
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􏼒 􏼓

􏽐
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i�1 1/hd+2 pi( 􏼁g qj − pi􏼐 􏼑/ h pi( 􏼁( 􏼁

�����

�����
2

􏼒 􏼓

, j � 1, 2, . . . , n − 1, (3)

where mh(qj) is the mean shift vector. Note that qj is it-
eratively calculated until the gradient of the convergence is
zero, i.e., ‖mh(qj) − qj‖< ε.

Next, in order to detect moving objects, a local grid map
is constructed using 3D occupancy grid algorithm in [6] to
divide the surrounding environment into occupied, free, and
unknown voxels. When new measurements return, the
dynamic voxels are detected in the consistent gridmap based
on the inconsistencies between occupied space and free
space. (en, all the moving clusters in the dynamic voxels
are extracted, as shown in Figure 2.

3. Feature Extraction

In general, the height of the point cloud clusters of moving
objects including vehicle, pedestrian, bicycle, and crowd
ranges from 1m and 4m.When partial occlusion occurs, the
height of the clusters can be less than 1m. Since the layer-
based features describe a more detailed level of local shape
characteristics than the global features, we divide the point
cloud cluster into eight layers along the vertical direction of
the horizontal plane. 2D features at each layer are employed
to supplement the description of 3D geometric features and
reduce the disturbance of partial occlusion. In addition to
collecting the existing feature descriptors in the literatures,
the differences of point cloud characteristics among four
classes of moving objects are analyzed, and number-of-
point-based features, shape features, and statistical features
are selected, as shown in Tables 1–3.

In order to remove the features that make no significant
difference on the object classification results, Gini index
criterion of CART decision tree algorithm [21] is used for
feature selection. (e forward search mechanism of the

feature subset is combined with the subset evaluation
mechanism to select the efficient features in order of priority,
so that all samples falling at the subnodes belong to the same
category, namely the highest purity is achieved at each
subnode. Define that the proportion of the k-class sample in
the training sample set U is uk (k� 1, 2, 3, 4), and Gini index
is used to represent the purity probability distribution of the
sample set U:

Gini(U) � 􏽘

|y|

k�1
􏽘

k′≠k

ukuk′ � 1 − 􏽘

|y|

k�1
u
2
k. (4)

(e attribute w � w1, w2, . . . , wV􏼈 􏼉 is used to divide the
sample set U; thus, V branch nodes are obtained. (e
samples with the attribute wV at the vth branch node are
denoted as UV, and the weight of the branch node is set as
|UV|/|U|. Given the attribute w, the Gini index of the sample
set U is defined by

Gini_index(U, w) � 􏽘
V

v�1

Uv

U
Gini U

v
( 􏼁. (5)

(e attribute w∗ � argmaxGini index(U, w) with the
minimum Gini index is selected as the optimal boundary of
the features. Based on the optimal attribute, the features are
allocated for two subnodes generated from the current node.
(e abovementioned calculation is carried out recursively
until Gini index is less than the preset the threshold. (e
category attributes of training sample sets are divided, re-
spectively, for vehicle, pedestrian, bicycle, and crowd. Four
decision trees of the hierarchical features for four categories
of moving objects are obtained, as shown in Figure 3. In this
figure, the solid line denotes yes and the dotted line indicates

(a) (b) (c)

Figure 2: Top view of the scene with moving clusters. (a) Frame 149, (b) Frame 157, and (c) Frame 165.
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no. Based on the comprehensive analysis of four hierarchical
feature decision trees, 18 effective features are selected from
the initial 68 features, namely f1, f2, f4, f6, f11, f16, f19, f24, f40,
f43, f47, f55, f59, f62, f64, f65, f66, and f68.

4. Classification

4.1. Training SVM Classifier. SVM classifier based on pos-
terior probability is employed to calculate the probability of

the point cloud cluster belonging to each categories of
moving objects. First, the standard nonlinear SVM classifier
is used as the basic classification function:

y � sign(f(x)) � sign w
T
x + b􏼐 􏼑,

� sign⎛⎝ 􏽘

l

i�1
yiαi K xi, x( 􏼁 + b( 􏼁⎞⎠.

(6)

Table 1: Number-of-point-based features.

Index Description Formula
f1 Number of points of the cluster n
f2 (e slope of the line fitted by the number of points at each layer [13] y � kx + c1

f3-f4
(e first order and second order coefficient of the quadratic curve are fitted by the number of points at each layer

[13] y � bx2 + ax + c2

f5 (e product of the number of points and the minimum distance between the scan point and the origin point n∗dmin

Table 2: Shape-based features.

Index Description Formula

f6
(e sum of the area of the fitting rectangles of the

horizontal projection points at each layer A1 + A2 + · · · + A8

f7
(e average of the area of the fitting rectangles of the

horizontal projection points at each layer sA/8

f8–f15 (e density of the point cloud at each layer nLi
/Ai

f16
(e area of the fitting rectangle of the horizontal

projection points L∗ W

f17-f18
(e length and width of the fitting rectangle of the

horizontal projection points —

f19
(e standard Cartesian dimension of the horizontal

projection points
���������
Δx2 + Δy2

􏽰

f20–f27
(e mean of inscribed angles at each layer (the

proximity to a circle) α

f28–f35
(e standard variance of inscribed angles at each

layer

����������������

(1/np)􏽐
np

i�1(α − α)2
􏽱

f36–f43
(e circle fitting level at each layer (sum of squared
residuals of the vertical distances between the points

and the least square fitting circle)
(1/np)􏽐

np
i�1(pxy,i − 􏽢pc,i)

2

f44–f51
(e radius of the circle fitted by the horizontal

projection of the points at each layer Radius r �
�����������
D2 + E2 − 4F

√
/2 (circle x2 + y2+Dx+ Ey+ F� 0)

f52–f59
(e line fitting level at each layer (sum of squared
residuals of the vertical distances between the points

and the least square fitting line) [12]
1/np􏽐

np
i�1(pxy,i − 􏽢pl,i)

2

Table 3: Statistical features.

Index Description Formula

f60 Standard deviation between 3D points and mean center μ3D [13]
���������������������

(1/np)􏽐
np
i�1‖p3 D,i − μ3 D‖

􏽱

f61 Standard deviation between the horizontal projection points and mean center p
������������������
(1/np)􏽐

np
i�1‖pxy,i − p‖

􏽱

f62 Mean deviation between the horizontal projection points and median point 􏽥p (1/np)􏽐
np

i�1‖pxy,i − 􏽥p‖

f63 Second central moment at horizontal plane (with the mean center μp) (1/np)􏽐
np

i�1(pxy,i − μp)2

f64 (ird central moment at horizontal plane (with the mean center μp) (1/np)􏽐
np
i�1(pxy,i − μp)3

f65 Fourth central moment at horizontal plane (with the mean center μp) (1/np)􏽐
np
i�1(pxy,i − μp)4

f66 Mean reflection intensity Mintensity
f67 Standard deviation of reflection intensity Sintensity

f68
(e residual ratio of mean distances between the points at each block area and the long axis of the

fitting rectangle dk/Dk
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Figure 3: Decision tree at feature level. (a) Vehicle, (b) pedestrian, (c) bicycle, (d) crowd.
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(e standard SVM classifier only determines the
probability value as 1 or 0. In order to ensure the sparsity in
support vectors of SVM classifier and the accuracy of
classification results, Sigmoid function is used to convert the
output of standard SVM into a posterior probability [22]:

P(y � 1|f) �
1

1 + exp(Af + B)
, (7)

where P(y � 1 | f) denotes the probability value of correct
classification when the output is f and A and B are the pa-
rameters to be fitted. Define the training set as (fi, ti), and the
output of the probability value is set as ti � (yi+ 1)/2, where yi
is the sample category, yi � {−1, +1}.(e optimization strategy
of the parameters A and B can be solved by minimizing the
negative log likelihood function on the training set:

min
z�(A,B)

F(z) � − 􏽘
l

i�1
tilog pi( 􏼁 + 1 − ti( 􏼁log 1 − pi( 􏼁( 􏼁, (8)

where pi � [1 + exp(Afi + B)]−1, fi � f (xi), ti � {0, +1}, i� 1,
2, . . ., l.

4.2. BDT-BasedClassificationOptimization. (e point cloud
of moving object is associated with the tracker at the con-
secutive frames and the tracker is updated based on the
association result. (e location information of each moving
object at the next frame is predicted using linear Kalman
filter. (e moving object model is denoted as {I, L,W, x, y, if,
tI,Gm}, where I denotes the object index; L andW denote the
fitting rectangular size of the point cloud cluster; x and y
denote the center location of the point cloud cluster; if
denotes whether the object has an associated tracker, the
initial value is set as 0 and indicates no tracker; tI denotes the
associated tracker index; and Gm denotes the minimum
value of the cost function between the object and the as-
sociated tracker. (e tracker model is denoted as {I, L,W, x,
y, vx, vy, ifLost, oI}, where I denotes the tracker index; L and
W denote the fitting rectangular size of moving object
matched with the tracker at the last frame; x, y, vx, and vy

denote the position and speed prediction of the filtered
tracker at the current frame; ifLost denotes whether the
tracked object at the current frame is lost or not, the initial
value is set as 1 and indicates that the tracked object is lost;
and oI indicates the serial number of moving object cor-
responding to the tracker at the current frame when the
tracked object has not been lost.

(e deterministic data association algorithm based
on the fusion of multiple features is used to associate the
moving object with the tracker. (e location and geo-
metric features of moving object are utilized as the
primary and secondary constraints respectively. (e
objects are associated with the trackers by minimizing
the cost function. Assuming that m moving objects are
generated from the point cloud pre-processing proce-
dure at t + 1th frame and n trackers exist, the cost
equation based on the association between the ith
moving object and the jth tracker at t + 1th frame is
established:

G(i, j) � g1 · pos(i, j) + g2 · box(i, j),

pos(i, j) �

����������������������

xi
t+1 − x

j
t􏼐 􏼑

2
+ yi

t+1 − y
j
t􏼐 􏼑

2
􏽱

maxn

����������������������

xi
t+1 − xn

t( 􏼁
2

+ yi
t+1 − yn

t( 􏼁
2

􏽱 ,

box(i, j) �

���������������

Li
t+1( 􏼁

2
+ Wi

t+1( 􏼁
2

􏽱

−

������������

L
j
t􏼐 􏼑

2
+ W

j
t􏼐 􏼑

2
􏽱􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

maxn

���������������

Li
t+1( 􏼁

2
+ Wi

t+1( 􏼁
2

􏽱

−

������������

Ln
t( 􏼁

2
+ Wn

t( 􏼁
2

􏽱􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

,

(9)

where pos (i, j) denotes the cost component between the
position of moving object and the position of the tracker;
box (i, j) denotes the cost component between the size of the
fitting rectangle of moving object and the size of the tracker;
g1 and g2 denote the weight of the position and the weight of
the size, respectively, (define that g1 + g2 � 1, the weight of
the position is higher than that of the position; thus,
g1 � 0.7); maxn|•| represents the maximum of the associ-
ation values between the ith moving object and n trackers at
the t+ 1th frame.

When both the number of points and the shape vary
constantly for the point cloud of the same moving object at

Velodyne 64-HDL 
LIDAR

High definition 
camera

Figure 4: Autonomous vehicle.

Figure 5: Moving object samples.
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continuous frames and partial occlusion may exists in a few
frames, the posterior probability of the category estimation
will change frame by frame. Based on the prior probability
distribution of the object recognition result at each indi-
vidual frame, the posterior distribution model of the mul-
tiframe classification is established, and the maximum
output of posterior distribution is recursively solved by the

maximum likelihood method to generate the optimal
classification result at the current frame. (e classification
results at 10 previous consecutive frames are selected to
estimate the optimal category at the current frame. Define
the object category as Si ∈ S � {vehicle, pedestrian, bicycle,
crowd}, i � 1, 2, . . . , 4, and there are J moving clusters
C1, . . . , CJ􏽮 􏽯 at the tth frame. According to equation (6), the
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Figure 6:(e variation of posterior probability that point cloud of moving object belongs to each category Si in tracking process. (a) Vehicle,
(b) pedestrian, (c) bicycle, and (d) crowd.
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result of the category decision for the kth clusterCk (1< k< J)
is generated as {dk

i }, i � 1, 2, . . . , 4. (e category decision
vector for the kth cluster which is tracked by the tracker Tt at
the tth frame is denoted as Dtk � [dk

1, . . . , dk
4]

T. Assuming
that the observation Dt at the tth frame is only related to the
given category Si, the posterior distribution probability of
the kth moving object cluster belonging to each category Si at
the tth frame is updated by the state at the t− 1th frame:

P Si | Dt, . . . , D1( 􏼁 �
P Dt | Si( 􏼁 · P Si | Dt−1, . . . , D1( 􏼁

􏽐i�1P Si | Dt−1, . . . , D1( 􏼁P Dt | Si( 􏼁
,

(10)

where the likelihood function at the tth frame
P(Dt | Si) � sign(dit). At the end, the maximum posteriori
probability is used to estimate the category of the kth cluster
tracked by the tracker at the tth frame.

5. Experimental Results

5.1. Data Collection. In order to test the performance of the
proposed moving object classification method, four cate-
gories of the point cloud samples including vehicle, pe-
destrian, bicycle, and crowd are collected using Velodyne
HDL-64E LIDAR equipped on our autonomous vehicle
(Figure 4). (e videos generated by 3 external cameras on
the autonomous vehicle are acquired synchronously to
manually label the real categories for the samples. Mean-
while, 3D LIDAR data in public KITTI dataset [23] is also
used to supplement the point cloud samples.(e point cloud
clusters of moving objects are extracted with the data pre-
processing procedure. Note that the extracted clusters of
moving objects with the same category are sensed from
different view directions and distances. Figure 5 shows a few
examples of moving object. All the experiments are pro-
cessed on an Intel i7-4700, 3.20GHz core processor with
8GB RAM using C++ code.

5.2. SVM-BDT-Based Classification Results. (e framework
for moving object classification is tested on the task of
calculating the posterior probability that the point cloud
cluster belongs to each category of moving objects at con-
secutive frames. We run the proposed SVM-BDT classifi-
cation method using the 18 selected features, and the output
of the posterior probability in multiple scenarios are shown
in Figure 6. In each subgraph, the upper picture is the scene
image captured synchronously and the rectangle represents
one moving object tracked by 3D LIDAR, and the bottom
picture shows the variation of the posterior probability
frame by frame. As shown in Figure 6(b), the pedestrian in
the red rectangle suddenly appears and becomes from
partially occluded to be completely exposed in the point
cloud environment. (e posteriori probability that the
cluster belongs to the pedestrian increases rapidly after
several initial frames, and then it maintains at the maximum
value. Figure 6(c) shows that as the bicycle goes far gradually,
the number of points returned from the bicycle decreases
gradually, and the posterior probability that the point cloud
cluster belongs to the bicycle decreases correspondingly. As

shown in Figure 6(d), multiple pedestrians walk away from
the LIDAR. At first, the pedestrians walk so close that the
posterior probability of the category belonging to the crowd
is the highest. (en, the distance among the pedestrians
increases gradually, the point cloud of the crowd is suc-
cessfully segmented into multiple pedestrians, and the
posterior probability of the category belonging to the pe-
destrian increases accordingly. Later, the distances among
the pedestrians decrease, and the posterior probability of the
category belonging to the crowd increases again.

To evaluate the performance of the proposed SVM-
BDTmethod quantitatively, 2000 groups of the point cloud
samples are selected for each category of moving object,
and 5-fold cross validation is conducted. Each group
contains 10 consecutive frames. Figure 7 is the confusion
matrix of the recognition results. We can see that the
recognition accuracies of vehicle, pedestrian, bicycle, and
crowd are 97%, 95%, 91%, and 90%, respectively. (e
proposed classification method shows the best recognition
performance on moving vehicles, and the point cloud
cluster of the crowd is the most likely to get confused with
the other types of moving objects. Overall, the average
recognition accuracy of SVM-BDTmethod is 93.25%, and
the recognition result satisfies the requirements of au-
tonomous vehicle on the recognition of surrounding
moving obstacles. (e total running time of the proposed
SVM-BDT method increases with the number of moving
objects in the traffic scenario, especially the time cost of
BDT-based classification optimization stage, since the
point cloud of each moving object is associated with each
tracker at the consecutive frames and the trackers are
updated based on the association result.

5.3. Classification Performance Comparison. To demon-
strate that both the number of features and various
classifiers affect the recognition performance, we compare
four categories of moving object classification methods,
namely, (1) 18 features + SVM, (2) 68 features + SVM, (3)
18 features + SVM+ BDT, and (4) 68 features + SVM+
BDT. All methods are tested with 5-fold cross validation
using 2400 groups of point cloud samples, and each
category of moving object has 600 groups of point cloud
samples. Note that each group of point cloud sample
contains 10 consecutive frames and partial occlusion
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Figure 7: Confusion matrix of recognition results based on SVM-
BDT classifier.
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occurs at several frames. (e Receiver Operating Char-
acteristic (ROC) curves for four methods are shown in
Figure 8. (e larger the area under the ROC curve (AUC)
is, the better is the performance of the classification

method, and vice versa. AUC values and the run time of
four methods are listed in Table 4. (e run time denotes
the total time cost of both the feature extraction and
classification stages. We can see that in terms of the SVM-
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Figure 8: ROC curves of moving object classification results. (a) Vehicle, (b) pedestrian, (c) bicycle, and (d) crowd.
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BDT-based moving object classification method, AUC
value obtained by 18 features is close to that obtained by
68 features; thus, the characteristics of four categories of
moving objects can be explained by 18 selected features
well. For the same feature set, the SVM-BDT-based
classification method outperforms the SVM-based
method. It demonstrates the BDT algorithm using the
consecutive frames optimizes the classification result at
individual frame effectively.

It even overcomes the partial occlusion. Moreover, for the
same classifier, themethod using 18 features run less time than
the one using 68 features. Considering the recognition ac-
curacy, computation complexity, and operational efficiency, it
can be concluded that SVM-BDT classifier based on 18 fea-
tures is the best choice to achieve the recognition of moving
objects including vehicle, pedestrian, bicycle, and crowd.

(e crowd is regarded as a special moving object
which is different from the single pedestrian in this paper.
To further validate the crowd recognition performance of
the proposed SVM-BDT-based method, several com-
monly used recognition methods are compared. (e ROC
curves of the classification results are shown in Figure 9,
and the results clearly show the superiority of the pro-
posed SVM-BDT-based method against Adaboost algo-
rithm [24], Naive Bayes algorithm [25], and FLDA
algorithm [26]. Although the crowd recognition accuracy
of MCI-NN algorithm [27] outperforms the proposed
SVM-BDT-based method, MCI-NN algorithm consumes
more memory and takes more operation time due to
using Markov kernel function. (erefore, considering the
recognition accuracy and efficiency, the proposed SVM-
BDT-based method shows better crowd recognition
performance.

6. Conclusions and Future Works

In this paper, we propose an approach for moving object
classification using 3D point cloud in urban traffic en-
vironment. (is approach classifies moving objects into
four classes, namely vehicle, pedestrian, bicycle, and
crowd. (e accurate modeling of moving object classifi-
cation using 3D point cloud consists of several procedures
that all affect the final classification results. To obtain the
effective features of moving objects, unlike the application
of simple feature description, Gini index criterion is
employed in this work based on the characteristics of each
category of moving objects to select from the extracted
features including number-of-points-based features,
shape features, and statistical features. In the classification
procedure, unlike previous works where the classifier is
modeled with the point cloud at single frame, the moving
object is recognized based on SVM-BDT classifier to in-
corporate multiframe classification results. (e presented
method has three benefits. First, our method can classify
the common moving objects in urban environment even if
the pedestrians walk close or partial occlusion occurs.
Second, this method digs deep into the point cloud dis-
tribution based on the category attribute to recognize
moving object efficiently. Moreover, the BDT-based
classification optimization is conducted on the results of
the posterior probability SVM classifier at consecutive
frames to improve the moving object classification per-
formance. (e method is tested using the point cloud
dataset collected by our own LIDAR as well as public
KITTI dataset in the experiment. (e results reveal that
the proposed SVM-BDTmethod based on 18 features can
achieve better classification accuracy for vehicle, pedes-
trian, bicycle, and crowd, compared with several other
methods. Note that the point cloud samples collected by
our method are within 40 meters, beyond which the
declining resolution of the point cloud caused many
mistakes. (e proposed method has a limitation on
classifying the moving objects at long range; thus, this
challenge is treated as a subject of our future work. An-
other aspect of future work is the deep understanding of

Table 4: Performance comparison of moving object classification
algorithms.

Object Features Classifier AUC Run time per
object (ms)

Vehicle
18 SVM 0.950 40.67

SVM-BDT 0.989 77.89

68 SVM 0.980 60.45
SVM-BDT 0.991 88.38

Pedestrian
18 SVM 0.953 39.77

SVM-BDT 0.976 72.38

68 SVM 0.969 57.42
SVM-BDT 0.985 83.93

Bicycle
18 SVM 0.859 42.94

SVM-BDT 0.958 75.83

68 SVM 0.902 59.94
SVM-BDT 0.968 85.01

Crowd
18 SVM 0.845 41.70

SVM-BDT 0.931 75.33

68 SVM 0.923 58.87
SVM-BDT 0.933 84.15
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Figure 9: Roc curves of crowd recognition results.
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the behaviour using 3D LIDAR by integrating the motion
cues with the classification results of the surrounding
objects in urban traffic environment.
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